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Abstract 

Rainfall is low and unreliable in much of Australia’s dryland cropping areas, requiring well-informed 

crop management for optimising yield and profit. Growing-season rainfall is usually supplemented by 

soil water during fallow periods preceding a crop. While rainfall is conveniently measured, the 

difficulty of measuring a soil’s plant available water (PAW, mm) has led to using simulation models 

for estimating PAW. Here we developed a smartphone application (app) that simulates soil water 

balance by accessing weather, soil and crop data from databases and on-farm records. Predictions of 

PAW using the Howleaky modelling engine were compared with field measurements. Validation of 

the simulation engine across sites in Australian cropping areas showed good agreement between 

simulated and measured PAW. Errors in model estimates are compared with variability found within 

small fields. We conclude that estimating PAW for paddocks using a simulation model built in a 

smartphone app is a reliable and adaptable technology. 
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1. Introduction 

Crop production in Australian agriculture is 

limited by the water supply and water use 

efficiency (WUE, kg/ha/mm; French and Schulze 

1984) of farming systems. Many dryland farmers 

are familiar with concepts of yield targets based on 

WUE which relates crop yield directly to water 

supply (water stored in the soil at planting plus in-

crop rainfall). WUE is simple, transparent and well 

suited to communication with farmers. In a study 

of 334 commercial wheat crops, Hochman et al., 

(2009) found a WUE value of 15 kg/ha/mm and a 

threshold value of 67 mm. Nutritional disorders, 

pests and disease reduce yield below these 

guideline values of WUE and provide evidence of 

crop disorders (Cornish and Murray 1989). 

Nevertheless, the importance of water supply to 

dryland crops is overarching, as summarised by 

Routley (2010); “Water supply is clearly the factor 

most limiting the productivity and profitability … 

primary aim of dryland cropping systems … 

maximise the efficient capture, storage and use of 

this limited water.” In the northern and drier areas 

of southern Australia there is insufficient rainfall 

during crop growth to achieve economically viable 

yields, so fallows are used to accumulate soil water 

to supplement in-crop rain. This dependency on 

water stored in a fallow varies from 5% in Western 

Australia to 60% in central Queensland (Thomas et 

al., 2007). The need for improved soil water 

management may increase in the future under a 

changing climate as climate adaptations are likely 

to have a greater reliance on stored soil water 

(Kirkegaard et al., 2014; Ghahramani et al., 2015). 

 

Major investments in crop production occur at 

planting time and shortly after, when an uncertain 

water supply makes prediction of yield and 

financial return difficult. Financial losses from 

both under-investing and over-investing in crop 

inputs are common, but having a robust estimate of 

soil water at sowing time can reduce uncertainty 

(Thomas et al., 2007). Management options and 

farm financial risk profiles can be decided by soil 

moisture status of a paddock. A high potential 

yield attracts greater investment in crop 

establishment, nutrition (Moeller et al., 2009), crop 

protection and informs marketing decisions. On 

the other hand, low yield potential informs a 

variety of agronomic and business decisions with 

inputs often being reduced. Although predicting 

grain yield before or early in the growing season is 

challenging, applying the WUE framework to 

predict yield is well established (French and 

Shultz, 1984; Moore et al., 2011) and is improved 

by a reliable estimate of plant available water 

(PAW) near planting. PAW is water that is 

available to plants during the crop phase, is 

regarded as “safe” water as it is mostly immune to 



Accepted version in Environmental Modelling & Software (2018) before final edit 

   2 

evaporation loses due to its depth of storage and 

sustains crops between rainfall events.  

 

PAW is calculated for each soil layer from the 

difference between gravimetric water content (g g
-

1
) and the soils lower limit (LL or wilting point) 

and considering the thickness and bulk density of 

each soil (Lawrence et al., 2005). Plant available 

water capacity (PAWC) refers to a soil’s capacity 

to store water and is often taken as a soil property, 

although it can be dependent on crop type. PAWC 

is calculated from a soil’s LL and drained upper 

limit (DUL or field capacity) (Dalgliesh and 

Cawthray 2005). Estimating PAW and PAWC is 

expensive and labour-intensive. 

 

In this paper, we explore errors in predicting soil 

water using a water balance model along with an 

analysis of spatial variability in relatively small 

fields. It is recognised that there are errors 

associated with instrument calibration and 

estimating basic soil properties such as bulk 

density and LL required in calculating PAW 

(Dalgliesh et al., 2009). Because of these errors 

and high spatial variability in field conditions, 

PAW is not a variable to be measured directly in a 

simple manner by farmers and consultants. Early 

simulation models of crop growth and yield were 

focused on predicting the supply of soil water with 

a view to managing crop water use and increasing 

WUE (e.g. Fitzpatrick and Nix 1969, Nix and 

Fitzpatrick 1969).  

 

The capability to estimate PAW within soil and 

cropping systems models, such as Howleaky 

(McClymont et al., 2016) and Agricultural 

Production Systems Simulator (APSIM) 

(Holzworth et al., 2014) is largely inaccessible to 

practical agronomists and farmers as those models 

were designed as research tools, not as information 

products. Decision support tools that do 

incorporate soil and crop dynamics such as Yield 

Prophet (https://www.yieldprophet.com.au) require 

considerable system specification whereas the app 

being introduced here aims to provide a robust and 

rapid estimate of soil water, aimed at farmers and 

consultants as users. 

 

In developing a smartphone app to provide 

estimates of PAW to farmers and their consultants, 

it was considered prudent to understand the 

accuracy and reliability of a model based estimate 

of PAW. Confidence in the performance of models 

is usually obtained by comparison with field 

observations for the key variables of interest to the 

scientist, such as runoff, erosion and water quality 

(Knisel 1980; Williams 1983; Littleboy et al., 

1992) or crop biomass and yield (Carberry et al., 

2009), while it has largely been assumed that 

models accurately predict PAW. Such a narrow 

focus is expected as most components of the water 

balance are difficult to measure. For example, 

runoff is infrequent and unpredictable, making it 

difficult to maitain equipment (Freebairn et al., 

1986), while deep drainage is technically difficult 

to measure and subject to high spatial variability 

(Humphreys et al., 2003). While 

evapotranspiration is more spatially homogeneous 

and accurately measured variable in a water 

balance analysis, calculations of the Bowen Ratio 

(Fritschen 1965) and related methods require 

advanced instrumentation, complex mathematics 

and are labour-intensive and expensive. These 

methods are almost exclusively applied where 

crops are growing, and water flux to the 

atmosphere is unable to be apportioned to soil 

evaporation and transpiration.  

 

The analysis presented here was part of the design 

of a virtual soil water monitoring system, 

SoilWaterApp, which is aimed to meet farmer and 

adviser needs . We evaluate the water balance 

model in Howleaky (McClymont et al., 2016) used 

in SoilWaterApp to estimate changes in PAW. 

Also, we investigate the ability of a smartphone 

app to estimate the components of water balance 

from meteorological, soil and crop information, 

providing estimates of PAW for improved crop 

management through system design. 

SoilWaterApp is available from the Apple Store in 

Australia and documented at 

http://www.soilwaterapp.net.au. SoilWaterApp has 

some special features: fast simulation of the water 

balance on a smartphone or tablet; connection to 

climate, soil and crop databases; accept on-farm 

data; and sufficiently user-friendly to 

accommodate a wide range of users including 

farmers and consultants.  

2. Water balance model 

The water balance model used in the app has 

evolved from CREAMS (Knisel 1980) which 

predicted PAW, runoff and soil erosion from a 

combination of rainfall and evaporation data with 

(i) the runoff model of Williams and La Seur 

(1976), (ii) the soil evaporation model of Ritchie 

(1972) and (iii) the USLE for soil erosion 

(Williams 1983). CREAMS was influential in the 
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development of PERFECT (Littleboy et al., 1992) 

and later Howleaky (McClymont et al., 2016). The 

latter model uses the Williams-Ritchie water 

balance model (Williams and La Seur 1976; 

Ritchie 1972) which is a one-dimensional 

mechanistic model, with parameterisation strongly 

based on a wide range of empirical studies 

(Littleboy et al., 1992; 

http://Howleaky.net/index.php/library). Simulation 

is performed on a daily time step. Surface runoff is 

estimated as a function of daily rainfall, soil water 

deficit, surface residue and crop cover. The model 

has a “cascading bucket” structure where 

infiltration is partitioned into soil layers from the 

surface, filling subsequent layers to total porosity. 

In the model, vertical water movement occurs if 

the layer is wetter than its field capacity and the 

layer below is drier than its field capacity. Water 

flux is limited by the saturated hydraulic 

conductivity of each layer. Soil water can be 

removed from the profile by transpiration, soil 

evaporation and downwards movement from the 

lowest layer as deep drainage. Transpiration is a 

function of pan evaporation (a climate input), leaf 

area or percentage green cover and soil moisture. 

Soil evaporation removes soil water from the 

upper two layers. The sum of transpiration and soil 

evaporation (evapotranspiration) cannot exceed 

pan evaporation on any day. A summary of the soil 

water balance model in Howleaky is presented in 

the supplementary material S1. 

3. Architecture: Software and Data 

SoilWaterApp has been developed for iOS devices 

using Apple’s native Objective-C framework and 

communicates with a central cloud-based server 

for synchronising both app and user data. 

Operating the app involves setting up and 

monitoring a range of “sites” with different agro-

climatic variables. Selecting a site in the user-

interface will present an “analysis page” which 

automatically updates the soil-water results for the 

latest climate conditions using the HowLeaky 

model. During this process, it will update any 

outdated climate data and provides the user with a 

range of input and output infographics that 

progressively disclose more detail as the user 

scrolls down (Fig 1). Inputs are presented at the 

top of the analysis page and are grouped into soil, 

starting conditions, fallow/crop conditions, 

irrigation, local rainfall and soil-water sensor 

options. Outputs include a summary of predicted 

PAW; a time-series of recent, historical (past 

years) and predicted plumes of soil-water, recent 

stubble and crop cover; a soil-moisture profile 

graph; and a water-balance summary table.  

 

 

 
(a) 

 
(b) 

 
(c) 

 

Fig 1. Example of SoilWaterApp’s user-interface showing (as user scrolls down the page): (a) 

input options and summary output; (b) soil-water and cover time-series; and (c) soil-moisture 

profile and water-balance table. 
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The App has been developed with a 

multithreaded design for parallel processing of 

data input, output and analysis streams. It is 

composed of a range of independent functional 

modules for data input, storage and 

synchronisation and for running soil-water 

analyses using the HowLeaky Engine. Figure 2 

shows these modules and how they interact 

with each other and external data sources. 

Database operations are handled by a 

CoreData Manager module and multiple 

synchronised database instances known as 

“managed object contexts”. Separate 

“contexts” ensure that data integrity is 

maintained during asynchronous operations of 

the Data Synchronisation Manager, Bluetooth 

Manager and running of the HowLeaky 

Engine.  Temporary View-Models are used to 

safely transfer data between the CoreData 

Manager and HowLeaky Engine and to 

provide an “undo” and “redo” functionality for 

user-settings changes. A Climate Data 

Manager module facilitates updating local 

climate data from the SILO data server 

(https://www.longpaddock.qld.gov.au/silo/) 

while an Export Manager module allows 

analysis data and results to be shared with 

other users. The app communicates with 

several external Application Programming 

Interfaces (APIs), including a cloud-based 

database, a climate data provider and 

Bluetooth rain-gauge and soil water sensors. 

Key to the software’s operation is a Data 

Synchronisation Manager which synchronises 

both application and user data between 

multiple mobile devices and a server. Data 

includes soil and vegetation descriptions, 

climate locations, project, site and simulation 

data and analytics to track the app’s use. This 

allows data to be collected on one device (with 

or without an internet connection) and 

synchronised with the SoilWaterApp “server” 

and other mobile devices once an internet 

connection exists. It operates in different 

modes including “one-way from the server to 

device”, “two-way between server and device” 

and “one-way between device and server” 

depending on the nature of the data. 

SoilWaterApp relies on a range of short and 

long-term time-series data that are retrieved 

and stored using different methodologies. 

Long-term records of daily historical climate 

data from the SILO “patched point” database 

(Jeffrey et al 2001, 

www.longpaddock.qld.gov.au/silo/) are stored 

locally as ASCII files on the user’s device and 

automatically appended to each time the app is 

active. These files are replaced after two 

weeks as the SILO data files are prone to data-

corrections over time. Users’ local short-term 

data such as “rain-gauge”, “soil water sensor” 

and “irrigation” data are stored in the database 

in records spanning three-monthly “data 

chunks” to facilitate efficient retrieval and 

synchronisation between device and server.  

4. Model evaluation 

Performance of the water balance model in 

SoilWaterApp was evaluated for three data 

types: fallows with detailed long-term 

observation of gravimetric soil water collected 

from hydraulically driven soil cores (three sets 

of small catchments); daily data for a sequence 

of fallow and crops at two sites using 

capacitance probes; and a set of BlueTooth 

enabled Decagon soil water sensors and a rain 

gauge integrated with the SoilWaterApp. 

Comparisons between soil water observations 

and model estimates were carried out using the 

Howleaky model (McClymont et al 2016) as 

this was the most efficient process and the app 

is not suited to model testing. The model in the 

app and Howleaky were verified to produce 

identical outputs when given the same inputs. 

4.1 Fallow 

In Australian dryland cropping systems, 

fallows are instigated to store soil water, 

accumulate soil nitrate and control weeds in 

preparation for the next crop to reduce the risk 

of failure and increase yield, especially where 

soils have a high water holding capacity. Field 

observations of fallow effect on soil water 

were available from three long-term 

experimental sites in the state of Queensland 

(Greenmount, 27°44'27"S 151°51'33"E; 

Greenwood, 27°19'42"S 151°43'47"E;  

Wallumbilla, 26°34'28"S 149°11'17"E) where 

the focus of each study was to better 

understand the role of tillage and stubble 

management on moisture and soil conservation 

(Freebairn and Wockner 1986; Freebairn et al., 

2009). Rainfall, runoff and soil water were 

monitored over periods of 7-17 years 

equivalent to ~170 plot-years of data with each 

plot being sampled at least three times each 

year (start, mid and end of each fallow period). 

Each soil sampling consisted of nine soil cores  

https://www.longpaddock.qld.gov.au/silo/)
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Fig 2. A schematic of SoilWaterApp’s software structure 

 
taken in each bounded catchment (referred to 

hereafter as a “bay”) at 0-10, 10-30, 30-60, 60-

90, 90-120 and 120-150 cm depths (see Fig 3a 

for sampling patterns). Plant available water 

(PAW, mm) was estimated from a field-

measured lower limit (LL, cm
3
/g) (Dalgliesh 

and Foale, 1998) and measured soil bulk 

density (g/cm
3
) and is presented in this paper 

as an average of total profile PAW for each 

sample date. Field experiments were 

conducted under two common but contrasting 

soil management conditions; stubble burnt 

after harvest with little soil cover and zero-

tillage with 30-80% cover from crop residue. 

Measured and predicted change in PAW 

between sample dates is used rather than 

absolute values of PAW to reduce artificial 

skill in the statistics. All related weather, 

agronomy practice and soil descriptions, and 

soil water data are accessible from a database 

of experimental sites focusing on water 

balance and water quality across Australia 

(http://howleaky.net/index.php/library). 

 

4.2 Fallow and crops 

SoilWaterApp’s modelling engine was 

evaluated for its ability to simulate PAW in 

crop-fallow sequences at two sites in the state 

of the Victoria: Youanmite (-36.1639
o
S, 

145.6640
o
W) and Hamilton (-37.7277

o
S, 

141.9242
o
W). Each site had one sample 

location with 8 capacitance sensors at 30, 40, 

50, 60, 70, 80, 90 and 100cm depths 

(EnviroPro® EP100G-08, Entelechy Pty Ltd, 

Adelaide, Australia). The shallow sample was 

located to avoid damage by tillage equipment 

and was sited to avoid wheel tracks. The 

surface 25 cm was not sample. While these 

data are more limited in terms of duration and 

fallow management practices, the daily time 

series provides more detail on soil water 

dynamics using measuring equipment similar 

to that increasingly being installed by farmers 

and consultants. In essence, this level of detail 

is a useful benchmark for evaluating 

SoilWaterApp’s ability to track soil water 

dynamics at a daily time step.  
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4.3 Surface water dynamics  

SoilWaterApp accepts data directly from a 

BlueTooth enabled data logger connected to a 

tipping bucket rain gauge and three Decagon 

Devices, Inc. 10HS soil water sensors. To test 

a prototype system, we installed a 

sensor/logger system into a bare soil plot at the 

University of Southern Queensland, 

Toowoomba (27°36'52.0"S 151°56'14"E). 

Daily rainfall and soil water content were 

recorded from June to October 2016 (20 

weeks). In this experiment, the surface 10 cm 

of soil was monitored at 4 cm, 6 cm and 8 cm, 

representing a measurement zone of 0-5cm, 5-

7cm and 7-10cm respectively, with a focus on 

testing the evaporation algorithm within 

SoilWaterApp as well as the robustness of 

deploying the system into a field setting. The 

soil description reflected the sensed layers for 

a shallow Ferrosol. 

5. Spatial variability in field measurements 

Plant Available Water Capacity (PAWC) is 

often taken as a soil property and is an 

important descriptor used in biophysical 

models. We explored the spatial variability in 

measurements from three long-term datasets 

(also used in section 4.1) that represent 

cropping in southern Queensland (available at 

http://Howleaky.net/index.php/library). A soil 

survey with detailed pedology and chemical 

assessment did not reveal any marked 

differences in soil type across a 12ha site, with 

soil depth > 2m across the three sites (i.e. soil 

depth should not be limiting to plant growth). 

At Greenmount and Greenwood, distance 

between sample areas is relatively short (50-

60m). Greater variability would be expected at 

Wallumbilla as it was a larger site, with 

sample sites ~150m distance apart on a 

diverging slope. Samples displayed greater 

variation in colour when sampled. All three 

study sites represent areas < 10% of a normal 

“paddock” in their respective regions. 

6. Operating the App 

Daily rainfall and evaporation data from SILO 

are accessed by SoilWaterApp via mobile 

telephone or Wi-Fi networks. Once a site is 

established (climate, soil type, cover and crop 

dates) taking a new user <5 minutes, soil water 

estimates are immediately updated using 

weather data up to the day before (yesterday) 

each time the app is opened. Multiple sites can 

be established and shared between users. 

Given the high spatial variability of rainfall 

and sparse network of gauges in some parts of 

grain growing regions, users can enter local 

rainfall data manually or use an automated rain 

gauge that connects to the mobile device via 

Bluetooth Low-Energy (BLE). In addition to 

the BLE rain gauge, a small number of BLE 

data loggers have been deployed with soil 

moisture sensors to monitor PAW daily. 

Whenever the user is within BLE range (< 20 

metres), a seamless communication and 

transfer of the soil water and rainfall data from 

the logger to the app occurs. The app and its 

associated API includes databases of soil 

parameters for estimating daily runoff, deep 

drainage, soil evaporation, and PAWC. 

Similarly, a database of crop parameters 

describing green cover and root depth 

distributions is required for estimating 

transpiration and soil water extraction. Crop 

residue cover, used to modify infiltration and 

evaporation, is specified by the user. 

Databases are updated with app use while a 

system administrator can easily manage the 

'reference' databases of soil and vegetation 

descriptions. 

7. Results and discussions 

7.1 Modelling capability of the app 

The performance of the app’s modelling 

engine in simulating changes in PAW over 

fallows and crops for a range of rain-fed 

agricultural systems is evaluated. Fig 3a 

presents a comparison of simulated and 

observed gains in PAW for the three long-term 

field studies in the state of Queensland 

(Greenmount, Greenwood, and Wallumbilla). 

There was agreement between simulated and 

observed values for each practice and soil 

type. The scatter of measured and observed 

data in Fig 3a has a range of R
2
 values from 

0.72-0.76 across sites and treatments, with an 

overall R
2
 of 0.69 indicating reasonable 

confidence in model estimates across multiple 

seasons, soil types and fallow management 

conditions. Regression analyses were carried 

out using MS Excel statistics.  
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The pattern of error shown in Fig 3a frequently 

occurs in models of this type due to inadequate 

representation of biological and physical 

processes that give rise to low and high values. 

For example, regression of observed and 

APSIM predictions in 15 studies of crop yields 

resulted in low slope (< 1) in 12 studies and a 

high intercept (> 0) in 13 of those studies 

(Carberry et al., 2009).  

 

At Youanmite (State of Victoria), daily values 

of observed and predicted PAW are in step 

during the crop of 2015 that was planted with 

low PAW and subsequently suffered severe 

water stress (Fig 3b). The disagreement 

between simulated and measured 

replenishment of PAW over the summer 

fallow where Howleaky overestimated PAW 

accumulation may be attributed to errors in 

parameters describing surface soil water 

characteristics or missing rainfall data. The flat 

sections in model estimates are an artefact of 

soil water data being available for 30-100cm 

layers as sensors were buried beneath the 

tillage depth. Plotted model estimates ignored 

layer 1 (0-20cm), therefore not showing soil 

surface water dynamics. PAW predictions in 

June and July are in agreement with 

measurements, an important outcome given 

the app is used to guide inputs during early 

crop growth.  

 

Results from the Hamilton site show good 

agreement between observations and estimates 

of PAW with both accumulation and depletion 

of PAW predicted well (Fig 3b). These 

comparisons lead to confidence in predicting 

gains in PAW during fallows with small and 

generally explainable errors during periods of 

crop water use. An analysis of errors found 

that unreliable rainfall data and poor 

specification of soil constraints accounted for 

most poor predictions of PAW. Unreliable 

rainfall data came from poorly maintained 

digital rain gauges. It is recognised that field 

data collection is challenging given 

environmental extremes while soil 

specification remains a challenge for site-

specific applications of models. 
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Fig 3 Modelling capability of the app across six contrasting sites (a) Aerial photographs of the 

Greenmount (left), Wallumbilla (centre), and Greenwood (right) field studies showing soil sample 

patterns - the distance between sample “triples” is ~50m at Greenmount, 150m at Wallumbilla and 

40m at Greenwood. Arrow indicates direction of slope. Observed and predicted gains in soil water are 

shown below each photograph with root mean square error (RMSE): Greenmount = 30mm; 

Greenwood = 27mm; Wallumbilla = 34mm. (b) Daily observations and predictions of PAW (mm) 

(20-100cm soil layers) at Youanmite (left) and Hamilton (right) from late 2014 to mid-2016. Green 

shading indicates crop period. (c) Screenshot of SoilWaterApp’s time series of estimated soil water 

(dark blue line) and PAW (plant available water) estimated from Decagon moisture probes (red dots). 

Rainfall and soil water data were collected from a data logger using BLE communication directly to 

the app. The heavy light blue line indicates average PAW, the thin blue line-last year’s estimate while 

the blue plume indicates 60% of previous years. Wilting Point and Field Capacity refer to the lower 

and upper limits of PAW in the soil profile 

 

 
Fig 3c shows PAW estimated by 

SoilWaterApp and measured values derived 

from capacitance sensors, demonstrating 

linking local rainfall and soil water data with 

the ability to customise a soil type for a site. 

Fig 3c shows that when SoilWaterApp is 

suitably configured, its water balance 

simulation and field sensors provided 

comparable estimates of soil water in a simple 

experiment focusing on evaporation losses. 

This combination of sensors, a Bluetooth 

logger and SoilWaterApp is a valuable 

development in bringing a simple and reliable 

soil water sensing system and modelling to 

soil scientists, agronomists and eventually 

farmers. While this system is not 

commercially available, Fig 3c displays the 

system’s simplicity, low cost, accuracy 

without calibration and direct link between a 

monitoring device and a water balance 

simulation. 

7.2 Why a virtual soil water monitoring 

tool?  

To compare field variability of soil water 

observations with errors associated with 

modelling soil water, individual soil core data 

from the Wallumbilla study were analysed in 

detail for several sample dates. At the studies 

initiation, the site was chosen to be 

representative of a major soil type of the 

region and to be relatively uniform across the 

site, yet Fig 4a shows variability in PAWC 

(180-280mm) for four adjacent catchments 

over a 15 ha site (see Fig 3a). PAWC is 

regarded an important soil descriptor in water 

balance models and is important in calibrating 

soil sensors.  

 

Figure 4b shows the variability in measured 

PAW for nine sites within a 3 ha bay for a 

sample date at the end of a summer fallow. 

While nine samples were collected with the 

aim of providing a robust estimate of PAW 

and changes in PAW for the 3 ha catchment, it 

is clear that reliance on a different number of 

sample locations would produce a different 

result. The standard deviation of gravimetric 

soil water for any depth is 1-2% which 

translates into a standard deviation of ~50mm 

of PAW. An outcome from these observations 

might be that users of models might have a 

more realistic view regarding specification of a 

model given the natural variability within a 

small area. 
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Fig 4 Gravimetric soil moisture at Wallumbilla showing (a) driest (left) and wettest (right) soil water 

content values (mean of nine samples) and PAWC (plant available water) for four adjacent bays of 

~3ha and (b) gravimetric soil moisture for nine cores within Bay 3 for a soil samples collected 

towards the end of a fallow (25/5/98). The lower limit (LL) and mean for the sample are also shown. 

Bay is a bounded catchment as explained in trhe section 4.1. 

 

 

These results, from an intensively sampled 

experiment over 17 years demonstrate that 

even in sites selected for their apparent 

uniformity, it is difficult to assume reliable 

values of soil lower limit (LL or wilting point), 

drained upper limit (DUL or field capacity) 

and consequent PAWC, even if errors in 

estimating soil bulk density are ignored. It 

follows that when soil water monitoring 

equipment is installed, that site selection will 

be challenging as the single sample site might 

be any one of the points on Figs 4a or 4b.  

 

It is worth putting all these estimates of soil 

water into a context with where they may be 

used by decision makers. For example, farmers 

estimate PAW in numerous ways: intuition, 

from rainfall records and simple rules (e.g. a 

percentage of rainfall stored), steel push 

probes to detect the depth of moist soil, 

observation of crops, weather and soil water 

monitoring systems, and models (and apps) 

such as presented here. Table 1 lists some 

strengths and weaknesses of six methods of  

 

 

 

 

 

 

estimating PAW. Each approach has a fit in 

the real world of decision making for farmers.  

 

Putting a financial value estimates of soil 

water regardless of method, is a challenge, 

dependent on enterprise, decision makers’ 

attitude to risk and application of information 

to the decision-making process, and won’t be 

attempted here. Nevertheless, a simple cost 

comparison of two contrasting approaches to 

tracking soil water: application of 

SoilWaterApp; and the installation of a 

commercial weather and soil monitoring 

station is presented. While the cost of 

developing SoilWaterApp was considerable 

(AUD$500,000), this cost can be spread over 

many users with minimal ongoing costs. A 

weather station with soil water sensors may 

cost AUD$2-10,000 per installation. Based on 

this simple cost model, when the app is used 

for > 250 sites, the cost per site will be less 

than a physical installation. SoilWaterApp has 

2000 active sites being monitored 18 months 

after its release. More detail is presented in 

supplementary materials S2.  
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Table 1 Strengths and weaknesses of six approaches to assessing soil water status

 

7.3 Adoption of SoilWaterApp to date 

While no formal evaluation of SoilWaterApp 

has been completed, Fig 5 shows locations and 

accesses in the first 18 months since 

SoilWaterApp’s release. SoilWaterApp is 

being applied across Australia’s grain growing 

regions where the importance of soil water 

status is well recognised. This initial adoption 

rate sets the scene for more in-depth 

assessment of the value of PAW (plant 

available water) estimates for grain growers. It 

is noteworthy that the top 200 users (by a 

number of sites) comprise ~80% of the total 

sites to date. Many of these users are 

consultants who are monitoring multiple sites.  

8. Conclusions 

We conclude that SoilWaterApp’s modelling 

engine can reliably estimate patterns of PAW 

through fallows and crops and that an app is a 

practical approach to bringing climate, 

weather, soil, and crop information together 

for farmers and consultants to estimate PAW 

in their decision making. Simulation-based  

 

estimates of PAW are shown to be reliable and 

less expensive than physical measurements. 

An app-based estimate of PAW is well suited 

to application across multiple paddocks and 

soil types. Model-based estimates of soil water 

are reliable, easy to access in a mobile device 

app. 
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Approach Strengths Weaknesses Cost 

Intuition, rainfall 

records, fallow 

efficiency (default) 

Decision maker experience, fast 

and no cost 

Qualitative, biased by recent 

events, no information on water at 

depth 

Nil, part of 

normal activity 

Push probes  Fast, low cost, suited to clay 

soils, requires site visit 

Biased, not suited to hard setting 

soils, requires site visit 

Minor, site 

visits 

Crop observation Direct link to crop, integrated 

assessment 

Observation may be too late to be 

useful 

Site visits 

Monitoring 

equipment (soil 

and weather) 

Real-time, quantitative, visual 

(dashboard), rain and SW linked, 

remote access 

May require calibration, small 

sample volume, high capital and 

moderate operating costs, prone to 

mechanical failure 

$2-10,000/site 

Water balance 

model or app  

Real-time, quantitative, no or 

little cost, multiple sites no extra 

cost, remote access (optional), 

use range of rain inputs 

Not a measurement (virtual), 

credibility, may be prone to 

mechanical failure 

<$600/site/year 

Spatial mapping of 

modelled soil 

water 

Monthly, qualitative, low cost, 

remote sensing, suited to “big 

picture” clients 

Not paddock or management 

specific 

Nil for farmer 
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Fig 5. Distribution of sites (n=1960) and time series of sessions/month (n=16,600) for 

SoilWaterApp users since release (January 2016 to Jan 2018). 
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