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Abstract

Estimators of the intercept parameter of a simple linear regression model involves
the slope estimator. In this paper, we consider the estimation of the intercept param-
eters of two linear regression models with normal errors, when it is apriori suspected
that the two regression lines are parallel, but in doubt. We also introduce a coefficient

of distrust as a measure of degree of lack of trust on the uncertain prior information
regarding the equality of two slopes. Three different estimators of the intercept param-
eters are defined by using the sample data, the non-sample uncertain prior information,
an appropriate test statistic, and the coefficient of distrust. The relative performances
of the unrestricted, shrinkage restricted and shrinkage preliminary test estimators are
investigated based on the analyses of the bias and risk functions under quadratic loss.
If the prior information is precise and the coefficient of distrust is small the shrinkage
preliminary test estimator over performs the other estimators. An example based on a
medical study is used to illustrate the method.
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1 Introduction

The problem of suspected parallelism arises in many bioassays and studies in the areas

of social as well as physical sciences. When sample data of two categories of respondents

are available on the same response and explanatory variables the data can be modelled

by two separate regression lines. Experts in the field, based on the knowledge of the

subject or previous experience, may suspect that the slopes of the two regression lines

are equal. Such a non-sample prior information about the value of the slopes can be

represented by a null hypothesis. Often researchers have varying degrees of trust on

such a non-sample prior information, and are able to express the coefficient of distrust,
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0 ≤ d ≤ 1, as a measure of degree of lack of trust on the null hypothesis (cf Khan

and Saleh, 2001). The additional uncertain non-sample prior information such as the

null hypothesis of equality of the slopes and the coefficient of distrust along with the

sample data are used to define various estimators with a view to improving the statistical

properties of the estimators.

Consider a clinical/medical study where the experimenter has collected two differ-

ent data sets on the effect of two drugs for building two separate regression models.

Alternatively, consider a sociologist or psychologist who has constructed two regression

equations, one set for the males and another for the females. In both cases it may

be useful to get some insight into whether or not the parameters of the two different

regression models differ significantly across the two data sets. Moreover, the researcher

may wish to combine the two data sets to formulate an overall regression model, if the

respective parameters of the two different regression models do not differ significantly.

However, in practical problems, the parameters of the models are usually unknown and

the equality of slopes can only be suspected. This kind of suspicion may be treated as

non-sample uncertain prior information and can be incorporated in the estimation of

the parameters of the models.

Customarily, the regression parameters are estimated by using the sample data alone.

However, it is well known that the inclusion of non-sample prior information in the es-

timation of parameters is likely to improve the quality of the estimator in terms of

desirable statistical properties. Bancroft (1944) first introduced the idea of preliminary

test estimator. Such an estimator uses both the sample data and non-sample prior

information in the form of a suspected null hypothesis. Appropriate statistical test is

performed to remove the element of doubt in the null hypothesis. Then the preliminary

test estimator is defined as a function of the sample data, the non-sample prior infor-

mation and the test statistic. Khan and Saleh (2001) introduced the idea of using the

coefficient of distrust in the estimation of parameters. The same idea can be applied

to the parallelism problem with two regression equations, when it is apriori suspected

that the slopes of the two regression lines are equal, but in doubt. Khan (2003) has

adopted this approach to estimate the slope parameters of two suspected parallel re-

gression models. In this paper we define and investigate three different estimators of the

intercept parameters of two linear regression lines by using the sample data, the non-

sample uncertain prior information, appropriate test statistic as well as the coefficient

of distrust. The properties of the three different estimators are investigated through

detailed analysis of the bias and quadratic risk functions.

Data for two regression equations can be expressed as

y1j = θ1 +β1x1j + ǫ1j ; j = 1, 2, · · · , n1 and y2j = θ2 +β2x2j + ǫ2j ; j = 1, 2, · · · , n2 (1.1)
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where y = [y′

1, y
′

2] in which y1 = [y11, y12, · · · , y1n1
]′, y2 = [y21, y22, · · · , y2n2

]′, and

x = [x′

1, x
′

2] in which x1 = [x11, x12, · · · , x1n1
]′ and x2 = [x21, x22, · · · , x2n2

]′. Note

that yij is the jth response of the ith model and ǫij is the associated error component;

xij is the jth value of the predictor variable in the ith model; and βi and θi are the

slope and intercept parameters of the ith regression equation for i = 1, 2. We assume

that the errors are identically and independently distributed as normal variables with

mean 0 and unknown variance σ2. Our problem is to estimate the vector of intercept

parameters, θ = (θ1, θ2)
′, and that of the slope parameters, β = (β1, β2)

′, when equality

of slopes is suspected, but in doubt.

The two regression equations can be combined in a single model as

y = XΦ + e (1.2)

where y =





y1

y2



 , X =





1 0 x1 0

0 1 0 x2



 , Φ =







θ1

θ2

β1

β2






and e =





e1

e2



 . Now, if

it is suspected that the two lines are parallel then the suspicion in the form of non-sample

uncertain prior information, say β, is expressed by the null hypothesis

H0 :

(

0 0 1 0
0 0 0 1

)

Φ =

(

β

β

)

. (1.3)

In general, the null hypothesis of equality of slopes is given by H0 : CΦ = r, and the

alternative hypothesis, Ha : negation of the H0, where C is a matrix and Φ and r are

vectors of appropriate orders. It is under the general null hypothesis in (1.3), we wish

to estimate the intercept parameters of the regression lines represented in (1.1).

The problem under consideration falls in the realm of statistical problems known

as inference in the presence of uncertain prior information. The usual practice in the

literature is to treat such uncertain prior information specified by H0 as a “nuisance

parameter”. Then the uncertainty in the form of the “nuisance parameter” is removed

by ‘testing it out’. In a series of papers Bancroft (1944, 1964, 1972) addressed the

problem, and proposed the well known preliminary test estimator. A host of other

authors, notably Kitagawa (1963), Han and Bancroft (1968), Saleh and Han (1990), Ali

and Saleh (1990), and Mahdi et al. (1998) contributed in the development of the method

under the normal theory. Furthermore, Saleh and Sen (e.g., 1978, 1985) published a

series of articles in this area exploring the nonparametric as well as the asymptotic

theory based on the least square estimators. Bhoj and Ahsanullah (1993, 1994) discussed

the problem of estimation of conditional mean for simple regression model. Khan and

Saleh (1997) discussed the problem of shrinkage pre-test estimation for the multivariate

Student-t regression model.

In this paper, we define the maximum likelihood estimator (mle) of the elements

of Φ in (1.2) assuming that the errors are independently and identically distributed as
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normal variables with mean 0 and unknown variance σ2. Such an estimator is known as

the unrestricted estimator (UE). Then we define the shrinkage restricted estimator (SRE)

of θ under the constraint of the H0 and by using the coefficient of distrust 0 ≤ d ≤ 1

as a measure of the degree of lack of trust on the H0. Finally, we define the shrinakge

preliminary test estimator (SPTE) of θ by using an appropriate test statistic that can

be employed to test the null hypothesis in addition to the sample and non-sample prior

information. The main objective of the paper is to study the properties of the three

different estimators, namely the UE, SRE and SPTE, for the intercept parameters of the

two suspected parallel regression lines. Also, we investigate the relative performances

of the estimators under different conditions. The analysis of the performances of the

estimators are provided that can be used as a basis to select a ‘best’ estimator in a given

situation. The comparisons of the estimators are based on the criteria of unbiasedness

and risk under quadratic loss, both analytically and graphically.

The preliminary test estimator (PTE) is defined as a function of the test statistic

appropriate for testing the null hypothesis as well as the UE and RE. In fact, it is

an extrem choice between the UE and RE. The shrinkage preliminary test estimator

(SPTE) is defined as a function of the test statistic appropriate for testing the null

hypothesis, the UE and SRE. The later depends on the coefficient of distrust. From the

definition, the SPTE yields the UE if the value of the coefficient of distrust is d = 1,

regardless of the acceptance of or rejection of H0 at any level of significance. On the

other hand the SPTE becomes the SRE if the H0 is not rejected at any given level of

significance and the value of d 6= 1. When d = 1 the SRE becomes UE. Therefore, the

shrinkage preliminary test estimator indeed gives us a compromising choice between the

two estimators, UE and SRE except for d = 0 or 1. Although PTE is an extreme choice

between the UE and RE, the SPTE allows a compromise between the UE and SRE.

Such a smooth compromise between the two extremes, UE and RE, has been discussed

by Khan and Saleh (1995).

In the next section, we define three different estimators of the previously defined

vector of the intercept parameters. Some important results, that are necessary for the

computations of bias and quadratic risk of the estimators are discussed in section 3.

The expressions for bias of the estimators and their analyses are provided in section 4.

The performance comparison of the estimators of the intercept parameters based on the

quadratic risk criterion is discussed in section 5. Section 6 provides an example based

on a set of clinical data. Some concluding remarks are included in section 7.
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2 Formulation of the estimators

Assume that the error ǫij in (1.1) is independent and identically distributed as a

normal variable with E(ǫij) = 0 and Var(ǫij) = σ2 (unknown) for i = 1, 2 and all j.

Then the unrestricted estimator (UE) of βi and θi are obtained by applying the method

of maximum likelihood (or equivalently the least squares method) as

β̃i =

ni
∑

j=1

(xij − x̄i)(yij − ȳi)

niQi

, θ̃i = ȳi − β̃ix̄i (2.1)

where x̄i = 1
ni

∑ni

j=1 xij , ȳi = 1
ni

∑ni

j=1 yij and niQi =
∑ni

j=1(xij − x̄i)
2 for i = 1, 2.

Thus the unrestricted estimator (UE) of the vectors of the slope and intercept, β =

(β1, β2)
′ and θ = (θ1, θ2)

′ becomes

β̃ = (β̃1, β̃2)
′, θ̃ = (θ̃1, θ̃2)

′ = ȳ − T β̃ (2.2)

where ȳ = (ȳ1, ȳ2)
′ and T = Diag{x̄1, x̄2}, a 2 × 2 diagonal matrix. When the null

hypothesis of equality of slopes holds, then the restricted estimator (RE) of the slope

parameter becomes

β̂ =
1

nQ

2
∑

i=1

niQiβ̃i with nQ =
2

∑

i=1

niQi and n = n1 + n2. (2.3)

Here β̂ is the maximum likelihood estimator of the slope when the null hypothesis is

true. Therefore, the restricted estimator (RE) of the vectors β and θ are defined as

β̂ = β̂l2 = (β̂, β̂)′, θ̂ = ȳ − T β̂ = θ̃ + TJβ̃ (2.4)

where J = I2−
l2l

′

2

nQ
D−1

2 in which D−1
2 = Diag{n1Q1, n2Q2}, l2 is a 2-tuples of ones and

I2 is the identity matrix of order 2.

Introducing the coefficient of distrust on the H0, the shrinkage restricted estimator

(SRE) of the vector θ is defined as

θ̂d = dθ̃ + (1 − d)θ̂ = θ̃ + (1 − d)TJβ̃ (2.5)

The uncertainty in the null hypothesis H0 is removed by using an appropriate test

statistic. For the current problem, we consider the likelihood ratio test given by the

following statistic

Ln =
(β̃ − β̂)′D−1

3 (β̃ − β̂)

s2
(2.6)

where D−1
3 = Diag{ 1

n1Q1
+ 1

nQ
, 1

n2Q2
+ 1

nQ
} and s2 = 1

m

∑2
i=1

∑ni

j=1[(yij − ȳi)− β̃i(xij −

x̄i)]
2 with m = (n − 4), and the numerator can be expressed as

(β̃1 − β̂)2
(n1Q1nQ)

(n1Q1 + nQ)
+ (β̃2 − β̂)2

(n2Q2nQ)

(n2Q2 + nQ)
. (2.7)

Under the null hypothesis, the above test statistic follows a central F -distribution with

2 and m degrees of freedom. Let Fα denote the (1 − α)th quantile of an F2,m variable
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such that (1 − α) × 100% area under the curve of the distribution is to the left of Fα.

Then, the preliminary test estimator (PTE) of θ is defined as

θ̂
pt

= θ̃ − (θ̃ − θ̂)I(Ln < Fα) = θ̃ + TJβ̃I(Ln < Fα) (2.8)

where I(A) denotes an indicator function of the set A. The PTE, defined above, is a

convex combination of the UE and RE, and depends on the random coefficient, ζ =

I(Ln < Fα) whose value is 1 when the null hypothesis is accepted and 0 otherwise.

Also note that the PTE is an extreme compromise between the UE and RE. At a given

level of significance, the PTE may simply be either the UE or RE depending on the

rejection and acceptance of the null hypothesis respectively. Therefore, for large values

of Ln the PTE becomes the UE and for smaller values of Ln the PTE turns out to

be the RE. Obviously, the PTE is a function of the test statistic as well as the level

of significance, α. Hence, the PTE may change its value with a change in the choice

of α. Therefore, a search for an optimal value of α may be desirable. In this paper,

the optimality of the level of significance is in the sense of minimising the maximum

risk of an estimator. Methods are available in the literature that provide optimal α,

(see Akaike (1972), for instance). Another fact about the PTE is that it does not allow

smooth transition between the two extremes, the UE and RE. Khan and Saleh (1995)

provided a shrinkage preliminary test estimator to overcome such a problem.

Now we define the shrinkage preliminary test estimator (SPTE) of the intercept

vector, θ as follows

θ̂
pt

d = θ̂dI(Ln < Fα) + θ̃I(Ln ≥ Fα)

= θ̃ + (1 − d)TJβ̃I(Ln < Fα). (2.9)

From the definition the SPTE becomes the UE when d = 1 and the PTE when d = 0.

Since we have defined three different estimators for the slope and the intercept pa-

rameter, a natural question arises as to which estimator should be used, and why? The

answer to the question requires to investigate the performances of the estimators under

different conditions. To study the properties of the above estimators of the intercept

vector, some essential results are provided in the next section.

3 Some Preliminaries

In this section, we provide some useful results that are instrumental to the computa-

tion of expressions for bias and risk under quadratic loss function for the three different

estimators. First, observe that the joint distribution of β̃ and θ̃ is multivariate normal

with

E

(

θ̃

β̃

)

=

(

θ

β

)

and covariance matrix, Cov

(

θ̃

β̃

)

= σ2





D1 D12

D21 D2



 (3.1)
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Figure 1: Quadratic bias of the estimators for selected values of d.

where D12 = D′

21 = −D2T and D1 = Cov(
˜θ)

σ2 = ψ + TD2T
′ with ψ = Diag

{

1
n1

, 1
n2

}

.

Note that the matrix D2 has been specified in the definition of J in equation (2.4).

Also note that JD2J
′ = D2, D2J

′T = −D12T + x̄x̄′

nQ
with x̄ = (x̄1, x̄2)

′. Moreover, the

joint distribution of the elements of β̂ is bivariate normal with the mean vector,

E[β̂] = β0 = βl2 and covariance matrix, Cov[β̂] = σ2D∗

2 (3.2)

where l2 is a vector of 1’s of order two and D∗

2 = Diag{ 1
nQ

, 1
nQ

}. Finally the distribution

of (β̃ − β̂) is bivariate normal with

E[β̃ − β̂] = δ and covariance matrix, Cov[β̃ − β̂] = σ2D3 (3.3)

where δ = (β − β0) and D3 = D2 + D∗

2 = Diag{ 1
n1Q1

+ 1
nQ

, 1
n2Q2

+ 1
nQ

}.

In the next section, we derive the expressions of bias for the previously defined

estimators of the intercept parameters.
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4 The bias of estimators

First, the expression for the bias of UE of θ is obtained as

B1(θ̃) = E(θ̃ − θ) = 0. (4.1)

Thus θ̃ is an unbiased estimator of θ. This is a well-known property of the mle for

normal models. The bias of the RE of θ is found to be

B∗

2(θ̂) = E(θ̂ − θ) = Tδ (4.2)

where δ = Jβ = β−βl2, deviation of β from its suspected value under H0. Clearly, the

RE is biased when T 6= 0. The amount of bias becomes unbounded as δ → ∞, that is,

if the true value of β is far away from it’s hypothesized value, βl2. On the other hand

the bias is zero when the null hypothesis is true. Thus unlike the UE, the RE is biased

under the alternative hypotheis.

The bias of the SRE of θ is found to be

B2(θ̂d) = E(θ̂d − θ) = (1 − d)Tδ (4.3)

So, the SRE is biased, if either d 6= 1, or T 6= 0, or δ is non-zero. Thus for d 6= 1 and

T 6= 0, the amount of bias becomes unbounded as δ → ∞. Thus unlike the UE, the

SRE is biased, and assumes its largest value at d = 0. Clearly, B2(θ̂d) ≤ B∗

2(θ̂).

The bias expression for the PTE is obtained as

B∗

3(θ̂
pt

) = E(θ̂
pt
− θ) = TδG3,m(lα;∆) (4.4)

where ∆ =
δ′

D
−1

2
δ

σ2 , lα = 1
3Fα and G3,m(lα;∆) =

∫ lα

z=0
f(z)dz in which Z has a non-

central F−distribution. For the computational purposes, G3,m(lα;∆) can be written

as

G3,m(lα;∆) =
∞
∑

r=0

e−
∆

2 (∆
2 )r

r!
IB1

qα

(

3

2
+ r,

m

2

)

(4.5)

where IB1
qα

(

3
2 + r, m

2

)

is the incomplete beta function ratio and qα = m
m+F1,m(α) . In the

derivation of the bias expression for the PTE we use the result of Appendix B1 of Judge

and Bock (1978) as well as the results in the previous section.

Obviously, the PTE is a biased estimator, and the amount of bias depends on the

value of G3,m(·), the cdf of a non-central F distribution, and the extent of departure of

the parameter from its value under null hypothesis. However, since 0 ≤ G3,m(·) ≤ 1,

the bias of the PTE is always smaller than that of the RE, if ∆ 6= 0. So, in general

B∗

3(θ̂
pt

) ≤ B2(θ̂d) ≤ B∗

2(θ̂).

Finally, the bias expression for the SPTE is obtained as

B3(θ̂
pt

) = E(θ̂
pt
− θ) = (1 − d)TδG3,m(lα;∆). (4.6)
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Like the PTE, the SPTE is a biased estimator, except for d = 1, or T = 0 or δ = 0. The

amount of bias depends on the value of G3,m(·). The bias of the SPTE becomes the same

as that of the PTE if d = 0. However, the bias of the SPTE is always less than or equal

to that of the SRE for all values of d. Therefore, B3(θ̂
pt

d ) ≤ B∗

3(θ̂
pt

) ≤ B2(θ̂d) ≤ B∗

2(θ̂).

The Graph of Quadratic Bias:

The bias function of the intercept vector is also a vector of the same order. So direct

comparison of the bias functions of the estimators are not meaningful. To compare

the overall bias of the estimators we define the quadratic bias as the vector product of

the bias by itself. The quadratic bias is a scalar and it can be compared across the

estimators. The plot of the quadratic bias function of the UE, SRE and SPTE with

α = 0.05, 0.15 and 0.25 are provided in Figure 1 for different values of the non-centrality

parameter ∆ and σ = 1. As expected, the quadratic bias of the UE is 0 for all values of

∆ and that of the SRE is unbounded and increases as the value of ∆ grows large. The

quadratic bias of the SPTE is a function of the level of significance. As shown in the

bottom two graphs in Figure 1, the shape of the curve of the quadratic bias function

of the SPTE is skewed to the right. Very near at ∆ = 0 it starts at the largest value

and moves downward sharply and then gradually declines to the horizontal axis. The

quadratic bias of the SPTE increases as the preselected level of significance decreases.

This is quite clear from the first three graphs in Figure 1. The quadratic bias function

of the SRE and SPTE increases as the variance of the population becomes larger.

Smaller the value of d higher in the value of quadratic bias. For d = 1 the quadratic

bias for all estimators is 0. Also for very large ∆ the quadratic bias approaches 0. For

increased values of σ the shape of the quadratic bias function remains the same but the

magnitude increases.

The graphs in Figure 1 are produced for the quadratic bias functions of the intercept

parameters for selected values of d and σ = 1. Similar graphs for the quadratic bias

functions can also be produced for different values of σ.

5 The risk of estimators

The quadratic error loss function of an estimator, t∗ to estimate the parameter, µ, is

defined to be

L(t∗,W1,µ) = (t∗ − µ)′W1(t
∗ − µ)

where W1 is a positive definite matrix of appropriate dimension. Then the quadratic

risk of t∗ in estimating µ is the expected value of L(t∗,W1,µ). Thus for the intercept

vector, θ, the quadratic risk function is given by

R(θ∗,W1,θ) = E(θ∗ − θ)′W1(θ
∗ − θ) (5.1)
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where θ∗ is an estimator of θ and W1 is a positive definite matrix of appropriate di-

mension. Therefore, the expression of the quadratic risk for the UE of θ is obtained

as

R1(θ̃;W1) = E(θ̃ − θ)′W1(θ̃ − θ) = σ2tr(W1D1). (5.2)

Similarly, the risk of the RE of θ is found to be

R2(θ̂;W1) = E(θ̂ − θ)′W1(θ̂ − θ) = σ2tr(W1D1) + δ′T ′W1Tδ. (5.3)

Now, the quadratic risk expression of the PTE is given by

R∗

3(θ̂
pt

;W1) = E(θ̂
pt
− θ)′W1(θ̂

pt
− θ) = σ2tr(W1D1)

{

1 − G3,m(lα;∆)
}

+δ′T ′W1Tδ
{

2G3,m(lα;∆) − G5,m(l∗α;∆)
}

. (5.4)

The proof of the above results is straight forward by using the Appendix B1 of Judge

and Bock (1978).

Finally the quadratic risk function of the SPTE is found to be

R3(θ̂d

pt
;W1) = E(θ̂d

pt
− θ)′W1(θ̂d

pt
− θ)

= σ2
{

tr(W1D1) − (1 − d2)tr(W1D3)G3,m(lα;∆)
}

+ δ′T ′W1Tδ

×
{

2(1 − d)G3,m(lα;∆) − (1 − d2)G5,m(l∗α;∆)
}

. (5.5)

When there is no distrust on the null hypothesis, that is d = 0, then R3(θ̂d

pt
;W1) =

R∗

3(θ̂
pt

;W1); and when there is total distrust on the null hypothesis, that is d = 1, we

get R3(θ̂d

pt
;W1) = R1(θ̃;W1). Thus the quadratic risk of the SPTE yields that of the

PTE and UE for the two extreme values of d.

5.1 Risk analysis for estimators of intercept

In this section, we compare the performance of the estimators of the intercept pa-

rameter vector based on the quadratic risk criterion.

Comparison of UE and SRE

First consider the difference between the risks of the UE and SRE,

H12(θ̃, θ̂;W1) = R1(θ̃;W1)−R2(θ̂d;W1) = −(1−d)2δ′T ′W1Tδ = −(1−d)2σ2∆T (5.6)

where ∆T = δ′T ′

W1Tδ
σ2 . Thus the value of H12(θ̃, θ̂;W1) is negative, zero or positive

depending on

(1 − d)2σ2∆T
>
=
<

0, or ∆T
>
=
<

0 when d 6= 1. (5.7)

Note that when d 6= 1, the UE dominates the SRE in terms of having smaller risk.

However, for d = 1, the UE and SRE have the same risk. Nevertheless, it is very
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unlikely that d will be 1, or even near 1. Furthermore, the SRE has larger risk than the

UE if d = 0.

Comparison of UE and SPTE

The risk-difference of the UE and the SPTE is given by

H13(θ̃, θ̂
pt

d ;W1) = R1(θ̃;W1) − R3(θ̂
pt

d ;W1) = (1 − d)2σ2tr(W1D3)G3,m(lα;∆)

−δ′T ′W1Tδ
{

2(1 − d)G3,m(lα;∆) − (1 − d2)G5,m(l∗α;∆)
}

. (5.8)

Thus we have

H13(θ̃, θ̂
pt

d ;W1)
>
=
<

0 whenever ∆T
<
=
>

(1 − d)2tr(W1D3)G3,m(lα;∆)
{

2(1 − d)G3,m(lα;∆) − (1 − d2)G5,m(l∗α;∆)
} .

(5.9)

In a special case, when W1 = D−1
3 then (5.9) becomes

δ′T ′D−1
3 Tδ

σ2

<
=
>

2(1 − d)2G3,m(lα;∆)
{

2(1 − d)G3,m(lα;∆) − (1 − d2)G5,m(l∗α;∆)
} . (5.10)

In another special case, when d = 1, H13(θ̃, θ̂
pt

d ;W1) = 0, and hence the risk of the UE

equals that of the SPTE if there is total distrust on the uncertain prior information.

Furthermore, for d = 0, we get

H13(θ̃, θ̂
pt

d ;W1) = σ2tr(W1D3)G3,m(lα;∆)−δ′T ′D−1
3 Tδ

{

2G3,m(lα;∆)−G5,m(l∗α;∆)
}

.

(5.11)

So

H13(θ̃, θ̂
pt

d ;W1)
>
=
<

0 whenever ∆T
<
=
>

tr(W1D3)G3,m(lα;∆)
{

2G3,m(lα;∆) − (1 − d2)G5,m(l∗α;∆)
} . (5.12)

Thus, the SPTE over performs the UE if ∆T <
tr(W1D3)G3,m(lα;∆)

{

2G3,m(lα;∆)−(1−d2)G5,m(l∗α;∆)

} .

Comparison of SPTE and SRE

The difference between the risks of the SPTE and SRE is

H32(θ̂
pt

d , θ̂d;W1) = R3(θ̂
pt

d ;W1) − R2(θ̂d;W1)

= −(1 − d)2σ2tr(W1D3)G3,m(lα;∆) − δ′T ′W1Tδ

×
{

(1 − d)2 − 2(1 − d)G3,m(lα;∆) − (1 − d2)G5,m(l∗α;∆)
}

. (5.13)

Now, from (5.13) we get H32(θ̂
pt

d , θ̂d;W1)
<
=
>

0 according as

δ′T ′W1Tδ

σ2

>
=
<

(1 − d)tr(W1D3)G3,m(lα;∆)

2(1 − d)G3,m(lα;∆) − (1 − d2)G5,m(l∗α;∆) − (1 − d)2
. (5.14)
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Figure 2: Relative efficiency of the estimators for selected values of d.

Therefore, based on (5.14), SRE performs better than the SPTE if

∆T <
(1 − d)tr(W1D3)G3,m(lα;∆)

2G3,m(lα;∆) − (1 + d)G5,m(l∗α;∆) − (1 − d)
(5.15)

and the SPTE dominates over the SRE whenever

∆T >
(1 − d)tr(W1D3)G3,m(lα;∆)

2G3,m(lα;∆) − (1 + d)G5,m(l∗α;∆) − (1 − d)
. (5.16)

To compare the relative performances of the estimators based on the quadratic risk

criterion, we define the relative efficiency of the estimators from the quadratic risk

functions.

The graphs in Figure 2 are produced for the relative efficiency functions of the

intercept parameters for selected values of d and σ = 1. Similar graphs for the relative

efficiency functions can also be produced for different values of σ. Graphs for the

quadratic risk functions can also be produced in the same fashion.

For d = 1 all three estimators are equally efficient. But from the premises of the

choice of d is is unlikely to be even close to 1. The relative efficiency of the SRE relative

to the UE is always less than 1 for all σ and d 6= 1. Similarly, The relative efficiency of

the SPTE relative to the UE is larger than that of the SRE, except at d = 1. At ∆ = 0,

12



the relative efficiency of the SPTE attains its maximum, and then declines to the 1-line

for some moderate values of ∆. For a small range of values of ∆, the relative efficiency of

the SPTE is less than 1, but as ∆ → ∞ the relative efficiency of the SPTE approached

1 from below. The relative efficiency of the SPTE is larger for smaller values of α near

∆ = 0 than for larger values of α for all σ and d 6= 1.

Since the prior non-sample information comes from previous knowledge/studies and,

or, expert understanding of the phenomenon under investigation, the value of d is likely

to be close to 0 and the value of ∆ should not be much away from 0. In such a

situation, the SPTE of the intercept vector has the largest relative efficiency and hence

over performs the SRE and UE.

6 An example

To demonstrate the application of the method, we consider a data set on a health

study from Plank (2004, p.8.31). The study investigates the systolic blood pressure of a

group of patients divided in to the smoking and non-smoking categories. In the sample

there are 10 smokers and 11 non-smokers. The age of the patients is the explanatory

variable, X, and is divided in to X1, the age of the smoking patients and X2, that

of the non-smoking patients. The systolic blood pressure is the response variable, Y .

Regression lines of Y on X1 and Y on X2 have been fitted to the data for the two group

of patients separately. The scatterplot and the fitted regression lines are given in Figure

3. The fitted regression lines for the two groups of data are

ŷ1 = −21.9487 + 3.0911x1, (R2
1 = 0.9512) (6.1)

ŷ2 = 47.7437 + 1.6978x2, (R2
2 = 0.6761). (6.2)

Other statistics relevant to the current study are n1Q1 = 208.5, n2Q2 = 259.64, nQ =

468.14 and β̂ = 2.3184, estimated slope from the combined sample. The observed value

of the test statistic is 5.555 with a P-value of 0.0307. Hence there is not enough sample

evidence to reject the null hypothesis of equal slopes, and thus the slopes of the two

regression lines are not significantly different from one another for any α > 0.0307. The

graphs in Figure 3 represent the scatterplot and fitted regression lines of the data set

for two different categories of respondents.

7 Concluding remarks

In this paper we have defined three different estimators for the intercept parameter

of the two suspected parallel regression models. The performances of the three differ-

ent estimators of the intercept parameters have been analyzed by using the criteria of
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Figure 3: Linear regression of SBP on Age for Smokers and Nonsmokers.

quadratic bias and risk under quadratic loss. The SPTE has always smaller quadratic

bias than the SRE, except at ∆ = 0. But the quadratic bias of the UE is always 0 for

all values of ∆. Based on the criterion of quadratic bias, the UE is the best among the

three estimators. However, the SPTE is the best among the bised estimators. Based on

the quadratic risk criterion, the superiority of estimators depends on various conditions

discussed in section 5 and the graphs displayed in Figure 2. The RE is the best only

if ∆ = 0. In the face of uncertainty on the value of ∆, if ∆ is likely to be small then

the SPTE is the preferred option, regardless of the choice of α. One may use the UE as

the best option if ∆ is likely to be moderate, for which the quadratic risk of the SPTE

reaches its maximum. For very large values of ∆ the SPTE performs as good as the

UE under the quadratic risk criterion. The source and nature of the non-sample prior

information lead to believe that the values of both ∆ and d are likely to be close to 0.

In such a situation, the SPTE of the intercept vector has the largest relative efficiency

and hence over performs the SRE and UE.

We have provided the marginal analysis of the problem. The joint study of the

parameter sets of slopes and intercepts remains to be an open problem. Moreover,

Stein-type shrinkage estimation is also possible for a set of p > 2 parallel regression

models.
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