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Abstract 

The prevalence of metabolic syndrome is increasing throughout the 

world. Metabolic syndrome is the clustering of risk factors for cardiovascular 

disease and type 2 diabetes. These include obesity, hypertension, impaired 

glucose tolerance, dyslipidaemia and insulin resistance, caused by oxidative 

stress and inflammation.  

Nature has provided us with immense diversity in the form of plants and 

herbs, which contain a wide range of chemicals. Development of natural 

products as a potential treatment for metabolic syndrome requires a s uitable 

rodent model. To induce metabolic syndrome, young male Wistar rats were fed 

with a high-carbohydrate, high-fat diet for 16 weeks with corn starch serving as 

control diet. Treatments were given as interventions in the final 8 weeks only as 

a reversal protocol. These interventions included rutin (1.6 g/kg food), 

quercetin (0.8 g/kg food), oak bark extract (0.5 ml/kg food), ellagic acid (0.8 

g/kg food), coffee extract (5% in food), caffeine (0.5 g/kg food) and ʟ-carnitine 

(1.2 % in food).  

High-carbohydrate, high-fat diet induced hypertension, obesity, 

impaired glucose tolerance, dyslipidaemia, cardiovascular remodelling 

including ventricular dilatation, cardiomyocyte hypertrophy and cardiac 

fibrosis, reduced ventricular function, hepatic steatosis, hepatic inflammation 

and portal fibrosis and increased plasma markers of liver function.  

Rutin and quercetin ameliorated these cardiovascular and hepatic 

changes and attenuated impairment in glucose tolerance and hypertension 

whereas only rutin improved obesity and dyslipidaemia. Ellagitannins from oak 

bark extract and ellagic acid attenuated cardiovascular remodelling and non-

alcoholic fatty liver disease. Both ellagitannins from oak bark extract and 

ellagic acid reduced body weight and abdominal fat, however ellagic acid failed 

to reduce total body fat mass. Although coffee did not change body weight and 

abdominal fat, it improved the structure and function of the heart and the liver. 
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These effects differed from caffeine, which reduced total body fat, body weight 

and abdominal fat, along with the attenuation of symptoms of metabolic 

syndrome, cardiovascular remodelling and non-alcoholic steatohepatitis. ʟ-

Carnitine, a transporter of fatty acid across mitochondrial membrane, attenuated 

the metabolic syndrome by increasing β-oxidation and decreasing lipogenesis 

in both the heart and the liver. 

In humans, fatty liver is caused by the excess consumption of diets rich 

in ethanol, animal fats, simple carbohydrates such as fructose or a combination 

of all three. An initiative was taken to mimic the combined effects of high-

carbohydrate, high-fat diet and ethanol in rats as in human fatty liver disease. 

Ethanol synergistically aggravated hepatic steatosis induced by high-

carbohydrate, high-fat diet; hepatic inflammation and fibrosis were unchanged 

compared to high-carbohydrate, high-fat fed rats. In contrast, ethanol feeding to 

high-carbohydrate, high-fat fed rats prevented cardiac fibrosis but caused 

minimal changes to cardiac function.  

These studies clearly indicate the potential present in many natural 

products. The mechanisms of action of these natural products were also 

different as some of them reduced abdominal fat, possibly due to increased 

utilisation or removal of excess fat from the body through excretion, and others 

redistributed the fat to other areas such as subcutaneous fat, coffee being the 

exception. 

Keywords 

metabolic syndrome; obesity; non-alcoholic fatty liver disease; cardiovascular 

remodelling; natural products; high-carbohydrate, high-fat diet; polyphenols; 

dyslipidaemia; hypertension; impaired glucose tolerance. 
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Chapter 1: Metabolic syndrome, cardiovascular 

remodelling and non-alcoholic fatty liver disease 

Metabolic syndrome 

Metabolic syndrome refers to the co-occurrence of hypertension, central 

obesity, dyslipidaemia, insulin resistance and impaired glucose tolerance as risk 

factors for the development of cardiovascular disease and type 2 diabetes [1]. 

These risk factors tend to cluster and thereby increase the overall risk [1]. 

Different diagnostic criteria have been provided [2-5]; with some of these 

definitions described in Table 1. 

Metabolic syndrome is common in adult populations throughout the 

world. In Australia (1999-2000), the prevalence of metabolic syndrome ranged 

between 13.4% to 30.7%, depending on the definition used to define metabolic 

syndrome [6]. In the USA (1999-2002), 34% males and females were 

diagnosed with metabolic syndrome [7]. In Russia (2000), the overall 

prevalence of metabolic syndrome was 18%-19%. This prevalence was higher 

in women (23%-26%) compared to men (13%-15%) using various definitions 

[8]. Similarly, high prevalence rates of metabolic syndrome have been reported 

in the Indian subcontinent [9]. 

The presence of metabolic syndrome is associated with the development 

of cardiovascular disease and non-alcoholic fatty liver disease. Clinical, 

epidemiological and animal studies have proved the relationship between 

metabolic syndrome, especially obesity and dyslipidaemia, and the presence of 

non-alcoholic fatty liver disease [10-12]. Studies have also shown the 

increasing risk of development of non-alcoholic fatty liver disease in the 

presence of metabolic syndrome and vice versa [13,14]. Metabolic syndrome 

and non-alcoholic fatty liver disease are also associated with cardiovascular 

remodelling, including cardiac hypertrophy, ventricular dysfunction and 

endothelial dysfunction [15,16]. 
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Cardiovascular remodelling 

Cardiovascular remodelling is a process of change in the size, shape and 

function of the heart as a physiological response to metabolic or hormonal 

changes in the body [17,18]. These physiological responses lead to the 

development of molecular and cellular changes, including hypertrophy, 

necrosis and apoptosis of the myocyte, fibroblast proliferation and fibrosis in 

the interstitium [18]. These changes results in abnormalities in myocardial 

function including impaired contractility and relaxation, diminished cardiac 

pump function, dilatation and increased sphericity of the heart.  U ltimately, 

these changes lead to systolic and diastolic cardiac dysfunction, which form the 

basis of heart failure and death [18]. 

Non-alcoholic fatty liver disease  

Non-alcoholic fatty liver disease is a clinical condition that includes a 

wide spectrum of liver complications ranging from simple steatosis to 

steatohepatitis, advanced fibrosis and cirrhosis [19,20]. The liver is a metabolic 

workhorse that performs a range of biochemical functions including 

metabolism of lipids. Hepatic steatosis develops when there is excess 

deposition of triglycerides in the hepatocytes. This pathological condition can 

develop when the total input of fatty acids is more than the total output [21]. 

Sources of fatty acids in the liver include the hepatic free fatty acid uptake from 

blood and de novo lipogenesis. The output of fatty acids from the liver can be 

through fatty acid oxidation and fatty acid export within very low-density 

lipoproteins [21]. The disturbances in hepatic input and output of lipids can 

occur in the conditions of dyslipidaemia, obesity and insulin resistance [10,19]. 

Steatosis is characterized by excess fat storage and it can progress to 

steatohepatitis and finally leads to cirrhosis and structural and functional 

abnormalities of the liver. Some patients only develop steatosis whereas others 

develop steatohepatitis and fibrosis. 
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Oxidative stress 

Oxidative stress is the cellular damage caused by an imbalance between 

the reactive oxygen or nitrogen species and the antioxidant system in the body. 

Reactive oxygen and nitrogen species are highly reactive, short-lived 

derivatives of oxygen or nitrogen, produced in all biological systems [22]. Due 

to the high reactivity of these chemical species, they react with surrounding 

molecules at or near the site of formation. Some of these species include the 

superoxide radical (O2
•−), the hydroxyl radical (•OH), hydrogen peroxide 

(H2O2), nitric oxide (NO) and the peroxynitrite radical (ONOO•). These 

molecules play important roles in many physiological conditions including 

vascular reactivity [22]. Oxidative stress has been linked to the presence of 

obesity and metabolic syndrome [23,24]. It has now been proposed that the 

changes in metabolic syndrome are initiated by oxidative stress [25]. In 

metabolic syndrome, oxidative stress is responsible for the primary myocardial 

insult leading to cardiovascular remodelling [26,27]. Earlier studies have 

already shown that oxidative stress can lead to cardiac stiffness and fibrosis 

[28,29]. Similarly, oxidative stress may initiate the development of non-

alcoholic steatohepatitis [30].  

Inflammation 

Inflammation is part of the non-specific immune response that occurs in 

reaction to any injury to the tissues. In some pathological conditions, the 

inflammatory process becomes chronic after initial activation subsequently 

leading to the development of long-term conditions such as obesity [31,32]. 

Initially, a link between obesity and inflammation was established through the 

expression of tumor necrosis factor-α (TNF-α) and this was further strengthen 

by the increased plasma concentrations of proinflammatory markers including 

cytokines and acute phase proteins such as C-reactive protein (CRP) in obese 

subjects [33-35]. CRP is now considered an independent risk factor for the 

development of cardiovascular disease [36]. Many inflammatory markers 
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present in the plasma of obese individuals originate from adipose tissue [34]. 

Thus, obesity is now defined as the state of chronic low-grade inflammation, 

which is initiated by the morphological changes in the adipose tissue [37]. 

Some of the proinflammatory cytokines from adipose tissue interfere with the 

signalling pathway for insulin. This ultimately leads to insulin resistance [38-

42]. Adipocytes also secrete certain hormones (adipokines) in response to the 

increased fat deposition. These adipokines, including adiponectin, leptin and 

resistin, modulate metabolism in the body including food intake and energy 

expenditure [43]. Liver is the other tissue that is affected by excess adipose 

tissue and proinflammatory cytokines produced by adipose tissue. Chronic 

activation of nuclear factor-κB (NF-κB) by cytokines leads to the development 

of insulin resistance in liver [44,45]. The development of hepatic steatosis and 

non-alcoholic fatty liver disease in presence of insulin resistance has been 

established [46-49]. 

Conclusion 

Metabolic syndrome is a combination of various risk factors for the 

development of cardiovascular disease and non-alcoholic fatty liver disease. 

These risk factors are responsible for the development of oxidative stress and 

inflammation in organs including the heart and liver. Oxidative damage and 

inflammation initiate the complications associated with the symptoms of 

metabolic syndrome, cardiovascular disease and non-alcoholic fatty liver 

disease. Thus, in this study, oxidative stress and inflammation have been 

targeted with antioxidants and anti-inflammatory agents for the treatment of 

metabolic syndrome and related disorders.  
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Abstract 

Natural products have been used for medicinal purposes for 

millennia. Ayurveda and Chinese medicine systems are based on us e of 

natural products from herbs and plant parts. One of the major classes of 

compounds found in the nature is polyphenol. Polyphenols are the plant 

secondary metabolites synthesized from shikimate pathway-derived 

products, with more than one phenolic ring without any nitrogen-based 

functional group. These polyphenols have been categorized into different 

classes including flavonoids. Metabolic syndrome, being the clustering of 

the risk factors for the development of cardiovascular disease and type 2 

diabetes, is increasing in its prevalence throughout the world. This review 

has described the potential benefits associated with the dietary 

supplementation of polyphenols, in particular the wine polyphenols, 

resveratrol, rutin and quercetin, ellagtiannins and ellagic acid, catechins, and 

curcumin against the symptoms of metabolic syndrome. To characterize the 

effects of polyphenols, most studies have used biochemical methods, cell 

cultures, or animal models with few clinical trials in humans with metabolic 

syndrome or its components. Further clinical trials are required to confirm 

the effects in humans with multiple symptoms of metabolic syndrome. Also, 

the synergistic effects of these polyphenols should be considered with 

standard drug treatment of hypertension, diabetes, and obesity.  

Keywords – Obesity, Resveratrol, Quercetin, Curcumin, Catechins.  
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Polyphenols: definition and classification 

Polyphenols are compounds that are widely distributed in nature. 

The history of polyphenols goes back to the archaic period in Ancient 

Greece (800-500 BC) where they were called ‘vegetable tannins’ for use in 

the processing of leather (Quideau et al., 2011).  Polyphenols can be defined 

as the plant secondary metabolites that are derived exclusively from the 

shikimate-derived phenylpropanoid and/or the polyketide pathway(s), 

featuring more than one phenolic ring and being devoid of any nitrogen-

based functional group in their most basic structural expressions (Quideau et 

al., 2011). Thus, procyanidins, gallotannins, ellagitannins, flavonoids, 

flavanoids, lignans, ellagic acid, and curcumin are included as polyphenols. 

Polyphenols can be categorized into different classes including 

flavonoids, phenolic acids (e.g. chlorogenic acid), lignans (e.g. seco-

isolariciresinol), and stilbenes (e.g. resveratrol and pterostilbene). 

Flavonoids can further be classified as flavanols, flavanones (e.g. naringenin 

and hesperetin), flavonols (e.g. quercetin), anthocyanins (e.g. malvidin), 

isoflavones (e.g. genistein and daidzein), and chalcones (e.g. phloridzin) 

(Cook & Samman, 1996; Kim et al., 2004). Flavanols include monomers 

(e.g. catechins and epicatechins) and polymers (condensed and hydrolysable 

tannins; e.g. ellagitannins) (Figure 1).  
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Figure 1: Classification of polyphenols 

Biosynthesis of polyphenols: The shikimate pathway 

Polyphenols are synthesized through shikimate-derived 

phenylpropanoid pathway or polyketide pathway. This pathway is used by 

plants and microorganisms for the biosynthesis of aromatic amino acids 

such as phenylalanine, tyrosine, and tryptophan (Herrmann, 1995b; 

Herrmann & Weaver, 1999). The seven steps of the shikimate pathway lead 

to the formation of chorismate which is the precursor of the three aromatic 

amino acids and several other aromatic compounds of primary metabolism 

(Figure 2). The intermediates of the shikimate pathway can also lead to the 

formation of many secondary metabolites including chlorogenic acid 

(Herrmann, 1995b; Herrmann, 1995a; Herrmann & Weaver, 1999). In 

addition, the three aromatic amino acids are precursors for many plant 

secondary metabolites including indole-3-acetic acid, indole glucosinolates, 

s 
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ephedrine, taxine, lunarine, morphine, and dhurrin (Radwanski & Last, 

1995; Celenza, 2001). Synthesis of polyphenols from chorismate-derived 

metabolites has been extensively reviewed (Dewick, 1998; Knaggs, 1999). 

  

Figure 2: Shikimate pathway for biosynthesis of chorismate 

 
Page 16



Metabolic syndrome 

Metabolic syndrome has become one of the major public health 

challenges worldwide (Lakka et al., 2002; Cameron et al., 2004; Day, 2007; 

Scholze et al., 2010). It refers to the clustering of insulin resistance, 

hypertension, central obesity, impaired glucose tolerance, and dyslipidemia 

(Chew et al., 2006) as risk factors for cardiovascular disease (Isomaa et al., 

2001; Lakka et al., 2002), type 2 diabetes (Grundy, 2004), and nonalcoholic 

fatty liver disease (Abdelmalek & Diehl, 2007). Prevalence of metabolic 

syndrome is increasing throughout the world. In Australian population, the 

prevalence of metabolic syndrome ranged between 13.4% to 30.7%, 

depending on the definition used to define metabolic syndrome (Cameron et 

al., 2007). This prevalence was 34% in males and females in the USA 

(Ford, 2005). In Russia, the overall prevalence of metabolic syndrome was 

approximately 18%-19% using various definitions (Sidorenkov et al., 2010). 

Similarly, high prevalence rates of metabolic syndrome have been reported 

in the Indian subcontinent and European countries such as Germany, Italy, 

and Spain (Ramaraj & Chellappa, 2008; Scholze et al., 2010). This high 

prevalence of metabolic syndrome throughout the world makes the finding 

of interventions that can reduce the risk to health an important exercise. 

This review will focus on t he potentials of polyphenols as 

nutraceuticals to improve the clinical conditions of metabolic syndrome. 

Nutraceuticals are defined as alternative/complementary medicines derived 

from nutritional sources, such as plants; the study of their therapeutic 

possibilities is termed nutrapharmacology. Plants and microorganisms 
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produce non-nutritive products including polyphenols for many purposes, 

one example being the production of flavonoids as protection against fungal 

infection (Grayer & Harborne, 1994; Harborne, 1999; Galeotti et al., 2008; 

Iwashina et al., 2010; Hichri et al., 2011). The relatively easy availability of 

polyphenols from herbs and plants increases their use in traditional medical 

systems and decreases their cost. As examples, both Ayurveda, the 

traditional medical system practiced in India (Mishra et al., 2001), and 

traditional Chinese medicine (Kam & Liew, 2002) have used natural 

products containing polyphenols in the prevention and treatment of disease. 

There has been a push to combine anecdotal evidence with modern science 

to indicate the usefulness of natural products, including polyphenols, for 

therapeutic use outside these traditional systems. 

Wine: rich source of polyphenols 

Consumption of wine with food is a typical feature of the 

Mediterranean diet (Ursini & Sevanian, 2002). The low incidence of 

cardiovascular disease in France, despite high dietary intake of saturated fat, 

has been described as the French Paradox, and attributed to moderate 

regular red wine intake (Renaud & de Lorgeril, 1992). Wine contains many 

polyphenols including phenolic acids, stilbenes, flavonoids, and tannins 

with the antioxidant capacity of red wine being greater than white wine 

(Tubaro et al., 1999; Waterhouse, 2002). Most of the polyphenols in wine 

come from grapes whereas tannins are extracted into the wine during 

maturation in oak barrels (Waterhouse, 2002). Red wine contains about 20 

times more polyphenols than white wine, in particular flavonoids (e.g., 
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quercetin, catechin, and epicatechin) and stilbenes (e.g., resveratrol) (Soleas 

et al., 1997; Parks & Booyse, 2002; Waterhouse, 2002). However, white 

wine can also protect the heart from damage caused by ischemia-reperfusion 

injury by improving post-ischemic ventricular function and reducing 

myocardial infarction (Cui et al., 2002). Red wine reduced body weight gain 

as well as adipocyte size in rats fed with normal diet (Monteiro et al., 2009) 

and reduced epididymal fat content along with reduction in body weight in 

high-fat diet-fed rats (Vadillo et al., 2006). In humans, red wine reduced 

total and LDL cholesterol and increased HDL cholesterol more than white 

wine; triglycerides were minimally affected with both wines (van Velden et 

al., 2002). Plasma total antioxidant status was increased with red wine while 

it was decreased with white wine (van Velden et al., 2002). These responses 

to red wine can be attributed to polyphenols, including phenolic acids, 

resveratrol, hydrolysable tannins, flavonols, and anthocyanins (Waterhouse, 

2002).  

Resveratrol 

Resveratrol (Figure 3A) is extracted into the wine from the grape 

skin where it is synthesized as a response to fungal infection (Kroon et al., 

2010). Red wine (0.1-14.3 mg/L) contains more resveratrol than white wine 

(0.002-0.1 mg/L) (Romero-Pérez et al., 1996; Baur & Sinclair, 2006). The 

physiological and biochemical responses of resveratrol in animal models, 

tissues, and cells have been extensively reviewed (Brown et al., 2009; 

Kroon et al., 2010; Mullin, 2011).  
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Both in vivo and in vitro studies have confirmed the effects of 

resveratrol in the components of metabolic syndrome (Kroon et al., 2010). 

Resveratrol induced apoptosis and inhibited cell differentiation in 3T3-L1 

preadipocytes by up-regulating expression of Sirt1 and inhibition of Akt 

(Rayalam et al., 2008; Chen et al., 2011a; Chen et al., 2011b). Short-term 

incubation of freshly isolated rat hepatocytes with 25 μM resveratrol for 30 

minutes decreased incorporation of acetate into triglycerides (Gnoni & 

Paglialonga, 2009). Resveratrol (10 mg/kg/day) improved dyslipidemia, 

hyperinsulinemia, and hypertension in obese Zucker rats (Rivera et al., 

2009). Resveratrol failed to inhibit the increase in body weight and body fat 

of high-fat diet-fed mice or rats (Baur et al., 2006; Rivera et al., 2009; 

Rocha et al., 2009; Tauriainen et al., 2011). In another study, resveratrol 

reduced body weight as well as body fat (Lagouge et al., 2006). However, 

resveratrol inhibited the development of hepatic steatosis and hepatocyte 

ballooning in high-fat diet-fed mice (Tauriainen et al., 2011). Pre-treatment 

with resveratrol (30 mg/kg/day for 1 week) in streptozotocin (STZ)-induced 

diabetic rats inhibited apoptosis in pancreatic β-cells along with the 

reduction in blood glucose concentrations and increase in serum insulin 

concentrations (Ku et al., 2012). Resveratrol (1 mg/kg/day for 32 da ys) 

lowered systolic blood pressure and cardiac fibrosis, attenuated 

inflammation in the left ventricle, and improved ventricular and vascular 

function in deoxycorticosterone acetate-salt hypertensive rats (Chan et al., 

2011). Similarly, resveratrol (10 mg/kg/day) treatment reduced systolic 

blood pressure and cardiac hypertrophy in fructose-fed rats (Miatello et al., 
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2005). These changes were accompanied by an increased expression of 

eNOS in mesenteric vascular bed and heart (Miatello et al., 2005).  

Daily 10 mg resveratrol was given for 3 months in a double-blind, 

placebo-controlled, randomized study, to patients with a history of 

myocardial infarction. Blood pressures and plasma concentrations of C-

reactive protein, glycosylated haemoglobin, TNF-α, total cholesterol, 

triglyceride, and HDL-cholesterol were unchanged. Resveratrol increased 

flow-mediated dilation of the brachial artery and improved left ventricular 

function (increases in ejection fraction and E/A ratio) (Magyar et al., 2012). 

In older adults with impaired glucose tolerance, resveratrol treatment for 4 

weeks (1, 1.5, and 2 g/day) did not change fasting glucose concentrations, 

but peak post-meal glucose and 3-hour glucose area under the curve were 

lowered. Furthermore, insulin sensitivity (using the Matsuda index) was 

improved following treatment with resveratrol treatment, although body 

weight, percent body fat, blood pressure, fasting lipid profile, plasma high 

sensitivity C-reactive protein and adiponectin concentrations were 

unchanged (Crandall et al., 2012). In obese humans, resveratrol (150 

mg/day) treatment for 30 da ys decreased hepatic lipid content, plasma 

inflammation markers, glucose, and triglycerides, and alanine-

aminotransferase activity; also, systolic blood pressure was lowered and 

HOMA index improved after resveratrol treatment (Timmers et al., 2011). 

The responses to resveratrol have been widely studied in animal tissues in 

vivo and in vitro, but there is minimal large-scale evidence on chronic 

responses to resveratrol from human studies in conditions such as obesity 

(Chachay et al., 2011). 
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Figure 3: Polyphenols found in wine. (A) Resveratrol, (B) Ellagic acid, (C) 

Quercetin, and (D) Rutin 

Ellagitannins and ellagic acid 

Ellagitannins become constituents of red wine during its maturation 

in oak barrels (Saucier et al., 2006; García-Estévez et al., 2010). Different 

species of oak are used in the wine-making industry including American oak 

(Quercus alba) and European oak (Quercus petraea and Quercus robur). 

Ellagitannins are complex polyphenolic compounds found in oak as 

monomers or oligomers (Karonen et al., 2010; Yoshida et al., 2010). The 

major ellagitannins found in oak are vescalagin, castalagin, roburin and 

grandinin. Related ellagitannins are found in pomegranates, chestnuts, 

raspberries, strawberries, blackberries, and walnuts (Cerdá et al., 2005; 

Seeram et al., 2006; Coates et al., 2007; Bakkalbaşi et al., 2009). 
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Chemically, ellagitannins are hydrolysable tannins, which upon h ydrolysis 

release ellagic acid. Ellagic acid (Figure 3B) is a polyphenol found in nuts 

as well as fruits such as raspberries, pomegranates, grapes, and 

blackcurrants (Talcott & Lee, 2002; Mari Kannan & Darlin Quine, 2012). 

The potential therapeutic role of the ellagitannins in red wine has been 

neglected, even though the presence of these polyphenols in wine and other 

dietary constituents has been known for a long time. 

Ellagitannins from pomegranate juice attenuated isoproterenol-

induced cardiac necrosis in rats (Jadeja et al., 2010) and angiotensin-

induced hypertension, glucosuria and proteinuria in STZ-induced diabetic 

rats (Mohan et al., 2010). Pomegranate fruit extract containing punicalagin 

as the major ellagitannin improved vascular endothelial function without 

affecting the plasma lipid profile in obese Zucker rats (Seeram et al., 2004; 

de Nigris et al., 2007). In elderly hypertensive subjects, pomegranate juice 

consumption for 2 weeks reduced systolic blood pressure along with serum 

angiotensin converting enzyme activity (Aviram & Dornfeld, 2001). In type 

2 diabetic subjects, concentrated pomegranate juice consumption (40 g/day) 

for 9 w eeks reduced serum total cholesterol and LDL cholesterol 

(Esmaillzadeh et al., 2004). In our recent study, we have shown that the 

ellagitannins from European oak (Quercus petraea) attenuated 

cardiovascular remodeling and nonalcoholic fatty liver, accompanied by 

reduction in systolic blood pressure, abdominal fat deposition, blood lipid 

concentrations, and improvements in glucose tolerance in high-

carbohydrate, high-fat diet-fed rats, probably due to anti-oxidative and anti-

inflammatory activities of ellagitannins (Panchal & Brown, 2011). Also, 
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ellagitannins from oak attenuated cardiovascular remodeling and lowered 

systolic  bl ood pressure in Spontaneously Hypertensive Rats (Panchal & 

Brown, 2011). These studies have used rich but complex sources of 

ellagitannins including oak wood extract and pomegranate juice; studies 

with purified compound are justified. 

Studies with purified ellagic acid in animals and humans with 

metabolic syndrome are limited (Larrosa et al., 2010). Ellagic acid induced 

cardioprotection against isoproterenol-induced myocardial infarction 

(Kannan & Quine, 2011) and also showed anti-proliferative effects in 

cancerous cell lines (Losso et al., 2004). Ellagic acid protected liver cells in 

vitro and in vivo in rat models of hepatic damage (Girish et al., 2009; 

Hwang et al., 2010). In high-carbohydrate, high-fat diet-fed rats, ellagic acid 

reduced body weight, abdominal fat content, basal blood glucose 

concentrations, plasma triglycerides, plasma total cholesterol, and plasma 

nonesterified fatty acid concentrations. In these rats, ellagic acid also 

improved the structure and function of the heart and the liver (Panchal et al., 

2012b). 

Flavonoids 

Flavonoids are naturally occurring low molecular weight 

polyphenolic compounds widely distributed in fruits and vegetables (Park et 

al., 2008). More than 6000 flavonoids have been identified to date (Egert et 

al., 2010). Anticancer, antimicrobial, antiviral, anti-inflammatory, 

immunomodulatory, and antithrombotic activities have been claimed for 

flavonoids (Havsteen, 1983; Kim et al., 2004). Some flavonoids have shown 
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promising results in metabolic syndrome (Hu et al., 2009; Mulvihill et al., 

2009). Effects of major flavonoids present in the diet have been described 

here. 

Quercetin 

Quercetin (3,3′,4′,5,7-pentahydroxy flavone; Figure 3C) is a major 

flavonoid found in plants and plant products (Galisteo et al., 2004), 

including red onions, apples, berries, citrus fruits, tea, and red wine (Ruiz et 

al., 2009; Egert et al., 2010). Quercetin has improved most aspects of the 

metabolic syndrome in experimental studies, but the doses/concentrations 

have differed markedly. Quercetin and its metabolites inhibited neutrophil-

mediated modification of LDL in vitro through the inhibition of 

myeloperoxidase (Loke et al., 2008). Quercetin protected human 

hepatocytes from ethanol-induced oxidative stress by activating Nrf2-

mediated heme oxygenase-1 (Yao et al., 2007). Quercetin reduced systolic 

blood pressure in hypertensive human patients as well as in animal models 

of hypertension (Egert et al., 2009; Perez-Vizcaino et al., 2009). Quercetin 

(0.5% in diet) reduced systolic blood pressure of high-fat, high-sucrose diet-

fed rats after 4 weeks of treatment, possibly due to increased NO 

bioavailability through increased NOS activity (Yamamoto & Oue, 2006). 

Quercetin dilated isolated rat vascular smooth muscle, possibly by inhibiting 

protein kinase C (Duarte et al., 1993). Quercetin (0.8% diet) increased the 

energy expenditure in high fat diet-fed mice without affecting the body 

weight and body composition (Stewart et al., 2008). Quercetin (0.05 

mg/kg/day) reduced serum triglyceride and cholesterol concentrations in 
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high-fat diet-fed rabbits after 12 w eeks of treatment, whereas it did not 

affect the serum concentrations of triglyceride and cholesterol after 4 weeks 

of treatment (Juźwiak et al., 2005). Quercetin (10 mg/kg/day) reduced body 

weight in obese Zucker rats without changing the average daily food intake 

(Rivera et al., 2008). It also reduced plasma levels of triglycerides, free fatty 

acids, total cholesterol, and insulin in obese rats whereas adiponectin 

concentrations in plasma were increased. In this study, quercetin increased 

eNOS expression while decreasing iNOS expression in visceral adipose 

tissue of obese Zucker rats (Rivera et al., 2008). In mice fed with a diet rich 

in fat, cholesterol, and sucrose, quercetin reduced visceral and liver fat 

accumulation and improved hyperglycemia, hyperinsulinemia, 

dyslipidemia, and plasma concentrations of adiponectin and TNF-α. 

Quercetin also reduced oxidative stress in these mice (Kobori et al., 2011). 

In Spontaneously Hypertensive Rats, quercetin supplementation (1.5 g/kg in 

food) did not change blood pressure or left ventricular dimensions, 

ventricular functions, vascular morphology, vascular resistance, and 

conductance vessel reactivity (Carlstrom et al., 2007). In high-carbohydrate, 

high-fat diet-fed rats, quercetin (~50 mg/kg/day) attenuated hypertension, 

impairment in glucose tolerance, and central obesity without reducing body 

weight (Panchal et al., 2012a). These changes were accompanied by the 

improvements in structure and function of the heart and the liver (Panchal et 

al., 2012a). 

In a double-blind, randomized, placebo-controlled, crossover trial in 

obese subjects, quercetin supplementation (150 mg/day for 6 weeks) did not 

change body weight, waist circumference, fat mass, fat-free mass, serum 
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concentrations of total cholesterol, triacylglycerols, or glucose, although a 

decreased systolic blood pressure was observed (Egert et al., 2010). 

Quercetin did not change serum concentrations of hs-CRP whereas serum 

concentrations of hs-TNF-α were decreased (Egert et al., 2010). Quercetin 

supplementation (730 mg/day for 28 d ays) reduced systolic and diastolic 

blood pressure in a randomized, double-blind, placebo-controlled, crossover 

study in hypertensive subjects (Edwards et al., 2007). 

Rutin 

Rutin (Figure 3D) is found abundantly in onions (200-300 mg/kg), 

apples (0.17% of dry weight), tea (10.18% in dry weight), and red wine (4-5 

mg/L) (López et al., 2001; Makris & Rossiter, 2001; Slimestad et al., 2007; 

Atanassova & Bagdassarian, 2009). Rutin (1 mg/ml of medium) suppressed 

the differentiation of adiopocytes in pre-adipocyte 3T3-L1 cell lines (Choi 

et al., 2006). Rutin (50 mg/kg/day) decreased serum glucose and lipid 

concentrations in STZ-induced type I diabetic rats (Fernandes et al., 2010). 

In these diabetic rats, rutin decreased the serum activities of liver enzymes 

(alanine transaminase (ALT), aspartate transaminase (AST), and lactate 

dehydrogenase) (Fernandes et al., 2010). Similarly, serum concentrations of 

insulin, total cholesterol, free fatty acid, and triglyceride were decreased 

with rutin treatment in STZ-diabetic rats (Fernandes et al., 2010). Reduction 

in concentrations of total cholesterol may result from inhibition of HMG-

CoA reductase (Fernandes et al., 2010). In STZ-induced diabetic rats, rutin 

(100 and 300 mg/kg/day) inhibited the decrease in left ventricular function 

measured as fractional shortening and ejection fraction (Krishna et al., 
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2005). High fat diet-fed C57BL/6 mice showed reduction in body weight 

and total cholesterol in blood with rutin treatment (25 and 50 mg/kg/day) 

whereas the treatment did not affect the triglyceride concentrations in blood 

(Choi et al., 2006). Rutin (10 and 100 mg/kg/day) reduced concentrations of 

total cholesterol and LDL cholesterol along with plasma activities of AST 

and ALT in hypercholesterolemic rats after 4 weeks (Ziaee et al., 2009). In 

rats fed a h igh-carbohydrate, high-fat diet, we have shown that rutin 

attenuated hepatic steatosis, cardiovascular remodeling, obesity, 

hypertension, dyslipidemia, hyperinsulinemia, and impaired glucose 

tolerance (Panchal et al., 2011). 

In a randomized controlled implementation trial in diabetic patients, 

rutin supplementation (500 mg/day) reduced blood pressure, body weight, 

and serum LDL cholesterol and increased serum HDL cholesterol but did 

not affect serum triglycerides (Sattanathan et al., 2010). Withdrawal of rutin 

supplementation reversed these changes (Sattanathan et al., 2010). 

Anthocyanins 

Anthocyanins are water-soluble natural pigments responsible for 

red-blue or purple colors in fruits and vegetables (He & Giusti, 2010). 

Cyanidin (Figure 4A), delphinidin (Figure 4B), malvidin (Figure 4C), 

pelargonidin, peonidin, and petunidin are the major dietary anthocyanins 

(Lamy et al., 2006). Major dietary sources include fruits and vegetables 

such as berries (blueberry, bilberry, and chokeberry), purple carrot, black 

currant, red radish, purple maize, red cabbage, and purple sweet potato (He 

& Giusti, 2010; Tsuda, 2012). 
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Figure 4: Anthocyanins found in fruits and vegetables. (A) Cyanidin, (B) 

Delphinidin, and (C) Malvidin 

Epidemiological studies have shown that increased consumption of 

diets rich in anthocyanins reduced the risk of developing cardiovascular 

diseases (Wallace, 2011). Our studies have shown that purple carrot juice 

(5% of the diet) reduced abdominal obesity, systolic blood pressure, plasma 

lipids, hepatic steatosis, cardiac fibrosis, and inflammation along with 

improved glucose tolerance in high-carbohydrate, high-fat diet-fed rats 

(Poudyal et al., 2010). Chokeberry fruit juice (5, 10, a nd 20 m l/kg body 

weight) for 30 da ys reduced total cholesterol, LDL cholesterol, and 

triglycerides in 4% cholesterol diet-fed rats (Valcheva-Kuzmanova et al., 

2007). Chokeberries (100 and 200 m g/kg/day) also reduced visceral 

adiposity, blood glucose, serum triglycerides, total cholesterol, and LDL 

cholesterol in fructose-fed rats (Qin & Anderson, 2011). In the same study, 
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anthocyanin supplementation increased plasma adiponectin levels, inhibited 

the plasma levels of pro-inflammatory cytokines such as TNF-α and IL-6, 

down-regulated adipogenic markers (Gsk3β, Fabp4, Fas, and Lpl) mRNA 

expression, and up-regulated important intermediates of the insulin 

signalling cascade (Irs1, Irs2, Pi3k, Glut1, Glut4, and Gys1) (Qin & 

Anderson, 2011). In diabetes induced by high-fructose diet and 

simultaneous single injection of STZ (20 mg/kg), dietary supplementation 

with chokeberry fruit extract (0.2%; ~400mg/g of anthocyanin glycosides in 

the extract) decreased antioxidant status of vital organs, total plasma 

cholesterol, and blood glucose concentrations (Jurgoński et al., 2008). In 

Zucker rats fed a h igh-fat diet, supplementation with 2% dietary blueberry 

or 1% whole tart cherry powder reduced plasma triglycerides, fasting 

insulin, HOMA-IR, and abdominal fat mass and increased adipose and 

skeletal muscle PPAR-α and PPAR-γ activity along with reductions in TNF-

α, IL-6, and NF-κB in the plasma and the adipose tissue, and improved 

glucose tolerance (Seymour et al., 2009; Seymour et al., 2011). At the same 

dosage after 90 days, tart cherries reduced fasting blood glucose, 

hyperlipidemia, hyperinsulinemia, and fatty liver with increased hepatic 

PPAR-α expression in salt-sensitive Dahl rats (Seymour et al., 2008). 

Anthocyanins from black soybean seed coats (cyanidin-3-glucoside, 

delphinidin-3-glucoside, and petunidin-3-glucoside; 10-100 μg/mL) 

inhibited TNF-α-mediated VCAM-1 expression in human umbilical vein 

endothelial cells (Nizamutdinova et al., 2009). In the same cell line, 

delphinidin inhibited oxidised LDL-induced cell viability loss primarily by 

up-regulating proteins involved in inhibiting apoptosis including Bcl-2 and 
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Bax proteins (Chen et al., 2010). These results suggest that the responses to 

anthocyanins supplementation may be mediated by its anti-inflammatory 

and antiapoptotic properties and up-regulation of the insulin-signalling 

cascade. 

Anthocyanins have direct protective effects on the heart. Hearts from 

male Wistar rats fed on a diet based on a nthocyanins containing maize 

kernels for 8 weeks were more resistant to regional ischemia and 

reperfusion insult induced in an isolated heart preparation (Toufektsian et 

al., 2008). This diet also reduced the infarct size in coronary occlusion and 

reperfusion model (Toufektsian et al., 2008). Anthocyanin extract from 

black rice (5 g/kg diet) lowered body weight gain, serum triglyceride, raised 

hepatic CPT-1 expression, and inhibited platelet hyperactivity suggested by 

decreased thromboxane A2, the thrombogenic ratio of thromboxane A₂ and 

prostacyclin, serum calmodulin, and soluble P-selectin expression in high-

fat diet-fed rats (Yang et al., 2011).  

Human studies concur with the therapeutic responses produced in 

animal models to dietary anthocyanins. In patients with metabolic 

syndrome, chokeberries extract (3 x 100 mg/day) for two months decreased 

both systolic and diastolic blood pressure, endothelin-1, total cholesterol, 

LDL cholesterol, triglycerides, TBARS, catalase activity, and induced 

superoxide dismutase activity (Broncel et al., 2010). In 

hypercholesterolemic patients, 320 mg/day of purified anthocyanins isolated 

from bilberries and blackcurrants increased brachial artery flow-mediated 

dilation, cGMP, and HDL cholesterol concentrations and decreased the 
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serum soluble vascular adhesion molecule-1 and LDL cholesterol 

concentrations (Zhu et al., 2011). Anthocyanins also improved endothelial 

function in these patients as well as in isolated rat aortic rings; these effects 

were abolished by nitric oxide-cGMP inhibitors suggesting the role of nitric 

oxide-cGMP signalling pathway in anthocyanins-mediated vasodilation 

(Zhu et al., 2011) 

Tea polyphenols: Catechins 

Tea is one of the most widely consumed beverages in the world. It is 

consumed in the form of green tea, oolong tea, or black tea. Green tea is 

prepared by drying the leaves of the plant Camellia sinensis using steam. 

This process prevents the oxidation of tea polyphenols by inactivating the 

enzymes in the leaves. Black tea is prepared by crushing the tea leaves to 

promote enzymatic oxidation which leads to condensation of tea 

polyphenols resulting in polymers (Chacko et al., 2010). Green tea mainly 

contains catechins (Figure 5A-D), along with flavanols and polymeric 

flavonoids (Balentine et al., 1997; Lakenbrink et al., 2000). 

Epigallocatechin gallate is the major catechin found in green tea. Black tea 

mainly contains oligomeric and polymeric polyphenols such as thearubigin 

and theaflavins (Balentine et al., 1997; Lakenbrink et al., 2000) 

Catechins are flavonoids often found as the gallate derivatives, 

usually catechin gallate (CG), epigallocatechin (EGC), epigallocatechin 

gallate (EGCG), epicatechin gallate (ECG), and epicatechin (EC). Tea is 

one of the major sources of catechins (Cabrera et al., 2006); other sources 
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include wine, grape skins, grape seeds, and cacao beans (Yilmaz & Toledo, 

2004; Auger et al., 2005). 

 

Figure 5: Catechins found in tea 

CG, EGC, EGCG, and ECG prevented the differentiation of 

preadipocytes to adipocytes (Furuyashiki et al., 2004). Administration of 

0.5% tea catechins in drinking water to rats for 3 weeks reduced liver lipid 

content, serum total cholesterol concentration, and body weight in normal 

diet-fed rats, indicating that tea catechins can control lipid metabolism in 

obese as well as non-obese rodents (Ito et al., 2008). Tea catechins showed 

increased excretion of carbohydrates, proteins, and lipids in the feces 

suggesting the reduction in digestibility of these macromolecules 

accompanied by the reduction in the body weight gain (Unno et al., 2009). 

Tea catechins (1% of the diet) also showed body fat reduction along with 
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reduction in liver triglyceride content in rats after 23 days of feeding (Ikeda 

et al., 2005).  

EGCG reduced body weight, blood glucose, and plasma insulin 

concentrations and improved insulin sensitivity in high-fat diet-fed mice 

(Sae-Tan et al., 2011). EGCG also reduced plasma ALT activity, hepatic 

steatosis, and liver weight in these mice (Sae-Tan et al., 2011). In high-fat 

diet-fed mice, tea catechins reduced body weight gain, abdominal fat 

deposition, liver triglycerides, and plasma concentrations of insulin, leptin, 

and total cholesterol (Murase et al., 2002). The anti-obesity effect of EGCG 

may involve mediating the balance between energy intake and energy 

expenditure (Moon et al., 2007). In a pressure overload rat model induced 

by abdominal aortic constriction, EGCG inhibited cardiac hypertrophy and 

cardiac fibrosis with improved ventricular function without changing 

systolic blood pressure (Hao et al., 2007). In stroke-prone Spontaneously 

Hypertensive Rats, green tea polyphenols reduced blood pressure and 

increased aortic expression of catalase (Negishi et al., 2004). This study 

confirms the antioxidant effect of green tea polyphenols in reducing blood 

pressure. 

The reported responses to catechins from tea have shown health 

benefits in humans (Higdon & Frei, 2003; Cabrera et al., 2006; Feng, 2006; 

Hsu et al., 2011; Yang et al., 2012). In overweight human subjects, 

supplementation of green tea extract containing catechins reduced body 

weight, body mass index, total body fat mass, total body lean mass, systolic 

blood pressure, and blood glucose concentrations (Yang et al., 2012). In the 
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Ohsaki National Health Insurance Cohort Study, green tea consumption 

reduced cardiovascular mortality (Kuriyama et al., 2006). In a meta-analysis 

study, it was concluded that green tea consumption lowered serum total 

cholesterol and LDL cholesterol concentrations (Zheng et al., 2011). In a 

prospective cohort study, it was concluded that the consumption of green tea 

substantially decreased serum concentrations of total cholesterol, LDL 

cholesterol, VLDL cholesterol, and triglycerides whereas increased serum 

HDL cholesterol concentration was found (Imai & Nakachi, 1995). An 

inverse association was found between green tea consumption and serum 

activity of AST (Imai & Nakachi, 1995). Results from this cross-sectional 

study indicated that the consumption of green tea might prevent 

cardiovascular and liver diseases.  

Turmeric polyphenol: Curcumin 

Turmeric (Curcuma longa) is an Indian spice used as a dry powder 

in food preparations all over the world. Turmeric has been used as a 

medicine in Ayurveda, traditional Chinese medicine, and in traditional 

household treatments. Curcumin (Figure 6) is the principal ingredient found 

in turmeric (Kiuchi et al., 1993; Goel et al., 2008b). Responses to curcumin 

have been extensively reviewed (Aggarwal et al., 2007; Anand et al., 2008; 

Goel et al., 2008a; Aggarwal & Harikumar, 2009; Aggarwal & Sung, 2009).  

 

Figure 6: Structure of curcumin 
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Curcumin decreased the symptoms of metabolic syndrome in rodent 

models. In high-fat diet-fed rats, curcumin (80 mg/kg/day) reduced fasting 

plasma concentrations of glucose, insulin, total cholesterol, triglycerides, 

LDL cholesterol, free fatty acids, and TNF-α whereas it increased plasma 

HDL cholesterol concentrations after 60 days in a prevention protocol; these 

changes were accompanied by improved insulin sensitivity and glucose 

tolerance (El-Moselhy et al., 2011). High-fat diet-fed mice (treated with 4 g 

curcumin/kg diet for 2 days/week for 28 weeks) showed reduction in body 

weight, epididymal fat content, total body fat content, fasting plasma insulin 

concentrations, and improved tolerance to glucose, pyruvate, and insulin 

with inhibition of hepatic steatosis and infiltration of macrophages in 

adipose tissue and liver (Shao et al., 2012). Similar results were found with 

curcumin (3% in food) in ob/ob mice (Weisberg et al., 2008). Curcumin 

inhibited adipokine-induced adipogenesis in 3T3-L1 adipocytes and 

preadipocyte differentiation (Ejaz et al., 2009). Curcumin treatment (500 

mg/kg/day) suppressed body weight gain, reduced total body fat, prevented 

hepatic steatosis, and lowered serum total cholesterol in high-fat diet-fed 

mice (Ejaz et al., 2009). Curcumin treatment (100 mg/kg/day) lowered 

blood pressure in L-NG-nitroarginine methyl ester-hypertensive rats 

(Hlavačková et al., 2011). Curcumin (50 mg/kg/day) improved ventricular 

dimensions and functions in salt-sensitive Dahl rats and in surgically-

induced myocardial infarction in rats by attenuating cardiac hypertrophy and 

fibrosis (Morimoto et al., 2008). Blood pressure in these rats was unaltered 

with curcumin treatment (Morimoto et al., 2008). Similar cardioprotective 
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roles of curcumin have been reviewed previously (Wongcharoen & 

Phrommintikul, 2009; Alappat & Awad, 2010).  

A phase I clinical trial showed that 8 g /day curcumin orally for 3 

months had no s ide-effects or toxicity in subjects (Cheng et al., 2001). In 

healthy individuals, administration of curcumin (500 mg/day) decreased 

serum lipid peroxides and total cholesterol concentration while increasing 

serum HDL cholesterol concentrations (Soni & Kuttan, 1992). Similarly, 

curcumin (10 mg twice a day, for 30 days) reduced serum LDL cholesterol 

and increased serum HDL cholesterol in atheroscelerosis patients (Ramírez-

Boscá et al., 2000).  

Dosage and chronic intake of polyphenols 

In vivo studies with polyphenols have shown that these compounds 

can be effective in treating the symptoms of metabolic syndrome. Although 

the doses of polyphenols used in animal studies have been effective, the 

doses cannot be directly applied to the humans due to various differences 

between rodents and human. There are various conversion equations that 

can be used to transform the animal doses to the human doses. Some of 

these are scaling equation based on metabolic rate difference between 

animals and humans (Bachmann et al., 1996) and a conversion based on 

body surface area (Reagan-Shaw et al., 2008). Also, the length of protocol 

in animal is very short and varies from one study to the other study. 

Similarly, the life span of animals used in the studies (for example, 27-30 

months for a rat) is much shorter than the human life span (65-70 years on 
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an average). Thus, a relative period has to be considered in humans to see a 

consistent response with the polyphenols. 

Toxicity 

Hazards, safety, and risks related to polyphenol consumption have 

previously been considered (Schilter et al., 2003; Mennen et al., 2005; 

Lambert et al., 2007; Martin & Appel, 2010). Most studies with polyphenols 

or natural products have focussed on characterizing their beneficial effects 

in various disease conditions and the toxicity related to polyphenols has 

been overlooked (Mennen et al., 2005). Repeated oral doses of pomegranate 

husk extract (6% punicalagin-containing diet) to the rats for 37 days did not 

show any toxic effects (Cerdá et al., 2003). In another long-term study, 

toxicity and carcinogenicity of quercetin were tested in male and female 

rats. Quercetin (0, 1000, 10,000, or 40,000 ppm) was given in the diet for 2 

years at doses from ~40 to 1900 mg/kg/day. High dose groups showed 

reduction in body weight gain compared to controls during the 2nd year of 

the study. After 2 years, quercetin showed carcinogenic activity in the 

kidney of the male rat without inducing tumors at other sites (Dunnick & 

Hailey, 1992). Similarly, tea catechins (EGCG) have shown pro-oxidant 

activities in different studies (Yang et al., 2000; Hong et al., 2002; 

Weisburg et al., 2004; Hou et al., 2005). Another study reported the 

reduction in rat hepatocyte viability with EGCG (Galati et al., 2006).  

The use of polyphenols can be questioned, considering the 

differences between various cancers and other pathological conditions 

including cardiovascular disease, hypertension, and diabetes. To reduce cell 
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growth in cancer, compounds will cause toxicity to the cells whereas in 

metabolic diseases such as diabetes, cell growth needs to be maintained and 

its function should be improved. Thus, theoretically, anything that is active 

in cancer may not be effective in metabolic diseases; unless highly different 

doses are used. Thus, the toxicity of polyphenols in cancer can be used 

though application of higher doses whereas the potential benefits of 

polyphenols could be utilized by using a relatively lower but 

pharmacologically active dose.  

Conclusion 

Natural products are abundant in phytochemicals some of which 

belong to the class of polyphenols. These polyphenols are synthesized by 

the plants through shikimate pathway. Some of the polyphenols found in 

wine and tea have been studied for their pharmacological activities in vitro, 

in vivo in animal models of metabolic syndrome, and in humans. Red wine 

consists of a range of polyphenols including resveratrol, ellagitannins, 

quercetin and anthocyanins. These phytochemicals are effective in 

attenuating the symptoms of metabolic syndrome and associated 

complications. Similarly, tea catechins and curcumin from turmeric have 

been effective against the symptoms of metabolic syndrome. Some of the 

polyphenols such as ellagic acid have been studied to lesser extent for their 

activity against metabolic syndrome. With the effectiveness shown by 

polyphenols in metabolic syndrome, it can be proposed that these 

phytochemicals, either in extract form or purified form, can be used as a 

complimentary medicine in treatment of metabolic syndrome, 
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cardiovascular disease, type 2 diabetes, and non-alcoholic fatty liver 

disease. 

Although most of the polyphenols have shown therapeutic effects in 

metabolic syndrome in animal models, there have been limited numbers of 

human trials to justify the data. Also, the subjects in the human trials were 

considered for limited parameters related to metabolic syndrome in a 

particular trial. Thus, the responses to polyphenols need to be explored in 

subjects with wide range of symptoms of metabolic syndrome. Also, the 

literature on the combinatorial effects of polyphenols with standard drugs in 

various symptoms of metabolic syndrome is missing. If not used alone, 

these phytochemicals may enhance the effectiveness of standard drugs in 

attenuating the symptoms of metabolic syndrome. 
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Spices used in Indian cooking have a long history of use as medicines to prevent and treat diseases. Many studies have 

confirmed that spices can be useful medicines, but the major challenge is now to provide scientific evidence and plausible 

mechanisms for their therapeutic responses. This review focuses on the therapeutic potential of Indian spices to treat 

multiple symptoms of the metabolic syndrome such as insulin resistance, diabetes, obesity, altered lipid profile and 

hypertension. The metabolic syndrome is prevalent and has become an important financial burden to the healthcare system 

in both developed and developing countries. Inflammation and oxidative stress have been proposed as initiators of the 

metabolic syndrome, especially of insulin resistance. Natural products with anti-inflammatory and anti-oxidant properties 

are found in spices. Adequate doses of these compounds may be effective in treating the metabolic syndrome. Testing these 

potential treatments requires adequate animal models, usually rodents, so the limitations of these models are important. 

Furthermore, this review highlights the need for adequate legislation and regulation to ensure the safety and success of 

evidence-based functional foods and nutraceuticals. 

Keywords: Spices, Diabetes, Cardiovascular disease, Metabolic syndrome, Inflammation, Oxidative stress, 

Nutraceuticals, Food safety 

 

Introduction 
Dietary choice remains the basis for maintaining a 

healthy lifestyle and well-being, especially relating to 

cardiovascular disease (CVD), despite remarkable 

advances in medicine and pharmaceutical drug 

development
1,2

. Besides food being a lifestyle choice, 

age-old anecdotal reports from many cultures strongly 

suggest a role for diet as well as Indian spices in both 

preventive and therapeutic medicine
3,4

. However, the 

major challenge in the use of spices as preventive and 

therapeutic medicines is in demonstrating their health 

benefits by scientific means, comparable with the 

standards applied for pharmaceutical agents
3
. Further, 

unlike pharmaceutical agents which are administered 

in predetermined doses as pure and concentrated 

preparations, spices are consumed in combinations 

and in unmeasured and variable quantities in different 

cultural settings. Therefore, the major challenge is to 

provide scientific evidence to define these benefits as 

well as plausible mechanisms by which these products 

are effective in a disease setting. 

Around 60% of the world’s population depends on 

herbal medicine, a broad term including spices, for 

primary healthcare
5
. Spices are pungent or aromatic 

substances from dried seeds, fruits, roots, bark or 

leaves used as additives to flavour, colour or preserve 

food; the differences with dried herbs used for 

flavouring is somewhat arbitrary. In India, many of 

these spices are part of everyday cooking and 

significant quantities may be consumed in a single 

meal. It is estimated that an adult in India can 

consume 80-200 mg/day of curcumin, the bioactive 

component of turmeric
3
. Some Indians have been 

reported to consume up to 50 g of garlic in a week
3,6

. 

These data suggest a realistic possibility to achieve 

therapeutic doses of the active ingredients in spices by 

dietary consumption alone. However, for many 

patients, treatment with functional foods or 

nutraceuticals with enhanced concentrations of the 

active ingredients of the spices may be necessary. 

There is a widespread research effort in India to 

define the potential health benefits of herbal 

medicines, including spices, and identify the active 

ingredients, especially compounds with anti-oxidant 

and anti-inflammatory properties
4,5

. 
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This review investigates the potential of commonly 

used spices in India for treatment for the symptoms of 

metabolic syndrome in humans. To do this, we will 

define the metabolic syndrome and the likely 

mechanisms for the symptoms, discuss the choice of 

an appropriate rodent model for preclinical studies 

and present the available evidence for individual 

products. Two other important issues will then be 

presented: evaluation of the quality of the evidence as 

well as testing the safety and efficacy of these 

products. 

 

Metabolic syndrome and its significance 
The spices used in Indian cooking have potential 

for use in the treatment of the metabolic syndrome, a 

central preliminary pathological indication in the 

development of cardiovascular diseases, causing 

major public health challenges worldwide
7-9

 and 

especially in the Indian sub-continent
10

. Metabolic 

syndrome refers to the clustering of several 

cardiovascular and metabolic risk factors, including 

dyslipidaemia, hyperglycaemia and increased blood 

pressure, where abdominal obesity and insulin 

resistance represent core parameters of this 

cluster
7,8,11

. There are several definitions of the 

metabolic syndrome (Table 1), of which the first 

functioning definition was provided by the World 

Health Organization (WHO), emphasising insulin 

resistance and hyperglycaemia as key symptoms with 

additional associated metabolic symptoms. More 

recently, the US National Cholesterol Education 

Program Adult Treatment Panel III, International 

Diabetes Federation and the American Heart 

Association and National Heart, Lung, and Blood 
 

Table 1—Diagnostic criteria and definitions for the metabolic syndrome provided by major agencies around the world 
 

Clinical 

measure 
WHO* (1998) EGIR^ (1999) 

AACE% 

(2003) 
ATP III #(2004) IDF** (2005) 

AHA/NHLBI^^ 

(2005) 
       

Insulin 

resistance 

Impaired glucose 

tolerance (IGT), 

impaired fasting glucose 

(IFG) or insulin 

resistance (IR) plus any 2 

of the following: 

Plasma insulin 

> 75th 

percentile plus 

any 2 of the 

following: 

Impaired 

glucose 

tolerance, 

impaired 

fasting 

glucose plus 

any of the 

following: 

NONE 

Any 3 of the following 5 features: 

     

Dyslipidaemia 

Triglycerides (TG): 

≥ 1.695 mmol/L and 

high-density lipoprotein 

cholesterol (HDL-C)  

≤  0.9 mmol/L (male),  

≤ 1.0 mmol/L (female) 

TG ≥ 2.0 

mmol/L and/or 

HDL-C 

< 1.0 mmol/L 

or treated for 

dyslipidaemia 

TG ≥ 1.69 

mmol/L and 

HDL-C 

< 1.03 

mmol/L 

TG ≥ 1.695 

mmol/L HDL-C 

< 40 mg/dL 

(male), <  50 

mg/dL (female) 

TG ≥ 1.7 mmol/L 

or on TG Rx, 

HDL-C  < 1.03 

mmol/L or on 

HDL-C Rx 

TG ≥ 1.69 mmol/L 

or on TG Rx, HDL-C 

< 1.03 mmol/L or on 

HDL-C Rx 

       

Blood 

pressure 
≥ 140/90 mm Hg 

≥ 140/90 mm 

Hg 

≥ 130/85 

mm Hg 
≥ 130/85 mm Hg ≥ 130/85 mm Hg ≥ 130/85 mm Hg 

       

Plasma 

glucose 
≥ 7.0 mmol/l (Fasting) 

≥ 6.1 mmol/l 

(Fasting) 

IGT or IFG 

(but not 

diabetes) 

> 5.6 mmol/L 

≥ 5.6 mmol/L 

(includes 

diabetes) 

≥ 5.6 mmol/L or on 

hypoglycemic 

 
       

Central 

obesity 

Waist: hip ratio > 0.90 

(male); > 0.85 (female), 

and/or body mass index 

> 30 kg/m2 

Waist 

circumference 

≥ 94 cm (male), 

≥ 80 cm 

(female) 

BMI ≥ 25 

kg/m2 

Waist 

circumference 

≥ 102 cm 

(male), ≥ 88 cm 

(female) 

Waist 

circumference  

> 94 cm 

Waist circumference 

≥ 102 cm 

       

Other 

Urinary albumin 

excretion ratio ≥ 20 

mg/min or 

albumin:creatinine ratio 

≥ 30 mg/g 

     

       
*World Health Organization22, ^The European Group for the Study of Insulin Resistance23, %American Association of Clinical 

Endocrinologists24, #The US National Cholesterol Education Program Adult Treatment Panel III25, **International Diabetes Federation26,
^^American Heart Association and National Heart, Lung, and Blood Institute12; Rx, medication; BMI, body mass index. 
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Institute have suggested that at least three of the 

following conditions must be met for a diagnosis of 

metabolic syndrome, although threshold values may 

differ: abdominal obesity, elevated triglyceride 

concentrations, reduced HDL-cholesterol concen-

trations, elevated blood pressure or fasting glucose 

concentrations
12

 (Table 1). 

The metabolic syndrome is common in adult 

populations throughout the world. In Australian 

adults, its prevalence ranges between 13.4 and 30.7%, 

depending on the definition used
13,14

. In the USA, its 

overall percentage in adults was 22.8% for men and 

22.6% for women
15

. In the Japanese population, 51% 

of male and 53% of female subjects met the WHO 

criteria for the metabolic syndrome, whereas 45% of 

male and 38% of female subjects met the US National 

Cholesterol Education Program Adult Treatment 

Panel III criteria for the metabolic syndrome
16

. In 

Finland, metabolic syndrome was present in 38.8% of 

men and 22.2% of women
17

. 

This situation appears to be similar in the Indian 

sub-continent with recent data suggesting about one-

fourth to one-third of the adult Indian population 

suffer from the metabolic syndrome
18,19

. Some 

communities such as the Punjabi Bhatia community in 

north India are more prone to be obese with type II 

diabetes and the symptoms of metabolic 

syndrome
18,19

. The prevalence of metabolic syndrome 

in the Sri Lankan population is high with 35% and 

51% in males and females, respectively
18,19

. In adults 

aged 25 years and older from an urban population in 

Karachi (Pakistan), the prevalence of metabolic 

syndrome was 34.8 and 49%, according to the 

International Diabetes Federation and US National 

Cholesterol Education Program Adult Treatment 

Panel III definitions, respectively
20

. The overall 

prevalence in Pakistan has been reported as 18-46%, 

comparable to other South Asian countries
19,21

. 

Comparable data from Bangladesh and Nepal are not 

available, but the prevalence would be expected to be 

similar. Intrauterine and early postnatal under-

nutrition has been suggested as an important cause of 

the relatively high incidence of cardiovascular disease 

and metabolic syndrome in Indian populations
10

. 

Thus, the metabolic syndrome provides many 

challenges to governments and healthcare providers 

from birth to death. 
 

Aetiology of metabolic syndrome 
The aetiology of metabolic syndrome involves 

many complex biochemical pathways. Different 

mechanisms linking the symptoms of metabolic 

syndrome have been postulated, all possibly 

hampering normal cardiovascular function. Increased 

levels of reactive oxygen species (ROS), non-

esterified fatty acids, oxidized LDL and lipotoxicity 

may be related to insulin resistance
27

. Adipose tissue 

releases numerous bioactive mediators, including pro-

inflammatory cytokines that not only influence body 

weight homeostasis, but also induce changes in 

cardiovascular structure and function, glucose 

metabolism, blood pressure, lipid metabolism, 

coagulation and inflammation, leading to endothelial 

dysfunction and atherosclerosis
27,28

. 
 

Inflammation has been proposed as the critical 

process initiating the symptoms of metabolic 

syndrome
29

. The pro-inflammatory state of obesity 

and metabolic syndrome is probably initiated by an 

excessive caloric intake in a high carbohydrate/high 

fat diet
29,30

. Increased oxidative stress in the adipose 

tissues of obese subjects is closely linked to enhanced 

inflammatory signals, adipokine dysregulation and 

insulin resistance
31-33

. Redox regulation of 

inflammatory signalling occurs at several levels, 

including direct effects of oxidants, modulation by 

antioxidants, alterations in the redox equilibrium (for 

example, ratio of reduced: oxidized glutathione and 

thioredoxin) and activation of oxidant- and redox-

sensitive transcription cofactors such as NF-κB and 

AP-1
34,35

. 
 

Activation of the NF-κB pathway has been linked 

to a range of inflammatory disorders, including 

atherosclerosis, myocardial infarction and diabetes; 

this pathway can be interrupted by phytochemicals 

derived from the spices
36

. The pro-inflammatory/pro-

oxidant state induces insulin resistance, leading to the 

clinical and biochemical symptoms of metabolic 

syndrome
27,32

. This resistance to insulin action 

promotes inflammation through an increase in free 

fatty acid concentrations and hinders the anti-

inflammatory effects of insulin
29,30

. Both human and 

animal studies have shown that diets rich in 

carbohydrates and saturated fats contribute to insulin 

resistance, metabolic defects, excess body weight, 

lipid abnormalities, increased reactive oxygen/ 

nitrogen species, decreased anti-oxidant defences and 

the development of pre-diabetic or diabetic state
27

. 

The contributions towards this metabolic dysfunction 

from insulin signalling, oxidative stress and 

inflammation (Figure 1) have been difficult to 

separate
27

. 
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Fig. 1—Metabolic changes in obesity. Hyperglycaemia, 

hyperlipidaemia and elevated inflammatory cytokines are found in 

obese and diabetic conditions, which elevate both metabolic and 

inflammatory stress. Mitochondrial dysfunction, polyol pathway, 

hexosamine pathway, AGE pathway, and pro-oxidative genes 

such as iNOS and NADPH oxidases are associated with ROS 

generation and result in oxidative stress. Such stresses combine to 

activate PKCs and NF-κB signalling pathways, which cause 

insulin resistance by attenuating the insulin signalling pathway. 

Abbreviations used: TNF-α, tumour necrosis factor-α; IL6, 

interleukin 6; MCP, Monocyte chemoattractant protein; NFκB, 

nuclear factor kappa B; IR, insulin receptor; IRS, insulin receptor 

substrate; PKC, protein kinase C; AGE, advanced glycation end-

products; iNOS, inducible nitric oxide synthase; NADPH, 

nicotinamide adenine dinucleotide phosphate; ROS, reactive 

oxygen species; Akt, thymoma viral proto-oncogene designated as 

protein kinase B (PKB). Figure adapted from33 

 

Table 2—Rodent models of the metabolic syndrome 

Spontaneously diabetic rodents 

Otsuka Long-Evans Tokushima  

fatty rats (OLETF)43,44 

Mild obesity, postprandial hyperglycaemia, insulin resistance, hyperinsulinaemia, 

hyperplasia with fibrosis followed by atrophy of the pancreatic islet, diabetic 

nephropathy, left ventricular fibrosis, endothelial dysfunction, hyperlipidemia  

Goto-Kakizaki rats45 Non-obese, hyperglycaemia, hyperinsulinaemia, insulin resistance, endothelial 

dysfunction  

Zucker diabetic fatty rats46,47 Non-functional leptin receptors, obese, dyslipidaemia, hyperinsulinaemia, insulin 

resistance, hyperleptinaemia, moderately elevated blood pressure 

The JCR: LA-Cp rat48,49 Obese, insulin resistance, hyperinsulinaemia, impairment of endothelium-dependent 

vascular relaxation 

Spontaneously hypertensive rat50 Insulin resistance, hypertension, cardiac hypertrophy, endothelial dysfunction  

ob/ob mouse51 Obesity, hyperglycaemia, impaired glucose tolerance, dyslipidaemia 

db/db mouse52 Hyperinsulinaemia, insulin resistance, hyperglycaemia, polyuria, glycosuria 
  

Genetically engineered diabetic mice 

Insulin receptor-deficient mouse (IR-/-)53 Fatty acid infiltration in the liver, increased ketone bodies production, hyperglycaemia, 

hyperinsulinaemia, increased serum triglycerides, death within a week 

GLUT4 deficient mouse (GLUT4-/-)54 Retarded growth, decreased longevity, cardiac hypertrophy, post-prandial 

hyperinsulinaemia, insulin resistance 

IRS-1 deficient mice (IRS-1-/-)55 Highly reduced intrauterine growth, impaired glucose tolerance, decreased insulin/IGF-

1-stimulated glucose uptake 
  

Artificially-induced diabetic rodents 

Fructose-fed rats56,57 Hyperinsulinaemia, impaired glucose tolerance, insulin resistance, hypertension, 

hypertriglyceridaemia, cardiac fibrosis, endothelial dysfunction 

Sucrose-fed rats58 Insulin resistance, dyslipidaemia, obesity 

High fat-diet model59,60 Obesity, dyslipidaemia, insulin resistance, hyperinsulinaemia, hyperglycaemia, impaired 

glucose tolerance, endothelial dysfunction, hypertension, hyperleptinaemia 
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Rodent models of metabolic syndrome 
Rat and mouse models of human diseases such as 

obesity, diabetes and cardiovascular diseases have 

been widely used to investigate the progression of 

disease symptoms (Table 2)
37-39

. Understanding the 

influence of diet as a cause of the symptoms of 

metabolic syndrome requires adequate animal models 

with the symptoms relevant to human pathology, such 

as diet-induced obesity, diabetic and cardiovascular 

symptoms, to test proposed treatment options and 

dietary interventions. The most-used rat models of the 

complications of diabetes are induced by either 

streptozotocin
40

 or a high fructose diet
41,42

. However, 

streptozotocin induces type I diabetes and a high 

fructose diet does not induce abdominal obesity
42

. 

Thus, results from these models may be relevant only 

to a small proportion of diabetic patients. 

Diets including a significant component of animal-

derived fats, such as lard or beef tallow, or plant oils 

such as corn or safflower oil may cause diabetes and 

obesity as well as cardiovascular changes
39

. Obesity 

and diabetes increase the risk of cardiovascular 

disease and its associated metabolic risk factors, 

probably by the releasing bioactive mediators from 

adipose tissue initiated by an excessive caloric intake 

in a high carbohydrate/high fat diet
27,29,30

. Thus, 

administering a high carbohydrate/high fat diet should 

induce the range of symptoms of metabolic syndrome 

rather than streptozotocin- or fructose-induced 

diabetes. These dietary interventions should serve as a 

more relevant model to investigate possible 

therapeutic interventions for the complications of 

metabolic syndrome. 
 

Health benefits of Indian spices: what is the 

evidence? 
The contribution of oxidative stress and 

inflammation in initiating the symptoms of metabolic 

syndrome is now well-known. Suitable therapeutic 

interventions targeting these oxidative and inflame-

matory processes may be effective in preventing and 

treating the metabolic syndrome.  Several reviews 

have discussed the use of herbal medicines, including 

spices, in the treatment of the symptoms of metabolic 

syndrome such as diabetes
4,61

, insulin resistance
62

, 

hypertension and other cardiovascular diseases
63

, and 

inflammation
64

. This section deals with the possible 

therapeutic benefits of the spices in the treatment of 

the symptoms of metabolic syndrome, in particular 

because of their anti-oxidant or anti-inflammatory 

effects. 

Cardamon or Elaichi (Elettaria cardamomum) 
Cardamon, a perennial herb indigenous to the 

Indian subcontinent, contains a wide variety of 

compounds, including α-terpineol, myrcene, subinene, 

limonene, cineol, α-phellandrene, menthone, α and  

β-pinene
65

, cis/trans-linalol oxides, trans-nerolidol
66

, 

β-sitostenone, γ-sitosterol, phytol, eugenyl acetate
67

, 

bisabolene, borneol, citronellol, p-cymene, geraniol, 

geranyl acetate, stigmasterol and terpinene
68

. In vitro 

studies showed that cardamon inhibited platelet 

aggregation, when induced with agents such as ADP, 

epinephrine, collagen and calcium ionophore A 

23187
69

. Cardamon reduced blood pressure in rats, 

probably by acting through cholinergic and calcium 

antagonist mechanisms
70

. 
 

Cinnamon or Dalchini (Cinnamomum verum) 
Cinnamon is a small evergreen tree, approximately 

10-15 m tall, native to Sri Lanka and Southern India
71

. 

Its bark has been widely used as a spice and 

flavouring agent for centuries. Cinnamon has been 

suggested to have many pharmacological properties, 

including antioxidant activity and antimicrobial 

effects
72,73

. The major active components of aqueous 

cinnamon extract appear to be doubly-linked 

procyanidin type-A polymers
74

, cinnamaldehyde and 

esters such as ethyl cinnamate (Figure 2). 

 
 

Fig. 2—Bioactive constituents in cinnamon 
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Pre-clinical and clinical data show that cinnamon 

attenuated the progression of type II diabetes
75,76

. 

Cinnamon (8% w/w in diet) prevented sucrose-

induced increases in blood pressure in spontaneously 

hypertensive rats
77

 and a cinnamon extract 

(300 mg/kg/day) decreased insulin resistance in 

fructose-fed diabetic rats, partly by enhancing insulin 

signalling and partly by activating the NO pathway in 

skeletal muscle
78

. An aqueous extract of cinnamon 

bark improved insulin resistance and prevented lipid 

abnormalities in fructose-fed rats
79

. In cholesterol-fed 

rats, cinnamate (0.1 g/100 g diet) inhibited hepatic 

HMGCoA reductase activity and suppressed lipid 

peroxidation in the liver
80

. Cinnamaldehyde (5-20 

mg/kg/day) decreased plasma glucose, glycosylated 

haemoglobin, cholesterol and triglyceride concen-

trations, while increasing plasma insulin and HDL-

cholesterol concentrations as well as hepatic glycogen 

in streptozotocin-induced diabetic rats
81

. Similar 

decreases were reported when poorly-controlled type 

2 diabetic patients were given 1-6 g/day cinnamon for 

40 days
75

. 

A related species, cassia cinnamon (C. aromaticum) 

also known as Chinese cinnamon, reduced fasting 

blood glucose concentrations, improved plasma lipid 

profiles in diabetic humans and reduced glucose and 

insulin responses in oral glucose tolerance 

testing
75,82,83

. In subjects diagnosed with the metabolic 

syndrome, an aqueous extract of Chinese cinnamon 

standardised to doubly-linked polyphenol type-A 

polymers as the bioactive component (500 mg/day) 

reduced systolic blood pressure, fasting blood 

glucose concentrations and also attenuated whole 

body fat deposition to body weight ratio
84

. The pre-

clinical and clinical evidence for therapeutic 

usefulness of both common and cassia cinnamon has 

been reviewed
71

. 
 

Coriander or Dhania (Coriandrum sativum) 
Coriandrum sativum is a well-known herb, native 

to Europe and Western Asia, used as fresh and dried 

fruit and leaves to flavour meals and as an ingredient 

in curry powder (http://www.botanical.com/botanical/ 

mgmh/c/corian99.html). It is generally used in 

gastrointestinal complaints such as anorexia, 

dyspepsia, flatulence, diarrhoea, griping pain and 

vomiting
85

. The stems and leaves contain caffeic, 

chlorogenic, ferulic and gallic acids
86

. The seeds were 

effective as an antidiabetic agent administered as 

6.25% in food in streptozotocin-diabetic mice
87

, and 

as a hypolipidaemic agent as 10% in food in rats fed 

15% coconut oil and 2% cholesterol
88

. Continuous 

intravenous infusion of the crude aqueous extract of 

coriander (40 and 100 mg/kg) induced dose-

dependent diuresis, natriuresis, kaliuresis, increased 

chloride excretion and increased glomerular 

filtration rate in anaesthetized Wistar rats
89

. Alcoholic 

extract of coriander (200 mg/kg) decreased fasting 

serum glucose concentration and increased insulin 

release from pancreatic β-cells in streptozotocin-

induced diabetic rats
90

. Oral intake of fruit powder 

(8% w/w of food) in cholesterol-fed rats decreased 

plasma total cholesterol, LDL-cholesterol and total 

lipid concentrations, while increasing the HDL-

cholesterol
91

. 
 

Cumin seeds or Jeera (Cuminum cyminum) 
Cumin seeds are a common dietary spice consumed 

in fairly large quantities in India. They are widely 

used in Ayurvedic medicine for treatment of 

dyspepsia, diarrhoea and jaundice
80

. Cuminaldehyde 

is suggested as the active ingredient in cumin seeds 

(Figure 3)
92

. An aqueous extract of cumin seeds 

prevented the accumulation of advanced glycation 

end-products due to fructose-mediated in vitro 

glycation of eye lens soluble proteins
92

. 

Hypoglycaemic effects of cumin seeds were also 

observed in normal rabbits
93

. Dietary cumin showed 

marked hypoglycaemic responses in streptozotocin-

diabetic rats by reducing blood and urinary glucose 

concentrations
94

. An aqueous extract of seeds lowered 

blood glucose and plasma and tissue lipid 

concentrations in alloxan-induced diabetic rats
80

. 
 

Curry plant/leaves or Kadipatta (Murraya 

koenigii) 
Curry leaves are used as a culinary spice and also 

as a traditional medicine. Several carbazole alkaloids 

were reported in the plant
95

. Recently, a 35 kDa 

antioxidant protein PII, purified from leaf powder, 

inhibited lipid peroxidation and lipoxygenase activity 

in vitro in human erythrocyte ghosts and also 

effectively scavenged ROS
96

. The leaf extract supple-

mentation (80 mg/kg) decreased blood cholesterol and 

glucose concentrations in diabetic ob/ob mice with 

 
 

Fig. 3—Cuminaldehyde, an active ingredient of cumin 
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reduction in body weight
97

. Extracts of leaves showed 

hypoglycaemic effect in both normal and alloxan-

induced diabetic dogs and rabbits
98

. In alloxan-

induced mild and streptozotocin-induced moderately 

diabetic rats, feeding of 15% curry leaf powder diet 

reduced blood glucose concentrations by 21.4% and 

8.2% respectively
99

. In normal rats, 10% leaf 

administration in food increased hepatic glycogen 

concentration and glycogenesis by increased activity 

of glycogen synthetase, and decreased glycogenolysis 

and gluconeogenesis by decreased activity of glycogen 

phosphorylase and gluconeogenic enzymes
100

. Curry 

leaf supplementation lowered lipid peroxidation and 

also modulated the hepatic function to near normal 

level in rats fed with a high-fat diet
101

. Supple-

mentation with 10% curry leaves in high fat-fed 

young male albino rats reduced total serum 

cholesterol, LDL and VLDL concentrations, increased 

HDL concentration, lowered release of lipoproteins 

into the circulation and increased the lecithin 

cholesterol acyltransferase (LCAT) activity
102

. 
 

Fenugreek or Methi (Trigonella foenum) 
Fenugreek, a strongly scented annual herb, is 

recommended for the treatment of rheumatism in 

traditional medicine. Saponins, glycoside-D and 

trigofoenoside-A are major components in the 

seeds
103

, while alkaloids, cardiac glycosides and 

phenols are found in the leaf extract
104

. The steroidal 

saponins present in the seeds as parent compounds for 

physiological steroid production could influence the 

local inflammatory response
105,106

. Galactomannan, a 

guar gum comprising approx. 50% of the seed weight 

is postulated as another active ingredient in fenugreek 

seeds
107

. In high sucrose-fed rats, galactomannan 

feeding reduced appetite, body weight gain, glycemic 

response, plasma insulin concentrations and plasma 

triglycerides and total cholesterol concentrations
108

. In 

human studies, galactomannan reduced post-prandial 

blood glucose concentrations
109,110

 and improved 

insulin sensitivity in both non-diabetic
111

 and diabetic 

subjects
112

. Feeding guar-galactomannan fibre 

reduced both total and LDL cholesterol concen-

trations in healthy and type 2 diabetic subjects
113

. 
 

Garlic or Lahsun (Allium sativum) 
Garlic has been used as both an important dietary 

constituent and a medicine in different cultures 

around the world. A broad range of therapeutic 

responses to garlic has been reported, including 

decreases in blood pressure, blood lipid and glucose 

concentrations and the risk of atherosclerosis as well 

as antimicrobial, anticancer and hepatoprotective 

effects
114-116

. The responses with garlic have been 

attributed to its sulphur-containing antioxidants 

(Figure 4). Allicin (diallyl thiosulphinate) is the major 

bioactive thiosulphinate compound found in garlic 

homogenate and is liberated from alliin by the 

enzyme alliinase when garlic is crushed or bruised
117

. 

Other important sulphur-containing compounds 

include allyl methyl thiosulphonate, 1-propenyl allyl 

thiosulphonate and γ-L-glutamyl-S-allyl-L-cysteine
117

. 

In vitro animal and human tissue studies showed 

that garlic inhibited angiotensin II responses, possibly 

by inhibition of angiotensin converting enzyme to 

promote vasodilation
118-120

. In animal studies, dose-

dependent antioxidant and organ-protective effects of 

raw garlic homogenate (125, 250 and 500 mg/kg 

doses) have been observed in various organs such as 

heart, liver and kidneys
121,122

. An aqueous extract of 

garlic neutralised free radicals and reduced oxidative 

damage in rabbit liver homogenates
123

. Furthermore, 

an aged garlic extract inhibited the development of 

thickened, lipid-filled lesions by approximately 50% 

in preformed neointimas produced following injury of 

the right carotid artery in cholesterol-fed rabbits, in 

addition to reducing the surface area of the thoracic 

aorta covered by fatty streaks (64% decrease)
114

. Two 

meta-analyses have demonstrated that garlic 

preparations reduced blood pressure in hypertensive 

 
 

Fig. 4—Bioactive constituents in garlic 
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patients
124,125

, although an earlier review concluded 

that the reported effects were too small to be clinically 

meaningful
126

. 

 

Ginger or Sonth (Zingiber officinale) 
The therapeutic potential of ginger is recognised in 

a wide range of unrelated disease states including 

stomach aches, diarrhoea, nausea, asthma, respiratory 

disorders, toothache, gingivitis and arthritis
127,128

. 

Recent research has focussed on elucidating the anti-

inflammatory properties of ginger. As with most 

herbal preparations, ginger extracts are complex with 

more than 400 chemical compounds already isolated 

and identified
129

. A subfraction containing the 

structurally related compounds gingerols, shogaols 

and paradols is likely to account for the anti-

inflammatory properties of ginger (Figure 5)
129

. The 

anti-inflammatory effect of ginger was attributed to its 

ability to inhibit cycloxygenase-2 (COX-2) and 5-

lipoxygenase (5-LOX), the enzymes critical in 

prostaglandin and leukotriene synthesis, respect-

tively
129

. Ginger lowered blood pressure through both 

stimulation of muscarinic receptors and blockade of 

calcium channels
128,130

. 
 

Malabar tamarind or Imli (Garcinia cambogia) 
Fruits of G. cambogia are commonly known as 

gambooge or brindleberries. The active ingredient is 

hydroxycitric acid (Figure 6), a potent inhibitor of 

adenosine triphosphate (ATP) citrate lyase
131

. ATP 

citrate lyase is critical in catalyzing the cleavage of 

citrate to oxaloacetate and acetyl-coenzyme A. 

Inhibition of ATP citrate lyase can reduce the 

availability of acetyl-coenzyme A units for fatty acid 

synthesis and lipogenesis, thus modulating fat 

metabolism
131

. In human studies, oral intake of 

hydroxycitrate increased fat oxidation, when 

supplemented with moderate intensity exercise
132

. In 

animal studies, oral intake of G. cambogia extract 

effectively attenuated body weight gain, visceral fat 

accumulation, blood and hepatic lipid concentrations 

and plasma insulin and leptin concentrations in obese 

mice fed a high fat diet
133

. The extract ameliorated 

diet-induced obesity by modulating multiple genes 

associated with adipogenesis, such as aP2, SREBP1c, 

PPARγ2, and C/EBPα in the visceral fat tissue
133

. The 

calcium-potassium salt known as HCA-SX or Super 

citrimax, a derivative of hydroxycitric acid, reduced 

food intake and body weight gain in obese Zucker rats 

and also attenuated the increased inflammation, 

oxidative stress and insulin resistance in untreated 

Zucker rats
134

. In a human study, treatment with 

HCA-SX for 8 weeks decreased body weight and 

BMI by 5.4% and 5.2%, respectively
135

. 

 

Turmeric or Haldi (Curcuma longa) 
Turmeric is a perennial herb, yielding a rhizome 

widely used as a culinary ingredient. Both Ayurvedic 

and traditional Chinese medicines have used turmeric 

for the treatment of inflammatory and digestive 

disorders. Research has focussed the antioxidant, 

hepatoprotective, anti-inflammatory, anticarcinogenic 

and anti-microbial properties of turmeric, in addition 

to its use in cardiovascular disease and 

gastrointestinal disorders
136

. Curcuminoids constitute 

5% of the turmeric rhizome and are suggested as the 

active ingredients, showing both antioxidant and anti-

inflammatory effects. Both turmeric extract and 

curcumin (Figure 7), one of the major curcuminoids, 

have been widely examined for possible therapeutic 

effects in the symptoms of metabolic syndrome. 

In in vitro studies, turmeric prevented protein 

glycosylation and lipid peroxidation induced by high 

 
 

Fig. 5—Bioactive compounds in ginger; shogaols are formed  

upon drying. 

 

 
 

Fig. 6—Hydroxycitric acid, the active principle of Malabar 

tamarind 

 
 

Fig. 7—Curcumin, the major bioactive ingredient of turmeric. 
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glucose concentrations
137

. Curcumin showed anti-

differentiation effects, possibly through AMPKα-

PPAR-γ in 3T3-L1 adipocytes
138

. It also inhibited 

NFκB-mediated cytokine expression in adipocytes
139

. 

In this study, curcumin inhibited TNF-α, IL-1β, IL-6 

and COX-2 gene expression at an IC50 of 2 µM and 

also showed a reduction in secreted IL-6 and PGE2 at 

IC50 ~20 µM in adipocytes
139

. Dietary curcumin 

improved inflammation and diabetes associated with 

obesity
140

. In high-fat fed obese and leptin-deficient 

ob/ob mice, curcumin reduced macrophage 

infiltration of white adipose tissue, increased adipose 

tissue adiponectin production and decreased hepatic 

NF-κB activity, hepatomegaly and other markers of 

hepatic inflammation
140

. Curcumin and other 

curcuminoids prevented lipid accumulation in the 

liver and epididymal adipose tissues in high fat-fed 

Sprague-Dawley rats, possibly by altering fatty acid 

metabolism
141

. 

An extract of turmeric decreased LDL oxidation 

and lowered oxidation of erythrocyte and liver 

membranes in rabbits on a high saturated fat and 

cholesterol diet
142

. Interestingly, curcumin did not 

show any hypoglycaemic activity in streptozotocin-

induced diabetic rats
61

, suggesting it may have a 

therapeutic potential in type II but not type I diabetes. 

Early studies showed anti-thrombotic responses by 

curcumin in normal mice, possibly by suppressing 

thromboxane-2 production
143

. In humans, a longer-

term study with 30 healthy subjects given turmeric 

extract equivalent to 20 mg curcumin for 60 days also 

showed decreased peroxidation of both HDL and 

LDL cholesterol
144

. The biological activity of 

curcumin in humans has been extensively reviewed, 

although evidence on the symptoms of metabolic 

syndrome is limited
145

. 

 

Black mustard or Rai (Brassica nigra), black 

pepper or Kali Mirchi (Piper nigrum) and nutmeg 

or Jaiphal (Myristica fragrans) 

Black mustard, black pepper and nutmeg are some 

of the other spices sparingly examined for possible 

therapeutic effects in the symptoms of metabolic 

syndrome in experimental diseased animals. Mustard 

showed hypoglycaemic effect in rats in a study to test 

its effect on the enzymes of carbohydrate 

metabolism
61,100

. The mucilage (soluble fibre) of 

mustard at 5%, 10% and 15% in the food improved 

post-prandial glucose concentrations and insulinaemia 

in normal rats
61

. 

Black pepper supplementation (0.25 or 0.5 g/kg 

body weight) in high fat-fed rats lowered concen-

trations of thiobarbituric acid reactive substances and 

conjugated dienes, maintained superoxide dismutase, 

catalase, glutathione peroxidase and glutathione-S-

transferase concentrations and reduced glutathione 

concentrations in the liver, heart, kidney, intestine and 

aorta compared to control rats
146

. Black peppers also 

showed potential in obesity by increasing thermo-

genesis and fat oxidation
147

. 

An in vitro study suggests that meso-dihydro-

guaiaretic acid isolated from the nutmeg plant may act 

as an enhancing agent in intracellular insulin 

signalling, possibly through the inhibition of PTP1B 

activity
148

. An extract of nutmeg seeds prevented lipid 

abnormalities and atherosclerosis in hypercholestero-

laemic rabbits
149,150

. 
 

Health benefits of Indian spices: how strong is the 

evidence? 
The quality of evidence for health benefits can be 

categorised into different levels. As an example, the 

evidence for cinnamon bark has been reported under 

the following levels
71

: A: very strong scientific 

evidence from systematic reviews or meta-analysis; 

B1: strong scientific evidence from one or more 

randomised controlled trials; B2: good scientific 

evidence from one or more randomised controlled 

trials of limited size or methodology; C: fair scientific 

evidence from one or more cohort studies or outcome 

studies or case control studies; D: weak scientific 

evidence from case series; E: indirect evidence from 

case reports or expert opinion or laboratory studies; 

and F: historical or traditional evidence. 

This provides an evaluation on each study and 

possible clinical indication; for example, the 

randomised clinical trials of 60-79 patients using 

cinnamon for diabetes
75,82

 have been both classified as 

level B1, a smaller clinical trial of 25 patients
151

 is 

classified as level B2, while a case report of a chronic 

carrier of Salmonella enteritidis showing improve-

ment after consumption of cinnamon bark is classified 

as level E
71

. A thorough evaluation of all evidence for 

therapeutic effectiveness of spices in the metabolic 

syndrome is not possible for this review. However, 

the evidence for individual spices would appear to be 

level B for cinnamon to lower blood glucose 

concentrations or insulin resistance, for turmeric to 

improve the lipid profile, for hydroxycitrate from 

tamarind to reduce obesity and for garlic to reduce 

blood pressure. 
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Similarly, the potential of therapeutic interventions 

to harm the patient can be categorised into levels as 

follows
71

: 1a: very strong scientific evidence from 

systematic reviews or randomised clinical trials; 1b: 

strong scientific evidence from outcome studies, 

cohort studies or case control studies; 1c: good 

scientific evidence from one or more case series; 2: 

fair scientific evidence from case reports; 3: in vitro 

scientific evidence from studies on animals, insects, 

micro-organisms or cell cultures; 4: indirect evidence 

based on scientific theory or expert opinion; and 5: no 

available evidence. 

In general, spices are generally recognised as safe 

(GRAS) by the United States Food and Drug 

Administration, when used in therapeutic doses. Some 

studies have reported minor adverse effects, usually 

gastrointestinal complaints with spices used as 

therapeutic agents. 

The development of more active nutraceuticals and 

purified products from herbal medicines raises the 

controversial issues of patents and protection of 

intellectual property
152

. This issue is very relevant to 

India, as shown by the discussions on the Traditional 

Knowledge Digital Library (http://www.tkdl.res.in/ 

tkdl/langdefault/common/home.asp?GL=Eng), a sear-

chable database of more than 230,000 formulations 

taken from ancient texts on Indian systems of 

medicine - Ayurveda, Unani, Siddha and Yoga - in 

Hindi, Sanskrit, Arabic, Persian and Urdu
153

. Since 

spices are a part of herbal medicines, these issues 

become relevant to this review. 
 

Safety and toxicity 
Herbal medicines, including spices, have the 

potential to produce adverse effects, especially when 

used in concentrated forms. Further, these products 

may interact with other herbal products as well as 

drugs
154

. Although spices are regularly consumed in 

the diet by many populations, their use as 

nutraceuticals in a concentrated form needs further 

investigation for efficacy and toxicity. Nutraceuticals 

may tend to show fewer adverse effects compared to 

prescription drugs or herbal remedies, but the lack of 

documentation does not necessarily mean they are 

safe. Other safety issues include variability in biologic 

potency in different crops, contamination and use of 

the incorrect plant species
155

. In addition, it is 

extremely difficult to guard against consumer fraud in 

this unregulated industry. Very limited regulation can 

lead to problems including unreliable herb quality, the 

marketing of secret formulas with unsubstantiated 

claims, the proliferation of unqualified practitioners 

and the possibility of deliberate adulteration of the 

product. Even with the ban imposed on claims that a 

food can cure a disease in the United States, European 

Union and Australia, consumers are still being lured 

into buying the products by "marketing strategies"
156

. 

Stronger regulation of this industry is essential to 

ensure that the same high standards of preparation, 

quality control and management are enforced as with 

conventional pharmaceutical products. Stricter 

regulations will bring modern scientific techniques 

and intellectual rigour to traditional herbal medicine. 
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Rodents are widely used to mimic human diseases to improve understanding of the causes and progression of disease symptoms
and to test potential therapeutic interventions. Chronic diseases such as obesity, diabetes and hypertension, together known as
the metabolic syndrome, are causing increasing morbidity and mortality. To control these diseases, research in rodent models that
closely mimic the changes in humans is essential. This review will examine the adequacy of the many rodent models of metabolic
syndrome to mimic the causes and progression of the disease in humans. The primary criterion will be whether a rodent model
initiates all of the signs, especially obesity, diabetes, hypertension and dysfunction of the heart, blood vessels, liver and kidney,
primarily by diet since these are the diet-induced signs in humans with metabolic syndrome. We conclude that the model that
comes closest to fulfilling this criterion is the high carbohydrate, high fat-fed male rodent.

1. Introduction

Hypertension, diabetes and obesity are common but not
independent in humans and the combination is referred
to as metabolic syndrome [1, 2]. While the definition
of the syndrome may help understanding causes and
prognosis, there are continuing arguments on the clinical
usefulness of defining the syndrome in humans. Human
metabolic syndrome is accepted as a consequence of dietary
imbalance rather than a genetically programmed disease.
This syndrome includes central obesity, insulin resistance,
elevated blood pressure, impaired glucose tolerance and
dyslipidaemia [1, 2]; these are accepted risk factors that
increase the incidence of cardiovascular disease and type 2
diabetes [3–5]. Metabolic syndrome is also associated with
an increased risk of nonalcoholic fatty liver disease and
kidney dysfunction [6, 7]. Similarly, there is solid evidence
for correlations between metabolic syndrome and functional
changes in the lungs, dementia and cancers of the breast,
pancreas and bladder (Figure 1) [8–12]. Lifestyle and diet
modulate metabolic syndrome [4, 13] and this induces
pathophysiological changes throughout the body. Hence it is
important to study the progression and treatment strategies
for metabolic syndrome.

The number of adults with metabolic syndrome is
substantial and the prevalence is increasing throughout the
world [14]. The gender ratio was similar in the USA [15],
Singapore and Australia showed increased rates in females
[16, 17], while Japan showed increased rates in males [18].
In 2002, the prevalence of metabolic syndrome in the USA
was 24% and 23.4% in males and females, respectively
[19]. In 2005 and 2006, this prevalence had increased to
34% in both males and females [15, 20]. In the Australian
population, 18.8% of males and 25.4% of females fulfilled
the requirements for diagnosis with metabolic syndrome
in 2000 [17]. In a Japanese study, 45% of males and 38%
of females were diagnosed with metabolic syndrome [18].
Similar prevalence rates of metabolic syndrome have been
reported in the Indian subcontinent [21].

The widespread occurrence of metabolic syndrome in
humans means that there is an urgent need to study
relevant causes and progression of the signs. These studies
require viable animal models that adequately mimic all
the aspects of the human disease, developing all major
signs of metabolic syndrome, especially obesity, diabetes,
dyslipidaemia, hypertension and possibly fatty liver disease
and kidney dysfunction. Rodents have been used for many
years as models of human disease, especially hypertension,
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Figure 1: Metabolic syndrome and associated complications.

diabetes and obesity [22–25]. This review will examine
whether the existing rodent models for components of
metabolic syndrome mimic the range of changes in humans
and are therefore suitable to evaluate potential treatments for
human metabolic syndrome.

2. Genetic Models of Obesity and
Type 2 Diabetes

Genetic models of obesity and diabetes include db/db mice,
ob/ob mice, Zucker diabetic fatty rats and Otsuka Long-Evans
Tokushima Fatty rats, while Goto-Kakizaki rats are diabetic
but nonobese. These models are useful in evaluating specific
molecular mechanisms that may be involved in development
of obesity in rodents, but the metabolic syndrome in humans
is not a monogenetic disorder. Therefore, the relevant
questions are whether these genetic changes mimic those
observed in humans and whether these models show the
range of signs that characterise the metabolic syndrome.
As an example, several of these models have mutations in
the leptin gene or receptor (Figure 2), yet similar mutations
are a very rare recessive genetic disorder in humans with
only 4 mutations in 15 people reported up until 2009 [26].
Further, although cholecystokinin is important as a satiation
signal [27], there are only a few reports of CCK-1 receptor
mutations, as found in the Otsuka Long-Evans Tokushima
fatty rats, inducing obesity in humans [28, 29].

3. ob/ob (C57BL/6J-ob/ob ) Mice

This was one of the first genetic models used for the study of
diabetes [30]. These mice inherited a monogenetic autoso-
mal recessive mutation in the leptin gene on chromosome
6 [31, 32] and developed obesity, hyperinsulinaemia and
hyperglycaemia after 4 weeks of age [33]. They showed an
increased body weight compared to their lean littermates at
all ages [33, 34]. The presence of impaired glucose tolerance
was found after 12 weeks of age [35]. These mice developed
left ventricular hypertrophy with decreased cardiac function
at 24 weeks of age [36], cardiac fibrosis after 20 weeks of
age [37] and hepatic steatosis and inflammation at 12 weeks
of age [38, 39]. Unlike humans with metabolic syndrome,
these mice showed reduced blood pressure [34] and did not
develop dyslipidaemia even after the age of 36 weeks [35].

4. db/db (C57BL/KsJ-db/db ) Mice

These mice have inherited an autosomal recessive mutation
in the leptin receptor gene present on chromosome 4 [40]
leading to higher body weights than their lean littermates
after 6 weeks of age [41]. Fasting blood glucose concen-
trations were higher after 8 weeks of age and these mice
showed increased plasma concentrations of triglycerides,
total cholesterol and nonesterified fatty acids along with
reduced HDL/LDL cholesterol ratio after 13 weeks of age
[42]. Hyperinsulinaemia and impaired glucose tolerance
were observed after 12 weeks of age [41, 43]. In the heart,
both infiltration with inflammatory cells and fibrosis were
present after 12 weeks of age, although blood pressure was
unchanged [41]. These mice showed vascular endothelial
dysfunction at 12 weeks of age [41] and developed hepatic
steatosis after 20 weeks of age [44]. db/db mice failed to show
hepatic inflammation and fibrosis [45].

5. Zucker Diabetic Fatty Rats (fa/fa)

Diabetic Zucker fatty rats (ZDF), a model of early onset
obesity, have a mutation in the leptin receptor gene [46].
ZDF rats became hyperglycaemic after 13–15 weeks of
age [47] with hyperinsulinaemia and hypertriglyceridaemia
after 12–14 weeks of age along with diastolic and systolic
dysfunction [48]. Serum cholesterol concentrations were
slightly increased in ZDF rats compared to lean Zucker rats
at 10 weeks of age whereas the serum concentration of
cholesterol was ∼2.5 times higher compared to lean Zucker
rats at 20 weeks of age [49]. These rats also developed
endothelial dysfunction after 12 weeks of age [50]. ZDF rats
showed only moderate increases in systolic blood pressure by
15 weeks of age [51]. Albuminuria was present at the age
of 31 weeks [52] with thickening of basal membrane and
glomerular fibrosis after 47 weeks [52]. Increased hepatic
triglyceride deposition was observed after 20 weeks of age
in ZDF rats [53]. ZDF rats also showed increased serum
markers of inflammation such as TNF-α and IL-1β after 26
weeks of age [54].

Page 84



Journal of Biomedicine and Biotechnology 3

Hypothalamus

Leptin receptor

Satiety signal

Leptin receptor
gene mutation

Adipocytes

Leptin

db/db mice
ZDF rats

No satiety signal

ob/ob mice

ob gene

ob gene
mutation

Leptin
deficiency

Increased food
intake

Obesity

Inhibition of food
intake

Figure 2: Mechanism of the actions of leptin including the effects of leptin deficiency or leptin receptor deficiency.

6. Otsuka Long-Evans Tokushima Fatty Rats

Otsuka Long-Evans Tokushima Fatty (OLETF) rats have
been used as a rat model of human diabetes and obesity
[55]. Pancreatic acini cells in OLETF rats were insensitive to
the actions of cholecystokinin (CCK), which controls food
intake [56], due to the absence of CCK-1 receptors [57]. Male
and female OLETF rats were similar in body weight to lean
Long-Evans Tokushima rats at the time of weaning but they
became 30–40% heavier than age-matched lean Long-Evans
Tokushima Otsuka rats after 20 weeks [58]. Due to the lack
of CCK-1 receptors, the average meal size and overall food
intake were higher in OLETF rats [57]. OLETF rats presented
with high blood glucose concentrations after 18 weeks of
age but they showed impaired glucose tolerance starting at
24 weeks of age [58]. Plasma triglyceride concentrations
in OLETF rats started increasing from 8 weeks of age but
cholesterol concentrations were only slightly higher even
after 40 weeks of age [58]. After week 40 of age, OLETF rats
showed diffuse glomerulosclerosis [58]. Hearts from OLETF
rats showed cardiac hypertrophy with left ventricular systolic
and diastolic dysfunction [59]. OLETF rats showed higher
blood pressure compared to lean Long-Evans Tokushima
Otsuka rats after 14 weeks of age [60]. After 34 weeks of age,
OLETF rats showed 5 times higher triglyceride deposition in
liver compared to the lean Long-Evans Tokushima Otsuka
rats [61].

7. Goto-Kakizaki Rats

Goto-Kakizaki (GK) rats are nonobese and spontaneously
diabetic [62]. The occurrence of diabetes in these rats is an
interaction of several events including presence of suscep-

tibility loci for some diabetic traits, gestational impairment
inducing decreased β-cell neogenesis and proliferation and
loss of β-cell differentiation [63]. These inbred rats were
hyperglycaemic after 4 weeks of age with impaired glucose
tolerance but they were lighter than the age-matched Wistar
rats [64]. These rats developed cardiac hypertrophy and
decreased systolic function at 20 weeks of age [65]. There was
no change in blood pressure even after 14 months of age [66].
Plasma and liver lipid concentrations were higher in Goto-
Kakizaki rats after 8 weeks of age compared to age-matched
Wistar rats [67]. Goto-Kakizaki rats had higher urinary
excretion of albumin and decreased creatinine clearance after
14 months of age along with increases in glomerular volume,
basement membrane thickness and kidney weight [66].

These genetic models consistently develop obesity and
non-insulin-dependent diabetes, but metabolic syndrome is
a much broader constellation of pathophysiological changes,
especially including hypertension. Thus, these rodent mod-
els, although used in obesity research, replicate neither the
causes nor the changes that occur in human metabolic
syndrome (summarised in Table 1).

8. Genetically Engineered Diabetic Mice

In recent years, genetically engineered mice models, either
transgenic or knockout, have been developed to study the
normal and abnormal effects of a particular protein or
a set of proteins. Different proteins, signalling molecules
and hormones, important in development of diabetes and
obesity, can be removed by changes in the genome of the
mice. Some of the important proteins that have been deleted
from the mice for obesity and diabetes research include
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Table 1: Different rodent models with the signs of metabolic syndrome.

Rodent
model

Age (weeks)

Signs of metabolic syndrome shown by rodents

References
Obesity Hypertension Dyslipidaemia

Cardiovascular
dysfunction

Impaired
glucose

tolerance
Fatty liver

Kidney
dysfunction

ob/ob
mice

4 � × × × × × U
[33–39]12 � × × × � � U

24 � × × � � � U

db/db
mice

6 � × × × × × U
[41–44]12-13 � × � � � × U

20 � × � � � � U

ZDF rat

12–15 � � � � × × ×
[47–53]20 � � � � × � ×

31–47 � � � � × � �

OLETF
rats

8 × × � × × × ×

[58–61]

14 × � � × × × ×
20 � � � × × × ×
24 � � � × � × ×
34 � � � × � � ×
40 � � � × � � �

60–66 � � � � � � �

Goto-
Kakizaki
rats

4 × × × × � × ×
[64–67]

8 × × � × � � ×
20 × × � � � � ×
60 × × � � � � �

This table represents the signs of metabolic syndrome at different ages. The symbols � and × indicate the presence and absence of these signs of metabolic
syndrome at that age, respectively, whereas U indicates unavailability of the data. The table indicates that age is an important parameter since some of the
signs are developed in very young rodents whereas others take much longer to develop.

insulin receptor, GLUT4, IRS-1 and IRS-2. Insulin receptor-
null mice do not survive for more than 72 hours as they
develop severe ketoacidosis [68] with hyperglycaemia and
hyperinsulinaemia [69]. Thus they cannot be used in long-
term studies as adults. Further, the insulin receptor knockout
mice are unlikely to mimic human conditions as this receptor
loss is very rare in humans [68, 70]. Other models lacking
GLUT4, IRS-1 and IRS-2 may give useful information about
the roles of each protein [71–75], but they do not mimic the
cause of human metabolic syndrome.

9. Chemically Induced Rodent Models
of Diabetes

Alloxan and streptozotocin are structural analogues of
glucose that enter pancreatic beta cells via the GLUT2
transporter [86]. Single injections of alloxan or strepto-
zotocin induce selective necrosis of pancreatic β cells in
rats, mice and rabbits [86–91] as a model of type 1
diabetes. Chemically induced diabetic rodents show fatty
liver and inflammation [92] along with decreased ventricular
contractility and function [93]. In contrast to patients with
metabolic syndrome, alloxan- and streptozotocin-induced
diabetic rats are hypoinsulinaemic [94], do not gain weight

and are usually hypotensive. Thus, chemically induced type 1
diabetic rodents do not show the diverse characteristics of
the metabolic syndrome and therefore they are not a suitable
model for this syndrome in humans.

Type 2 diabetes may be induced by low-dose streptozo-
tocin given neonatally, for example, at a dose of 70 mg/kg
on day 5 of life, producing moderate hyperglycaemia in
adult rats with decreased HDL-cholesterol concentrations
but no other lipid abnormalities or oxidative enzyme changes
[95]. Insulin resistance and an approximate doubling of
plasma C-reactive peptide and TNF-α were produced in 14-
week-old rats treated on day 2 of life with streptozotocin
(90 mg/kg) [96]. However, these changes following neonatal
streptozotocin are insufficient to define the signs of the
metabolic syndrome. A better option may be treatment with
low-dose streptozotocin in a nutritional model of type 2
diabetes induced by an increased energy diet. In 8-week-
old rats, the combination of streptozotocin (25 mg/kg) and
a high-fructose, high-fat diet for 6 weeks increased plasma
glucose, insulin and triglyceride concentrations, decreased
left ventricular contractile function and reduced myocardial
metabolic efficiency [97]. A similar protocol with a high-
energy diet for 5 weeks followed by streptozotocin admin-
istration (40 mg/kg) produced metabolic abnormalities with
insulin resistance that could be decreased by administration
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Table 2: Effects of some treatment strategies on rodent models of metabolic syndrome.

Rodent model Interventions
Reversal or prevention of signs of metabolic
syndrome and associated complications

Signs of metabolic syndrome
not affected by drug treatment

ob/ob mice

Temocapril (ACE
inhibitor) and
olmesartan (AT1

receptor blocker) [37]

Reduced blood pressure and ventricular fibrosis
No change in body weight and
blood glucose concentrations

Resveratrol [76]
Reduced blood glucose, plasma insulin,
adiponectin concentrations, improved glucose
tolerance

No change in body weight and
blood lipid concentrations

db/db mice
Aliskiren (renin
inhibitor) [41]

Reduced blood pressure, cardiac fibrosis,
macrophage infiltration in heart and coronary
remodelling, improved endothelial function and
glucose tolerance, increased pancreatic insulin
content and beta cell mass, reduced pancreatic
fibrosis

No change in body weight,
visceral fat and liver weight

ZDF rats
Sitagliptin (DPP-4
inhibitor) [54]

Reduced body weight and blood pressure,
reduced blood glucose, plasma triglyceride,
plasma insulin and serum inflammatory markers,
reduced pancreatic fibrosis and inflammation

No change in total cholesterol
concentration

OLETF rats
Rosiglitazone (PPARγ
agonist) [77]

Reduced blood glucose, plasma insulin and
serum inflammatory markers

No change in body weight

GK rats
Levosimendan (calcium
sensitiser) [78]

Reduced cardiac fibrosis and cardiac hypertrophy,
improved ventricular function

No change in blood pressure

Hesperidin [67]

Reduced serum insulin and blood glucose, serum
triglyceride, serum total cholesterol
concentrations, increased serum HDL-cholesterol
and adiponectin concentrations

—

Alloxan
Cucurbita pepo peel
extract [79]

Reduced blood glucose, plasma total cholesterol,
HDL-cholesterol, triglycerides, LDL-cholesterol
and VLDL-cholesterol, increased plasma insulin
concentrations

—

Streptozotocin Quercetin [80]
Increase in body weight, reduced serum glucose
concentrations and increased plasma insulin
concentrations, pancreatic beta cell protection

—

Fructose-induced
metabolic
syndrome

Lipoic acid [81]
Reduced blood pressure, blood glucose and
plasma insulin concentrations, improved renal
function

—

Sucrose-induced
metabolic
syndrome

Hippophae rhamnoides
(sea buckthorn) seed
extract [82]

Reduced blood pressure, reduced plasma
concentrations of triglycerides, total cholesterol
and free fatty acids, increased plasma
HDL-cholesterol concentrations

No change in body weight,
blood glucose and plasma
insulin concentrations

High fat-induced
metabolic
syndrome

Enalapril (ACE
inhibitor) [83]

Reduced body weight, epididymal fat pads and
plasma insulin concentrations, increased plasma
leptin and cholesterol concentrations, improved
vascular relaxation

No change in blood glucose,
plasma triglyceride and plasma
free fatty acids concentrations,
glucose tolerance

High fructose,
high fat-induced
metabolic
syndrome

Purple carrot juice [84]

Reduced body weight gain, improved glucose
tolerance, reduced plasma triglycerides, total
cholesterol, free fatty acids concentrations,
reduced plasma inflammatory marker, improved
ventricular function, reduced cardiac fibrosis and
stiffness, reduced blood pressure, improved
vascular relaxation, attenuation of fatty liver

—

High sucrose,
high fat-induced
metabolic
syndrome

Piperine [85]
Reduced body weight, reduced abdominal fat
pads

No change in blood glucose,
plasma triglyceride, plasma
total cholesterol and free fatty
acid concentrations

ACE - Angiotensin converting enzyme, AT - Angiotensin, ZDF - Zucker diabetic fatty, DPP-4 - dipeptidyl peptidase-4, OLETF - Otsuka Long-Evans Tokushima
Fatty, PPAR - peroxisome proliferator-activated receptor, GK - Goto-Kakizaki.
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of chitooligosaccharides for 8 weeks [98]. While these models
may be suitable for studies in type 2 diabetes [99], the key
signs of hypertension and obesity necessary for the metabolic
syndrome were not reported.

10. Diet-Induced Metabolic Syndrome

Diet plays an important role in growth and development as
a source of nutrition, but the composition of the diet decides
its nutritional status. The modern diet, especially in Western
countries, is rich in carbohydrates such as fructose and
sucrose as well as saturated fat. This increased calorific intake
has been associated with many diet-induced complications
including metabolic syndrome, cardiovascular diseases and
nonalcoholic fatty liver disease [100, 101]. Combinations
of carbohydrate and fat-rich dietary components have been
used in rodents to mimic these signs and symptoms of
human metabolic syndrome.

11. Fructose-Induced Metabolic Syndrome

Fructose has become an important and pervasive ingredient
in Western diets [102, 103]. The world average per capita
daily fructose intake increased by 16% between 1986 and
2007 [103]. Together with the increase in consumption
of fructose in the diet over the last fifty years, there has
been a proportionate increase in the incidence of obesity
[104]. The main sources of fructose in the diet are sucrose,
high-fructose corn syrup, fruits and honey. Unlike glucose,
high-fructose feeding to rodents induced the development
of symptoms of metabolic syndrome including high blood
pressure, insulin resistance, impaired glucose tolerance and
dyslipidemia [102, 105]. Fructose feeding induced ventricu-
lar dilatation, ventricular hypertrophy, decreased ventricular
contractile function, infiltration of inflammatory cells in
heart and hepatic steatosis [106, 107]. In the liver, fructose
feeding induced both microvesicular and macrovesicular
steatosis with periportal fibrosis and lobular inflammation
[108]. Fructose has been reported to induce obesity [109]
but this was not confirmed [106]. Fructose feeding in
rats caused renal tubular injury, collagen deposition in
interstitium and increased macrophage infiltration along
with proliferation and hyperplasia of renal proximal tubules
[110] as well as leptin resistance without changes in body
weight and adiposity [111]. Increases in plasma uric acid
and plasma triglyceride concentrations have been reported
without changes in plasma cholesterol concentrations [112,
113].

Fructose, unlike glucose, did not elicit insulin secretion
from pancreatic β-cells, possibly due to the absence of the
fructose transporter (GLUT5) on pancreatic β-cells [104].
Fructose also lacks the ability to stimulate the secretion of
leptin [104] whereas it has the ability to activate de novo
lipogenesis in the liver (Figure 3) [114]. During metabolism,
fructose bypasses the rate-limiting step, the reaction catal-
ysed by phosphofructokinase, leading to uncontrolled supply
of carbon skeleton for lipogenesis in liver [115].

12. Sucrose-Induced Metabolic Syndrome

Sucrose is a dietary source of fructose [103], thus sucrose
feeding has been used to mimic human metabolic syndrome
in animal models. Similar to fructose, sucrose feeding has
shown variable results, especially with obesity [116, 117]. As
with fructose, sucrose induced lipogenesis in rats along with
increased plasma concentrations of insulin, leptin, triglyc-
erides, glucose and free fatty acids, and impaired glucose
tolerance [118, 119]. Sucrose feeding in rats led to an insulin-
resistant state with no change in fasting plasma insulin
and glucose concentrations, but higher postprandial plasma
concentrations of insulin and glucose [117]. Sucrose feeding
increased systolic blood pressure in rats with increased left
ventricular mass but without cardiac fibrosis [120] and
caused development of hepatic steatosis [121]. No changes
were seen in kidneys of rats fed with high-sucrose diet [122].

13. High Fat-Induced Metabolic Syndrome

High-fat diets have been used to model obesity, dyslipi-
daemia and insulin resistance in rodents for many decades.
The complications developed by high-fat diets resemble the
human metabolic syndrome and these complications may
extend to cardiac hypertrophy, cardiac fibrosis, myocardial
necrosis and hepatic steatosis [123–126]. High-fat diet
feeding in mice increased systolic blood pressure and induced
endothelial dysfunction [126]. High-fat diet-fed mice also
showed albuminuria, increased glomerular tuft area, mesan-
gial expansion, renal lipid accumulation, collagen deposition
in glomeruli and increased infiltration of macrophages in
renal medulla [127]. Different types of high-fat diets have
been used with fat fractions ranging between 20% and 60%
energy as fat as either animal-derived fats, such as lard or
beef tallow, or plant oils such as olive or coconut oil [125].
Long-term feeding of rats (60% of energy) and mice (35% fat
wt/wt) with high-fat diet increased body weight compared to
standard chow-fed controls [128, 129]. Although the increase
in body weight was significant after as little as 2 weeks, the
diet-induced phenotype became apparent after more than 4
weeks of high-fat diet feeding [128]. Long-term feeding with
both animal and plant fat-enriched diets eventually led to
moderate hyperglycaemia and impaired glucose tolerance in
most rat and mouse strains [130, 131].

Lard, coconut oil and olive oil (42% of energy con-
tent) increased body weight, deposition of liver triglyc-
erides, plasma triglyceride and free fatty acid concentrations
and plasma insulin concentrations and decreased plasma
adiponectin concentrations [125]. Lard and olive oil but
not coconut oil decreased insulin sensitivity [125]. Lard,
coconut oil and olive oil caused hepatic steatosis with no
signs of inflammation and fibrosis in any of the groups
[125]. Beef tallow when used as fat source (40% of energy)
increased plasma insulin and leptin concentrations with
increased plasma lipid concentrations and hepatic steatosis
[132]. Although high-fat diet induces most of the symptoms
of human metabolic syndrome in rodents, it does not
resemble the diet causing metabolic syndrome and associated
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Figure 3: Metabolism of fructose.

complications, as the human diet is more complex than a
high-fat diet.

14. High Carbohydrate-, High Fat-Induced
Metabolic Syndrome

A diet high in carbohydrates together with fat, either of
animal or plant origin, mimics the human diet more closely.
This combined diet should induce metabolic syndrome in
rodents (Figure 4). Different combinations and amounts of
carbohydrates and fats have been used in different studies
[133–136]. The common carbohydrates used are fructose
and sucrose whereas the source of fat varies in different
studies.

Different combinations of sucrose and fat have been
used to induce signs of metabolic syndrome. Sucrose content
varied between 10% and 30% whereas fat content in
this diet group varied between 20% and 40% [137–139].
Rodents fed on high-sucrose, high-fat diet had increased
body weight, abdominal fat deposition, hyperinsulinaemia,
hyperglycaemia and hyperleptinaemia [137, 138]. Sucrose
and fat in combination also caused hepatic steatosis and
increased hepatic lipogenic enzymes [139].

Fructose and fat have been used in combination to induce
metabolic syndrome. The fructose content varies between
10% and 60%, either in the diet or drinking water or both,
whereas the fat content varies between 20% and 60% [133,
140–143]. Fructose and fat feeding increased body weight
and the plasma concentrations of triglycerides, cholesterol,
free fatty acids and leptin [133, 140]. The combination
of fructose and fat also caused hyperinsulinaemia, insulin

resistance, impaired glucose tolerance, increased abdominal
fat deposition, hepatic steatosis and inflammation [133,
140]. The rats fed with the high-fructose, high-fat diet
showed cardiac hypertrophy, increased ventricular stiffness,
ventricular dilatation, cardiac inflammation and fibrosis,
hypertension, decreased cardiac function and endothelial
dysfunction along with mild renal damage and increased
pancreatic islet mass [133].

Since high-carbohydrate, high-fat diet-fed rodents
develop all the complications present in human metabolic
syndrome and the diet is similar to human diets (sometimes
called a “cafeteria diet”), this model is probably the
best model to study the human metabolic syndrome.
Pharmaceutical and nutraceutical preparations can be tested
for treatment of diet-induced human metabolic syndrome
in this high-carbohydrate, high-fat diet-fed model.

15. Obesity-Resistant Rat Strain

The interaction of genes with the diet is crucial for the
induction of obesity in rodents and humans as shown by
the studies with diet-induced obese (DIO) and diet-resistant
(DR) rats [144, 145]. DR rats, even when fed with high-
fat diet, did not produce the signs of metabolic syndrome,
whereas DIO rats clearly showed those signs [144, 145].
The signs shown by DIO rats and not shown by DR rats
included increases in body weight and body fat, impairment
of glucose tolerance, dyslipidaemia, hyperinsulinaemia and
hyperleptinaemia [144, 145]. However, these signs are similar
to many control rats and mice fed standard rodent food that
are sedentary, obese and develop impaired glucose tolerance,
described as “metabolically morbid” [146].
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Figure 4: High-carbohydrate, high-fat diet-induced metabolic syndrome.

16. Fatty Liver Disease

Nonalcoholic steatohepatitis is now recognized as a compli-
cation of metabolic syndrome [147]. The most important
model of nonalcoholic steatohepatitis is the methionine-
and choline-deficient diet-fed rat. This special diet produced
hepatic steatosis and fibrosis, increased hepatic triglycerides,
increased serum activities of transaminases and alkaline
phosphatase and increased serum concentrations of total
bilirubin [148, 149]. Methionine- and choline-deficient diet-
fed rats showed extreme reduction in body weight and
liver weight along with decreased serum triglyceride and
total protein concentrations [148, 149]. Although these rats
develop nonalcoholic steatohepatitis, they do not show the
other signs of metabolic syndrome.

17. High-Fat Diet-Fed Spontaneously
Hypertensive Rats

Spontaneously hypertensive rats (SHRs) are the most widely
used genetic model of human hypertension [22]. High-fat
feeding to SHRs led to an increased body weight compared
to SHRs fed on normal chow diet [150]. High-fat-fed SHRs
also showed renal inflammation and albuminuria but did not
show changes in plasma concentrations of total cholesterol,
triglycerides and insulin, although plasma concentrations of
free fatty acids were higher in high-fat-fed SHRs compared
to normal diet-fed SHRs [150]. There was no change in
systolic blood pressure with high-fat feeding in SHRs [151].
High-fat-fed SHRs also showed impaired glucose tolerance

[152]. Although high-fat-fed SHRs show some symptoms
of metabolic syndrome, they have genetically induced rather
than diet-induced hypertension. Since human hypertension
is not monogenetic, this model should not be considered
appropriate as a model of the metabolic syndrome.

18. Nile Grass Rats

Apart from laboratory animals, wild rodents have been
tested for the development of diabetes and obesity with
laboratory diets. The Nile rat (African grass rat; Arvican-
this niloticus) and sand rat (Psammomys obesus) are two
examples. These rats do not develop diabetes in the wild,
but diabetes was induced when these rats were kept under
laboratory conditions on chow diet [153]. These rats show
hyperglycaemia and dyslipidaemia after 1 year of age [154].
They also develop liver steatosis, abdominal fat deposition,
hypertension and hyperinsulinaemia [153, 154]. These rats
show promise for metabolic syndrome research, even though
these signs develop when fed on normal diet rather than the
high-carbohydrate, high-fat diet in humans. This is similar
to the concept of metabolically morbid rodents fed a normal
diet [146].

19. Useful Treatment Strategies in
Metabolic Syndrome Research

These rodent models have been used to characterize
responses to many interventions. Success has been variable
but some treatments have attenuated most of the signs
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of the metabolic syndrome. These treatment strategies
clearly indicate that it is possible to inhibit the progression
of metabolic syndrome and associated complications and
maybe to reverse them. Some of the responses to treatments
in different rodent models have been described in Table 2.

20. Conclusion

Pharmaceutical and nutraceutical preparations are required
to decrease morbidity and mortality in chronic diseases
such as metabolic syndrome. These preparations need to
be tested for efficacy in an appropriate rodent model.
Thus, different animal models have been developed for this
purpose. While many rodent models display some of the
signs of the metabolic syndrome, few models can adequately
mimic the range of signs that characterise this syndrome
in humans. In particular, the presence of inflammation has
often not been tested or defined. Further, many models rely
on genetic changes to induce symptoms even though the
human disease is usually diet induced. It is our opinion
that chronic consumption of a high-carbohydrate, high-fat
diet by normal rodents provides an adequate rodent model
to mimic the human metabolic syndrome and for testing
potential therapeutic interventions.
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Abstract: The prevalence of metabolic syndrome including central

obesity, insulin resistance, impaired glucose tolerance, hypertension,

and dyslipidemia is increasing. Development of adequate therapy for

metabolic syndrome requires an animal model that mimics the human

disease state. Therefore, we have characterized the metabolic, car-

diovascular, hepatic, renal, and pancreatic changes in male Wistar rats

(8–9 weeks old) fed on a high-carbohydrate, high-fat diet including

condensed milk (39.5%), beef tallow (20%), and fructose (17.5%)

together with 25% fructose in drinking water; control rats were fed

a cornstarch diet. During 16 weeks on this diet, rats showed pro-

gressive increases in body weight, energy intake, abdominal fat

deposition, and abdominal circumference along with impaired glu-

cose tolerance, dyslipidemia, hyperinsulinemia, and increased plasma

leptin and malondialdehyde concentrations. Cardiovascular signs

included increased systolic blood pressure and endothelial dys-

function together with inflammation, fibrosis, hypertrophy, increased

stiffness, and delayed repolarization in the left ventricle of the heart.

The liver showed increased wet weight, fat deposition, inflammation,

and fibrosis with increased plasma activity of liver enzymes. The

kidneys showed inflammation and fibrosis, whereas the pancreas

showed increased islet size. In comparison with other models of

diabetes and obesity, this diet-induced model more closely mimics the

changes observed in human metabolic syndrome.

Key Words: metabolic syndrome, obesity, cardiovascular disease,

hypertension, dyslipidemia, high-carbohydrate, high-fat diet

(J Cardiovasc Pharmacol TM 2011;57:611–624)

INTRODUCTION
Cardiovascular disease and type 2 diabetes remain

major public health challenges.1 Metabolic syndrome as the

clustering of risk factors for cardiovascular disease and type 2
diabetes increases cardiovascular mortality.2–5 These risk
factors include central obesity, elevated blood pressure,
impaired glucose tolerance, insulin resistance, and dyslipide-
mia.6,7 The initiation of symptoms of metabolic syndrome
has been linked to high-carbohydrate, high-fat diet–induced
oxidative stress.8 Oxidative stress along with chronic low-
grade inflammation, induced by sugars and lipids,9 may
initiate changes in cardiovascular structure and function such
as endothelial dysfunction, cardiac hypertrophy, cardiac
fibrosis, and ventricular contractile dysfunction.10–13

Understanding the causes and progression of metabolic

syndrome leading to cardiovascular disease is the foundation

for the development of better pharmacological interventions

for metabolic syndrome and cardiovascular disease. Appro-

priate animal models, mimicking the human pathogenesis of

metabolic syndrome leading to cardiovascular disease, are

therefore necessary to investigate the causes and progression

of disease and potential pharmacological interventions.14,15

There are several spontaneous (genetic) rodent models of
metabolic syndrome with cardiovascular complications,
including Zucker diabetic fatty rats,16,17 Goto-Kakizaki rats,18

spontaneously hypertensive rats,19 and Otsuka Long Evans
Tokushima fatty rats.20 The most commonly used nongenetic
rodent models of diabetes are those induced by death of
pancreatic b cells by streptozotocin or alloxan.21 Although
these models may provide useful information on the causes
and treatment of some aspects of metabolic syndrome, they are
unlikely to be relevant to the diet-induced human metabolic
syndrome.22

Rats fed on high-carbohydrate diets, for example, with

sucrose23 or fructose,24 developed hypertension, dyslipidemia,

and impaired glucose tolerance, but failed to develop central
obesity while the structural and functional changes in the
cardiovascular system were not addressed. In contrast, high-fat
diets in rats induced marked central obesity and dyslipide-
mia,25 but human diets causing metabolic syndrome are much
more complex than a high-fat diet. Thus, a combination of
high carbohydrate with high fat in the diet may be more
relevant to mimic the diet responsible for human metabolic
syndrome and cardiovascular complications as a basis to
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investigate potential interventions. High-carbohydrate, high-fat
diets (HCHF) in rats induced the symptoms of metabolic
syndrome such as hypertension, dyslipidemia, impaired glucose
tolerance, excess fat deposition, increased proinflammatory
markers, and decreased antioxidant defenses.8,26,27 Although
these studies have defined the biochemical changes, the
structural and functional changes in the cardiovascular system,
liver, kidneys, and pancreas are yet to be thoroughly addressed.
Therefore, the aim of this study was to define the structural and
functional changes in heart, thoracic aorta, liver, kidneys, and
pancreas in presence of metabolic syndrome.

This study has characterized structural changes in the
heart by echocardiography and histopathology, while heart
function was assessed in vivo using echocardiography and ex
vivo in isolated perfused hearts. Single-cell microelectrode
studies were performed on isolated left ventricular papillary
muscles to quantify the changes in electrical conductance.
Isolated thoracic aortic rings were used to measure vascular
reactivity. Histological and biochemical parameters were
assessed to define structural and functional changes in the
liver, kidneys, and pancreas.

MATERIALS AND METHODS

Diet-induced Metabolic Syndrome in Rats
All experimental protocols were approved by The

University of Queensland Animal Experimentation Ethics
Committee, under the guidelines of the National Health and
Medical Research Council of Australia. Male Wistar rats (8–9
weeks old, weighing 331 6 6 g, n = 77) were obtained from
The University of Queensland Biological Resources facility.
The rats were randomly divided into 3 experimental groups
and were fed with chow diet (n = 21), cornstarch diet (CS;
n = 21) or HCHF diet (n = 35). Thirteen rats from HCHF group
were euthanized after 8 weeks of feeding to assess the
progression of pathophysiological changes and the remaining
rats continued with the HCHF diet for a further 8 weeks; total
feeding time was 16 weeks. The CS group was fed for
16 weeks. The CS diet contained 570 g of cornstarch, 155 g of
powdered rat food (Specialty Feeds, Glen Forest, Western
Australia, Australia; all nutritional parameters of this diet meet
or exceed the National Research Council, Canada, guidelines
for rats and mice), 25 g of Hubble, Mendel, and Wakeman salt
mixture,28 and 250 g of water per kilogram of diet. HCHF diet
consisted of 175 g of fructose, 395 g of sweetened condensed
milk, 200 g of beef tallow, 155 g of powdered rat food, 25 g of
Hubble, Mendel and Wakeman salt mixture, and 50 g of water
per kilogram of diet. In addition, the drinking water for the
HCHF group was supplemented with 25% fructose. Chow-fed
rats were fed powdered rat food (Specialty Feeds; all
nutritional parameters of this diet meet or exceed the National
Research Council, Canada, guidelines for rats and mice). Rats
were given ad libitum access to food and water and were
individually housed in a temperature-controlled 12-hour light–
dark conditions. Energy intake was calculated from the
following values in kilojoules per gram: fructose, 15.40; CS,
15.94; condensed milk, 13.80; beef tallow, 37.70; and
powdered rat food, 13.80. The energy densities of the CS

diet and the HCHF diet were 11.23 kJ/g and 17.83 kJ/g of
food, respectively, and an additional 3.85 kJ/mL in the
drinking water for the HCHF diet–fed rats.

Physiological Parameters
Body weight and food and water intakes were measured

daily. Oral glucose tolerance tests were performed every fourth
week after determining overnight fasting blood glucose
concentrations in tail vein blood using Medisense Precision
Q.I.D. glucose meters (Abbott Laboratories, Bedford, MA).
For overnight fasting, rats were deprived of all types of diets
for 12 hours. Fructose-supplemented drinking water in HCHF
groups was replaced with normal drinking water for the
overnight food deprivation period. Rats were given a glucose
load of 2 g/(kg body weight) as 40% glucose solution via oral
gavage, and blood glucose concentrations were measured
again 30, 60, 90, and 120 minutes after oral glucose
administration. Abdominal circumference and body length
(nose to anus) were measured every fourth week using
a standard measuring tape under light anesthesia with Zoletil
[tiletamine 10 mg/kg, zolazepam 10 mg/kg, intraperitoneal
(IP); Virbac, Peakhurst, New South Wales, Australia]. Body
mass index (BMI) was calculated as body weight (in
grams)/[body length (in centimeters)]2.29 Feed efficiency
was calculated as [mean body weight gain (in grams)/daily
energy intake (in kilojoules)].29 Rectal temperature was
measured using a digital thermometer lubricated with a smear
of Xylocaine jelly (lidocaine; AstraZeneca Pty Ltd, New South
Wales, Australia).

Body Composition Measurements
Dual-energy X-ray absorptiometric (DXA) measure-

ments were performed on the rats after 8 and 16 weeks of
feeding (2 days before rats were euthanized for pathophys-
iological assessments) using a Norland XR36 DXA instrument
(Norland Corp, Fort Atkinson, WI). DXA scans were analyzed
using the manufacturer’s recommended software for use in
laboratory animals (Small Subject Analysis Software, version
2.5.3/1.3.1; Norland Corp) as previously described.30 The
precision error of lean mass for replicate measurements, with
repositioning, was 3.2%.

Experimental Protocol
Ten rats from each group were used for isolated

Langendorff preparations and vascular reactivity studies,
and 3 rats per group were taken exclusively for histopatho-
logical analysis. Eight chow-fed rats, 8 rats from the CS group,
and 9 rats from the HCHF group (all 16 weeks) were used for
single-cell microelectrode studies. For terminal experiments,
rats were euthanized with Lethabarb (pentobarbitone sodium,
100 mg/kg, IP; Virbac). After euthanasia, heparin (200 IU;
Sigma-Aldrich Australia, Sydney, New South Wales, Aus-
tralia) was injected through the right femoral vein. The
abdomen was then opened and blood (;6 mL) was withdrawn
from the abdominal aorta and collected into heparinized tubes.
One milliliter of blood was stored at 4�C, and the remaining
blood was centrifuged at 5,000g for 15 minutes to obtain
plasma. Plasma was stored at 220�C for further character-
ization. Hearts were removed from rats for isolated

612 | www.jcvp.org q 2011 Lippincott Williams & Wilkins

Panchal et al J Cardiovasc Pharmacol� � Volume 57, Number 5, May 2011

Page 98



Langendorff preparation, and thoracic aorta was used for
vascular reactivity studies as described below. Liver, kidney,
and fat pads were removed from these rats and weighed. After
perfusion studies, right ventricles from the hearts were
removed and weighed, whereas the left ventricle (LV) was
weighed with septum. Weights of these organs were
normalized relative to the tibial length at the time of removal
(expressed as tissue weight in milligram per millimeter tibial
length). Heart, liver, kidney, and pancreas from the rats used
for histopathological analysis were removed and fixed in
appropriate solutions.

Cardiovascular Structure and Function
Systolic blood pressure of rats was measured every

fourth week under light sedation with Zoletil (tiletamine
10 mg/kg, zolazepam 10 mg/kg, IP), using an MLT1010
Piezo-Electric Pulse Transducer (ADInstruments, Sydney,
New South Wales, Australia) and inflatable tail-cuff connected
to an MLT844 Physiological Pressure Transducer (ADInstru-
ments) and PowerLab data acquisition unit (ADInstruments).

Echocardiographic examination (Phillips iE33, 12-MHz
transducer) was performed as previously described31 in all rats
after 8 and 16 weeks of feeding. Briefly, rats were anesthetized
using Zoletil (tiletamine 25 mg/kg and zolazepam 25 mg/kg,
IP) and Ilium Xylazil (xylazine 15 mg/kg, IP; Troy
Laboratories, Smithfield, New South Wales, Australia) and
positioned in dorsal recumbency. Electrodes attached to the
skin overlying the elbows and right stifle facilitated the
simultaneous recording of a lead II electrocardiogram (ECG).

A short-axis view of the LV at the level of the papillary
muscles was obtained and used to direct acquisition of M-
mode images of the LV for measurement of interventricular
septum in diastole, diastolic posterior wall thickness
(LVPWd), internal systolic dimensions, and end-diastolic
dimension (LVIDd). Measurements were taken in accordance
with the guidelines of the American Society of Echocardiog-
raphy using the leading-edge method.32 For these parameters,
diastole was defined by the beginning of the QRS complex on
the simultaneously recorded ECG and systole identified as the
nadir of systolic anterior wall motion independent of the ECG
complex.

Pulsed-wave Doppler velocity profiles of mitral inflow
were obtained from the left apical 4-chamber view for
measurement of early (EM) and late (AM) mitral inflow
velocity, mitral inflow E-wave deceleration time, and time
from mitral valve closure to opening. A pulsed-wave Doppler
velocity profile of the ascending aorta was obtained from
a suprasternal view for measurement of ejection time and the
diameter of the ascending and descending aorta at the point of
transition to the transverse aorta.

Derived indices of LV systolic function (fractional
shortening and ejection fraction) were calculated using well-
established formulas.31 Left ventricular mass was estimated
using the standard cube equation as modified by Litwin et al33:
Left ventricular mass (in grams) = [1.04 (IVSDd + LVIDd +
LVPWd)3 2 (LVIDd)3] 3 0.8 + 0.14, where 1.04 is the specific
gravity of muscle, IVSDd is interventricular septum diameter
in diastole (in centimeters), LVIDd is left ventricular internal
diameter in diastole (in centimeters), and LVPWd is left

ventricular posterior wall thickness in diastole (in centi-
meters). Multiplication factor of 0.8 and the addition factor of
0.14 are constants similar to those used in the anatomically
validated Devereux correction for American Society for
Echocardiography dimensions in humans, which allow more
accurate prediction of LV mass in rats.33

The isolated Langendorff heart preparation was used to
assess left ventricular function of the rats in all the groups as in
previous studies.34–36 Hearts isolated from euthanized rats
were perfused with modified Krebs–Henseleit bicarbonate
buffer, containing (in millimolar): NaCl, 119.1; KCl, 4.75;
MgSO4, 1.19; KH2PO4, 1.19; NaHCO3, 25.0; glucose, 11.0;
and CaCl2, 2.16. Buffer was bubbled with 95% O2–5% CO2

and maintained at 35�C. Isovolumetric ventricular function
was measured by inserting a latex balloon catheter into the LV
connected to a Capto SP844 MLT844 physiological pressure
transducer and Chart software on a Maclab system (ADInstru-
ments). All left ventricular end-diastolic pressure values were
measured during pacing of the heart at 250 beats per minute
using an electrical stimulator. End-diastolic pressures were
obtained from 0 up to 30 mmHg for calculation of diastolic
stiffness constant (k, dimensionless) as described in previous
studies.34–36

Microelectrode studies were performed on isolated left
ventricular papillary muscles quickly dissected in cold Tyrode
physiological salt solution (in millimolar: NaCl, 136.9; KCl,
5.4; MgCl2�H2O, 1.0; NaH2PO4�2H2O, 0.4; NaHCO3, 22.6;
CaCl2�2H2O, 1.8; glucose, 5.5; ascorbic acid, 0.3; and
ethylenediaminetetraacetic acid, 0.05) bubbled with 95%
O2–5% CO2. Action potential duration (APD) at 20%, 50%,
and 90% of repolarization, action potential amplitude, resting
membrane potential, and force of contraction were measured
as in previous studies.35,36

Thoracic aortic rings (4 mm in length) were suspended
in an organ bath filled with Tyrode physiological salt solution
bubbled with 95% O2–5% CO2 and maintained at 35�C and
allowed to stabilize at a resting tension of 10 mN.35,36

Cumulative concentration–response curves (contraction) were
obtained for norepinephrine (Sigma-Aldrich Australia), and
cumulative concentration–response curves (relaxation) were
obtained for acetylcholine (Sigma-Aldrich Australia) and
sodium nitroprusside (Sigma-Aldrich Australia) after sub-
maximal (70%) contraction to norepinephrine.35,36

Hearts were processed by 2 different procedures for
histopathological studies. For picrosirius red staining, hearts
were initially fixed for 3 days in Telly fixative (85 mL of 70%
ethanol, 5 mL of glacial acetic acid, and 10 mL of 40%
formaldehyde) and then transferred into modified Bouin fluid
(85 mL of saturated picric acid, 5 mL of glacial acetic acid, and
10 mL of 40% formaldehyde) for 2 days. The samples were then
dehydrated and embedded in paraffin wax. Collagen deposition
in the LV was observed after staining with picrosirius red
(magnification 340) and analyzed by laser confocal microscopy
(Zeiss LSM 510 upright Confocal Microscope).35 Color
intensity was quantified using NIH-imageJ software (National
Institutes of Health, Bethesda, MD) to determine the extent of
collagen deposition in selected tissue sections. Results are
presented as mean 6 standard error of the mean (SEM) of the
area of view. For other staining, hearts were fixed in 10% neutral
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buffered formalin for 3 days. The samples were then dehydrated
and embedded in paraffin wax. Thin sections (5 mm) of LV were
cut and stained with hematoxylin and eosin to study infiltration
of inflammatory cells and with toluidine blue to study mast cells.
After staining, pictures were taken with a Zeiss Microscope
(magnification 340).

Oxidative Stress Markers

Erythrocyte Reactive Oxygen Species Production

Heparinized blood stored at 4�C was used 2 days after
withdrawal to measure the production of reactive oxygen
species by erythrocytes using a fluorometric assay based on the
oxidation of the fluorochrome 2#,7#-dichloroflourescein-
diacetate (DCFH-DA; Sigma-Aldrich Australia).37 Plasma
was removed from blood by washing with 1:9 phosphate-
buffered saline, followed by centrifugation at 1500g for 5
minutes. The supernatant was removed, and the packed
erythrocytes were diluted with phosphate-buffered saline to
a final content of 1% erythrocytes. Aliquots of 50 mL of this
erythrocyte suspension were added to a microtitre plate
followed immediately by 50 mL of 100 mM DCFH-DA. The
rate at which DCFH-DA was oxidized by intracellular reactive
oxygen species to 2#,7#-dichlorofluorescein was determined
fluorometrically by reading the microtitre plate with a SPEC-
TRAMax M2 spectrofluorometer set at Ex484/Em535. Fluo-
rescence was measured at 0, 30, 60, 120, and 180 minutes. The
data were expressed in arbitrary fluorescence units.

Plasma Marker of Oxidative Stress
Plasma concentrations of malondialdehyde were deter-

mined by high-performance liquid chromatography (Shimadzu,
Kyoto, Japan).38

Metabolic Parameters and Plasma
Inflammatory Marker

Activities of aspartate transaminase (AST), alanine
transaminase (ALT), alkaline phosphatase (ALP), lactate
dehydrogenase (LDH), and creatine kinase and concentrations
of total cholesterol, triglycerides, nonesterified fatty acids
(NEFA), uric acid, creatinine, urea, total bilirubin, albumin:-
globulin ratio, sodium (Na+), potassium (K+), calcium (Ca2+),
and chloride (Cl2) in plasma were measured. Plasma
enzymatic activities and analyte concentrations were de-
termined using kits and controls supplied by Olympus using an
Olympus analyzer (AU 400; Tokyo, Japan): LDH, Olympus
OSR6127 kinetic UV test; ALT, Olympus OSR6107 kinetic
UV test; AST, Olympus OSR6109 kinetic UV test; total
plasma cholesterol, Olympus OSR6516 enzymatic color test;
plasma triglycerides, Olympus OSR6133 enzymatic color test;
urea, Olympus OSR6134 kinetic UV test; uric acid, Olympus
OSR6098 enzymatic color test; albumin, Olympus OSR 6101
photometric color test; and total bilirubin, Olympus OSR 6111
photometric color test. Globulin was calculated as total protein 2
albumin; NEFA were determined using a commercial kit
(Wako, Osaka, Japan). Plasma C-reactive protein (CRP)
concentrations were estimated using commercial kits (Kamiya
Biomedical, Thousand Oaks, CA) according to manufacturer-
provided standards and protocols using a Cobas-Mira
automated analyzer (Roche Diagnostics, Basel, Switzerland).

Plasma insulin (Laboratory Diagnostics, Kurnell, New South
Wales, Australia) and leptin and corticosterone (both Quantum
Scientific, Murarrie, Queensland, Australia) were measured
using commercial kits according to manufacturer-provided
standards and protocols using Titertek Multiskan MCC/340
spectrophotometer (Flow Laboratories, Irvine, Scotland).

Structural Changes in Liver, Kidney,
and Pancreas

Liver, kidneys, and pancreas were fixed with 10%
neutral buffered formalin for 3 days. These tissue samples
were dehydrated and then embedded in paraffin wax. Thin
sections (5 mm) of these tissues were cut and stained with
hematoxylin and eosin for determining inflammatory cell
infiltration and for determining the fat vacuoles in liver. Liver
sections were also stained with Milligan’s stain to determine
collagen deposition and with oil red ‘‘O’’ to determine fat
droplets.

Fixed kidney tissues were embedded in paraffin, and
4 mm sections were cut onto glass slides. Routine histological
stains used were hematoxylin and eosin for general histology
and Masson’s trichrome for assessment of collagen deposition.
For quantification of collagen, Masson’s trichrome–stained
slides were visualized using a Nikon Eclipse 50i microscope
(Kanagawa, Japan) fitted with a DSFi1 camera, and images
were captured directly digitally (magnification 3200). NIS
Elements software was used for morphometrical analysis. All
color parameters were kept constant for each section. The NIS
Elements software automatically calculates the area of blue-
stained color in each of the areas selected, which were all
284,023 mm2. For each kidney section, 10 randomly placed
fields in the cortex were analyzed separately. Positive areas
around large vessels were removed digitally from the
morphometric assessment. Results are presented as mean 6
SEM of the Masson’s trichrome-positive percentage of the area
of view.

Pancreatic sections were stained with aldehyde fuchsin
staining after pretreatment with potassium permanganate
(0.5%) and hematoxylin and eosin staining to determine
infiltration of inflammatory cells. After staining, tissues were
mounted and pictures were taken with a Zeiss Microscope
(magnification 340 for hematoxylin and eosin and 320 for
aldehyde fuchsin, oil red ‘‘O,’’ and Milligan’s stain). Islet area
was quantified using NIH-imageJ software (National Institutes
of Health). Results are presented as mean 6 SEM of the area
of view. The a and b cells in 12 islets were counted in each rat
using NIH-imageJ software. Numbers of these cells are
presented as mean 6 SEM per islet.

Statistical Analysis
All data are presented as mean 6 SEM. Differences

between the groups were determined by 1-way analysis of
variance. Statistically significant variables were treated with
Neumann–Keuls post hoc test to compare all the groups of
animals. All statistical analyses were performed using
GraphPad Prism version 5 for Windows (San Diego, CA).
P value of ,0.05 was considered as statistically significant.
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RESULTS

Food Intake, Water Intake, Body Weight, and
Compositional Changes

Although mean daily food and water intakes were
reduced (Table 1), HCHF diet–fed rats showed higher body
weight (Fig. 1A), mean daily energy intake, and feed
efficiency (Table 1) compared with CS diet–fed rats after
16 weeks. Abdominal circumference (Fig. 1B), nose to anus
length, and BMI (Table 1) were greater for HCHF diet–fed rats
than for the CS diet–fed rats after 16 weeks. Abdominal fat
fads (Table 1) were unchanged and doubled after 8 and
16 weeks, respectively, in HCHF diet–fed rats compared with
CS diet–fed rats. Whole-body fat mass (Fig. 1C) was increased
by 126% 6 7% in HCHF diet–fed rats compared with CS
diet–fed rats after 16 weeks, whereas the whole-body lean
mass (Fig. 1D) was increased by only 11.6% 6 0.6% in HCHF
diet–fed rats. Rectal temperature was unchanged between the
groups (Table 1). Values from age-matched rats fed standard
rat chow showed values intermediate between CS diet– and
HCHF diet–fed rats with a greater increase in total and lean
body mass (Table 1, Fig. 1).

Cardiovascular Structure and Function
Echocardiographic assessment of HCHF diet–fed rats

showed ventricular dilation (increased left ventricular end-
diastolic dimensions), increased systolic volume, and increased
estimated left ventricular mass. However, indices of left
ventricular function, mainly fractional shortening and ejection
fraction, were decreased in HCHF diet–fed rats when compared
with CS diet– or chow-fed rats after 16 weeks (Table 2).

Many inflammatory cells were observed in the LV of
HCHF diet–fed rats, whereas the number of inflammatory
cells in LV of CS diet– or chow-fed rats was very low (Fig. 2).
Increased numbers of mast cells were found in the LV of
HCHF diet–fed rats with an increased number of degranulated
mast cells (Fig. 2). Both perivascular and interstitial collagen
contents in LV were increased in HCHF diet–fed rats
compared with CS diet– or chow-fed rats (Fig. 2). HCHF
diet–fed rats also showed hypertrophy of cardiomyocytes
(Fig. 2). The isolated Langendorff heart preparation showed
increased diastolic stiffness in HCHF diet–fed rats at both
8 and 16 weeks compared with CS diet– or chow-fed rats
(Table 2). Systolic blood pressure in HCHF diet–fed rats was

increased at all measurement times up to 16 weeks compared
with CS diet–fed or chow-fed rats (Table 2).

Single-cell microelectrode studies in isolated left
ventricular papillary muscles of HCHF diet–fed rat hearts
showed an increased APD at 50% and 90% of repolarization
when compared with CS diet– or chow-fed rat hearts (Table 3).
The resting membrane potential was decreased in HCHF diet–
fed rats when compared with CS diet (Table 3) with the action
potential amplitude and force of contraction being unaffected
(Table 3).

Thoracic aorta isolated from HCHF diet– or chow-fed
rats showed reduced acetylcholine-induced vascular relaxation
compared with thoracic aorta from CS diet–fed rats,
suggesting endothelial dysfunction with HCHF diet or chow
feeding (Fig. 3A). The responses to norepinephrine and
sodium nitroprusside were decreased in HCHF diet–fed rats
compared with CS diet– or chow-fed rats, suggesting smooth
muscle dysfunction (Figs. 3B, C).

Oxidative Stress and Plasma
Inflammatory Marker

In HCHF diet–fed rats, the production of reactive
oxygen species by erythrocytes over 180 minutes was almost
double that of the CS diet– or chow-fed rats (Fig. 4A). Plasma
malondialdehyde concentrations were increased in HCHF
diet–fed rats in comparison with CS diet– or chow-fed rats
(Table 4). Plasma concentrations of CRP were higher with
HCHF diet after 16 weeks compared with CS diet– or chow-
fed rats (Table 4).

Metabolic Changes
Fasting blood glucose concentrations were not different

between the 2 groups after 8 weeks and 16 weeks of feeding
(Table 4). After glucose loading, blood glucose concentrations
in CS diet– or chow-fed rats decreased rapidly and returned to
fasting glucose concentrations 2 hours after glucose loading.
In HCHF (16 weeks) diet–fed rats, blood glucose concen-
trations were higher than the fasting blood glucose concen-
tration after 2 hours of glucose loading (Fig. 4B). Plasma
concentrations of insulin were unchanged with HCHF diet
after 8 weeks but increased after 16 weeks in comparison with
CS diet– or chow-fed rats (Table 4). Plasma leptin concen-
trations were increased with HCHF diet compared with CS
diet or chow feeding as early as 8 weeks. There was no

TABLE 1. Physiological Parameters in Chow-fed (16 Weeks), CS (16 Weeks), HCHF (8 Weeks), and HCHF (16 Weeks) Groups

Variables Chow-fed (16 wk) CS (16 wk) HCHF (8 wk) HCHF (16 wk)

Food intake, g/d 27.9 6 0.6b 31.9 6 0.6a 19.8 6 0.5c 20.9 6 0.3c

Water intake, mL/d 45.5 6 1.7a 31.8 6 0.5b 17.9 6 0.6c 18.3 6 0.3c

Energy intake, kJ/d 385 6 8b 364 6 9b 425 6 11a 443 6 7a

Feed efficiency, g/kJ 0.64 6 0.04a 0.21 6 0.02c 0.23 6 0.02c 0.40 6 0.02b

Nose to anus length, cm 26.7 6 0.7a 24.1 6 0.2c 24.9 6 0.3b 25.7 6 0.2ab

BMI, g/cm2 0.79 6 0.01a 0.66 6 0.01c 0.69 6 0.01b 0.78 6 0.01a

Abdominal fat pads, mg/mm 464 6 34b 395 6 30b 501 6 46b 799 6 57a

Rectal temperature, �C 38.6 6 0.2 38.7 6 0.1 38.4 6 0.2 38.7 6 0.1

All data are presented as mean 6 SEM and n = 10 for each group. Mean values within a row with unlike superscript letters are significantly different (P , 0.05).
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FIGURE 1. Changes in body weight
(A), abdominal circumference (B),
whole-body fat mass (C), and
whole-body lean mass (D) in
chow-fed rats (16 weeks), CS (16
weeks), HCHF (8 weeks), and HCHF
(16 weeks) rats. Mean values with
an unlike superscript letter are
significantly different (P , 0.05).

TABLE 2. Cardiovascular Structure and Function in Chow-fed (16 Weeks), CS (16 Weeks), HCHF (8 Weeks), and HCHF
(16 Weeks) Groups

Variables Chow-fed (16 wk) CS (16 wk) HCHF (8 wk) HCHF (16 wk)

LVIDd, mm 7.01 6 0.16b 6.61 6 0.12b 6.79 6 0.10b 7.46 6 0.11a

LVIDs, mm 3.52 6 0.13c 3.31 6 0.18c 4.04 6 0.11b 4.60 6 0.09a

LVPWd, mm 2.81 6 0.16 2.69 6 0.14 2.72 6 0.13 2.85 6 0.15

Systolic volume, mL 0.08 6 0.01b 0.06 6 0.00b 0.07 6 0.00b 0.10 6 0.00a

Relative wall thickness 0.50 6 0.02 0.48 6 0.01 0.52 6 0.01 0.48 6 0.02

Ascending aorta diameter, mm 0.84 6 0.05 0.82 6 0.03 0.87 6 0.04 0.87 6 0.06

Descending aorta diameter, mm 0.73 6 0.04 0.73 6 0.05 0.78 6 0.03 0.77 6 0.05

Fractional shortening, % 56.4 6 2.0a 52.6 6 1.3a 44.9 6 2.2b 38.3 6 1.4c

Ejection fraction, % 84.1 6 2.2ab 86.9 6 1.6a 79.7 6 0.7b 72.1 6 1.3c

Ejection time, ms 90.7 6 2.3 91.1 6 1.9 92.9 6 2.9 87.9 6 2.6

Deceleration time, ms 53.6 6 2.2 52.1 6 2.0 47.7 6 1.5 55.5 6 2.9

EM, m/s 0.68 6 0.02 0.69 6 0.03 0.69 6 0.03 0.69 6 0.02

AM, m/s 0.41 6 0.03 0.38 6 0.03 0.47 6 0.03 0.44 6 0.03

MCMO, ms 113 6 3 114 6 4 111 6 3 114 6 4

Estimated LV mass, g 0.71 6 0.04c 0.67 6 0.02c 0.82 6 0.03b 0.97 6 0.04a

LV + septum wet weight, mg/mm 21.3 6 0.9 18.9 6 0.9 19.4 6 0.7 21.8 6 1.2

Right ventricular wet weight, mg/mm 4.59 6 0.30 4.14 6 0.27 4.49 6 0.29 4.48 6 0.37

Interstitial LV fibrosis, % surface area 5.2 6 0.9c 4.8 6 0.5c 14.6 6 1.4b 19.9 6 1.2a

Perivascular LV fibrosis, % surface area 20.7 6 3.6b 21.2 6 1.6b 31.2 6 2.6a 35.3 6 3.0a

LV diastolic stiffness constant, k 24.6 6 1.8b 20.8 6 1.4b 26.3 6 2.2b 27.7 6 1.4a

Systolic blood pressure, mmHg 125 6 7b 120 6 4b 144 6 4a 153 6 5a

All data are presented as mean 6 SEM and n = 10 for each group. Mean values within a row with unlike superscript letters are significantly different (P , 0.05). LVIDs, left
ventricular internal systolic dimension; MCMO, time from mitral valve closure to opening; ms, milliseconds.
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difference in plasma leptin concentrations between HCHF diet
groups fed for 8 and 16 weeks (Table 4). Plasma corticosterone
concentrations were unchanged between the groups (Table 4).
Plasma concentrations of triglycerides, total cholesterol, and

NEFAwere higher in HCHF diet–fed group compared with CS
diet–fed group (Table 4). Plasma concentrations of uric acid
were higher in HCHF diet–fed rats compared with CS diet– or
chow-fed rats, whereas no change was observed in the plasma

FIGURE 2. Inflammation and fibrosis in the heart. Picrosirius red staining of left ventricular perivascular and interstitial collagen
deposition (340) in chow-fed rats (16 weeks) (A, E), CS (16 weeks) (B, F), HCHF (8 weeks) (C, G), HCHF (16 weeks) (D, H);
perivascular fibrosis is marked as ‘‘pf,’’ interstitial fibrosis is marked as ‘‘if’’ and hypertrophied cardiomyocytes are marked as ‘‘hy.’’
Hematoxylin and eosin staining of LV of the heart (340) showing infiltration of inflammatory cells (‘‘in’’ represents inflammatory cells)
as dark spots surrounding the myocytes; chow-fed rats (16 weeks) (I), CS (16 weeks) (J), HCHF (8 weeks) (K), HCHF (16 weeks) (L).
Toluidine blue staining (340) of LV showing presence of mast cells in chow-fed rats (16 weeks) (M), CS (16 weeks) (N), HCHF
(8 weeks) (O), HCHF (16 weeks) (P); mast cells are marked as ‘‘mc’’ and degranulated mast cells are marked as ‘‘dmc.’’
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albumin:globulin ratio between the groups and plasma
concentrations of bilirubin were lowered in chow-fed rats
(Table 4).

Hepatic Structure and Function
Livers from HCHF diet– and chow-fed rats were higher

in wet weight compared with CS diet–fed rats (Table 5). In the
liver as in the LV, HCHF diet–fed rats showed increased
infiltration of inflammatory cells and increased deposition of
collagen around the blood vessels compared with CS diet– or
chow-fed rats (Fig. 5). HCHF diet–fed rats showed deposition
of fat droplets in liver, which were rarely visible in livers from
CS diet–fed rats (Fig. 5). Also, the size of fat vacuoles was
larger in HCHF diet–fed rats (Fig. 5). Similarly, HCHF diet
resulted in increased plasma activity of AST, ALT, ALP, and
LDH compared with CS diet–fed rats, although plasma AST
was higher in chow-fed rats (Table 5).

Renal and Pancreatic Structure and Function
HCHF diet– and chow-fed rats showed increased wet

weight of kidneys in comparison with CS diet–fed rats (Table 5).
There were no anomalies in the kidneys of the CS diet–fed rats.
The Masson’s trichrome-positive tissue in these sections was
2.27% 6 0.64%. Kidney sections from HCHF diet–fed rats
showed glomerular and tubular damage, including lysis of the

glomerular tuft that was seen in more than 50% of the glomeruli,
and tubular lesions consisted of hyaline and/or vacuolar
degeneration and single-cell necrosis. There was also increased
Masson’s trichrome-positive tissue (10.13% 6 2.76%), mainly
in an expanded interstitial space and in the tubular and
glomerular basement membranes (Fig. 6). There were no
changes in the plasma concentrations of creatinine, Na+, and
Cl2 between the 2 groups, but plasma K+ concentrations were
increased and urea concentrations were decreased in HCHF
diet–fed rats compared with CS diet– or chow-fed rats (Table 5).
Pancreas from HCHF diet–fed rats showed an increased
number of inflammatory cells (Fig. 7) with increased size of
islets of Langerhans (15.3% 6 1.5% area) compared with CS
diet– or chow-fed rats (6.2% 6 1.4% area) (Fig. 7). Numbers
of a and b cells were also increased in HCHF diet–fed rats
compared with CS diet–fed rats (CS: 16.9 6 0.5 and 72.3 6
2.8 per islet; HCHF: 39.3 6 1.2 and 124.7 6 7.2 per islet,
respectively).

DISCUSSION
Long-term metabolic syndrome leads to multiorgan

dysfunction, especially cardiovascular disease, a major cause
of mortality in modern society.3,4,39 Metabolic syndrome also
damages the structure and function of liver, kidneys, and

TABLE 3. Single-cell Microelectrode Studies on Left Ventricular Papillary Muscles Isolated from Chow-fed (16 Weeks), CS (16
Weeks), and HCHF (16 Weeks) Groups

Variables Chow-fed (16 wk) CS (16 wk) HCHF (16 wk)

Resting membrane potential, mV 269.1 6 2.5ab 273.0 6 2.7b 262.4 6 1.9a

Action potential amplitude, mV 72.4 6 5.5 69.5 6 4.4 63.4 6 2.6

APD at 20% repolarization, ms 10.9 6 0.9b 15.0 6 1.2a 15.7 6 0.8a

APD at 50% repolarization, ms 19.5 6 1.4b 23.9 6 1.9b 28.9 6 1.7a

APD at 90% repolarization, ms 45.7 6 3.2b 55.5 6 4.0b 80.9 6 8.5a

Force of contraction, mN 2.4 6 0.4 4.2 6 1.2 2.9 6 0.8

All data are presented as mean 6 SEM and n = 8 for chow-fed and CS group and n = 9 for HCHF group. Mean values within a row with unlike superscript letters are significantly
different (P , 0.05); ms, milliseconds.

FIGURE 3. Thoracic aortic responses to various drugs. Thoracic aortic preparations developing acetylcholine-induced relaxation
(A), norepinephrine-induced contraction (B), and sodium nitroprusside–induced relaxation (C). Mean values with an unlike
superscript letter are significantly different (P , 0.05).
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pancreas.40 A suitable animal model is required that mimics all
these symptoms of human metabolic syndrome to test
potential pharmacological interventions to reverse organ
dysfunction. The primary focus of this study was to
characterize organ damage with this HCHF diet, especially
to the heart and vascular system, liver, kidneys, and pancreas.

CS was used as control diet in this study. CS is
a slowly digestible glycemic carbohydrate41 and served as
a control for the HCHF diet in this study where the key
carbohydrate is fructose. Unlike fructose, CS does not increase
blood glucose concentrations, systolic blood pressure,
abdominal fat deposition, plasma insulin, or plasma lipid
concentrations.42,43 CS diet is the appropriate control diet for
the HCHF diet because the only differences are the
replacement of the carbohydrates (CS replacing fructose and
condensed milk) and addition of the high fat as beef tallow in
the HCHF diet. Rats fed a standard chow for 16 weeks showed
evidence of ‘‘metabolic morbidity,’’44 showing that standard
chow is not an appropriate control in our model of obesity-
induced changes.

In this model, fat and sugars present in the diet provided
more energy than required by the animals. This excess energy
is stored in the adipocyte and led to hypertrophy and
hyperplasia of adipocytes.45,46 Thus, HCHF diet–fed rats
displayed increased body weight, feed efficiency, BMI,
abdominal fat deposition, and abdominal circumference.
HCHF diet–fed rats also showed increased plasma leptin
concentrations as early as 8 weeks. Increases in leptin
concentrations have been linked with high-fat feeding, leading
to increased body weight gain, energy intake, and increased
adiposity.47 Fructose and fat feeding induced dyslipidemia in
laboratory animals,48 which was also found in our model.
Dyslipidemia in these rats was characterized by the increase in
plasma concentrations of triglycerides, total cholesterol, and
NEFA. Decreased rates of glucose clearance from the blood
was also observed with HCHF diet feeding, clearly indicating
impaired glucose tolerance.

Oxidative stress is associated with obesity and metabolic
syndrome10,49 and initiates the changes occurring in the
metabolic syndrome.8 One of the hallmarks of metabolic
syndrome is oxidative stress–induced primary myocardial
insult resulting in cardiovascular remodeling.50,51 Previous
studies have ascertained the direct relationship between

increased reactive oxygen species production, diastolic
stiffness, and cardiac fibrosis.36,52 Overproduction of reactive
oxygen species seems to be the first and key event in the
activation of signaling pathways including extracellular signal-
regulated kinase (ERK)1/2, c-Jun amino terminal kinase 1/2,
thymoma viral proto-oncogene (AKT; designated as protein
kinase B), nuclear factor kappa-light-chain-enhancer of
activated B cells (NF-kB), and Smad, leading to cardiac
hypertrophy, inflammation, and fibrosis.53–55 Other effects of
increased reactive oxygen species production on the cardio-
vascular system included alteration of ion channel flux and
membrane ion pump function in a biologically significant
manner in heart muscle56 and the vascular smooth muscle.57

Reactive oxygen species targeted L-type calcium channels on
the sarcolemma and suppressed the Ca2+ current.58 Reactive
oxygen species increased the cytosolic Ca2+ concentration
through mobilization of intracellular Ca2+ stores and/or
through the influx of extracellular Ca2+.57,59,60 Both direct
modulation of Ca2+ channels by reactive oxygen species and
reactive oxygen species–dependent increases in vascular
intracellular Ca2+ primarily via extracellular Ca2+ influx have
been conclusively demonstrated.57,61 The metabolic syndrome
diet seems to result in a less negative resting membrane
potential in rat papillary muscles relating to changes in
Na+/K+ATPase function or reduced cardiac cell repolarization.

Our finding of ventricular dilation, increased left
ventricular mass, and increased relative wall thickness in the
LV is consistent with subtle eccentric left ventricular
hypertrophy62 induced by HCHF diet feeding. Hypertrophied
cardiomyocytes were also observed histologically. The left
ventricular hypertrophy may have been produced in response
to systemic hypertension caused by HCHF diet feeding.62

Pressure overload may induce hypertrophy of the left
ventricular walls to compensate the stress on the walls.63,64

Consistent with these observations, HCHF diet feeding
increased left ventricular diastolic stiffness and fibrosis and
decreased function compared with the CS diet–fed rats.
Myocardial fibrosis, the major mechanism in the development
of left ventricular dysfunction, results from disproportionate
collagen deposition accompanied by reduced degradation of
extracellular matrix thus leading to increased tissue stiffness.65

HCHF diet–fed rats showed increased systolic blood pressure,
possibly due to the increased production of reactive oxygen

FIGURE 4. Changes in superoxide
production by erythrocyte (A) and
120-minute oral glucose tolerance
(B) in chow-fed rats (16 weeks), CS
(16 weeks), HCHF (8 weeks), and
HCHF (16 weeks) rats. Mean values
with an unlike superscript letter are
significantly different (P , 0.05).
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species as shown in the erythrocytes thereby reducing the
bioavailability of nitric oxide.66 HCHF diet impaired
endothelial function, defined by a decrease in acetylcholine-
induced relaxation, which also adds to the increase in blood
pressure. In obesity, adipocytes also expressed angiotensi-
nogen, leading to an angiotensin II–induced increase in blood
pressure.50

HCHF diet–fed rats showed prolonged APD at 50% and
90% of repolarization, which is consistent with the other rat
models of cardiovascular disease such as the deoxycorticos-
terone acetate salt hypertensive rats,36 spontaneously hyper-
tensive rat,67 and streptozotocin-induced diabetic rat model.68

These hypertensive and diabetic rat models induce aggressive
changes in LV structure and function with prolonged action
potentials and elevated levels of reactive oxygen species.36,68

The remodeled ventricle shows changes in Ito and Ik channel
densities and function that are thought to lengthen the action
potential and predispose the ventricle to arrhythmias.69,70 In rat
heart, the Ito current is active throughout the entire action

potential repolarization71 with the Ik inward rectifier current
driving the later phase of repolarization.72 It would seem from
these results that the HCHF diet–induced metabolic syndrome
causes changes in the later phase of repolarization and hence
might alter Ik channel function more significantly than Ito.
Although these changes are less marked than those found in
streptozotocin diabetic or deoxycorticosterone acetate-salt
hypertensive rat hearts, it is significant that the HCHF diet can
induce systemic reactive oxygen species production and
inflammation that remodels the ventricle and potentiates
arrhythmias. These findings have implications for human
patients who are obese, showing early changes in electro-
physiological remodeling of the heart, which could potentiate
later fatal arrhythmias.

HCHF diet feeding increased plasma concentrations of
malondialdehyde, the main product of polyunsaturated fatty
acid peroxidation,73 and increased time-dependent production
of reactive oxygen species in erythrocytes (Table 1). These
markers of oxidative stress were elevated as early as 8 weeks of

TABLE 4. Metabolic Parameters, Plasma Oxidative Stress, and Inflammatory Markers in Chow-fed (16 Weeks), CS (16 Weeks),
HCHF (8 Weeks), and HCHF (16 Weeks) Groups

Variables Chow-fed (16 wk) CS (16 wk) HCHF (8 wk) HCHF (16 wk)

Fasting blood glucose, mmol/L 4.1 6 0.3 3.9 6 0.2 4.1 6 0.4 4.7 6 0.3

Plasma insulin, mg/L 3.04 6 0.44b 2.28 6 0.36c 1.49 6 0.19c 4.15 6 0.34a

Plasma leptin, mg/L 6.62 6 0.80b 6.80 6 0.86b 8.65 6 0.81a 8.63 6 1.01a

Plasma corticosterone, mg/L 143 6 17 133 6 9 114 6 13 126 6 15

Plasma triglyceride, mmol/L 0.54 6 0.07b 0.42 6 0.06b 0.49 6 0.05b 0.79 6 0.09a

Plasma total cholesterol, mmol/L 1.69 6 0.09b 1.43 6 0.11b 1.48 6 0.05b 1.99 6 0.07a

Plasma NEFA, mmol/L 1.77 6 0.26b 1.15 6 0.14b 1.35 6 0.12b 3.53 6 0.21a

Plasma uric acid, mmol/L 48 6 4.3b 32.1 6 2.3c 47.6 6 1.9b 60.2 6 3.1a

Plasma total bilirubin, mmol/L 1.56 6 0.16b 2.42 6 0.09a 2.20 6 0.08a 2.30 6 0.06a

Albumin:globulin ratio 0.96 6 0.01 0.97 6 0.03 0.99 6 0.02 0.97 6 0.02

Plasma malondialdehyde, mmol/L 24.2 6 1d 26.9 6 0.7c 29.4 6 0.5b 32.1 6 1.0a

Plasma CRP concentration, mmol/L 61.2 6 6.4b 59.3 6 7.4b 58.1 6 7.4b 102.3 6 4.6a

All data are presented as mean 6 SEM and n = 10 for each group. Mean values within a row with unlike superscript letters are significantly different (P , 0.05).

TABLE 5. Hepatic and Renal Function in Chow-fed (16 Weeks), CS (16 Weeks), HCHF (8 Weeks), and HCHF (16 Weeks) Groups

Variables Chow-fed (16 wk) CS (16 wk) HCHF (8 wk) HCHF (16 wk)

Liver wet weight, mg/mm 279 6 10ab 234 6 14b 255 6 17ab 287 6 12a

Plasma ALT activity, U/L 42.4 6 0.9c 37.0 6 0.6d 50.4 6 0.5b 59.6 6 0.3a

Plasma AST activity, U/L 106.0 6 6.9a 73.2 6 5.6b 88.1 6 6.2ab 105.3 6 9.2a

Plasma ALP activity, U/L 180 6 23b 174 6 19b 219 6 16ab 251 6 21a

Plasma LDH activity, U/L 302 6 37b 204 6 23c 282 6 20b 497 6 14a

Kidney wet weight, mg/mm 53.6 6 1.0 49.8 6 1.4 50.8 6 2.3 53.9 6 1.5

Plasma creatinine, mmol/L 41.0 6 1.6b 46.6 6 1.3ab 47.6 6 2.1ab 49.4 6 2.5a

Plasma urea, mmol/L 6.05 6 0.21ab 6.45 6 0.16a 5.80 6 0.11b 2.69 6 0.11c

Plasma Na+, mmol/L 142 6 2 145 6 1 144 6 0 144 6 0

Plasma Cl2, mmol/L 100 6 2 102 6 1 101 6 1 101 6 1

Plasma K+, mmol/L 3.92 6 0.17bc 3.67 6 0.11c 4.29 6 0.14b 4.89 6 0.18a

Plasma Ca2+, mmol/L 2.17 6 0.03b 2.38 6 0.02a 2.41 6 0.02a 2.39 6 0.03a

All data are presented as mean 6 SEM and n = 10 for each group. Mean values within a row with unlike superscript letters are significantly different (P , 0.05).
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HCHF diet feeding. However, minimal symptoms of sub-
clinical inflammation were observed at 8 weeks, although
histological analysis revealed increased infiltration by in-
flammatory cells into cardiac and hepatic tissues and elevated
plasma CRP concentrations at 16 weeks. These results suggest
that oxidative stress as a result of metabolic disturbances in
HCHF diet–fed rats causes cellular insult thereby eliciting
a local inflammatory response. Increased adiposity is
associated with the activation and migration of inflammatory
cells into the adipose tissue.46 These inflammatory cells then
secrete increased amounts of inflammatory cytokines and finally
lead to low-grade chronic inflammation.46 Fructose feeding is

associated with the induction of oxidative stress74 and increased
production of proinflammatory factors such as tumor necrosis
factor a and c-Jun amino terminal kinase.75 Apart from this,
fructose induced hepatic de novo lipogenesis, leading to hepatic
steatosis,76 which is evident in this study as well.

Nonalcoholic fatty liver disease is considered as the
hepatic manifestation of metabolic syndrome.77 The increased
activities of ALT, AST, ALP, and LDH in plasma are indicative
of hepatic injury and along with inflammation, steatosis, and
fibrosis in the liver, HCHF diet–fed rats clearly show the
presence of nonalcoholic steatohepatitis. Metabolic syndrome
is a characteristic of chronic kidney disease in humans.78 The

FIGURE 5. Fat deposition, inflammation, and fibrosis in liver showing nonalcoholic steatohepatitis. Hematoxylin and eosin staining
of hepatocytes (340) showing hepatocytes with enlarged fat vacuoles (marked as ‘‘fv’’) and inflammatory cells (marked as ‘‘in’’)
(320) from chow-fed rats (16 weeks) (A, E), CS (16 weeks) (B, F), HCHF (8 weeks) (C, G), and HCHF (16 weeks) (D, H). Oil red ‘‘O’’
staining showing lipid deposition in liver (marked as ‘‘li’’); chow-fed rats (16 weeks) (I), CS (16 weeks) (J), HCHF (8 weeks) (K), and
HCHF (16 weeks) (L). Milligan’s trichrome staining of the hepatic portal regions showing collagen (marked as ‘‘pf’’) (320) in chow-
fed rats (16 weeks) (M), CS (16 weeks) (N), HCHF (8 weeks) (O), and HCHF (16 weeks) (P).
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glomerular and tubular damage and fibrosis in the kidney of
HCHF diet–fed rats shows that kidney damage has been
initiated.

Along with the moderate impairment in glucose
tolerance, HCHF diet–fed rats showed increased islet mass
and increased number of a and b cells within the islets of
Langerhans in the pancreas, suggesting hyperplasia of these
cell types. These changes were accompanied by increases in
plasma insulin concentration. This may suggest that the rats
have reduced sensitivity to insulin and to compensate for the
reduced sensitivity, islet mass and number of b cells increased
to produce and secrete more insulin. Earlier studies have
correlated increased islet mass with presence of insulin
resistance.79 Although there is increased plasma insulin
concentration with HCHF diet, there is only moderate
impairment of glucose tolerance. This indicates that the rats

are prediabetic and may progress to hyperglycemia with severe
glucose intolerance after further feeding of the HCHF diet.

CONCLUSIONS
HCHF diet feeding in rats induces metabolic syndrome

and cardiovascular remodeling, especially hypertension,
hypertrophy, ventricular fibrosis, conduction changes, and
endothelial dysfunction, along with nonalcoholic steatohepa-
titis, degeneration of renal structure, and increased mass of
islets of pancreas. The presence of all these changes in this
model makes it a viable model to test pharmacological and
other interventions for the prevention and reversal of
metabolic syndrome, cardiovascular disease, and nonalcoholic
fatty liver disease.

FIGURE 6. Masson’s trichrome staining of chow-fed (16 weeks) (A), CS (16 weeks) (B), and HCHF (16 weeks) (C–E) rat kidneys.
There were no histological anomalies in kidneys from the chow-fed (A) and CS diet–fed rats (B) and very little Masson trichrome–
positive tissue (A, B). In comparison, HCHF rat kidneys (stained with Masson trichrome) showed increased Masson trichrome–
positive tissue. The expanded interstitial space contains collagen (stained blue in the histopathology sections) and is evident
between the nephron structures (C). Lysis of the glomerular tuft (D, an example of single-cell lysis arrowed and marked as ‘‘cl’’) and
vacuolar degeneration and single-cell necrosis of tubular epithelium (E, examples arrows and marked ‘‘cn’’) demonstrate some
subtle but consistent degenerative changes in the HCHF rat kidneys (A-C: magnification, 3200; D, E: magnification, 3400).

FIGURE 7. Inflammation and increased islet size in pancreas. Hematoxylin and eosin staining (320) of pancreas showing infiltration
of inflammatory cells; chow-fed rats (16 weeks) (A), CS (16 weeks) (B), HCHF (8 weeks) (C), and HCHF (16 weeks) (D). Aldehyde
fuchsin staining (320) of pancreas showing increased size of islet; chow-fed rats (16 weeks) (E), CS (16 weeks) (F), HCHF (8 weeks)
(G), and HCHF (16 weeks) (H).
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Abstract

Metabolic syndrome (obesity, diabetes, and hypertension) increases hepatic and cardiovascular damage. This study

investigated preventive or reversal responses to rutin in high-carbohydrate, high-fat diet-fed rats as a model of metabolic

syndrome. Rats were divided into 6 groups: 2 groups were fed a corn starch-rich diet for 8 or 16 wk, 2 groups were fed a

high-carbohydrate, high-fat diet for 8 or 16 wk, and 2 groups received rutin (1.6 g/kg diet) in either diet for the last 8 wk only

of the 16-wk protocol. Metabolic changes and hepatic and cardiovascular structure and function were then evaluated in

these rats. The corn starch-rich diet contained 68% carbohydrate (mainly cornstarch) and 0.7% fat, whereas the high-

carbohydrate, high-fat diet contained 50% carbohydrate (mainly fructose) and 24% fat (mainly beef tallow) along with 25%

fructose in drinking water (total 68% carbohydrate using mean food and water intakes). The high-carbohydrate, high-fat

diet produced obesity, dyslipidemia, hypertension, impaired glucose tolerance, hepatic steatosis, infiltration of in-

flammatory cells in the liver and the heart, higher cardiac stiffness, endothelial dysfunction, and higher plasma markers of

oxidative stress with lower expression of markers for oxidative stress and apoptosis in the liver. Rutin reversed or

preventedmetabolic changes such as abdominal fat pads and glucose tolerance, reversed or prevented changes in hepatic

and cardiovascular structure and function, reversed oxidative stress and inflammation in the liver and heart, and normalized

expression of liver markers. These results suggest a non-nutritive role for rutin to attenuate chronic changes in metabolic

syndrome. J. Nutr. 141: 1062–1069, 2011.

Introduction

Polyphenolic compounds including flavonoids are widely distrib-
uted in fruits and vegetables (1,2). Flavonoids such as quercetin
and naringenin are effective in the treatment of cancer, hyperten-
sion, obesity, and dyslipidemia in both animals and humans (3–5).
Rutin (Supplemental Fig. 1A), a glycoside of quercetin (Supple-
mental Fig. 1B), is a non-nutritive component of many foods such
as onions, apples, tea, and red wine (6).

Metabolic syndrome is the constellation of central obesity,
dyslipidemia, hypertension, impaired glucose tolerance, and
insulin resistance (7). Clinical, epidemiological, and animal stud-
ies have shown the relationship between metabolic syndrome,

especially obesity and dyslipidemia, and the presence of nonal-
coholic fatty liver disease (NAFLD)6 (8–10), with metabolic
syndrome increasing the risk of development of NAFLD and vice
versa (11,12). Metabolic syndrome and NAFLD are also
associated with cardiovascular remodeling, including cardiac
hypertrophy, ventricular dysfunction, and endothelial dysfunc-
tion (13,14).

NAFLD refers to a wide spectrum of liver damage, ranging
from simple steatosis to steatohepatitis and cirrhosis (8,15).
Steatosis represents the deposition of fat in hepatocytes, whereas
steatohepatitis is the combination of steatosis with hepatic in-
flammation and fibrosis (16). Development of steatosis involves
impaired lipid metabolism in the liver (17). Insulin resistance,
hyperinsulinemia, and oxidative stress are important factors
in the development of nonalcoholic steatohepatitis (NASH)
(18,19).

Rutin has shown health-improving effects in different animal
studies. In high-fat diet-fed rats, rutin reduced the gains in body
weight, liver weight, and blood cholesterol concentrations with-
out changing blood TG concentrations (20). Rutin suppressed
adipocyte differentiation of 3T3-L1 cells (20) and suppressed
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hyperglycemia, increased plasma concentrations of insulin, and
decreased oxidative stress in streptozotocin-induced diabetic rats
(21,22). Rutin was cardioprotective in streptozotocin-induced
diabetic rats (23) and isoproterenol-induced myocardial infarc-
tion (24) and hepatoprotective in paracetamol- and carbon
tetrachloride-induced hepatotoxicity (25).

In this study, we characterized the metabolic, hepatic, and car-
diovascular responses to rutin in a rat model of high-carbohydrate,
high-fat diet-induced metabolic syndrome with obesity, mild
steatohepatitis, and cardiovascular remodeling (10). In addition,
Western blotting was used to study changes in the hepatic expres-
sion pattern of caspase-3, extracellular signal-regulated kinase
(Erk), and heat shock protein (Hsp)70.

Materials and Methods

Rats and diets

All experimental protocols were approved by The University of Queens-

land Animal Experimentation Ethics Committee under the guidelines of
the National Health and Medical Research Council of Australia. Male

Wistar rats (8–9 wk old, 332 6 7 g, n = 72) were obtained from The

University of Queensland Biological Resources facility. Rats were individ-

ually housed in a temperature-controlled room under 12-h-light/-dark
conditions and consumed ad libitum food and water.

Rats were randomly divided into 6 experimental groups (n = 12 each

group). Four groups were fed either a corn starch-rich diet (C) or a high-

carbohydrate, high-fat diet (H) for 8 wk (C8, H8) or 16 wk (C16, H16); 2
further groups, 1 fed the C diet and the other fed the H diet, were

administered rutin (1.6 g/kg food) for the last 8 wk of the 16-wk protocol

(CR, HR). The C8 and H8 groups were used to study the pathophysiology

before rutin treatment began and to determine whether rutin reversed,
prevented, or did not affect the measured variables.

The composition of the C and H diets was described in detail in our

previous study (26). The energy densities of C and H were 11.2 and 17.8
kJ/g of food, respectively, with an additional 3.85 MJ/L in the drinking

water for the H8, H16, and HR rats (26).

Physiological and metabolic variables

All the rats were monitored daily for body weight, food, and water

intakes. Abdominal circumference was measured at the end of the
feeding period using a standard measuring tape under light anesthesia

with Zoletil (tiletamine 10 mg/kg, zolazepam 10 mg/kg, i.p.; Virbac,

Peakhurst). BMI and feed efficiency were calculated as previously de-

scribed (10).
At the end of feeding period, rats were feed deprived for 12 h and oral

glucose tolerance tests were performed as described in our previous

studies (10,26,27). During feed deprivation, H rats (H8, H16, and HR)

were given drinking water without fructose supplementation. Plasma
concentrations of total cholesterol and TG were determined using kits

and controls supplied by Olympus using an Olympus analyzer (AU 400)

(10,26,27). Nonesterified fatty acids (NEFA) in plasma were determined
using a commercial kit (Wako). Plasma insulin concentrations (Labora-

tory Diagnostics) were measured using commercial kits according to

the manufacturer-provided standards and protocols using a Titertek

Multiskan MCC/340 spectrophotometer (Flow Laboratories) as in a
previous study (10).

Terminal experiments

Rats were killed with Lethabarb (pentobarbitone sodium, 100 mg/kg
i.p.; Virbac). After euthanasia, 200 IU heparin (Sigma-Aldrich Australia)

was injected through the right femoral vein. The abdomen was then

opened and blood (;6 mL) was withdrawn from the abdominal aorta

and collected into heparinized tubes. One milliliter of blood was stored
at 48C and used for erythrocyte reactive oxygen species measurements,

whereas the remaining blood was centrifuged at 5000 3 g for 15 min

to obtain plasma, which was then stored at 2208C for biochemical

analyses.

Assessment of oxidative stress variables

Erythrocyte reactive oxygen species production.Heparinized blood

stored at 48C was used to measure the production of erythrocyte reactive
oxygen species by a fluorometric assay based on the oxidation of the

fluorochrome 29,79-dichloroflourescein diacetate (Sigma-Aldrich Aus-

tralia) as described in our previous study (10).

Other plasma markers of oxidative stress. Plasma concentrations of

malondialdehyde were determined by HPLC (Shimadzu) as previously

described (28). Plasma glutathione peroxidase activity and total antiox-

idant capacity were measured using an automated spectrophotometer
(Cobas Mira) as previously described (29).

Assessment of hepatic structure and function

Histology of liver. Livers (n = 9 from each group) were isolated after
euthanasia and weighed. Liver portions were isolated (n = 3) and fixed

in 10% neutral buffered formalin for 3 d. These tissue samples were

dehydrated and then embedded in paraffin wax. Thin sections (5 mm)

of these tissues were cut and stained with hematoxylin and eosin for
determination of inflammatory cell infiltration (magnification 320)

and fat vacuoles in liver (magnification 340). Liver sections were also

stained with Milligan’s Trichrome stain to determine fibrosis (magnifica-

tion 320).

Liver enzymes in plasma. Plasma activity of alanine transaminase

(ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), lac-
tate dehydrogenase (LDH), and the concentrations of albumin, total

bilirubin, urea, and uric acid were determined using kits and controls

supplied by Olympus using an Olympus analyzer (AU 400) as previously

described (10,26,27).

Western-blot analysis. Liver samples isolated from rats (n = 3 from

each group) were stored at 2808C. Liver samples were thawed and

sonicated after adding cell lysis buffer. These samples were then ultra-
centrifuged at 100,0003 g for 30 min at 48C. Supernatants were used to

measure the protein concentration in each sample by the bicinchoninic

acid method (Thermo Scientific). The expression of Erk, Hsp70, and

caspase-3 was studied in supernatants at equal protein concentrations by
Western-blot analysis.

Assessment of cardiovascular structure and function

Systolic blood pressure measurements. The systolic blood pressure
of rats was measured at the end of feeding period under light sedation

with Zoletil by using an MLT1010 Piezo-Electric Pulse Transducer

(ADInstruments) and inflatable tail-cuff connected to a MLT844 Phys-

iological Pressure Transducer (ADInstruments) and PowerLab data ac-
quisition unit (ADInstruments).

Echocardiography. Echocardiographic examination (Phillips iE33,

12-MHz transducer) was performed to assess the cardiovascular struc-
ture and function in all the rats. The examination was performed as

previously described (10,26,27) after 8 wk for C8 and H8 and after

16 wk for the C16, CR, H16, and HR groups.

Left ventricular function. Isolated Langendorff heart preparations

(n = 9) were used to assess left ventricular function of the rats in each

group as in previous studies (10,26,27). After performing Langendorff

heart perfusion studies, the heart was separated into right ventricle and
left ventricle (with septum) for weighing.

Vascular reactivity. Thoracic aortic rings (4 mm in length; n = 9 from

each group) were suspended in an organ bath maintained at 358C and
filled with Tyrode physiological salt solution bubbled with 95% O2-5%

CO2 and allowed to stabilize at a resting tension of 10 mN. Cumulative

concentration-response curves (contraction) were obtained for noradrena-

line (Sigma-AldrichAustralia) and cumulative concentration-response curves
(relaxation) were obtained for acetylcholine (Sigma-Aldrich Australia) and

sodium nitroprusside (Sigma-Aldrich Australia) following submaximal

(70%) contraction to noradrenaline (10,26,27).
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Histology of the heart. Hearts (n = 3 from each group) were fixed in

10% neutral buffered formalin for 3 d. These tissues were used to study

collagen deposition and infiltration of inflammatory cells as previously
described (26).

Statistical analysis

All data are presented as mean 6 SEM. Results were tested for
homogenous variance using Bartlett’s test and variables that were not

normally distributed were transformed (using log 10 function) prior to

statistical analyses. C16, CR, H16, andHR groups were tested for effects

of diet, treatment, and their interactions by 2-way ANOVA. When the
interaction and/or the main effects were significant, means were

compared using Newman-Keuls multiple comparison post test. The

pairs of 8 wk and treatment groups (C8 and CR; H8 and HR) were

compared by using Student’s t test to determine whether rutin reverses,
prevents, or does not alter the signs of metabolic syndrome. Rutin

intakes in CR and HR rats were compared using Student’s t test. P ,
0.05 was considered significant. All statistical analyses were performed

using GraphPad Prism version 5 for Windows.

Results

Physiological and metabolic variables. Body weight and
energy intakes were significantly higher in H rats than in C rats
both after 8 and 16 wk. Body weight was significantly atten-
uated by rutin in HR rats without affecting energy intake (Table
1). H16 rats consumed significantly less food and water than
C16 rats. Rutin treatment significantly lowered the intake of
water in HR rats. Although there was no difference in feed
intake between the H16 and HR groups, it was significantly
higher in the HR rats than in the H8 rats. This indicates that
rutin treatment significantly increased feed intake in HR rats
without changing feed intake in CR rats (Table 1). BMI and feed

efficiency were significantly higher in H16 rats and significantly
lower in HR rats, but these variables were not different in C
and CR rats (Table 1). Abdominal circumference and abdominal
fat pads were significantly higher in H16 rats than in the C16
rats. Rutin prevented the increase in abdominal fat pads and
reversed the increase in abdominal circumference in HR rats and
also prevented the increase in abdominal circumference in CR
rats (Table 1).

Increased basal blood glucose concentrations with H feeding
were normalized by rutin treatment in HR rats (Table 1).
Although the increase in plasma concentrations of insulin was
not prevented by rutin, plasma insulin concentrations were
significantly lower in HR rats than in H16 rats (Table 1). H16
rats had impaired glucose tolerance and this impairment was
reversed by rutin treatment in HR rats (Fig. 1A). C16 and CR
rats did not differ in glucose tolerance, basal blood glucose
concentrations, or plasma insulin concentrations (Fig. 1A; Table
1). Plasma concentrations of TG, total cholesterol, and NEFA
were significantly higher in H16 rats compared with C16 rats.
Rutin treatment prevented the increase in plasma concentrations
of these lipids at 16 wk (Table 1).

Rutin intake was greater in CR (1076 5 mg/kg body weight)
than in HR (89 6 6 mg/kg body weight) rats (P ,0.05).

Oxidative stress. Erythrocytes from H16 rats produced signif-
icantly more superoxide than those from C16 rats (Fig. 1B). This
production of superoxide by erythrocytes was significantly lower
in rutin-supplemented HR rats (Fig. 1B). H16 rats had higher
plasma concentrations of malondialdehyde and lower plasma
activities of glutathione peroxidase than C16 rats. HR rats had
lower plasma concentrations ofmalondialdehyde and higher plasma
activities of glutathione peroxidase than H16 rats (Table 1). The

TABLE 1 Effects of rutin on physiological, metabolic, and oxidative stress variables in C8, C16, CR, H8, H16, and HR rats1

Variables C16 CR H16 HR

P-value

C8 H8Diet Rutin Diet 3 rutin

Physiological variables

Initial body weight, g 338 6 4 339 6 7 342 6 4 334 6 7 .0.05 .0.05 .0.05 336 6 6 338 6 8

Final body weight, g 420 6 9c 433 6 9bc 525 6 10a 456 6 12b ,0.001 ,0.001 ,0.001 378 6 8* 421 6 9#

Water intake, mL/d 32.3 6 1.6a 31.2 6 1.3a 18.6 6 0.9b 13.4 6 0.8c ,0.001 ,0.05 .0.05 34.4 6 1.5 15.3 6 1.5

Food intake, g/d 31.8 6 0.6a 30.4 6 0.5a 23.0 6 0.7b 24.4 6 0.5b ,0.001 .0.05 ,0.05 30.8 6 0.6 22.4 6 0.6#

Energy intake, kJ/d 357 6 15b 341 6 12b 481 6 14a 487 6 12a ,0.001 .0.05 .0.05 346 6 11 458 6 14

BMI, g/cm2 0.67 6 0.00b 0.69 6 0.01b 0.78 6 0.01a 0.69 6 0.01b ,0.001 ,0.001 ,0.001 0.67 6 0.01 0.65 6 0.01#

Feed efficiency, g/kJ 0.23 6 0.01b 0.28 6 0.02b 0.39 6 0.01a 0.28 6 0.02b ,0.001 .0.05 ,0.001 0.12 6 0.01* 0.18 6 0.01#

Abdominal circumference, cm 21.0 6 0.2b 19.8 6 0.2c 24.1 6 0.3a 20.3 6 0.2c ,0.001 ,0.001 ,0.001 19.2 6 0.2* 21.7 6 0.3#

Abdominal fat pads, mg/mm tibia 401 6 56b 295 6 36b 798 6 56a 466 6 77b ,0.001 ,0.001 .0.05 305 6 44 514 6 47

Metabolic variables

Basal blood glucose, mmol/L 4.0 6 0.2b 3.8 6 0.2b 5.2 6 0.3a 3.8 6 0.2b ,0.05 ,0.01 ,0.05 3.7 6 0.3 4.2 6 0.3

AUC,2 mmol/L�min 684 6 11b 630 6 13c 764 6 10a 626 6 14c ,0.01 ,0.001 ,0.01 656 6 10 724 6 9#

Plasma insulin, pmol/L 0.39 6 0.06b 0.46 6 0.06b 0.74 6 0.06a 0.56 6 0.05b ,0.001 .0.05 ,0.05 0.48 6 0.05 0.26 6 0.04#

Plasma total cholesterol, mmol/L 1.4 6 0.1b 1.5 6 0.1b 2.0 6 0.1a 1.6 6 0.1b ,0.01 .0.05 ,0.05 1.1 6 0.1* 1.5 6 0.1

Plasma triglycerides, mmol/L 0.4 6 0.1b 0.4 6 0.1b 0.9 6 0.1a 0.6 6 0.1b ,0.01 .0.05 .0.05 0.4 6 0.1 0.5 6 0.1

Plasma NEFA, mmol/L 1.2 6 0.1b 1.2 6 0.1b 2.9 6 0.3a 1.8 6 0.2b ,0.001 ,0.01 ,0.01 1.1 6 0.1 1.4 6 0.1

Oxidative stress variables

Plasma malondialdehyde, mmol/L 27.4 6 1.2b 27.0 6 1.1b 32.2 6 1.2a 28.0 6 1.0b ,0.05 .0.05 .0.05 26.8 6 1.4 28.9 6 1.2

Plasma glutathione peroxidase activity, U/L 1340 6 60a 1372 6 43a 847 6 43b 1253 6 38a ,0.001 ,0.001 ,0.001 1361 6 40 1119 6 48#

Plasma total antioxidant capacity, mmol

6-hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic

acid equivalents/L

1.85 6 0.02a 1.81 6 0.02ab 1.78 6 0.02b 1.87 6 0.02a .0.05 .0.05 ,0.01 1.87 6 0.02 1.80 6 0.02#

1 Values are mean 6 SEM, n = 9–12. Means without a common letter differ, * vs. CR and # vs. HR, P , 0.05.
2 AUC were calculated using the x-axis as baseline.
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total plasma antioxidant capacity of H16 rats was lower than C16
rats and this was reversed in HR rats (Table 1).

Hepatic structure and function. Compared with C16 rats
(Fig. 2B,H,N), H16 rats had a higher wet weight of liver (Table
2) with steatosis (Fig. 2E) and higher infiltration of inflamma-
tory cells (Fig. 2K) and fibrosis (Fig. 2Q) in the hepatic portal
region; these changes were attenuated in HR rats (Fig. 2F,L,R;
Table 2).

Plasma activities of ALT, AST, ALP, and LDH were signif-
icantly higher in H16 rats than in C16 rats (Table 2). Plasma
concentrations of urea were significantly lower, whereas the
plasma concentrations of total bilirubin and uric acid were
significantly higher in H16 rats compared with C16 rats (Table
2). Plasma concentrations of albumin were unchanged between
the groups (Table 2). Rutin treatment in HR rats reversed the
increase in plasma ALT activity, whereas it prevented the
increase in plasma activities of AST, ALP, and LDH (Table 2).
Rutin treatment inhibited the increase in plasma concentrations
of bilirubin in both CR and HR rats (Table 2) and also inhibited
the increase in plasma uric acid concentrations in HR rats (Table
2). The plasma urea concentrations of HR rats were significantly
higher than H16 rats but less than C16 rats (Table 2).

H16 rats had lower expression of caspase-3, Hsp70, and
Erk1/2 in liver compared with C16 rats; rutin treatment reversed
these changes in HR rats (Supplemental Fig. 2).

Cardiovascular structure and function. H rats had signif-
icantly higher systolic blood pressure as early as 8 wk (Table 3).

Left ventricular internal diameter during diastole, left ventric-
ular posterior wall thickness, and systolic volume were signif-
icantly higher and fractional shortening and ejection fraction
were significantly lower in H16 rats compared with C16 rats
(Table 3). Rutin treatment prevented increases in blood pressure
and left ventricular internal diameter during diastole, whereas it
reversed the increase in systolic volume without affecting left
ventricular posterior wall thickness during diastole (Table 3).
Rutin treatment reversed the decreases in fractional shortening
and ejection fraction in HR rats (Table 3).

Greater left ventricular masses (both estimated as well as the
actual wet weight) were observed in H16 rats than in C16 rats
and these increases were prevented by rutin treatment in HR rats
(Table 3). There were no differences in right ventricular wet
weights among the groups (Table 3). Compared with C8 and
C16 rats (Fig. 3G,H), inflammatory cells were rare in the left
ventricle of H8 rats (Fig. 3J) but more numerous in H16 rats
(Fig. 3K), whereas they were markedly lower in HR rats (Fig.
3L). These changes were accompanied by higher collagen de-
position in H16 rats (Fig. 3E) and this was reversed by rutin in
HR rats (Fig. 3F). Left ventricles of H16 rats had significantly
greater stiffness than C16 rats; rutin treatment prevented the
increase in left ventricular stiffness in HR rats (Table 3). Vascular
contraction with noradrenaline (Fig. 4A) and vascular relaxa-
tion with acetylcholine and sodium nitroprusside (Fig. 4B,C)
were significantly lower in isolated thoracic aortic rings from
H16 rats than from C16 rats. Rutin treatment in HR rats
prevented the impairment of vascular contraction and relaxation
(Fig. 4A–C).

Discussion

One of the accepted causes for developing metabolic syndrome
is the consumption of a high-carbohydrate, high-fat diet. Meta-
bolic syndrome increases the risk of cardiovascular disease.
NAFLD also increases the risk of developing cardiovascular
diseases (30), which in turn is linked with the mortality as-
sociated with metabolic syndrome and NAFLD (31–33). The
initiating factors linking these pathological conditions are
oxidative stress and inflammation (34–36). Thus, reducing over-
all oxidative stress and inflammation can be a treatment strategy
for metabolic syndrome, NAFLD, and cardiovascular disease.
We have shown that rutin is a possible treatment for diet-
induced metabolic, hepatic, and cardiovascular changes in a rat
model of diet-induced metabolic syndrome. The dose used in this
study would equal ~7 g/d in a 70-kg human based on body
weight calculations or 1.1 g/d based on body surface area
comparisons (37). The average human dietary intake of rutin is
not known, but the intake of polyphenols is probably ;1 g/d,
with two-thirds being flavonoids, including rutin (38). Although
rutin is not used for therapeutic purposes, the closely related
O-(b-hydroxyethyl)-rutosides have been used for venous insuf-
ficiency and leg edema (39) at doses of 1.5–2 g/d for up to 5 y
(40), as an i.v. dosage of 1.5 g twice daily for 3–4 wk for severe
leg ischemia (41), and for pharmacokinetic studies using up to
4 g as a single dose (42). In these studies, minimal adverse effects,
if any, were reported, including headaches, gut disturbances,
rashes, and flushing.

In this study, the H diet was used to induce metabolic
syndrome, NAFLD, and cardiovascular remodeling in rats as
previously described (10,26,27). Both the C and H diets con-
tained the same amount of carbohydrates, but the carbohydrate
components were very different in their actions. The C diet
contained cornstarch, which is a slowly digestible starch and

FIGURE 1 Effects of rutin on oral glucose tolerance (A) and sup-

eroxide production by erythrocytes (B) in C8, C16, CR, H8, H16, and

HR rats. Values are mean 6 SEM, n = 12. End-point means without a

common letter differ, * vs. CR and # vs. HR, P , 0.05. D, R, and D3R

represent effects of diet, rutin, and interaction of diet and rutin.
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does not produce the signs of metabolic syndrome (10,26,
27,43,44). However, fructose, present in the H diet together
with sucrose, produces signs of metabolic syndrome in both
humans and rats (10,45–47). Thus, cornstarch in the C diet was
replaced with fructose and sucrose in the H diet to provide a
similar intake of carbohydrate in both diet groups.

Rats fed the H diet for 16 wk showed signs of oxidative stress,
including higher plasma concentrations of malondialdehyde,
lower plasma glutathione peroxidase activity, and higher super-
oxide production by erythrocytes. Along with oxidative stress,
H-fed rats had signs of metabolic syndrome, including abdominal
obesity, impaired glucose tolerance, higher systolic blood pressure,
and dyslipidemia. Livers from these rats had steatosis, inflamma-
tion, and fibrosis, indicating the presence ofNASH, and the hearts
showed inflammation, fibrosis, and higher diastolic stiffness.

High energy-containing diets can cause steatosis or steato-
hepatitis and cardiovascular remodeling (48,49). Hyperinsuli-
nemia, higher plasma NEFA concentrations, and obesity are

additional risk factors for the development of steatohepatitis
and cardiovascular remodeling (17,50). Oxidative stress in the
liver of H-fed rats was indicated by the lower expression of
Hsp70 and impaired apoptotic process was shown by lower
expression of caspase-3. This also supports the higher wet
weight of liver in H-fed rats. Further liver findings included
higher activities of aminotransferases and ALP in plasma, higher
plasma concentrations of total bilirubin and uric acid, lower
urea concentration, and lower expression of Erk in liver.
Cardiovascular remodeling was shown by inflammation, fibro-
sis, and higher stiffness in the heart of H-fed rats.

Rutin is effective as an antioxidant and reduced oxidative
stress in plasma (21) and in the liver, kidney, and brain (6). Rutin
produced antiinflammatory effects in adjuvant-induced arthritis
in rats by inhibiting the expressions of proinflammatory cyto-
kines (51,52). In this study, rutin administered to H-fed rats
attenuated the diet-induced metabolic syndrome, NASH, and
cardiovascular abnormalities.

FIGURE 2 Effects of rutin on fat deposition, inflammation, and fibrosis in the liver of C8, C16, CR, H8, H16, and HR rats. Hematoxylin and eosin

staining of liver showing enlarged lipid vacuoles (A–F, marked as “li”) (340) and inflammatory cells (G–L, marked as “in”) (320) from C8 (A,G),

C16 (B,H ), CR (C,I ), H8 (D,J ), H16 (E,K ), and HR (F,L) rats. Milligan’s Trichrome staining of hepatic portal regions showing collagen deposition

(M–R, marked as “fi”) (320) from C8 (M), C16 (N), CR (O), H8 (P), H16 (Q), and HR (R) rats.

TABLE 2 Effects of rutin treatment on hepatic function in C8, C16, CR, H8, H16, and HR rats1

Variables C16 CR H16 HR

P-value

C8 H8Diet Rutin Diet 3 Rutin

Liver wet weight, mg/mm tibia 257 6 11b 262 6 9b 299 6 8a 266 6 7b ,0.05 .0.05 ,0.05 238 6 7 276 6 9

Plasma ALT, U/L 35 6 2c 40 6 2bc 57 6 2a 42 6 2b ,0.001 ,0.05 ,0.001 31 6 2* 51 6 2#

Plasma AST, U/L 79 6 3b 70 6 2c 105 6 3a 80 6 3b ,0.001 ,0.001 ,0.01 65 6 2 88 6 3

Plasma ALP, U/L 173 6 10c 154 6 8c 251 6 13a 209 6 11b ,0.001 ,0.05 .0.05 165 6 11 219 6 9

Plasma LDH, U/L 241 6 24b 260 6 22b 497 6 32a 308 6 25b ,0.001 ,0.01 ,0.001 219 6 22 283 6 26

Plasma albumin, g/L 28.0 6 0.5 27.9 6 0.4 28.6 6 0.3 27.6 6 0.3 .0.05 .0.05 .0.05 27.9 6 0.3 27.8 6 0.3

Plasma total bilirubin, mmol/L 2.2 6 0.1b 1.8 6 0.1c 2.5 6 0.1a 1.9 6 0.1c .0.05 ,0.001 .0.05 2.0 6 0.1 2.0 6 0.1

Plasma urea, mmol/L 5.8 6 0.2a 5.6 6 0.3a 3.2 6 0.3c 4.0 6 0.2b ,0.001 .0.05 .0.05 6.2 6 0.2 5.7 6 0.2#

Plasma uric acid, mmol/L 37 6 2b 34 6 3b 58 6 3a 43 6 3b ,0.001 ,0.01 ,0.05 32 6 2 49 6 3

1 Values are mean 6 SEM, n = 9 for each group. Means without a common letter differ, * vs. CR and # vs. HR, P , 0.05.
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Rutin lowered the lipid components in the serum of hyper-
cholesterolemic rats, probably by reducing the activity of HMG-
CoA reductase (53). In our study, rutin-treated rats had lower
plasma concentrations of total cholesterol, TG, NEFA, and
insulin. Apart from lower lipid concentrations in plasma, rutin-
treated HR rats had lower abdominal fat deposition. Because
there was no change in the energy intake with rutin treatment,
we suggest that the rutin-treated rats had higher energy
expenditure, thereby reducing the fat deposition, similar to the
effect shown by the aglycone of rutin, quercetin (54). Rutin
ameliorated NASH by attenuation of causative factors. Rutin
also upregulated the expression of caspase-3 in the liver,
suggesting higher apoptosis, probably of fat-containing hepato-
cytes, as indicated by the absence of fat vacuoles in the liver and
lower wet weight of liver. Rutin prevented the infiltration of
inflammatory cells in the liver through its antiinflammatory
activity, as shown in other studies (55,56). Liver from rutin-
treated rats also showed upregulation of Hsp70, indicating
lower oxidative stress. Rutin-treated rats probably had lower
injury and damage to hepatocytes caused by chronic H feeding,
as shown by lower aminotransferase activities in plasma and
lower plasma concentrations of total bilirubin and uric acid.

Rutin also improved cardiovascular structure and function in
H rats. The eccentric hypertrophy, inflammation, and fibrosis
caused by the H diet were prevented by rutin. Rutin-treated rats
also had lower systolic blood pressure and improved endothelial
function. High blood pressure and endothelial dysfunction have
been shown to be correlated with oxidative stress and subse-
quently reduced NO bioavailability (57–59). Rutin, by scaveng-
ing free radicals, should increase the bioavailability of NO and
thereby reduce systolic blood pressure and improve endothelial
function as shown by our results.

In conclusion, a high-carbohydrate, high-fat diet induced
symptoms of metabolic syndrome in rats, including obesity,
dyslipidemia, hypertension, and impaired glucose tolerance along
with NASH and cardiovascular remodeling. Increased markers
of oxidative stress confirmed that oxidative stress plays a role
in the development of these pathological conditions. Rutin, a
flavonoid fromplants,preventedor reversed these changes induced
by H feeding in rats. Thus, rutin was effective in attenuating
these diet-induced changes, probably by reducing oxidative
stress and inflammation in the liver and heart. Thus, rutin should
be considered as a treatment strategy for these conditions in
humans.

TABLE 3 Effects of rutin treatment on cardiovascular structure and function in C8, C16, CR, H8, H16, and HR rats1

Variables C16 CR H16 HR

P-value

C8 H8Diet Rutin Diet 3 rutin

Systolic blood pressure, mm Hg 129 6 4b 127 6 5b 151 6 3a 132 6 4b ,0.01 ,0.05 ,0.05 123 6 3 143 6 4

Left ventricular internal diameter during diastole, mm 6.6 6 0.2b 6.6 6 0.2b 7.5 6 0.2a 6.7 6 0.2b ,0.05 .0.05 .0.05 6.4 6 0.2 6.8 6 0.2

Left ventricular posterior wall thickness during diastole, mm 1.58 6 0.03c 1.53 6 0.05c 1.81 6 0.05a 1.69 6 0.04b ,0.001 ,0.05 .0.05 1.51 6 0.03 1.75 6 0.04

Systolic volume, mL 43 6 6b 59 6 6b 122 6 4a 46 6 6b ,0.001 ,0.001 ,0.001 49 6 4 71 6 4#

Relative wall thickness 0.48 6 0.01 0.51 6 0.02 0.48 6 0.01 0.49 6 0.02 .0.05 .0.05 .0.05 0.48 6 0.01 0.52 6 0.01

Fractional shortening, % 53 6 1a 49 6 2a 39 6 2b 52 6 2a ,0.01 ,0.05 ,0.001 54 6 2 46 6 2#

Ejection fraction, % 87 6 1a 82 6 2a 72 6 1b 87 6 2a ,0.01 ,0.01 ,0.001 82 6 1 78 6 1#

Time from mitral valve closure to opening, ms 114 6 3 117 6 4 114 6 3 116 6 3 .0.05 .0.05 .0.05 114 6 4 110 6 3

Estimated left ventricular mass, g 0.68 6 0.02b 0.71 6 0.02b 0.91 6 0.03a 0.73 6 0.03b ,0.001 ,0.01 ,0.001 0.63 6 0.02* 0.79 6 0.02

Left ventricle + septum wet weight,2 mg/mm tibia 19.5 6 0.8b 19.4 6 0.8b 22.8 6 0.7a 19.8 6 0.9b ,0.05 .0.05 .0.05 19.1 6 0.7 20.7 6 1.0

Right ventricular wet weight,2 mg/mm tibia 4.2 6 0.3 4.3 6 0.3 4.6 6 0.4 4.4 6 0.3 .0.05 .0.05 .0.05 4.2 6 0.4 4.5 6 0.3

Left ventricular diastolic stiffness constant2 (k) 18.1 6 0.9c 19.6 6 1.0c 28.8 6 1.2a 24.0 6 0.9b ,0.001 .0.05 ,0.01 18.3 6 0.8 25.8 6 0.9

1 Values are mean 6 SEM, n = 12 unless otherwise noted. Means without a common letter differ, * vs. CR and # vs. HR, P , 0.05.
2 n = 9.

FIGURE 3 Effects of rutin on inflammation and fibrosis in the heart of H-fed rats. Picrosirius red staining of left ventricle showing collagen

deposition (A–F, fibrosis marked as “fi” and hypertrophied cardiomyocytes as “hy”) (340) from C8 (A), C16 (B), CR (C ), H8 (D), H16 (E ), and HR

(F ) rats. Hematoxylin and eosin staining of left ventricle showing infiltration of inflammatory cells (G–L, inflammatory cells as dark spots

surrounding the myocytes marked as “in”) (340) from C8 (G), C16 (H), CR (I ), H8 (J ), H16 (K ), and HR (L) rats.
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Abstract

Metabolic syndrome is a risk factor for cardiovascular disease and nonalcoholic fatty liver disease (NAFLD). We

investigated the responses to the flavonol, quercetin, in male Wistar rats (8–9 wk old) divided into 4 groups. Two groups

were given either a corn starch–rich (C) or high-carbohydrate, high-fat (H) diet for 16wk; the remaining 2 groupswere given

either a C or H diet for 8 wk followed by supplementation with 0.8 g/kg quercetin in the food for the following 8 wk (CQ and

HQ, respectively). The H diet contained ;68% carbohydrates, mainly as fructose and sucrose, and ;24% fat from beef

tallow; the C diet contained;68% carbohydrates as polysaccharides and;0.7% fat. Comparedwith the C rats, the H rats

had greater body weight and abdominal obesity, dyslipidemia, higher systolic blood pressure, impaired glucose tolerance,

cardiovascular remodeling, and NAFLD. The H rats had lower protein expressions of nuclear factor (erythroid-derived 2)-

related factor-2 (Nrf2), heme oxygenase-1 (HO-1), and carnitine palmitoyltransferase 1 (CPT1) with greater expression of

NF-kB in both the heart and the liver and less expression of caspase-3 in the liver than in C rats. HQ rats had higher

expression of Nrf2, HO-1, and CPT1 and lower expression of NF-kB than H rats in both the heart and the liver. HQ rats had

less abdominal fat and lower systolic blood pressure along with attenuation of changes in structure and function of the

heart and the liver compared with H rats, although body weight and dyslipidemia did not differ between the H and HQ rats.

Thus, quercetin treatment attenuated most of the symptoms of metabolic syndrome, including abdominal obesity,

cardiovascular remodeling, and NAFLD, with the most likely mechanisms being decreases in oxidative stress and

inflammation. J. Nutr. 142: 1026–1032, 2012.

Introduction

Metabolic syndrome refers to the clustering of insulin resistance,
hypertension, central obesity, impaired glucose tolerance, and
dyslipidemia (1). Metabolic syndrome increases the risk of
cardiovascular disease, nonalcoholic fatty liver disease (NAFLD)6,
and diabetes (2–4). This increased prevalence of cardiovascular

disease and NAFLD associated with metabolic syndrome
necessitates the discovery of appropriate interventions for these
complications. One of the major causes of obesity and NAFLD
in Western society is a diet rich in both carbohydrates such as
fructose or sucrose and saturated fats from animal sources (5,6).
Excess consumption of fat and fructose in the diet leads to
disturbances in fatty acid and carbohydrate metabolism (7,8).
Excess fructose consumption also leads to increased lipid
biosynthesis, because fructose is a lipogenic carbohydrate (9).
This is accompanied by reduced fatty acid oxidation and
increased storage of fat in the visceral area. Impairment of fatty
acid metabolism in the liver leads to hepatic steatosis followed
by NAFLD (10).

Quercetin (3,39,49,5,7-pentahydroxyflavone) is an important
dietary flavonoid found in red onions, apples, berries, citrus fruits,
tea, and red wine (11). Quercetin reduced systolic blood pressure
in hypertensive human participants and in animal models of
hypertension (12–14), reduced serum TG and cholesterol con-
centrations in high-fat diet-fed rabbits after 12 wk of treatment
(15), and reduced body weight in obese Zucker rats without
changing the mean daily food intake, also reducing plasma
concentrations of TG, nonesterified fatty acids (NEFA) total
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cholesterol, and insulin (16). High-fat, high-cholesterol, and high-
sucrose diet-fed mice treated with quercetin had lower body
weight, visceral fat, blood glucose, plasma insulin, plasma total
cholesterol, plasma TG, plasma NEFA, and plasma TNFa
concentrations with higher plasma adiponectin concentrations.
These mice also had suppressed liver lipid accumulation (17). In
high-fat diet-fed mice, quercetin increased energy expenditure
and reduced plasma concentrations of inflammatory markers
without any changes in food consumption, physical activity,
body weight, or body composition (18). Recent studies have
also shown the protective effects of quercetin in thioacetamide-
and acrylonitrile-induced hepatotoxicity (19,20).

Thus, we characterized the effects of quercetin as a dietary
intervention in a diet-induced rat model of NAFLD and
cardiovascular remodeling as part of metabolic syndrome
induced in rats by feeding a high-carbohydrate, high-fat diet
for 16 wk (21). After treatment with quercetin, the structure and
function of the cardiovascular system were characterized with
echocardiography, isolated Langendorff heart preparation, vas-
cular reactivity studies, and histopathological analysis. The
structure and function of the liver were characterized with
histopathological analysis and measurement of biochemical
variables. Variables for obesity, dyslipidemia, and glucose
tolerance were also measured. The possible mechanisms in-
volved in the action of quercetin were characterized by the
expression of proteins involved in cellular metabolism and stress
regulation.

Methods

Rats, diets, and treatment with quercetin

All experimental protocols were approved by the University of Southern
Queensland Animal Ethics Committee under the guidelines of the

National Health and Medical Research Council of Australia. Male

Wistar rats (8–9 wk old, 333 6 2 g, n = 40) were obtained from The

University of Queensland Biological Resources facility. Rats were
randomly divided into 4 groups: corn starch–rich diet-fed rats (C; n =

10), corn starch–rich diet-fed rats treated with quercetin (CQ; 0.8 g/kg

food; n = 10; MP Biomedicals), high-carbohydrate, high-fat diet-fed rats

(H; n = 10), and high-carbohydrate, high-fat diet-fed rats treated with
quercetin (HQ; 0.8 g/kg food; n = 10). The compositions of the diets

were previously described in detail (21–23). C and H rats were fed with

corn starch–rich and high-carbohydrate, high-fat diets, respectively, for

16 wk. CQ and HQ rats were fed with corn starch–rich and high-
carbohydrate, high-fat diets, respectively, for the first 8 wk and the

respective diets were supplemented with quercetin (0.8 g/kg food) for a

further 8 wk. All the rats were individually housed under temperature-
controlled, 12-h-light/-dark conditions and consumed food and water ad

libitum.

Physiological and metabolic variables

All rats were monitored daily for body weight and food and water

intakes. Abdominal circumference and body length were measured every

4 wk using a standard measuring tape under light anesthesia with Zoletil

(10 mg/kg tiletamine, 10 mg/kg zolazepam, i.p.; Virbac) (21). BMI and
energy efficiency were calculated as in a previous study (21).

Oral glucose tolerance tests were performed on rats following a 12-h

food deprivation as described in a previous study (21). AUC was
calculated as in a previous study (24) and plasma concentrations of total

cholesterol, TG, and NEFA were also measured as in a previous study

(21). At the end of the protocol, abdominal fat pads (including

retroperitoneal, epididymal, and omental) were separately removed,
weighed, and expressed as mg/mm of tibial length.

Assessment of cardiovascular structure and function

Systolic blood pressure measurements. Systolic blood pressure was
measured every 4 wk under light sedation with Zoletil (10 mg/kg

tiletamine, 10 mg/kg zolazepam, i.p.; Virbac) as previously described

(21).

Echocardiography. Echocardiographic examinations (Phillips iE33,

12MHz transducer) were performed to assess cardiovascular structure

and function in all groups. The examination was performed at the end of

the protocol as previously described (21,22).

Isolated Langendorff heart preparation. Following terminal anes-

thesia and heparin injection, plasma was collected for biochemical

analyses and isolated rat hearts were perfused for measurement of left
ventricular diastolic stiffness as previously described (21).

Vascular reactivity. Thoracic aortic rings (;4 mm in length; 3–4 rings
from 10 rats/group) were used to obtain cumulative concentration-

response curves for noradrenaline (contraction), sodium nitroprusside

(relaxation), and acetylcholine (relaxation) as in a previous study (21).

Histology of the heart. Two rats from each groupwere exclusively used

for histology. Hearts were fixed, cut, and stained as previously reported

(21).

Assessment of hepatic structure and function

Histology of liver. Livers (n = 8/group) were isolated and weighed. Two

rats from each group were exclusively used for histology. Liver portions
were isolated from these rats and fixed, cut, and stained as in a previous

study (21).

Liver enzymes in plasma. Plasma activities of alanine transaminase
(ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), and

lactate dehydrogenase (LDH) and the plasma concentrations of albumin,

total bilirubin, urea, and uric acid were determined as previously

described (21).

Western-blot analysis

After perfusion experiments, the heart samples were weighed and

immediately stored at 2808C for protein extraction (n = 4/group).
Similarly, the liver samples were immediately isolated after weighing the

liver (n = 4/group) and were stored at 2808C for protein extraction.

These samples were homogenized and sonicated after adding cell lysis
buffer, followed by centrifugation at 15,000 3 g for 30 min at 48C.
Supernatants were used to measure the protein concentration in each

sample by the bicinconinic acid method (Thermo Scientific). Superna-

tants in equal concentrations from each group were used in Western-blot
analyses to study the expression of carnitine palmitoyltransferase

1 (CPT1), nuclear factor (erythroid-derived 2)-related factor-2 (Nrf2),

heme oxygenase-1 (HO-1) (antibodies from Santa Cruz Biotechnology),

NF-kB, caspase-3 (antibodies from Cell Signaling Technology), and b-
actin (antibody from Sigma-Aldrich) in the liver and heart. For

quantitative analysis, the expression of proteins was normalized to the

expression of b-actin.

Statistical analysis

Values are presented as mean 6 SEM. Results were tested for variance

using Bartlett’s test and variables that were not normally distributed
were transformed (using log 10 function) prior to statistical analyses. All

the groups were tested for effects of diet, treatment, and their interaction

by 2-way ANOVA. When the interaction and/or the main effects were

significant, means were compared using the Newman-Keuls multiple
comparison post test. Mean daily quercetin intakes in CQ and HQ

groups were compared with Student’s t test. P , 0.05 was considered

significant. All statistical analyses were performed using GraphPad Prism
version 5.00 for Windows.

Results

Physiological variables. Body weight was higher in the H rats
than in the C rats at 16 wk. Although body weight was higher in
CQ than in C rats at 16 wk, it did not differ between the H and
HQ rats at 16 wk (Table 1). H rats consumed less food and
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water compared with C rats. However, total energy intake was
higher in the H rats than in the C rats. HQ rats consumed more
food and water than H rats, whereas CQ rats consumed less
water and more food compared with C rats. CQ and HQ rats
had higher energy intakes compared with C and H rats,
respectively (Table 1). Energy efficiency and BMI were higher
in the H rats than in the C rats. CQ rats had higher whereas HQ
rats had lower energy efficiency compared with C and H rats,
respectively. BMI in CQ and HQ rats did not differ from C and
H rats, respectively (Table 1). Abdominal circumference was
higher in H rats than in C rats. Abdominal circumference was
lower in HQ rats compared with H rats, whereas it did not differ
between the C and CQ rats (Table 1). Relative to body weight,
the daily intake of quercetin was greater in CQ rats (64.3 6
1.6mg/kg body weight) compared withHQ rats (48.56 1.1mg/kg
body weight) due to greater food intake (P , 0.0001).

Metabolic variables. Higher basal blood glucose concentrations
and AUC in the H rats compared with C rats were normalized in
HQ rats and there was no effect of quercetin in CQ rats on basal
blood glucose concentrations and AUC (Table 1). Plasma concen-
trations of total cholesterol, TG, and NEFA were higher in the H
rats than in C rats. CQ rats did not differ in plasma total cholesterol
concentrations from C rats, whereas plasma concentrations of TG
and NEFAwere higher in the CQ rats than in the C rats (Table 1).
H and HQ rats did not differ in plasma concentrations of total
cholesterol and NEFA, whereas plasma TG concentrations were
higher in HQ rats than in H rats (Table 1). Abdominal fat pad
weights (retroperitoneal, epididymal, and omental) were higher in
H rats compared with C rats and were normalized in HQ rats, but
lower in the CQ rats than in the C rats (Table 1).

Cardiovascular structure and function. The LV (left ventri-
cle) of the heart from H rats had more infiltration of inflamma-

tory cells (Supplemental Fig. 1C) along with hypertrophy and
more collagen deposition (Supplemental Fig. 1G) than C rats
(Supplemental Fig. 1A,E). These changes were attenuated in the
LV of the HQ rats (Supplemental Fig. 1D,H). Systolic blood
pressure was higher in H rats compared with C rats at 16 wk. It
was normalized in HQ rats, whereas it was lower in CQ rats
than in C rats (Table 2). The left ventricular internal diameter
during systole and diastole and the systolic volume were higher
in H rats than in C rats, whereas these variables were normalized
in HQ rats and did not differ between the C and CQ rats (Table
2). Left ventricular posterior wall thickness during diastole was
higher in H rats compared with C rats and it did not differ in the
CQ and HQ rats compared with the C and H rats, respectively.
Relative wall thickness did not differ between the C and H rats,
whereas it was higher in both CQ and HQ rats compared with C
and H rats, respectively (Table 2). Indicators of ventricular
function (fractional shortening, ejection fraction, and the ratio
of early mitral inflow velocity to late mitral inflow velocity) were
lower in H rats than in C rats, indicating impaired ventricular
function (Table 2). These indicators of ventricular function were
normalized with quercetin supplementation in HQ rats (Table
2). The estimated LVmass was higher in H rats compared with C
rats and did not differ between H and HQ rats, whereas it was
higher in CQ rats than in C rats. The actual LV wet weight (with
septum) did not differ between the groups. The right ventricular
wet weight did not differ between the C and H rats, was higher
in the HQ rats than in the H rats, but did not differ between the
C and CQ rats (Table 2). The left ventricular diastolic stiffness
constant was higher in H rats compared with C rats and it was
lower in HQ rats than in H rats, whereas it did not differ
between the C and CQ rats (Table 2). Vascular responses,
including noradrenaline-induced contraction and sodium nitro-
prusside- and acetylcholine-induced relaxation, were impaired
in H rats compared with C rats (Fig. 1A–C). Noradrenaline-

TABLE 1 Physiological and metabolic variables in rats fed C or H diets for 8 wk and those diets or CQ or
HQ diets for an additional 8 wk1

Variables
P value

C CQ H HQ D Q D3Q

Physiological variables

Initial body weight, g 334 6 1 332 6 1 334 6 1 331 6 2 0.71 0.07 0.71

Final body weight, g 406 6 5c 441 6 12b 499 6 9a 498 6 13a ,0.0001 0.11 0.09

Water intake, mL/d 31.4 6 1.1a 24.8 6 1.0b 19.6 6 0.8c 23.4 6 0.7b ,0.0001 0.13 ,0.0001

Food intake, g/d 30.4 6 0.7b 34.0 6 0.4a 22.1 6 0.5d 28.2 6 0.5c ,0.0001 ,0.0001 0.026

Energy intake, kJ/d 349 6 10d 382 6 6c 462 6 9b 592 6 11a ,0.0001 ,0.0001 ,0.0001

Energy efficiency, kJ/g 0.19 6 0.01c 0.28 6 0.03b 0.36 6 0.02a 0.28 6 0.02b 0.0003 0.82 0.0003

BMI, g/cm2 0.65 6 0.01b 0.66 6 0.01b 0.74 6 0.01a 0.75 6 0.01a ,0.0001 0.32 1.00

Abdominal circumference, cm 19.6 6 0.4c 19.0 6 0.4c 23.3 6 0.4a 20.9 6 0.2b ,0.0001 0.0002 0.017

Metabolic variables

Basal blood glucose, mmol/L 4.0 6 0.1b 3.9 6 0.1b 5.0 6 0.1a 4.2 6 0.2b ,0.0001 0.002 0.012

Blood glucose AUC, mmol/L �min 680 6 13b 656 6 8b 771 6 10a 641 6 24b 0.016 ,0.0001 0.001

Plasma total cholesterol, mmol/L 1.4 6 0.1b 1.4 6 0.1b 2.0 6 0.1a 1.8 6 0.1a ,0.0001 0.32 0.32

Plasma TG, mmol/L 0.4 6 0.1c 1.0 6 0.1ab 0.8 6 0.1b 1.3 6 0.2a 0.012 0.0002 0.71

Plasma NEFA, mmol/L 1.2 6 0.3b 2.9 6 0.5a 3.6 6 0.7a 3.4 6 0.7a 0.016 0.20 0.11

Retroperitoneal fat, mg/mm tibial length 213 6 9b 135 6 7c 357 6 21a 220 6 11b ,0.0001 ,0.0001 0.031

Epididymal fat, mg/mm tibial length 129 6 11b 87 6 3c 225 6 14a 141 6 4b ,0.0001 ,0.0001 0.029

Omental fat, mg/mm tibial length 93 6 6b 68 6 4c 194 6 12a 103 6 4b ,0.0001 ,0.0001 ,0.0001

Total abdominal fat, mg/mm tibial length 435 6 24b 290 6 9c 775 6 46a 465 6 14b ,0.0001 ,0.0001 0.005

1 Values are mean 6 SEM, n = 10. Means in a row with superscripts without a common letter differ, P , 0.05. C, corn starch–rich diet-fed

rats; CQ, corn starch–rich diet-fed rats treated with quercetin; D, effects of diet; D3Q, interaction between the effects of diet and

quercetin; H, high-carbohydrate, high-fat diet-fed rats; HQ, high-carbohydrate, high-fat diet-fed rats treated with quercetin; NEFA,

nonesterified fatty acids; Q, effects of quercetin.
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induced contraction and acetylcholine-induced relaxation were
normalized in HQ rats, whereas these responses did not differ
between the C and CQ rats (Fig. 1A,C). The HQ rats had a greater
sodium nitroprusside-induced relaxation response compared with
H rats, whereas CQ rats had a lower response to sodium
nitroprusside compared with C rats (Fig. 1B).

Hepatic structure and function. Liver from H rats had more
infiltration of inflammatory cells (Supplemental Fig. 2C) than C
rats (Supplemental Fig. 2A) along with presence of fat vacuoles
(Supplemental Fig. 2G) and portal fibrosis (Supplemental Fig.
2K), which were absent in the liver from C rats (Supplemental
Fig. 2E,I). The wet weight of the liver was higher in H rats than
in C rats and normalized in HQ rats, whereas it was lower in CQ
rats than in C rats (Table 3). Plasma activities of ALT, AST, ALP,
and LDH were higher in H rats compared with C rats. Plasma
activities of ALT and ALP were normalized in HQ rats, whereas
they were lower in CQ rats than in C rats. Plasma ASTand LDH
activities did not differ between C and CQ rats. Plasma AST
activities did not differ between the H and HQ rats, whereas
plasma LDH activity was normalized in HQ rats (Table 3).
Although plasma total bilirubin concentrations did not differ
between the C and H rats, they were lower in HQ rats compared
with H rats. Plasma urea and plasma uric acid concentrations
were lower and higher, respectively, in H rats than in C rats. The
HQ rats had higher plasma urea concentrations compared with
H rats, although not normalized, whereas plasma uric acid
concentrations were normalized in HQ rats (Table 3).

Expression of regulatory proteins in the liver and the
heart. In the liver from H rats, the protein expression of Nrf2,
HO-1, CPT1, and caspase-3 was lower whereas NF-kB expres-
sion was higher compared with C rats. In HQ rats, the
expression of Nrf2, CPT1, and caspase-3 in the liver was
normalized, whereas the expression of HO-1 was higher
compared with H rats. NF-kB expression in the liver was lower
in both CQ and HQ rats compared with C and H rats,

respectively. Hepatic expression of Nrf2 and CPT1 did not differ
between C and CQ rats, whereas hepatic expression of HO-
1 and caspase-3 were higher in CQ rats than in C rats. Hepatic
expression of NF-kB was lower in the CQ rats than in C rats
(Fig. 2A,C). In the heart from H rats, expression of Nrf2, HO-1,
and CPT1 was lower, whereas expression of NF-kB was higher
compared with C rats. HQ rats had higher expression of Nrf2,
HO-1, and CPT1, whereas the expression of NF-kBwas lower in
the heart compared with H rats. Cardiac expression of Nrf2,
HO-1, and CPT1 did not differ between the C and CQ rats,
whereas cardiac expression of NF-kB was lower in CQ rats than
in C rats. Caspase-3 expression in the heart did not differ
between the groups (Fig. 2B,D).

Discussion

Flavonoids are secondary plant metabolites that are useful, e.g.,
for protection of plants against fungal infection (25–27);
quercetin is one of the most common flavonoids in the human
diet. Because quercetin is abundant in plant-based products in
the diet, it is important to determine whether quercetin can
reduce human health challenges such as obesity, metabolic
syndrome, and NAFLD. Hence, we have characterized the
effects of quercetin in an appropriate animal model of diet-
induced metabolic syndrome and associated complications
(21,28). This rodent model mimics most of the complications
associated with human metabolic syndrome (21).

Obesity is a chronic condition characterized by excess fat
deposition in the abdomen, including retroperitoneal, epididy-
mal, and omental fat pads. Excess fat deposition increases
morbidity and mortality through health complications, includ-
ing oxidative stress, chronic low-grade inflammation, dyslipide-
mia, type 2 diabetes, cardiovascular disease, NAFLD, and some
cancers (29–36). In this study, we have targeted NAFLD,
obesity, and cardiovascular disease with quercetin using an
appropriate rat model of metabolic syndrome (21). Using the
same model, we showed that rutin, a glycoside of quercetin,

TABLE 2 Cardiovascular structure and function in rats fed C or H diets for 8 wk and those diets or CQ or
HQ diets for an additional 8 wk1

Variables
P value

C CQ H HQ D Q D3Q

Systolic blood pressure, mm Hg 129 6 1b 123 6 1c 145 6 1a 132 6 2b ,0.0001 0.0001 0.012

LVIDs, mm 3.38 6 0.15b 3.62 6 0.25b 4.88 6 0.14a 3.37 6 0.22b 0.003 0.003 ,0.0001

LVIDd, mm 6.64 6 0.10b 6.60 6 0.10b 7.47 6 0.09a 6.70 6 0.16b 0.0003 0.001 0.003

LVPWd, mm 1.58 6 0.02b 1.76 6 0.05ab 1.81 6 0.09a 1.85 6 0.08a 0.020 0.10 0.30

Systolic volume, mL 43 6 6b 55 6 9b 122 6 11a 44 6 9b 0.0005 0.0007 ,0.0001

Relative wall thickness 0.48 6 0.01b 0.55 6 0.02a 0.48 6 0.01b 0.56 6 0.03a 0.88 0.0006 0.88

Fractional shortening, % 53 6 1a 58 6 3a 39 6 1b 57 6 2a 0.0004 ,0.0001 0.002

Ejection fraction, % 86 6 1a 82 6 3a 72 6 1b 86 6 3a 0.032 0.032 0.0003

E:A ratio 1.88 6 0.06a 1.75 6 0.05ab 1.57 6 0.09b 1.83 6 0.07a 0.11 0.35 0.008

Estimated LV mass, g 0.68 6 0.02c 0.79 6 0.02b 0.91 6 0.03a 0.85 6 0.05ab ,0.0001 0.45 0.013

LV + septum wet weight, mg/mm

tibial length

20.3 6 0.7 21.1 6 0.7 21.8 6 1.1 21.7 6 0.7 0.21 0.67 0.59

Right ventricular wet weight, mg/mm

tibial length

4.8 6 0.2b 4.4 6 0.4b 4.5 6 0.3b 6.1 6 0.4a 0.044 0.08 0.005

LV diastolic stiffness constant (k) 19.8 6 0.8c 20.1 6 1.0c 27.5 6 1.1a 23.4 6 1.1b ,0.0001 0.07 0.038

1 Values are mean 6 SEM, n = 8–10. Means in a row with superscripts without a common letter differ, P , 0.05. C, corn starch–rich diet-

fed rats; CQ, corn starch–rich diet-fed rats treated with quercetin; D, effects of diet; D3Q, interaction between the effects of diet and

quercetin; E:A, ratio of early mitral inflow velocity to late mitral inflow velocity; H, high-carbohydrate, high-fat diet-fed rats; HQ, high-

carbohydrate, high-fat diet-fed rats treated with quercetin; LV, left ventricle; LVIDs, left ventricular internal diameter during systole; LVIDd,

left ventricular internal diameter during diastole; LVPWd, left ventricular posterior wall thickness during diastole; Q, effects of quercetin.
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reduced abdominal fat and hence NAFLD and cardiovascular
remodeling (24). Rutin reduced body weight as well as the
abdominal fat content (24), indicating that it may enhance the
utilization of fat and the lipogenic carbohydrate, fructose, or it
may inhibit further absorption and deposition of fat, or both. In
this study, quercetin did not reduce body weight, but it reduced
the abdominal fat deposition. Previously, a 10-fold higher dose
of quercetin (0.8% in food) compared with our study (0.08% in
food) increased the energy expenditure in high-fat diet-fed mice
without affecting the body weight and body composition (18).
These results suggest that quercetin may cause lipid trafficking
away from the abdomen and hence reduce the associated
complications, mainly NAFLD and cardiovascular remodeling.
Our recent study with chia seeds has demonstrated a link
between lipid trafficking away from abdomen and attenuation
of changes in the structure and function of the heart and the liver

(23). This study also showed that the lipid components in
plasma were higher with quercetin treatment consistent with the
trafficking of fat by the circulation. The lack of difference in the
body weights of quercetin-treated and untreated rats may
suggest that the abdominal fat has been moved to other fat
storage areas or has been converted to muscle mass.

Although dyslipidemia was not attenuated with quercetin,
the other symptoms of metabolic syndrome were attenuated,
including systolic blood pressure, glucose tolerance, and visceral
obesity. Quercetin abolished hepatic steatosis, prevented the
infiltration of inflammatory cells in the liver, and reduced the
portal fibrosis along with improvements in liver function. Along
with these changes were cardioprotective effects, including
reduced collagen deposition, less infiltration of inflammatory
cells, inhibition of cardiomyocyte hypertrophy, reduced ventric-
ular stiffness, lower ventricular dimensions, and a return toward
normal ventricular function.

The presence of inflammation and oxidative stress leads to
cellular injury leading to organ dysfunction (37,38). One of the
major defense systems against stress-related injury is the Nrf2
system (39). Nrf2 is the transcription factor present in inactive
forms in the cell. Once activated, Nrf2 translocates to the
nucleus and activates the antioxidant response elements (39).
This, in turn, gives rise to proteins and enzymes, such as HO-1,
which reduce the cellular stress (39). This suggests that the
activators of Nrf2 system can protect organ systems. Similarly,
the role of NF-kB has been established in the activation of
inflammation (40).

In obesity, oxidative stress and inflammation induce organ
dysfunction (31). Our results showed that the high-carbohy-
drate, high-fat diet upregulated the hepatic and cardiac expres-
sion of NF-kB, whereas the hepatic and cardiac expression of
Nrf2 was downregulated, clearly indicating the presence of
inflammation and oxidative stress in both the liver and the heart.
The hepatic and cardiac expression of NF-kB was down-
regulated by quercetin, confirming its antiinflammatory role.
Similarly, quercetin supplementation upregulated the expression
of Nrf2, resulting in activation of antioxidant response elements,
followed by upregulation of HO-1, and hence the reduction of
oxidative stress. Thus, attenuation of hepatic and cardiac
changes by quercetin could be mediated through its antioxida-
tive and antiinflammatory actions.

Quercetin also upregulated the expression of CPT1, a
regulator of fatty acid oxidation, in the liver and the heart.
This change could attenuate NAFLD, thereby leading to
attenuation of steatosis through higher fatty acid oxidation in
the liver. Caspase-3 expression was also higher in the liver, but
not in the heart, with quercetin as with rutin (24). Greater
expression of caspase-3 indicates higher levels of apoptosis,
possibly leading to the removal of steatotic cells from the liver.
These results explain the role of quercetin in the attenuation of
hepatic changes in metabolic syndrome.

In this study, 0.8 g/kg food of quercetin was used to provide a
daily dose of ~50 mg/kg body weight. This dose corresponds to
;1 g/d quercetin in a 70-kg human based on scaling equation
(41) or ;0.6 g/d based on body surface area comparisons
between rats and humans (42). Although the mean daily human
intake of quercetin is not known, the total intake of polyphenols
is ;1 g/d, with two-thirds being flavonoids, including quercetin
and rutin (43). This suggests that the dose of quercetin used in
this study is realistic in humans.

In conclusion, quercetin was effective against the symptoms
of metabolic syndrome in a diet-induced rat model. The
trafficking of fat away from the abdomen did not lower body

FIGURE 1 Noradrenaline-induced contraction (A), sodium nitroprus-

side-induced relaxation (B), and acetylcholine-induced relaxation (C) in

thoracic aortic preparations from rats fed C or H diets for 8 wk and those

diets or CQ or HQ diets for an additional 8 wk. Values are mean6 SEM,

n = 10. Means at the highest concentration without a common letter

differ, P , 0.05. C, corn starch–rich diet-fed rats; CQ, corn starch–rich

diet-fed rats treated with quercetin; D, effects of diet; D3Q, interaction

between the effects of diet and quercetin; H, high-carbohydrate, high-

fat diet-fed rats; HQ, high-carbohydrate, high-fat diet-fed rats treated

with quercetin; Q, effects of quercetin.
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weight and blood lipids, while the cardiovascular and liver
complications of metabolic syndrome were attenuated. Querce-
tin supplementation attenuated the changes in expression of
markers for oxidative stress and inflammation in the liver and
the heart such as Nrf2, HO-1, andNF-kB along with higher fatty
acid oxidation. Livers had greater expression of caspase-3, an
apoptotic marker, indicating the attenuation of steatosis. Thus,
quercetin can be considered as a nutraceutical with potential for

the treatment of metabolic syndrome; clinical trials of this
relatively safe natural compound should be undertaken.
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Supplemental Figure 1. Inflammation and fibrosis in the heart from rats fed corn starch-rich 

or high-carbohydrate, high-fat diets for 8 wk and those diets or with supplemental quercetin 

for an additional 8 wk. Hematoxylin and eosin staining of LV showing infiltration of 

inflammatory cells (A-D, inflammatory cells marked as “in”; 20) from C (A), CQ (B), H 

(C), and HQ (D) rats. Picrosirius red staining of LV showing collagen deposition and 

hypertrophy (E-H, fibrosis marked as “fi” and hypertrophied cardiomyocytes as “hy”; 40) 

from C (E), CQ (F), H (G), HQ (H) rats.  

C, corn starch-rich diet-fed rats; CQ, corn starch-rich diet-fed rats treated with quercetin; H, 

high-carbohydrate, high-fat diet-fed rats; HQ, high-carbohydrate, high-fat diet-fed rats treated 

with quercetin. 
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Supplemental Figure 2. Inflammation, fat deposition, and fibrosis in the liver from rats fed 

corn starch-rich or high-carbohydrate, high-fat diets for 8 wk and those diets or with 

supplemental quercetin for an additional 8 wk. Hematoxylin and eosin staining of the liver 

showing inflammatory cells (A-D, marked as “in”; 20) and enlarged fat vacuoles (E-H, 

marked as “fv”; 40) from C (A,E), CQ (B,F), H (C,G), and HQ (D,H) rats. Milligan’s 

trichrome staining of the liver showing collagen deposition in the hepatic portal region (I-L, 

marked as “fi”; 20) from C (I), CQ (J), H (K), and HQ (L) rats. 

C, corn starch-rich diet-fed rats; CQ, corn starch-rich diet-fed rats treated with quercetin; H, 

high-carbohydrate, high-fat diet-fed rats; HQ, high-carbohydrate, high-fat diet-fed rats treated 

with quercetin. 
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Abstract

Background Red wine contains many potentially bioac-

tive polyphenols including resveratrol, catechins, antho-

cyanins and flavonoids as well as tannins derived from oak

during maturation. This study examined the effects of a

mixture of ellagitannins from oak bark (Quercus petraea

L.) on cardiovascular, metabolic and liver changes in high-

carbohydrate, high-fat diet–fed rats and in Spontaneously

Hypertensive Rats (SHR).

Methods First, 8-week-old male Wistar rats were divided

into four groups and given either cornstarch diet, corn-

starch diet ? oak bark extract (0.5 mL/kg food), high-

carbohydrate, high-fat diet or high-carbohydrate, high-fat

diet ? oak bark extract (0.5 mL/kg food) for 16 weeks.

Oak bark extract was added to the diets for last 8 weeks of

the feeding period. Secondly, SHR aged 42 weeks fed on

standard chow diet were divided into two groups with and

without oak bark extract treatment for 12 weeks (0.5 mL/

kg food).

Results The high-carbohydrate, high-fat diet induced

signs of metabolic syndrome along with cardiovascular

remodelling and non-alcoholic steatohepatitis. Oak bark

extract attenuated the signs of metabolic syndrome in high-

carbohydrate, high-fat diet–fed rats and improved the

structure and function of the heart and the liver. SHR after

oak bark extract treatment for 12 weeks showed lower

systolic blood pressure, lower cardiac fibrosis and cardiac

stiffness and improved vascular reactivity.

Conclusions Oak bark extract containing ellagitannins

improved cardiovascular, metabolic and liver parameters in

these rat models of human disease, suggesting that part of

the benefits attributed to red wine may be produced by

these ellagitannins.

Keywords Obesity � Cardiovascular disease �
Dyslipidaemia � Ellagitannins � Hypertension

Introduction

Oak has been used in winemaking for more than two

millennia, starting in Europe during the Roman Empire. It

was later discovered that wine stored in oak barrels had

improved characteristics including better taste. The ellag-

itannins, extracted from oak barrels into the wine during

this maturation process [1, 2], are complex naturally

occurring polyphenolic compounds present as monomers

or oligomers [3, 4]. These polyphenols are hexa-

hydroxyldiphenoyl esters of carbohydrates with more than

500 naturally occurring tannins having been identified

[4, 5]. Oak is one of the major sources of ellagitannins [6]

with the European oak (Querces petraea L.) containing

vescalagin, castalagin, grandinin and roburin E as the

major ellagitannins [7]. The ellagitannins, although present

in red wine, have received little attention as potential

bioactive compounds. In contrast, the mechanisms for the

cardiovascular benefits from other polyphenols in red wine

such as resveratrol have been extensively studied [8].
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Other dietary sources of ellagitannins include pome-

granates, chestnuts, raspberries, strawberries, blackberries

and walnuts [5, 6, 9, 10]. Ellagitannins from pomegranates

have been studied for their cardioprotective effects in

laboratory animals [11]. Pomegranate juice attenuated

isoproterenol-induced cardiac necrosis [12] and reduced

angiotensin-induced hypertension, glucosuria and protein-

uria in streptozotocin-induced diabetic rats [13]. Pome-

granate fruit extract containing punicalagin as the major

ellagitannin improved vascular endothelial function with-

out affecting the plasma lipid profile in obese Zucker rats

[14, 15].

Cardiovascular disease, including hypertension, remains

a major cause of morbidity and mortality around the world

[16]. Together with obesity and insulin resistance, hyper-

tension is a key criterion for diagnosis of the metabolic

syndrome, a major risk factor for cardiovascular disease

and type 2 diabetes [17] as well as the development of non-

alcoholic fatty liver disease [18]. Rats are widely used to

mimic human disease states, especially cardiovascular and

endocrine diseases [19–22]. Signs of human metabolic

syndrome can be induced by high-carbohydrate, high-fat

feeding in male Wistar rats [20]. The Spontaneously

Hypertensive Rat (SHR) is the most common rat model of

human hypertension [19].

This study has characterised the cardioprotective and

hepatoprotective effects of oak bark extract (OBE) con-

taining ellagitannins. Studies were performed on high-

carbohydrate, high-fat diet–fed male Wistar rats (H) or the

control cornstarch diet–fed rats (C). Subgroups of H and C

rats were treated with OBE for 8 weeks (HO and CO rats,

respectively). Further, adult male SHR with stable and high

systolic blood pressure (S rats) were treated with OBE for

12 weeks (SO rats). Cardiovascular, hepatic and metabolic

parameters were studied to evaluate whether OBE was

effective in attenuating the complications observed in these

rat models of human disease.

Materials and methods

Extract preparation and characterisation

European oak bark (Querces petraea L.) was converted

into chips and extracted for 6 months at room temperature

in brandy containing 70% alcohol. OBE was filtered to

remove the solid material and de-alcoholised before being

analysed by liquid chromatography/mass spectrometry

(LC/MS) employing electrospray mass spectrometry and

ultraviolet detection. The analysis was performed on a

Micromass Quattro micro tandem quadrupole mass spec-

trometer (Waters, Manchester, UK). LC separation was

provided by a Waters liquid chromatograph (Waters,

Milford, USA), consisting of a 2,695 separation module

and 2,487 dual-wavelength ultraviolet detector. Data were

acquired by the Masslynx data system for both the MS

and ultraviolet data. For LC, a flow rate of 1 mL/min was

used with 0.1% aqueous formic acid and methanol as

solvent and injection volume of 20 lL. For UV detection,

254 and 280 nm wavelengths were used. Castalagin,1

vescalagin (see footnote 1), grandinin (see footnote 1),

roburin E (see footnote 1) and ellagic acid (MP Bio-

medicals, Seven Hills, NSW, Australia) were used as

standards in this procedure. There were 20% uncertainties

in the measurements of ellagitannins derived from the

contributions of the uncertainties in the preparation and

analysis of the standards and samples.

Rats, diets and treatment with OBE

All experimental protocols were approved by The Uni-

versity of Queensland Animal Experimentation Ethics

Committee, under the guidelines of the National Health

and Medical Research Council of Australia. Male Wistar

rats (8 weeks old, weighing 328 ± 2 g, n = 40) and male

SHR (42 weeks old, weighing 422 ± 6 g, n = 20) were

supplied by The University of Queensland Biological

Resources facility and The Prince Charles Hospital,

Brisbane, respectively.

Male Wistar rats were randomly divided into four

experimental groups and were fed with either cornstarch

diet (C; n = 10), cornstarch diet ? OBE (0.5 mL/kg food;

CO; n = 10), high-carbohydrate, high-fat diet (H; n = 10)

or high-carbohydrate, high-fat diet ? OBE (0.5 mL/kg

food; HO; n = 10) for 16 weeks. CO and HO rats were

fed with respective diets for the first 8 weeks without

OBE; OBE was supplemented in the diets of CO and HO

rats for the last 8 weeks of the protocol. Compositions of

H and C diets used in this study have been described

previously [20, 23]. Male adult SHR with high and stable

systolic blood pressure were divided into two groups of 10

rats each, one without treatment (S) and one with OBE

treatment in diet (SO; 0.5 mL/kg in food) for 12 weeks.

All SHR were fed on standard powdered chow diet

(Specialty Feeds, Glen Forest, WA, Australia). All rats

were given ad libitum access to food and water and were

individually housed in temperature-controlled 12-h light–

dark conditions. Energy intakes were calculated as

described previously [20, 23].

1 Pure castalagin, vescalagin, grandinin and roburin E for use as

standards were kindly provided by Professor Stéphane Quideau,

European Institute of Chemistry and Biology, University of Bordeaux

I, France.
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Physiological and metabolic parameters

All rats were monitored daily for body weight, food intake

and water intake. Abdominal circumference and body

length of rats were measured at the end of protocol using a

standard measuring tape under light anaesthesia with

Zoletil (tiletamine, 10 mg/kg; zolazepam, 10 mg/kg, i.p.;

Virbac, Peakhurst, NSW, Australia). Body mass index

(BMI) and feed efficiency were calculated as previously

described [20].

At the end of the protocol, rats were food-deprived for

12 h and oral glucose tolerance tests were performed as

previously described [20, 23]. Blood glucose concentra-

tions obtained from oral glucose tolerance tests were used

to calculate area under the curve (AUC). Plasma concen-

trations of total cholesterol and triglycerides were deter-

mined using kits and controls supplied by Olympus using

an Olympus analyser (AU 400, Tokyo, Japan) [20, 23].

Non-esterified fatty acids (NEFA) in plasma were deter-

mined using a commercial kit (Wako, Osaka, Japan)

[20, 23]. During terminal experiments, abdominal fat pads

were removed, weighed and normalised to tibial length at

the time of fat removal.

Assessment of cardiovascular structure and function

Systolic blood pressure measurements

Systolic blood pressure of rats was measured under light

anaesthesia with Zoletil, using an MLT1010 Piezo-Electric

Pulse Transducer (ADInstruments, Sydney, Australia), an

inflatable tail-cuff connected to a MLT844 Physiological

Pressure Transducer (ADInstruments, Sydney, Australia)

and PowerLab data acquisition unit (ADInstruments,

Sydney, Australia) [20, 23]. These measurements were

taken every fourth week for C, CO, H and HO groups

starting at initiation of feeding period and every second

week for S and SO groups starting 2 weeks before the

initiation of protocol.

Echocardiography

Echocardiographic examinations (Phillips iE33, 12 MHz

transducer) were performed to assess the cardiovascular

structure and function in all the rats at the end of protocol

as previously described [20].

Isolated Langendorff heart preparation

Rats were killed by injection with Lethabarb (pentobarbi-

tone sodium, 100 mg/kg, i.p.; Virbac, Peakhurst, NSW,

Australia), and heparin (200 IU; Sigma-Aldrich Australia,

Sydney, Australia) was injected through the right femoral

vein. The abdomen was then opened and blood (*5 mL)

was withdrawn from the abdominal aorta, collected into

heparinised tubes and centrifuged at 5,0009g for 15 min to

obtain plasma. Plasma was stored at -20 �C before further

biochemical analysis. Hearts were removed and used as

isolated Langendorff heart preparations to assess left ven-

tricular function (n = 8 in each group) as previously

described [20, 23]. End-diastolic pressures were obtained

for the calculation of diastolic stiffness constant (j,

dimensionless). After performing Langendorff heart per-

fusion studies, the heart was separated into right ventricle

and left ventricle (with septum) and weighed.

Vascular reactivity

Thoracic aortic rings (*4 mm in length) from rats (n = 10

from each group) were suspended in an organ bath filled

with Tyrode physiological salt solution bubbled with 95%

O2–5% CO2, maintained at 35 �C and allowed to stabilise

at a resting tension of approximately 10 mN. Cumulative

concentration–response curves (contraction) were obtained

for noradrenaline (Sigma-Aldrich Australia, Sydney,

Australia) and cumulative concentration–response curves

(relaxation) were obtained for acetylcholine (Sigma-

Aldrich Australia, Sydney, Australia) and sodium nitro-

prusside (Sigma-Aldrich Australia, Sydney, Australia)

following submaximal (70%) contraction to noradrenaline

[20, 23].

Histology of the heart

Hearts were removed from the rats (n = 2 from each

group) soon after death and were processed for histological

assessments for inflammatory cells and collagen deposition

[20].

Assessment of hepatic structure and function

Livers (n = 8 from each group) from C, CO, H and HO

rats were isolated and weighed. Liver portions were iso-

lated (n = 2 from each group) and fixed in 10% neutral

buffered formalin for three days. These tissue samples were

dehydrated and then embedded in paraffin wax. Thin sec-

tions (5 lm) of these tissues were cut and stained with

haematoxylin and eosin for the determination of inflam-

matory cell infiltration (209) and for determining the

presence of fat vacuoles (409) in the liver. Liver sections

were also stained with Milligan’s Trichrome stain to

determine portal fibrosis (209) [20, 23].

Plasma activities of alanine transaminase (ALT),

aspartate transaminase (AST), alkaline phosphatase (ALP)

and lactate dehydrogenase (LDH) and plasma concentra-

tions of albumin, total bilirubin, urea and uric acid were
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determined using kits and controls supplied by Olympus

using an Olympus analyser (AU 400, Tokyo, Japan) in C,

CO, H and HO rats [20, 23].

Oxidative stress and inflammatory markers

Plasma concentrations of malondialdehyde were determined

by high-performance liquid chromatography (Shimadzu,

Kyoto, Japan) as previously described [24]. Plasma gluta-

thione peroxidase activity was measured using an automated

spectrophotometer (Cobas Mira) as previously described

[25]. Plasma C-reactive protein concentrations were esti-

mated using commercial kits (BD Bioscience, Franklin

Lakes, NJ) according to manufacturer-provided standards

and protocols. Heart and liver samples isolated from rats

(n = 3 from each group) were stored at 280 �C. These

samples were thawed and sonicated after adding cell lysis

buffer. These samples were then ultracentrifuged at

100,0009g for 30 min at 4 �C. Supernatants were used to

measure the protein concentration in each sample by the bi-

cinchoninic acid method (Thermo Scientific). The expression

of Nrf2 and NF-jB was studied in these supernatants at equal

protein amounts (40 lg) by Western blot analysis.

Statistical analysis

All data are mean ± SEM. Four groups of Wistar rats (C,

CO, H and HO) were tested for homogenous variance using

Bartlett’s test, and variables that were not normally dis-

tributed were transformed (using log 10 function) prior to

statistical analyses. These four groups were tested for

effects of diet, treatment and their interactions by two-way

ANOVA. When interaction and/or the main effects were

significant, means were compared using Newman–Keuls

multiple comparison post-test. Two SHR groups (S and

SO) were compared using Student’s t test. P \ 0.05 was

considered significant. All statistical analyses were per-

formed using GraphPad Prism version 5.00 for Windows

(San Diego, CA, USA).

Results

Chemical profile of OBE and daily intake

of ellagitannins

OBE contained vescalagin (1.2 mg/mL), castalagin (0.8 mg/

mL), roburin E (0.8 mg/mL) and grandinin (2 mg/mL) as

major ellagitannins as well as ellagic acid (0.1 mg/mL).

Daily intakes of individual ellagitannins have been calcu-

lated from these values for CO, HO and SO rats (Table 1).

Effects of OBE on H-induced metabolic syndrome

Physiological and metabolic parameters

Body weights of H rats were higher than those of C rats after

16 weeks and HO rats had lower body weight (Table 2).

Water intake was lower in H rats than in C rats. HO rats had

lower water intake when compared to H rats (Table 2). H

rats consumed less food than C rats, although the energy

intake was higher for H rats. OBE did not change food

intake or energy intake in CO and HO rats (Table 2). H rats

showed abdominal obesity measured as higher abdominal

circumferences and increased abdominal fat pads than C

rats. These signs of obesity were attenuated with OBE

treatment in HO rats (Table 2). BMI and feed efficiency

were higher in H rats than in C rats, and both parameters

were lower in CO and HO rats when compared to C rats and

H rats, respectively (Table 2). H rats showed higher basal

blood glucose concentrations when compared to C rats after

16 weeks, whereas HO rats had lower basal blood glucose

concentrations (Table 2). H feeding impaired oral glucose

tolerance, while OBE treatment improved it (Fig. 1a).

Plasma concentrations of triglycerides, total cholesterol and

NEFA were higher in H rats than in C rats. HO rats had

lower plasma concentrations of these lipid components

(Table 2). H rats showed lower plasma urea concentrations

and higher plasma uric acid concentrations than C rats.

Plasma urea concentrations were higher and plasma uric

Table 1 Daily intake of ellagitannins in OBE-treated rats

Components from OBE CO HO SO

OBE (lL) 16.41 ± 0.37 10.66 ± 0.48 15. 21 ± 0.23

Vescalagin (lg) 19.70 ± 0.44 12.79 ± 0.57 18.25 ± 0.28

Castalagin (lg) 13.13 ± 0.30 8.52 ± 0.38 12.17 ± 0.19

Grandinin (lg) 32.83 ± 0.74 21.31 ± 0.95 30.42 ± 0.46

Roburin E (lg) 13.13 ± 0.30 8.52 ± 0.38 12.17 ± 0.19

Total ellagitannin intake (lg) 78.79 ± 1.77 51.15 ± 2.29 73.00 ± 1.11

Ellagic acid (lg) 1.64 ± 0.04 1.07 ± 0.05 1.52 ± 0.02

Values are mean ± SEM and n = 10 for each group. Daily intake of OBE and individual ellagitannins from extract was calculated based on the

daily intake of food

CO cornstarch diet ? OBE–fed rats, HO high-carbohydrate, high-fat diet ? OBE–fed rats, SO SHR supplemented with OBE
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acid concentrations were lower in HO rats when compared

to H rats (Table 2).

Cardiovascular structure and function

Systolic blood pressure was higher in H rats than in C rats

(Fig. 1b). Left ventricular internal diameter during diastole

(LVIDd), left ventricular wall thickness during diastole

(LVPWd) and systolic volume were higher, whereas frac-

tional shortening and ejection fraction were lower in H rats

than in C rats after 16 weeks (Table 3). HO rats had lower

systolic blood pressure, LVIDd and systolic volume with-

out any change in LVPWd (Fig. 1b and Table 3). HO rats

had higher fractional shortening and ejection fraction than

H rats (Table 3). Left ventricular masses were higher in H

rats than C rats, whereas HO rats showed lower left ven-

tricular masses (Table 3). Infiltration of inflammatory cells

was observed in the hearts of H rats after 16 weeks

(Fig. 2c); this was not observed in HO rats (Fig. 2d).

Left ventricular diastolic stiffness (Table 3) and fibrosis

(Fig. 2g) were higher in H rats than in C rats (Table 3 and

Fig. 2e) after 16 weeks. HO rats had lower left ventricular

diastolic stiffness (Table 3) and fibrosis (Fig. 2h). Impair-

ment in vascular contraction with noradrenaline (Fig. 3a)

and vascular relaxation with acetylcholine and sodium

nitroprusside (Fig. 3b and c) induced by H feeding were

attenuated in HO rats.

Hepatic structure and function

Livers from H rats were higher in wet weight than those

from C rats after 16 weeks, whereas liver wet weights were

lower in HO rats (Table 3). H feeding for 16 weeks caused

hepatic steatosis (Fig. 4c) and fibrosis (Fig. 4k) with infil-

tration of inflammatory cells in liver (Fig. 4g). These

changes in the liver were attenuated in HO rats (Fig. 4d, l,

and h). H rats showed higher plasma activities of ALT,

AST, ALP and LDH when compared to C rats. HO rats had

Table 2 Effects of OBE on H-induced physiological, metabolic and oxidative stress variables in C, CO, H and HO rats

Variables C CO H HO P value

Diet OBE Diet 9 OBE

Physiological variables

Initial body weight (g) 334 ± 7 329 ± 8 332 ± 9 336 ± 6 [0.05 [0.05 [0.05

Final body weight (g) 424 ± 11bc 401 ± 6c 510 ± 10a 440 ± 8b \0.001 \0.001 \0.05

Water intake (mL/day) 30.2 ± 0.6a 31.5 ± 0.4a 20.1 ± 0.4b 18.6 ± 0.5c \0.001 [0.05 \0.01

Food intake (g/day) 30.7 ± 0.7a 32.8 ± 0.8a 22.5 ± 0.8b 22.3 ± 1.0b \0.001 [0.05 [0.05

Energy intake (kJ/day) 345 ± 10b 365 ± 11b 479 ± 15a 476 ± 16a \0.001 [0.05 [0.05

BMI (g/cm2) 0.70 ± 0.01b 0.65 ± 0.01c 0.78 ± 0.01a 0.69 ± 0.01b \0.001 \0.001 [0.05

Feed efficiency (g/kJ) 0.26 ± 0.02b 0.20 ± 0.01c 0.37 ± 0.02a 0.22 ± 0.01bc \0.001 \0.001 \0.05

Abdominal circumference (cm) 21.4 ± 0.3b 19.6 ± 0.2c 23.8 ± 0.3a 20.0 ± 0.2c \0.001 \0.001 \0.001

Abdominal fat pads (mg/mm tibial

length)

407 ± 48b 206 ± 31c 805 ± 53a 415 ± 47b \0.001 \0.001 \0.05

Metabolic variables

Basal blood glucose (mmol/L) 4.2 ± 0.2b 3.8 ± 0.2bc 4.9 ± 0.2a 3.3 ± 0.2c [0.05 \0.001 \0.01

AUC (mmol/L.min) 688 ± 13b 626 ± 18c 768 ± 12a 664 ± 16bc \0.001 \0.001 [0.05

Plasma total cholesterol (mmol/L) 1.5 ± 0.1b 1.3 ± 0.1b 2.0 ± 0.1a 1.4 ± 0.1b \0.01 \0.001 [0.05

Plasma triglycerides (mmol/L) 0.4 ± 0.1b 0.4 ± 0.1b 0.9 ± 0.1a 0.5 ± 0.1b \0.01 [0.05 [0.05

Plasma non-esterified fatty acids

(mmol/L)

1.3 ± 0.1b 1.1 ± 0.1b 2.6 ± 0.2a 1.4 ± 0.1b \0.001 \0.001 \0.001

Plasma urea (mmol/L) 5.5 ± 0.3ab 6.1 ± 0.3a 3.4 ± 0.2c 4.8 ± 0.3b \0.001 \0.01 [0.05

Plasma uric acid (lmol/L) 35.2 ± 1.8b 37.2 ± 2.1b 52.6 ± 2.6a 33.1 ± 1.9b \0.01 \0.001 \0.001

Oxidative stress and inflammatory markers

Plasma malondialdehyde (lmol/L) 27.1 ± 1.1b 27.5 ± 1.0b 31.5 ± 1.2a 28.0 ± 1.2b \0.05 [0.05 [0.05

Plasma glutathione peroxidase activity

(U/L)

1,165 ± 39a 1,135 ± 26a 880 ± 27b 1,063 ± 27a \0.001 \0.05 \0.01

Plasma C-reactive protein (lmol/L) 2.60 ± 0.13bc 3.27 ± 0.17a 2.76 ± 0.08b 2.36 ± 0.10c \0.01 [0.05 \0.001

Values are mean ± SEM and n = 8–10 for each group. Means without a common letter differ, P \ 0.05

C cornstarch diet–fed rats, CO cornstarch diet ? OBE–fed rats, H high-carbohydrate, high-fat diet–fed rats, HO high-carbohydrate, high-fat

diet ? OBE–fed rats
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lower plasma activities of ALT, AST, ALP and LDH than

H rats (Table 3). Plasma bilirubin concentrations were

higher in H rats than in C rats, whereas HO rats had lower

plasma bilirubin concentrations than H rats (Table 3). No

changes were observed in plasma concentrations of albu-

min between the groups (Table 3).

Oxidative stress and inflammatory markers

H rats had higher plasma malondialdehyde concentrations

and lower plasma glutathione peroxidase activities than C

rats. HO rats showed lower plasma malondialdehyde con-

centrations and higher plasma glutathione peroxidase

activities than H rats (Table 2). There was no difference

between the plasma C-reactive concentrations of C and H

rats. C-reactive protein concentrations in plasma were lower

in HR and higher in CR rats when compared to H and C rats,

respectively (Table 2). The heart and the liver from H rats

showed up-regulation of NF-jB expression and down-reg-

ulation of Nrf2 expression. These changes in the expression

of NF-jB and Nrf2 were normalised in HO rats (Fig. 5).

Effects of OBE in SHRs

Physiological and metabolic parameters

OBE extract did not affect body weight, water, food and

energy intake and plasma lipid components in SO rats

(Online Resource 1). Basal blood glucose concentrations,

abdominal obesity and plasma malondialdehyde concen-

trations were lower in SO rats when compared to S rats

(Online Resource 1). Oral glucose tolerance was improved

in SO rats (Online Resource 2).

Cardiovascular structure and function

SO rats had lower systolic blood pressure after 6 weeks of

treatment, and systolic blood pressure was lower in SO rats

than in S rats until 12 weeks of treatment (Fig. 6a). LVIDd

and systolic volumes were lower in SO rats than in S rats

without affecting LVPWd (Table 4). Fractional shortening

and ejection fraction were higher, whereas left ventricular

masses were lower in SO rats than in S rats (Table 4). Left

ventricular diastolic stiffness was lower in SO rats when

compared to S rats as shown by lower diastolic stiffness

constant (Table 4). Vascular responses to noradrenaline

(Fig. 6b), acetylcholine (Fig. 6c) and sodium nitroprusside

(Fig. 6d) were improved in SO rats when compared with S

rats. Infiltration of inflammatory cells was not observed in

SO rats, and fibrosis was lower in SO rats than in S rats

(Online Resource 3).

Oxidative stress and inflammatory markers

SO rats had lower plasma malondialdehyde concentrations

and higher plasma glutathione peroxidase activities than S

rats (Online Resource 1). Plasma C-reactive protein con-

centrations were lower in SO rats when compared to S rats

(Online Resource 1).

Discussion

Red wine contains many polyphenols with potential bio-

logical activities [26], especially resveratrol and catechins

[8, 26, 27], but few other compounds from red wine have

been evaluated. This study has shown that an ellagitannin

mixture extracted from European oak bark used in red wine

maturation produces both cardiac and liver protection as

well as improved metabolic profile in high-carbohydrate,

high-fat diet–fed Wistar rats. In addition, OBE improved

cardiovascular structure and function in the SHR.

Limited studies with related ellagitannins from other

sources, such as punicalagin from pomegranates, have

shown cardiovascular improvement in rat models of

Fig. 1 Effects of OBE on oral glucose tolerance (a) and systolic

blood pressure (b). Values are mean ± SEM and n = 10 for each

group. End-point means without a common letter differ, P \ 0.05.

D, O and D 9 O represent effects of diet, OBE and interaction of diet

and OBE. C cornstarch diet–fed rats, CO cornstarch diet ? OBE–fed

rats, H high-carbohydrate, high-fat diet–fed rats, HO high-carbohy-

drate, high-fat diet ? OBE–fed rats
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Table 3 Effects of OBE on cardiovascular and hepatic variables in H-induced metabolic syndrome in C, CO, H and HO rats

Variables C CO H HO P value

Diet OBE Diet 9 OBE

Cardiovascular variables

LVIDd (mm) 6.46 ± 0.16b 6.40 ± 0.15b 7.21 ± 0.20a 6.56 ± 0.18b \0.05 \0.05 [0.05

LVPWd (mm) 1.58 ± 0.03b 1.60 ± 0.04b 1.75 ± 0.05a 1.66 ± 0.05ab \0.05 [0.05 [0.05

Systolic volume (lL) 54.6 ± 5.1b 50.2 ± 4.0b 115.1 ± 4.8a 58.9 ± 4.1b \0.001 \0.001 \0.001

Relative wall thickness 0.49 ± 0.01 0.48 ± 0.01 0.49 ± 0.01 0.49 ± 0.01 [0.05 [0.05 [0.05

Fractional shortening (%) 53.2 ± 1.3a 52.2 ± 1.4a 42.4 ± 1.0b 51.0 ± 1.5a \0.001 \0.01 \0.001

Ejection fraction (%) 85.1 ± 1.2a 82.6 ± 1.4a 73.0 ± 1.1b 82.1 ± 1.4a \0.001 \0.05 \0.001

Estimated left ventricular mass (g) 0.69 ± 0.02b 0.68 ± 0.02b 0.82 ± 0.03a 0.71 ± 0.02b \0.01 \0.05 \0.05

Left ventricular ? septum wet

weight (mg/mm tibial length)

20.1 ± 0.8b 19.4 ± 0.7b 22.5 ± 0.8a 19.9 ± 0.6b [0.05 \0.05 [0.05

Right ventricular weight

(mg/mm tibial length)

4.1 ± 0.3 4.3 ± 0.3 4.5 ± 0.4 4.2 ± 0.3 [0.05 [0.05 [0.05

Left ventricular diastolic stiffness

constant, j
19.1 ± 0.8c 18.4 ± 0.9c 28.2 ± 1.1a 22.8 ± 0.8b \0.001 \0.01 \0.05

Hepatic variables

Liver wet weight (mg/mm tibial length) 265 ± 10b 232 ± 11b 297 ± 9a 256 ± 10b \0.01 \0.001 [0.05

Plasma ALT (U/L) 35.6 ± 0.7b 32.5 ± 0.6c 48.2 ± 0.6a 36.9 ± 0.9b \0.001 \0.001 \0.001

Plasma AST (U/L) 75.1 ± 4.8b 77.8 ± 5.3b 101.2 ± 6.6a 82.3 ± 5.9b \0.05 [0.05 [0.05

Plasma ALP (U/L) 165 ± 15b 172 ± 15b 257 ± 20a 192 ± 18b \0.01 [0.05 \0.05

Plasma LDH (U/L) 220 ± 20b 206 ± 22b 451 ± 28a 262 ± 25b \0.001 \0.001 \0.001

Plasma albumin (g/L) 27.9 ± 0.3 28.1 ± 0.3 28.5 ± 0.3 28.0 ± 0.3 [0.05 [0.05 [0.05

Plasma total bilirubin (lmol/L) 2.0 ± 0.1b 1.9 ± 0.1b 2.5 ± 0.1a 2.0 ± 0.1b \0.01 \0.01 [0.05

Values are mean ± SEM and n = 8–10 for each group. Means without a common letter differ, P \ 0.05

C cornstarch diet–fed rats, CO cornstarch diet ? OBE–fed rats, H high-carbohydrate, high-fat diet–fed rats, HO high-carbohydrate, high-fat

diet ? OBE–fed rats

Fig. 2 Effects of OBE on inflammation and fibrosis in the heart

induced by H feeding. Haematoxylin and eosin staining of left

ventricle showing infiltration of inflammatory cells (a–d, inflamma-

tory cells as dark spots surrounding the myocytes marked as in) (940)

from cornstarch diet–fed rats (a), cornstarch diet ? OBE–fed rats (b),

high-carbohydrate, high-fat diet–fed rats (c) and high-carbohydrate,

high-fat diet ? OBE–fed rats (d). Picrosirius red staining of left

ventricle showing collagen deposition (e–h, fibrosis marked as fi and

hypertrophied cardiomyocytes as hy) (940) from cornstarch diet–fed

rats (e), cornstarch diet ? OBE–fed rats (f), high-carbohydrate, high-

fat diet–fed rats (g) and high-carbohydrate, high-fat diet ? OBE–fed

rats (h)
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isoproterenol-induced cardiac necrosis and angiotensin-

induced hypertension [12, 13] with no adverse effects even

at high doses [28]. The pharmacokinetics of ellagitannins

from pomegranate have been studied in humans as well as

in rats [29, 30]. Ellagitannins are not absorbed directly due

to their large molecular size [29, 30]. Earlier studies

showed that urolithins, as metabolites of ellagitannins,

were found in the urine of human subjects even 48 h after

pomegranate juice consumption [9]. Ellagic acid, the

hydrolysis product of ellagitannins, was not found in the

blood within a few hours after pomegranate juice con-

sumption [29]. Thus, the bioactive metabolites from el-

lagitannins are likely to be urolithins rather than ellagic

acid.

H feeding in rats leads to the development of signs of

metabolic syndrome and associated end-organ damage

[20]. H rats developed abdominal obesity, hypertension,

dyslipidaemia and impaired glucose tolerance. These

changes were accompanied by cardiovascular remodelling

and non-alcoholic steatohepatitis [20]. Thus, rats fed with

H diet are suitable as a model to demonstrate the major

changes found in human metabolic syndrome [20, 21]. We

have previously shown that these diet-induced signs of the

metabolic syndrome can be reversed by natural products

with antioxidant and anti-inflammatory properties includ-

ing rutin, olive leaf, purple carrots and chia seeds [23, 31–

33]. Ellagitannins from oak bark showed similar biological

activity to these other natural products.

The protective effects mediated by the oak-derived

ellagitannins could relate to free radical scavenging and

anti-inflammatory properties as with pomegranate-derived

ellagitannins [34, 35]. The reduced plasma malondialde-

hyde concentrations and increased plasma glutathione

peroxidase activity along with increased expression of Nrf2

in both the heart and the liver strongly support an antiox-

idant mechanism. The antioxidant activity of ellagitannins

may lead to higher NO bioavailability by removal of

superoxide, leading to reduction in blood pressure.

Increased expression of eNOS, as shown with punicalagin

in hypercholesterolaemic mice [36], would also increase

NO bioavailability. Further, the improvement in vascular

relaxation responses of OBE-treated rats is supportive of a

reduction in blood pressure, especially the improvement

in acetylcholine-induced relaxation, by a response depen-

dent on endothelium-derived NO. In our study, the anti-

inflammatory mechanism is supported by the lower

expression of NF-jB, lower infiltration of inflammatory

cells in the heart and lower collagen deposition in OBE-

treated rats. These outcomes are associated with lower

ventricular stiffness, possibly improving ventricular func-

tion. Similar anti-inflammatory activities of ellagitannins

from pomegranate have been reported in a model of

rheumatoid arthritis and in a colon inflammation model

[35, 37]. The hepatoprotective responses with oak-derived

ellagitannins are shown by reduced plasma activities of

transaminases, attenuation of fat deposition and fibrosis,

and inhibition of infiltration of inflammatory cells in the

liver. The altered expression of NF-jB and Nrf2 in the liver

confirms the antioxidative and anti-inflammatory effects of

Fig. 3 Effects of OBE on vascular responses in rats. Noradrenaline-

induced contraction (a), acetylcholine-induced relaxation (b) and

sodium nitroprusside-induced relaxation (c) in thoracic aortic rings

from C, CO, H and HO rats. Values are mean ± SEM and n = 10 for

each group. End-point means without a common letter differ,

P \ 0.05. D, O and DxO represent effects of diet, OBE and

interaction of diet and OBE. C cornstarch diet–fed rats, CO cornstarch

diet ? OBE–fed rats, H high-carbohydrate, high-fat diet–fed rats,

HO high-carbohydrate, high-fat diet ? OBE–fed rats
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ellagitannins from OBE. Thus, ellagitannins derived from

oak bark ameliorated the changes associated with diet-

induced cardiovascular remodelling and non-alcoholic

fatty liver disease probably by both antioxidant and anti-

inflammatory mechanisms.

OBE-treated rats presented improved metabolic param-

eters including lower abdominal fat deposition and

improved glucose tolerance, as well as protection of the

heart and the liver. Tannins from pomegranate leaf pro-

duced antiobesity effects by inhibiting energy intake in

high–fat diet–fed mice [38], unlike the unchanged energy

intake in our study. Decreased oxidative stress and

inflammation may also be the mechanism responsible for

improving metabolic parameters [39].

The improved cardiovascular parameters were also

measured in adult SHR, the genetic model of choice to

mimic human essential hypertension with extensive car-

diovascular remodelling [19, 22]. OBE-treated rats had

lower systolic blood pressure, ventricular collagen depo-

sition and diastolic cardiac stiffness. Similar effects were

previously reported with the ellagitannin-rich pomegranate

juice in isoproterenol-induced cardiac necrosis model and

Fig. 4 Effects of OBE on fat deposition, inflammation and fibrosis in

rat livers. Haematoxylin and eosin staining of liver showing enlarged

fat vacuoles (a–d, marked as fv) (940) and inflammatory cells (e–h,

marked as in) (920) from cornstarch diet–fed rats (a, e), cornstarch

diet ? OBE–fed rats (b, f), high-carbohydrate, high-fat diet–fed rats

(c, g) and high-carbohydrate, high-fat diet ? OBE–fed rats (d, h) rats.

Milligan’s Trichrome staining of hepatic portal regions showing

fibrosis (i–l, marked as fi) (920) from cornstarch diet–fed rats (i),
cornstarch diet ? OBE–fed rats (j), high-carbohydrate, high-fat diet–

fed rats (k) and high-carbohydrate, high-fat diet ? OBE–fed rats (l)

Fig. 5 Effects of OBE on

expression of Nrf2 and NF-jB

in the heart (a) and the liver (b).

For quantitative analysis, the

expression of these proteins was

normalised against the

expression of b-actin in the

heart (c) and the liver (d).

Values are mean ± SEM,

n = 3. Means without a

common letter differ, P \ 0.05.

C cornstarch diet–fed rats,

CO cornstarch diet ? OBE–fed

rats, H high-carbohydrate,

high-fat diet–fed rats,

HO high-carbohydrate, high-fat

diet ? OBE–fed rats
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in angiotensin II-induced hypertension in streptozotocin-

induced diabetic rats [12, 13]. Improvement in vascular

responses in OBE-treated SHR also suggests higher bio-

availability of NO [36]. Hence, these results with SHR

support the cardioprotective roles of ellagitannins derived

from oak bark.

In conclusion, the health effects of red wine have been

attributed to polyphenols such as resveratrol, rather than to

oak-derived ellagitannins. This study has defined the pro-

tective effects of an oak bark extract containing vescalagin,

castalagin, grandinin and roburin E on the heart and the

liver together with an improved metabolic profile in two rat

models of human metabolic syndrome and human hyper-

tension. These results imply that the ellagitannins from oak

may be important mediators of the benefits of red wine in

humans due to their antioxidant and anti-inflammatory

responses. Clinical trials should be considered with these

ellagitannin extracts.

Acknowledgments This study was supported by The Prince Charles

Hospital Foundation, Brisbane, Australia. We thank Mr. Paul Addi-

son, School of Biomedical Sciences, and Mr. Gary Wilson, School of

Human Movement Studies, both at The University of Queensland,

Australia, for their help with histopathological studies and plasma

oxidant analyses, respectively. We also thank Dr. Fiona Campbell and

Mr. Brian Bynon both at School of Veterinary Science, The Uni-

versity of Queensland, Australia, for their assistance with echocar-

diography and plasma analyses, respectively; Dr Thiruma Arumugam

(The University of Queensland) for assistance with expression studies

and Dr Kate Kauter (University of Southern Queensland) for assis-

tance with C-reactive protein measurements. We also thank Prof.
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Online Resource 

Online Resource 1. Effects of OBE on physiological, metabolic, oxidative stress and 

inflammatory parameters in SHR. 

Variables S SO 
Physiological variables 

Initial body weight (g) 426  10 418  6 

Final body weight (g) 467  6 466  8 

Water intake (mL/day) 34.5  0.8 36.4  1.1 

Food intake (g/day) 30.3  0.8 30.4  0.6 

Energy intake (kJ/day) 418  11 450  14 

BMI (g/cm
2
) 0.78  0.01 0.76  0.01 

Feed efficiency (g/kJ) 0.10  0.01 0.11  0.01 

Abdominal circumference (cm) 21.8  0.4 22.3  0.5 

Abdominal fat pads (mg/mm tibial length) 226  17 147  20
**

 

Metabolic variables 

Basal blood glucose (mmol/L) 4.8  0.3 4.0  0.2
*
 

AUC (mmol/L
.
min) 745  15 668  13

**
 

Plasma total cholesterol (mmol/L) 1.7  0.1 1.5  0.1 

Plasma triglycerides (mmol/L) 0.6  0.1 0.5  0.1 

Plasma non-esterified fatty acids (mmol/L) 1.8  0.1 1.6  0.1 

Plasma urea (mmol/L) 4.0  0.2 4.4  0.3 

Plasma uric acid ( mol/L) 44.2  2.2 40.2  1.8 

Oxidative stress and inflammatory markers 

Plasma malondialdehyde ( mol/L) 32.5  1.1 28.1  1.2
*
 

Plasma glutathione peroxidase activity (U/L) 926  31 1015  22
* 

Plasma C-reactive protein ( mol/L) 3.53  0.15 2.12  0.16
*** 

 

Values are mean  SEM and n = 8 - 10 for each group. 
*
 vs. S and P < 0.05, 

** 
vs. S and P < 0.01, 

***
 vs. S and P 

< 0.001. S, SHR; SO, SHR supplemented with OBE. 
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Online Resource 

 

Online Resource 2. Effects of OBE on oral glucose tolerance in S and SO rats. Values are 

mean  SEM and n = 10 for each group. 
***

 vs. S (P < 0.001). S, SHR; SO, SHR 

supplemented with OBE. 
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Online Resource 

 

Online Resource 3. Inflammation and fibrosis in the hearts from SHR and SHR 

supplemented with OBE. Haematoxylin and eosin staining of left ventricle showing 

infiltration of inflammatory cells (A & B, inflammatory cells as dark spots surrounding the 

myocytes marked as “in”) (×40) from SHR (A) and SHR supplemented with OBE (B) rats. 

Picrosirius red staining of left ventricle showing collagen deposition (C & D, fibrosis marked 

as “fi” and hypertrophied cardiomyocytes as “hy”) (×40) from SHR (C) and SHR 

supplemented with OBE (D) rats. 
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Abstract

Background Fruits and nuts may prevent or reverse

common human health conditions such as obesity, diabetes

and hypertension; together, these conditions are referred to

as metabolic syndrome, an increasing problem. This study

has investigated the responses to ellagic acid, present in

many fruits and nuts, in a diet-induced rat model of met-

abolic syndrome.

Methods Eight- to nine-week-old male Wistar rats were

divided into four groups for 16-week feeding with corn-

starch diet (C), cornstarch diet supplemented with ellagic

acid (CE), high-carbohydrate, high-fat diet (H) and high-

carbohydrate, high-fat diet supplemented with ellagic acid

(HE). CE and HE rats were given 0.8 g/kg ellagic acid in

food from week 8 to 16 only. At the end of 16 weeks,

cardiovascular, hepatic and metabolic parameters along

with protein levels of Nrf2, NF-jB and CPT1 in the heart

and the liver were characterised.

Results High-carbohydrate, high-fat diet-fed rats devel-

oped cardiovascular remodelling, impaired ventricular

function, impaired glucose tolerance, non-alcoholic fatty

liver disease with increased protein levels of NF-jB and

decreased protein levels of Nrf2 and CPT1 in the heart and

the liver. Ellagic acid attenuated these diet-induced

symptoms of metabolic syndrome with normalisation of

protein levels of Nrf2, NF-jB and CPT1.

Conclusions Ellagic acid derived from nuts and fruits

such as raspberries and pomegranates may provide a useful

dietary supplement to decrease the characteristic changes

in metabolism and in cardiac and hepatic structure and

function induced by a high-carbohydrate, high-fat diet by

suppressing oxidative stress and inflammation.

Keywords Cardiovascular remodelling � Ellagic acid �
Metabolic syndrome � Non-alcoholic fatty liver disease �
Obesity

Introduction

Metabolic syndrome is the presence of multiple risk factors

for the development of cardiovascular disease and non-

alcoholic fatty liver disease (NAFLD) including hyperten-

sion, insulin resistance, obesity and dyslipidaemia [1–4].

The prevalence of metabolic syndrome, cardiovascular

disease and NAFLD is increasing throughout the world, in

both developed and developing countries [5–7]. Thus, it is

important to establish simple therapeutic concepts, such as

dietary interventions, that decrease the incidence and

symptoms of metabolic syndrome, as well as cardiovas-

cular disease and NAFLD. One of the target strategies in

the treatment of NAFLD is to increase the oxidation of fat

in the liver, for example, by activation of the mitochondrial

regulation of fatty acid oxidation by carnitine palmitoyl-

transferase 1 (CPT1) [8, 9]. Further targets include the

regulators of oxidative stress and inflammation such as

Nrf2 and NF-jB, respectively, that lead to cardiac and
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hepatic damage [10, 11] associated with cardiovascular

disease and NAFLD [12–17]. Normalising the protein

levels of these two transcription factors could prevent

organ damage in these conditions.

A potential dietary intervention is ellagic acid, a poly-

phenol found in a wide variety of nuts as well as in fruits

such as raspberries, pomegranates, grapes and blackcur-

rants [18, 19]. Ellagic acid is a dilactone formed from two

moieties of gallic acid. Ellagic acid, a radical scavenger

[20–22], induced cardioprotection against isoproterenol-

induced myocardial infarction [23, 24] and also showed

anti-proliferative effects in cancerous cell lines [25]. Fur-

ther, ellagic acid reduced the damage in a rat model of

Crohn’s disease, alleviated the oxidative events and

returned the levels of pro-inflammatory proteins to basal

levels probably through MAPKs and NF-jB signalling

pathways [26]. Increased Cu and Zn concentrations in the

liver and serum of cholestatic rats were controlled by

ellagic acid [27]. Hepatoprotective effects with ellagic acid

were measured in vitro and in vivo in models of hepatic

damage [28, 29]. We have previously reported that oak

ellagitannins, complex esters of ellagic acid with glucose,

improved the symptoms of metabolic syndrome in diet-

induced obese rats [30].

This study has defined the responses following chronic

treatment with ellagic acid on the components of metabolic

syndrome and the associated complications including car-

diovascular remodelling and fatty liver in a rodent model of

diet-induced metabolic syndrome. Rats were fed with either

cornstarch or high-carbohydrate, high-fat diets for 16 weeks.

These diets were supplemented with ellagic acid for the last

8 weeks of the protocol. At the end of 16 weeks, metabolic

parameters and structure and function of the heart and the

liver were assessed. Protein levels of CPT1, NF-jB and Nrf2

in the heart and the liver were measured to study potential

mechanisms for the action of ellagic acid.

Materials and methods

Rats and diets

All experimental protocols were approved by The Uni-

versity of Queensland Animal Experimentation Ethics

Committee, under the guidelines of the National Health

and Medical Research Council of Australia. Male Wistar

rats (8–9 weeks old, 337 ± 2 g, n = 47) were obtained

from The University of Queensland Biological Resources

facility. Rats were randomly divided into four groups:

cornstarch diet-fed rats (C; n = 12), cornstarch diet-fed

rats supplemented with ellagic acid (CE; 0.8 g/kg food;

n = 11; MP Biomedicals, Seven Hills, Australia), high-

carbohydrate, high-fat diet-fed rats (H; n = 12) and high-

carbohydrate, high-fat diet-fed rats supplemented with

ellagic acid (HE; 0.8 g/kg food; n = 12). C and H rats

were fed with cornstarch and high-carbohydrate, high-fat

diets, respectively, for 16 weeks. CE and HE rats were also

fed with cornstarch and high-carbohydrate, high-fat diets,

respectively, for 16 weeks with the diets supplemented

with ellagic acid (0.8 g/kg food) for the last 8 weeks of the

protocol. The cornstarch and high-carbohydrate, high-fat

diets have been previously described in detail [31–33].

Drinking water for H and HE rats was supplemented with

25 % fructose, whereas C and CE rats were given drinking

water without any additive. All the rats were individually

housed in temperature-controlled 12-h light/dark condi-

tions and were given ad libitum access to food and water.

Physiological measurements

Body weight, food and water intakes were measured daily for

all rats. Abdominal circumference and body length were

measured at the end of the protocol using a standard mea-

suring tape under light anaesthesia with Zoletil (tiletamine

10 mg/kg, zolazepam 10 mg/kg, i.p.; Virbac, Peakhurst,

Australia) [31]. Energy intake, body mass index and feed

efficiency were calculated as in previous study [31].

Systolic blood pressure measurements

Systolic blood pressure of rats was measured at the end of

the protocol under light anaesthesia with Zoletil (tiletamine

10 mg/kg, zolazepam 10 mg/kg, i.p.), using an MLT1010

Piezo-Electric Pulse Transducer (ADInstruments, Sydney,

Australia) and inflatable tail cuff connected to a MLT844

Piezo-Electric Pressure Transducer (ADInstruments, Syd-

ney, Australia) and PowerLab data acquisition unit

(ADInstruments, Sydney, Australia) [31].

Echocardiography

Echocardiographic examinations (Phillips iE33, 12-MHz

transducer) were performed in all rats at the end of protocol

as previously described [31]. Briefly, rats were anaesthe-

tised using Zoletil (tiletamine 25 mg/kg and zolazepam

25 mg/kg, i.p.; Virbac, Peakhurst, Australia) and Ilium

Xylazil (xylazine 15 mg/kg, i.p.; Troy Laboratories,

Smithfield, Australia) and positioned in dorsal recumbency.

Electrodes attached to the skin overlying the elbows and

right stifle facilitated the simultaneous recording of a lead

II electrocardiogram [31].

Body composition measurements

Dual-energy X-ray absorptiometric measurements were

performed at the end of the protocol using a Norland XR36
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DXA instrument (Norland Corp, Fort Atkinson, WI) under

anaesthesia with Zoletil (tiletamine 25 mg/kg and zolaze-

pam 25 mg/kg, i.p.) and Ilium Xylazil (xylazine 15 mg/kg,

i.p.). Scans were analysed using the manufacturer’s rec-

ommended software for use in laboratory animals (Small

Subject Analysis Software, version 2.5.3/1.3.1; Norland

Corp) as previously described [34]. The precision error of

lean mass for replicate measurements, with repositioning,

was 3.2 %.

Oral glucose tolerance test

At the end of the protocol, rats were deprived of food for

12 h for oral glucose tolerance testing. During this food

deprivation period, fructose-supplemented drinking water

in H and HE groups was replaced with normal drinking

water. Oral glucose tolerance tests were performed after

determining basal blood glucose concentrations in tail vein

blood using Medisense Precision Q.I.D. glucose meters

(Abbott Laboratories, Bedford, MA). Rats were given a

glucose load of 2 g/kg body weight as 40 % glucose

solution via oral gavage and blood glucose concentrations

were measured again 30, 60, 90 and 120 min after oral

glucose administration [31]. Blood glucose concentrations

over the period of 120 min were used to calculate area

under the curve.

Terminal experiments

Rats were euthanised with Lethabarb (pentobarbitone

sodium, 100 mg/kg, i.p.; Virbac, Peakhurst, Australia).

After euthanasia, heparin (200 IU; Sigma-Aldrich Austra-

lia, Sydney, Australia) was injected through the right

femoral vein. The abdomen was then opened and blood

(*5 mL) was withdrawn from the abdominal aorta and

collected into heparinised tubes. Blood was centrifuged at

5,0009g for 15 min to obtain plasma. Hearts were

removed and were used as an isolated Langendorff heart

preparation.

Isolated Langendorff heart preparation

The isolated Langendorff heart preparation assessed left

ventricular function of the rats in all the groups as in pre-

vious studies [31–33]. Hearts isolated from euthanised rats

were perfused with modified Krebs–Henseleit bicarbonate

buffer bubbled with 95 % O2–5 % CO2 and maintained at

35 �C. Isovolumetric ventricular function was measured by

inserting a latex balloon catheter into the left ventricle

connected to a Capto SP844 MLT844 physiological pres-

sure transducer and Chart software on a Maclab system

(ADInstruments, Sydney, Australia). All left ventricular

end-diastolic pressure values were measured during pacing

of the heart at 250 beats per min using an electrical stim-

ulator. End-diastolic pressures were obtained from 0 to

30 mmHg for the calculation of diastolic stiffness con-

stant (j, dimensionless) as described in previous studies

[31–33].

Vascular reactivity

Thoracic aortic rings (*4 mm in length; n = 11–12 from

each group) were suspended in an organ bath filled with

Tyrode physiological salt solution bubbled with 95 % O2–

5 % CO2, maintained at 35 �C and allowed to stabilise at a

resting tension of *10 mN. Cumulative concentration–

response curves (contraction) were obtained for noradren-

aline (Sigma-Aldrich Australia, Sydney, Australia) and

cumulative concentration–response curves (relaxation)

were obtained for sodium nitroprusside (Sigma-Aldrich

Australia, Sydney, Australia) and acetylcholine (Sigma-

Aldrich Australia, Sydney, Australia) following submaxi-

mal (70 %) contraction to noradrenaline [31].

Organ weights

After isolated heart perfusion studies, hearts (n = 8–9 from

each group) were separated into left ventricles (with sep-

tum) and right ventricles and weighed. Livers (n = 8–9

from each group) were isolated and weighed. Retroperi-

toneal, epididymal and omental abdominal fat pads were

removed separately and weighed. These organ weights

were normalised against the tibial length (48.2 ± 0.1 mm,

n = 35) at the time of organ removal and expressed as

mg/mm of tibial length [31].

Histology

Histology of the heart

Hearts were removed from the rats (n = 3 from each

group) soon after euthanasia and these hearts were fixed in

10 % neutral buffered formalin for 3 days. The samples

were then dehydrated and embedded in paraffin wax. Thin

sections (5 lm) of left ventricle were cut and stained with

haematoxylin and eosin to study infiltration of inflamma-

tory cells and picrosirius red to study collagen deposition

[31].

Histology of the liver

Liver portions were isolated (n = 3) and fixed in 10 %

neutral buffered formalin for three days. These tissue

samples were dehydrated and then embedded in paraffin

wax. Thin sections (5 lm) of these tissues were cut and

stained with haematoxylin and eosin for the determination
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of inflammatory cell infiltration (209) and for determining

the fat vacuoles (409) in liver. Liver sections were also

stained with Milligan’s trichrome stain to determine portal

fibrosis (209) [31].

Plasma biochemistry

Plasma concentrations of total cholesterol and triglycerides

were determined using kits and controls supplied by

Olympus using an Olympus analyser (AU 400, Tokyo,

Japan) [31]. Non-esterified fatty acids (NEFA) in plasma

were determined using a commercial kit (Wako, Osaka,

Japan) [31]. Plasma activity of alanine transaminase

(ALT), aspartate transaminase (AST), alkaline phosphatase

(ALP), lactate dehydrogenase (LDH) and the concentra-

tions of albumin, total bilirubin, urea and uric acid were

determined using kits and controls supplied by Olympus

using an Olympus analyser (AU 400, Tokyo, Japan) [31].

Plasma C-reactive protein (BD Bioscience, Brisbane,

Australia) concentrations were measured using commercial

kits according to manufacturer-provided standards and

protocols.

Regulatory protein levels in the heart and the liver

Heart and liver samples isolated from rats (n = 3 from

each group) were stored at -80 �C. These samples were

homogenised and sonicated after adding cell lysis buffer

followed by ultracentrifugation at 100,0009g for 30 min at

4 �C. Supernatants were used to measure protein concen-

tration in each sample by bicinconinic acid method

(Thermo Scientific). Supernatants with equal protein

amounts (40 lg) from each group were used in Western

blot analysis to study the protein levels of CPT-1, Nrf2

(antibodies from Santa Cruz Biotechnology, Santa Cruz,

CA), NF-jB (antibody from Cell Signaling Technology,

Danvers, MA) and b-actin (antibody from Sigma-Aldrich

Corp., St. Louis, MO) in the heart and the liver.

Statistical analysis

Values are presented as mean ± SEM. Results were tested

for variance using Bartlett’s test and variables that were not

normally distributed were transformed (using log 10

function) prior to statistical analyses. All the groups were

tested for effects of diet (D), treatment (E) and their

interactions (D 9 E) by two-way ANOVA. When inter-

action and/or the main effects were significant, means were

compared using Newman–Keuls multiple comparison post-

test. Mean ellagic acid intakes between CE and HE groups

were compared using Student’s t-test. P \ 0.05 was con-

sidered significant. All statistical analyses were performed

using GraphPad Prism version 5.00 for Windows.

Results

Physiological and metabolic parameters

Table 1 presents the effects of ellagic acid on physiological

and metabolic parameters in rats. Mean ellagic acid intake

was higher in CE rats (63.4 ± 1.8 mg/kg/day) compared

with HE rats (35.6 ± 1.0 mg/kg/day) due to differences in

food intake and body weights. Food intake and water intake

were decreased in H rats compared with C rats; ellagic acid

reduced food intake in HE rats without changing water

intake, whereas it reduced water intake in CE rats without

changing food intake. Energy intake was increased due to

higher energy content of H diet and H rats showed higher

feed efficiency than C rats. Energy intake was unaffected

by ellagic acid supplementation in both CE and HE rats.

Feed efficiency was lower in HE rats than in H rats. H rats

gained more weight than C rats over the period of

16 weeks. The whole-body fat mass was almost doubled in

H rats compared to C rats without any change in lean mass.

The increase in abdominal fat deposition, as indicated by

increases in abdominal circumference and body mass

index, included the increases in the retroperitoneal, epi-

didymal and omental fat deposits. Body weight and lean

mass were lowered with ellagic acid supplementation in

HE rats without any change in whole-body fat mass. Body

weight and lean mass were unchanged in CE rats. Retro-

peritoneal and omental fat were normalised in HE rats,

while epididymal fat was lowered. Retroperitoneal and

omental fat were lowered in CE rats compared to C rats

without any change in epididymal fat. Total abdominal fat

deposition was lowered in both HE and CE rats compared

with H and C rats, respectively. Basal blood glucose con-

centrations were increased in H rats compared with C rats.

During oral glucose tolerance test, area under the curve

was increased for H rats compared with C rats. During oral

glucose tolerance test, ellagic acid supplementation low-

ered fasting blood glucose concentrations along with area

under the curve in HE rats compared with H rats. Plasma

concentrations of triglycerides, total cholesterol and NEFA

were increased in H rats compared with C rats. Plasma

concentrations of triglycerides, total cholesterol and NEFA

were decreased in HE rats. Plasma concentrations of total

cholesterol were decreased in CE rats without any changes

in plasma concentrations of triglycerides and NEFA.

Plasma uric acid concentrations were increased, whereas

plasma urea concentrations were decreased in H rats.

Plasma uric acid concentrations were decreased, whereas

plasma urea concentrations were increased in HE rats;

these parameters were unaffected in CE rats. Plasma

C-reactive protein concentrations were higher in H rats

than in C rats and were decreased in HE rats compared with

H rats.
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Cardiovascular structure and function

H rats showed cardiovascular abnormalities as increases in

systolic blood pressure, left ventricular internal diameter

during diastole and systole (LVIDd and LVIDs, respec-

tively), systolic volume and diastolic stiffness along with

increased infiltration of inflammatory cells and increased

collagen deposition (Table 2; Fig. 1c, g) compared to

C rats (Fig. 1a, e). These changes were associated with

decreases in left ventricular function including fractional

shortening and ejection fraction (Table 2). Ellagic acid

reduced systolic blood pressure in both CE and HE rats

compared with C and H rats, respectively (Table 2),

whereas it improved structural and functional parameters in

HE rats without changing those parameters in CE rats. Left

ventricular wet weights (with septum) and right ventricular

wet weights were unchanged between the groups (Table 2).

Infiltration of inflammatory cells and collagen deposition

were reduced in left ventricle of HE rats (Fig. 1d, h).

H rats showed reduced aortic contractile responses to

noradrenaline and relaxation responses to sodium nitro-

prusside and acetylcholine. Ellagic acid improved these

responses in HE rats without changing responses in CE rats

(Fig. 2a–c).

Hepatic structure and function

Livers from H rats showed infiltration of inflammatory

cells, steatosis and portal fibrosis (Fig. 3c, g, k). These

livers also showed higher wet weights along with

increased plasma activities of ALT, AST, ALP and LDH

indicating the liver damage caused by H diet (Table 2).

Ellagic acid supplementation in the diet attenuated the

high-carbohydrate, high-fat diet-induced changes in the

liver and plasma activities of the enzymes from HE rats

(Fig. 3d, h, l; Table 2). Plasma concentrations of albumin

and total bilirubin were unchanged between the groups

(Table 2).

Table 1 Effects of ellagic acid on physiological and metabolic variables in C, CE, H and HE rats

Variables P value

C CE H HE D E D 9 E

Physiological variables

Initial body weight (g) 338 ± 2 339 ± 2 342 ± 2 336 ± 2 0.77 0.14 0.06

Final body weight (g) 421 ± 4c 427 ± 8c 515 ± 8a 473 ± 11b \0.0001 0.031 0.005

Food intake (g/day) 30.9 ± 0.7a 31.6 ± 0.5a 23.2 ± 0.6b 21.0 ± 0.4c \0.0001 0.19 0.014

Water intake (mL/day) 32.1 ± 0.7a 30.1 ± 0.5b 20.2 ± 0.7c 19.0 ± 0.4c \0.0001 0.01 0.50

Energy intake (kJ/day) 359 ± 8b 355 ± 5b 466 ± 8a 447 ± 6a \0.0001 0.11 0.29

Feed efficiency (g/kJ) 0.23 ± 0.01c 0.25 ± 0.02c 0.39 ± 0.01a 0.31 ± 0.02b \0.0001 0.06 0.003

Body mass index (g/cm2) 0.63 ± 0.01b 0.66 ± 0.01b 0.72 ± 0.01a 0.72 ± 0.02a \0.0001 0.27 0.27

Abdominal circumference (cm) 19.6 ± 0.4c 19.6 ± 0.2c 23.3 ± 0.4a 21.3 ± 0.3b \0.0001 0.005 0.005

Retroperitoneal fat (mg/mm tibial length) 231 ± 13b 146 ± 12c 378 ± 31a 247 ± 13b \0.0001 \0.0001 0.24

Epididymal fat (mg/mm tibial length) 120 ± 10c 91 ± 7c 240 ± 12a 157 ± 11b \0.0001 \0.0001 0.012

Omental fat (mg/mm tibial length) 103 ± 9b 67 ± 5c 199 ± 10a 116 ± 7b \0.0001 \0.0001 0.006

Total abdominal fat (mg/mm tibial length) 454 ± 20b 303 ± 24c 817 ± 32a 520 ± 29b \0.0001 \0.0001 0.009

Whole-body fat mass (g) 81 ± 7b 113 ± 12b 151 ± 11a 156 ± 16a \0.0001 0.13 0.27

Whole-body lean mass (g) 307 ± 8ab 298 ± 8b 326 ± 9a 281 ± 4b 0.89 0.001 0.023

Metabolic variables

Basal blood glucose (mmol/L) 4.1 ± 0.1b 4.3 ± 0.1b 5.1 ± 0.1a 3.9 ± 0.2b 0.03 0.0005 \0.0001

Area under the curve (mmol/L.min) 685 ± 16b 666 ± 14b 776 ± 12a 696 ± 11b \0.0001 0.0006 0.028

Plasma triglyceride (mmol/L) 0.5 ± 0.1b 0.7 ± 0.1b 1.2 ± 0.1a 0.5 ± 0.1b 0.017 0.017 \0.0001

Plasma total cholesterol (mmol/L) 1.5 ± 0.1a 0.8 ± 0.1c 2.1 ± 0.2a 1.5 ± 0.1b \0.0001 \0.0001 0.71

Plasma NEFA (mmol/L) 1.3 ± 0.2b 1.4 ± 0.1b 2.9 ± 0.4a 1.7 ± 0.2b 0.0006 0.037 0.014

Plasma uric acid (lmol/L) 36.5 ± 3.3b 40.5 ± 3.9b 58.9 ± 6.2a 44.3 ± 3.8b 0.005 0.24 0.043

Plasma urea (mmol/L) 6.0 ± 0.3a 6.9 ± 0.3a 3.3 ± 0.2b 6.2 ± 0.4a \0.0001 \0.0001 0.002

Plasma C-reactive protein (lmol/L) 2.22 ± 0.09b 2.35 ± 0.07b 2.69 ± 0.08a 2.40 ± 0.07b 0.002 0.31 0.011

Values are mean ± SEM and n = 8–12 for each group. Mean values within a row with unlike superscript letters are significantly different

(P \ 0.05)

C cornstarch diet-fed rats, CE cornstarch diet-fed rats supplemented with ellagic acid, H high-carbohydrate, high-fat diet-fed rats, HE high-

carbohydrate, high-fat diet-fed rats supplemented with ellagic acid
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Table 2 Effects of ellagic acid on cardiovascular and hepatic variables in C, CE, H and HE rats

Variables P value

C CE H HE D E D 9 E

Cardiovascular variables

Systolic blood pressure (mmHg) 129 ± 1c 112 ± 1d 145 ± 1a 133 ± 2b \0.0001 \0.0001 0.07

LVIDd (mm) 6.62 ± 0.14b 6.28 ± 0.14b 7.39 ± 0.10a 6.66 ± 0.12b \0.0001 0.0001 0.13

LVIDs (mm) 3.35 ± 0.20b 3.46 ± 0.15b 4.84 ± 0.14a 3.70 ± 0.26b \0.0001 0.012 0.003

Systolic volume (lL) 42.5 ± 7.4b 45.3 ± 5.5b 109.2 ± 8.3a 59.3 ± 6.3b \0.0001 0.002 0.0005

Fractional shortening (%) 51.9 ± 1.2a 53.1 ± 2.4a 38.6 ± 1.5b 48.4 ± 2.3a \0.0001 0.006 0.029

Ejection fraction (%) 86.6 ± 1.8a 82.5 ± 2.0a 71.5 ± 1.3b 81.1 ± 2.7a 0.0002 0.18 0.002

Estimated left ventricular mass (g) 0.67 ± 0.02c 0.66 ± 0.02c 0.91 ± 0.03a 0.79 ± 0.03b \0.0001 0.015 0.038

Left ventricular ? septum wet weight

(mg/mm tibial length)

20.5 ± 0.6 21.1 ± 0.7 22.1 ± 0.7 21.0 ± 0.4 0.23 0.68 0.17

Right ventricular wet weight

(mg/mm tibial length)

4.63 ± 0.21 4.58 ± 0.16 4.48 ± 0.25 4.56 ± 0.19 0.68 0.94 0.76

Left ventricular diastolic stiffness constant, j 20.5 ± 0.8b 21.2 ± 1.1b 27.3 ± 1.3a 23.1 ± 0.9b 0.0002 0.10 0.025

Hepatic variables

Liver wet weight (mg/mm tibial length) 259 ± 11b 270 ± 8b 302 ± 10a 272 ± 5b 0.015 0.29 0.025

Plasma ALT activity (U/L) 35.3 ± 2.7b 34.4 ± 2.1b 57.6 ± 3.5a 34.5 ± 2.9b 0.0003 0.0001 0.0004

Plasma AST activity (U/L) 77 ± 6b 87 ± 4b 105 ± 8a 86 ± 5b 0.007 0.22 0.04

Plasma ALP activity (U/L) 177 ± 14b 174 ± 16b 279 ± 18a 149 ± 18b 0.026 0.0002 0.0004

Plasma LDH activity (U/L) 272 ± 33b 283 ± 23b 417 ± 31a 287 ± 27b 0.014 0.047 0.019

Plasma albumin concentration (g/L) 28.1 ± 0.5 28.6 ± 0.3 28.5 ± 0.5 28.5 ± 0.4 0.73 0.57 0.57

Plasma total bilirubin (lmol/L) 2.3 ± 0.1 2.6 ± 0.2 2.5 ± 0.2 2.5 ± 0.1 0.75 0.34 0.34

Values are mean ± SEM and n = 8–12 for each group. Mean values within a row with unlike superscript letters are significantly different

(P \ 0.05)

C cornstarch diet-fed rats, CE cornstarch diet-fed rats supplemented with ellagic acid, H high-carbohydrate, high-fat diet-fed rats, HE high-

carbohydrate, high-fat diet-fed rats supplemented with ellagic acid

Fig. 1 Effects of ellagic acid supplementation on inflammation and

fibrosis in the heart (n = 3 per group). Haematoxylin and eosin

staining of left ventricle showing infiltration of inflammatory cells (a–d,

inflammatory cells marked as ‘in’; 920) from cornstarch diet-fed

rats (a), cornstarch diet-fed rats supplemented with ellagic acid (b),

high-carbohydrate, high-fat diet-fed rats (c) and high-carbohydrate,

high-fat diet-fed rats supplemented with ellagic acid (d). Picrosirius

red staining of left ventricle showing collagen deposition and

hypertrophy (e–h, fibrosis marked as ‘fi’ and hypertrophied cardio-

myocytes as ‘hy’; 940) from cornstarch diet-fed rats (e), cornstarch

diet-fed rats supplemented with ellagic acid (f), high-carbohydrate,

high-fat diet-fed rats (g) and high-carbohydrate, high-fat diet-fed rats

supplemented with ellagic acid (h)
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Regulatory protein levels in the heart and the liver

In the hearts of H rats, protein levels of NF-jB were higher

than in C rats, whereas the protein levels of CPT1 were

lower than in C rats. These changes were normalised in HE

rats. There was no difference in the cardiac protein levels

of Nrf2 between the groups (Fig. 4a, c). In the liver from

H rats, protein levels of Nrf2 and CPT1 were decreased,

whereas NF-jB protein levels were enhanced compared

with C rats. Protein levels of Nrf2 and CPT1 in the liver

were increased in both CE and HE rats compared with

C and H rats, respectively, whereas NF-jB protein levels

were lowered in both CE and HE rats compared with C and

H rats, respectively (Fig. 4b, d).

Discussion

Metabolic syndrome is the clustering of risk factors for

cardiovascular disease, NAFLD and type 2 diabetes. These

risk factors, such as hypertension and dyslipidaemia, are

also responsible for the increased morbidity and mortality

in humans. Thus, it is important to establish biological

targets for the reduction of risk factors and treatment of this

syndrome. Natural products that are rich in phytochemicals

may be effective against this syndrome. Our previous

studies with natural products including oak bark extract

(rich in ellagitannins) [30], purple carrot juice (rich in

anthocyanins) [35], olive leaf extract (rich in oleorupein)

[32], chia seeds (rich in a-linolenic acid) [33] and studies

with pure phytochemicals from natural products including

rutin [36] and piperine [37] in diet-induced obese rats have

shown promising results against metabolic syndrome.

These studies have also defined the in vivo antioxidant and

anti-inflammatory effects of these natural products. Ellagic

acid is a phytochemical found in nuts and fruits and is part

of the human diet. Thus, we investigated the responses to

dietary ellagic acid supplementation on the targets in

metabolic syndrome.

Rats fed with H diet for 16 weeks presented with the

symptoms as well as the associated complications of met-

abolic syndrome, including central obesity, dyslipidaemia,

hypertension and impaired glucose tolerance. The cardio-

vascular complications included inflammation, cardiac

hypertrophy, fibrosis, increased diastolic stiffness,

increased ventricular dimensions, decreased ventricular

function and decreased vascular responses. The hepatic

complications included steatosis, inflammation and portal

fibrosis along with increased plasma activities of trans-

aminases. These results have previously been characterised

in detail [31]. These changes were accompanied by

decreased protein levels of Nrf2 and CPT1 and increased

protein levels of NF-jB in the heart and the liver together

with increased plasma C-reactive protein concentrations.

Ellagic acid improved hepatic and cardiovascular

structure and function, and normalised metabolic parame-

ters such as glucose tolerance, blood lipid components,

central obesity and physiological parameters such as body

Fig. 2 Effects of ellagic acid supplementation on vascular responses.

Noradrenaline-induced contraction (a), sodium nitroprusside-induced

relaxation (b) and acetylcholine-induced relaxation (c) in thoracic

aortic preparations from C, CE, H and HE rats. Values are

mean ± SEM, n = 10–12. End-point means without a common

letter differ, P \ 0.05. C, cornstarch diet-fed rats; CE, cornstarch diet-

fed rats supplemented with ellagic acid; H, high-carbohydrate, high-

fat diet-fed rats; HE, high-carbohydrate, high-fat diet-fed rats

supplemented with ellagic acid
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weight. Reduced abdominal fat deposition without change

in whole-body fat indicates lipid redistribution as seen with

a-linolenic acid-rich chia seeds [33]. This redistribution of

fat was accompanied by reduction in the blood lipid

components and hepatic steatosis. The increased CPT1

protein levels in both the heart and the liver indicate that

the redistribution of fat was accompanied by increased

fatty acid oxidation.

Oxidative stress and inflammation, causing damage to

the heart and the liver, were also targeted with ellagic acid

Fig. 3 Effects of ellagic acid supplementation on inflammation, fat

deposition and fibrosis in the liver (n = 3 per group). Haematoxylin

and eosin staining of the liver showing inflammatory cells (a–d,

marked as ‘in’; 920) and enlarged fat vacuoles (e–h, marked as ‘fv’;

940) from cornstarch diet-fed rats (a, e), cornstarch diet-fed rats

supplemented with ellagic acid (b, f), high-carbohydrate, high-fat

diet-fed rats (c, g) and high-carbohydrate, high-fat diet-fed rats

supplemented with ellagic acid (d, h) rats. Milligan’s Trichrome

staining of the liver showing fibrosis in the hepatic portal region (i–l,
marked as ‘fi’; 920) from cornstarch diet-fed rats (i), cornstarch diet-

fed rats supplemented with ellagic acid (j), high-carbohydrate, high-

fat diet-fed rats (k) and high-carbohydrate, high-fat diet-fed rats

supplemented with ellagic acid (l)

Fig. 4 Effects of ellagic acid

supplementation on protein

levels of Nrf2, NF-jB and

CPT1 in the heart (a) and the

liver (b). For quantitative

analysis, the protein levels of

these proteins were normalised

against the protein levels of

b-actin in the heart (c) and the

liver (d). Values are

mean ± SEM, n = 3. Means

without a common letter differ,

P \ 0.05. C, cornstarch diet-fed

rats; CE, cornstarch diet-fed rats

supplemented with ellagic acid;

H, high-carbohydrate, high-fat

diet-fed rats; HE, high-

carbohydrate, high-fat diet-fed

rats supplemented with ellagic

acid
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in this study. Nrf2 and NF-jB are important regulators of

the oxidative stress and inflammation pathways, respec-

tively [10, 38]. H diet decreased the protein levels of Nrf2

in the liver and increased NF-jB protein levels in the heart

and the liver. Supplementation with ellagic acid reversed

these changes and attenuated oxidative stress and inflam-

mation in the heart and the liver.

The rats were given 0.8 g ellagic acid/kg of food for a

dose of *50 mg/kg body weight/day. This dose corre-

sponds to *1 g ellagic acid/day in a 70-kg human

according to scaling equation [39] or *0.6 g/day accord-

ing to body surface area comparisons between rats and

humans [40]. Although the average daily human intake of

ellagic acid is not known, the total intake of polyphenols is

*1 g/day [41]. If the majority of polyphenols in the diet

are taken from the fruits and nuts containing ellagic acid,

then the above-mentioned dose is realistic in humans. One

viable approach could be to provide this required amount

through nutraceutical products containing partly purified

ellagic acid from fruits and nuts as the major constituent.

In conclusion, high-carbohydrate, high-fat diet-induced

symptoms of metabolic syndrome in rats were reversed by

ellagic acid, accompanied by changes in protein levels of

Nrf2, CPT1 and NF-jB. These results indicated that these

proteins play important roles in the damage associated

with metabolic syndrome and targeting these proteins

with natural products can attenuate the complications in

metabolic syndrome. Since the prevalence of metabolic

syndrome, NAFLD and cardiovascular disease is still

increasing in the population, the use of either purified ellagic

acid as a complementary medicine or an increased dietary

intake of fruits and nuts could be potentially effective

intervention strategies.
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Abstract

Coffee, a rich source of natural products, including caffeine, chlorogenic acid, and diterpenoid alcohols, has been part of

the human diet since the 15th century. In this study, we characterized the effects of Colombian coffee extract (CE), which

contains high concentrations of caffeine and diterpenoids, on a rat model of human metabolic syndrome. The 8–9 wk old

male Wistar rats were divided into four groups. Two groups of rats were fed a corn starch-rich diet whereas the other two

groups were given a high-carbohydrate, high-fat diet with 25% fructose in drinking water for 16 wk. One group fed each

diet was supplemented with 5% aqueous CE for the final 8 wk of this protocol. The corn starch diet contained ;68%

carbohydrates mainly as polysaccharides, whereas the high-carbohydrate, high-fat diet contained ;68% carbohydrates

mainly as fructose and sucrose together with 24% fat, mainly as saturated andmonounsaturated fat from beef tallow. The

high-carbohydrate, high-fat diet-fed rats showed the symptoms of metabolic syndrome leading to cardiovascular

remodeling and nonalcoholic fatty liver disease. CE supplementation attenuated impairment in glucose tolerance,

hypertension, cardiovascular remodeling, and nonalcoholic fatty liver disease without changing abdominal obesity and

dyslipidemia. This study suggests that CE can attenuate diet-induced changes in the structure and function of the heart

and the liver without changing the abdominal fat deposition. J. Nutr. 142: 690–697, 2012.

Introduction

Increased intake of cafeteria or Western diets with higher energy
content correlates with the deposition of excess energy in the
form of fat in adipose tissue, leading to obesity (1,2). The risk of
cardiovascular disease and nonalcoholic fatty liver disease in-
creases with obesity (3–5), increasing the burden on health costs
(6). Coffee, a widely consumed beverage in Western diets (7),
contains the alkaloid caffeine, the diterpenoid alcohols cafestol
and kahweol, potassium, niacin, magnesium, and antioxidant sub-
stances such as chlorogenic acid and tocopherols (8–11). Epide-
miological studies on the effects of coffee drinking have been
inconclusive, e.g., on hypertension (12), due to the association of
coffee drinking with smoking, higher food intake, less fruit intake,
and sedentary lifestyle compared to tea drinkers (13). An inverse

relationshipwas found between coffee consumption and serum uric
acid concentration, a risk factor for cardiovascular disease (14).

Coffee consumption may reduce the risks of type 2 diabetes,
cardiovascular disease, and some cancers (7,15–18). However,
nonfiltered, boiled coffee, in contrast to filtered coffee, increased
the serum LDL cholesterol concentrations in mildly to moder-
ately hypercholesterolemic middle-aged men and women with-
out affecting HDL cholesterol, VLDL cholesterol, and TG
concentrations in serum (19). This suggests that the brewing
process plays an important role in the effects of coffee (11,20),
because boiled coffee contains higher concentrations of diterpe-
noid alcohols compared to filtered coffee (20). Boiled coffee
consumption has been correlated with the increase in serum
cholesterol concentrations and subsequent increased risk of
cardiovascular disease (11). In atherogenic diet-fed hamsters,
coffee supplementation inhibited weight gain without changing
the lipid profile (20). The individual constituents of coffee may
alter components of metabolic syndrome. In Spontaneously
Hypertensive Rats, 0.5% chlorogenic acid supplementation in
the diet for 8 wk inhibited the increase in blood pressure,
reduced oxidative stress, and improved bioavailability of NO
(21). Caffeine treatment (0.1% in drinking water) to obese,
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diabetic ZSF1 rats for 30 wk improved glucose and insulin
responses but induced adverse effects on kidney function and
increased plasma cholesterol concentrations (22).

This study measured the effects of CE on metabolic variables
and the structure and function of the cardiovascular system and
liver in high-carbohydrate, high-fat diet-fed rats. High-carbo-
hydrate, high-fat diet-fed rats showed symptoms of metabolic
syndrome with metabolic abnormalities, cardiovascular remod-
eling, and nonalcoholic steatohepatitis (23). Following CE
supplementation for 8 wk, the structure and function of the
heart were characterized through echocardiography, isolated
Langendorff heart preparation, and histopathology, and the
structure and function of the liver were characterized through
histopathology and plasma biochemical analyses. In addition,
metabolic function was characterized through glucose tolerance
testing and plasma insulin concentrations.

Materials and Methods

Rats, experimental diets, and treatment with CE. All experimental
protocols were approved by The University of Queensland Animal

Experimentation Ethics Committee under the guidelines of the

National Health and Medical Research Council of Australia. Male

Wistar rats (8–9 wk old, weighing 337 6 1 g, n = 40) were supplied by
The University of Queensland Biological Resources facility. Rats were

randomly divided into 4 experimental groups: corn starch-rich diet-fed

rats (C7; n = 10), corn starch-rich diet-fed rats treated with CE (CC; n =

10), high-carbohydrate, high-fat diet-fed rats (H; n = 10), and high-
carbohydrate, high-fat diet-fed rats treated with CE (HC, n = 10). The

micronutrient and macronutrient compositions of these diets was

previously described (23–25). H and HC rats were also given 25%

fructose in drinking water along with the diets, whereas normal
drinking water without any supplementation was given to C and CC

rats. C and H rats were fed with respective diets for 16 wk. CC and HC

rats were fed with C and H diets, respectively, for the first 8 wk and
then their diets were supplemented with 5%CE for an additional 8 wk.

CE was prepared by mixing Colombian coffee (50 g) with hot water

(100 mL) and then filtering after 5 min of mixing to obtain 50 mL of

extract. This extract was then mixed in the food by replacing 50 mL
water/kg food. Fresh extract was prepared during each food preparation.

All the rats consumed food and water ad libitum and were individually

housed in temperature-controlled, 12-h-light/-dark conditions.

Rats were monitored daily for bodyweight and food andwater intakes.
Daily coffee intake was calculated from the daily food intake. Oral glucose

tolerance tests and SBP measurements were performed on all group of

rats every 4th wk starting at wk 0 as in previous study (23). Abdominal
circumference and body length of rats were measured using a standard

measuring tape during the period of anesthesia for SBP measurements (23).

BMI and energy efficiency were calculated as in previous study (23). The

concentrations of caffeine, chlorogenic acid, kahweol, and cafestol in
coffee were measured by HPLC (Supplemental Figs. 1–3).

Echocardiography. Echocardiographic examinations (Phillips iE33, 12

MHz transducer) were performed to assess the cardiovascular structure
and function in all rats at the end of protocol as previously described

(23). Briefly, rats were anesthetized using Zoletil (25 mg/kg tiletamine

and 25 mg/kg zolazepam, i.p.; Virbac) and Ilium Xylazil (15 mg/kg

xylazine, i.p.; Troy Laboratories) and positioned in dorsal recumbency.

Electrodes attached to the skin overlying the elbows and right stifle

facilitated the simultaneous recording of a lead II electrocardiogram. A

short-axis view of the left ventricle at the level of the papillary muscles
was obtained and used to direct acquisition of Mmode images of the left

ventricle for measurement of IVSd, LVPWd, LVIDs, and LVIDd.

Measurements were taken in accordance with the guidelines of the

American Society of Echocardiography using the leading-edge method.
Details of this method were previously described (23). The ventricular

contractility indexes were calculated as described in previous studies

(26–28). These indexes included the ratios of SBP:LVIDs, SBP:systolic

volume, and ESS:LVIDs.

Isolated Langendorff heart preparation. Rats were killed with

Lethabarb (pentobarbitone sodium, 100 mg/kg, i.p.; Virbac). After
killing, heparin (200 IU; Sigma-Aldrich Australia) was injected through

the right femoral vein. The abdomen was then opened and blood (;5 mL)

was withdrawn from the abdominal aorta, collected into heparinized

tubes, and centrifuged at 5000 3 g for 15 min to obtain plasma. Plasma
was stored at 2208C before further biochemical analysis. Hearts were

removed and used in isolated Langendorff heart preparations to assess

left ventricular function of the rats, as in a previous study (23).

Hearts isolated from killed rats were perfused with modified Krebs-
Henseleit bicarbonate buffer containing (in mmol/L): NaCl, 119.1; KCl,

4.75; MgSO4, 1.19; KH2PO4, 1.19; NaHCO3, 25.0; glucose, 11.0; and

CaCl2, 2.16. Buffer was bubbled with 95%O2–5%CO2 and maintained
at 358C. Isovolumetric ventricular function was measured by inserting a

latex balloon catheter into the left ventricle connected to a Capto SP844

MLT844 physiological pressure transducer and Chart software on a

Maclab system (ADInstruments). All left ventricular end-diastolic
pressure values were measured during pacing of the heart at 250 beats/

min using an electrical stimulator. End-diastolic pressures were obtained

from 0 to 30 mm Hg for calculation of diastolic stiffness constant (k,

dimensionless) (23).

Vascular reactivity. Thoracic aortic rings (;4 mm in length) were

suspended in an organ bath filled with Tyrode physiological salt solution

bubbled with 95% O2–5% CO2 and maintained at 358C and allowed to
stabilize at a resting tension of;10 mN (23). Cumulative concentration-

response curves (contraction) were obtained for noradrenaline (Sigma-

Aldrich Australia) and cumulative concentration-response curves (re-
laxation) were obtained for acetylcholine (Sigma-Aldrich Australia) and

sodium nitroprusside (Sigma-Aldrich Australia) following submaximal

(70%) contraction to noradrenaline (23).

Organ weights and histology. After performing Langendorff heart

perfusion, hearts were separated into right ventricle and left ventricle

(with septum) (n = 8) for weighing. Livers and abdominal fat pads

(retroperitoneal, epididymal, and omental) were isolated and weighed (n =
8). These organ weights were normalized to the tibial length at the time of

removal and expressed as mg of tissue/mm of tibial length (23). The heart

and liver of rats (n = 2 from each group) were exclusively used for
histopathological analysis as in previous study (23). For staining, thin

sections (5 mm) of tissues were cut and fixed on slides. Heart sections were

stainedwith picrosirius red to study collagen deposition andwere analyzed

using laser confocal microscopy (Zeiss LSM 510 upright confocal
microscope).Hematoxylin and eosin stainwas used to visualize infiltration

of inflammatory cells in both the heart and the liver, whereas Milligan’s

stain was used to study the perivascular fibrosis in the liver. After staining

with hematoxylin and eosin orMilligan’s stains, pictureswere taken with a
ZeissMicroscope. From each tissue sample, three slides were prepared and

two random, nonoverlapping fields were selected from each slide. A

representative picture was randomly selected from each group.

Biochemical analysis of plasma samples. Plasma activities of ALT,

AST, ALP, and LDH, and plasma concentrations of total cholesterol, TG,

albumin, total proteins, total bilirubin, urea, and uric acid were

determined. All these variables were measured using kits and controls
supplied by Olympus using an Olympus analyzer (AU 400) (23). NEFA

in plasma were determined using a commercial kit (Wako) (23). Plasma

concentrations of insulin (Laboratory Diagnostics) were measured using

7 Abbreviations used: ALP, alkaline phosphatase; ALT, alanine transaminase; AST,

aspartate transaminase; C, corn starch-rich diet-fed rats; CC, corn starch-rich diet-

fed rats treated with coffee extract; CE, coffee extract; ESS, end-systolic wall

stress; H, high-carbohydrate, high-fat diet-fed rats; HC, high-carbohydrate, high-fat

diet-fed rats treated with coffee extract; IVSd, interventricular septum thickness

during diastole; LDH, lactate dehydrogenase; LVIDd, left ventriclar internal di-

ameter during diastole; LVIDs, left ventriclar internal diameter during systole;

LVPWd, left ventricular posterior wall thickness during diastole; NEFA, nonester-

ified fatty acids; SBP, systolic blood pressure.
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commercial kits according to manufacturer-provided standards and

protocols using a Titertek Multiskan MCC/340 spectrophotometer

(Flow Laboratories) (23).

Statistical analysis. All data are presented as mean 6 SEM. All the

groups were tested for variance using Bartlett’s test and variables that

were not normally distributed were transformed (using log 10 function)
prior to statistical analyses. All groups were tested for the effects of diets,

treatment, and their interactions by 2-way ANOVA. When interaction

and/or the main effects were significant, means were compared using

Newman-Keuls multiple comparison post-test. Mean daily doses of
caffeine, chlorogenic acid, cafestol, and kahweol between CC and HC

rats were compared using Student’s t test. P , 0.05 was considered

significant. All statistical analyses were performed using GraphPad Prism
version 5.00 for Windows.

Results

Coffee composition and dosage. Coffee contained 12.5 6
0.4 mg/g caffeine (Supplemental Fig. 1), 1.5 6 0.1 mg/g
chlorogenic acid (Supplemental Fig. 2), 4.2 6 0.1 mg/g
cafestol, and 4.9 6 0.1 mg/g kahweol (Supplemental Fig. 3).
The daily doses (mg/kg) were higher in CC rats (caffeine, 68.36
2.6; chlorogenic acid, 8.2 6 0.3; cafestol, 23.0 6 0.9;
kahweol, 26.8 6 1.0) than in HC rats (caffeine, 32.0 6 1.3;
chlorogenic acid, 3.8 6 0.2; cafestol, 10.8 6 0.4; kahweol,
12.5 6 0.5) due to higher food consumption by CC rats (P ,
0.0001) (Table 1).

Physiological and metabolic variables. The H rats had
higher body weights compared to C rats. HC rats had even
higher body weights compared to H rats, whereas the body
weight of CC rats did not differ from C rats (Fig. 1A). Although
H rats consumed less food and water compared to C rats, H rats
had higher energy intake compared to C rats. CC rats had higher
water intake compared to C rats, whereas water intake did not
differ between H and HC rats. CC and HC rats consumed more

food and had higher energy intake compared to C and H rats,
respectively (Table 1). Energy efficiency and BMI were higher in
H rats compared with C rats. These variables did not differ in
CC and HC rats compared with C and H rats, respectively
(Table 1).

Basal blood glucose concentrations were higher in H rats
compared to C rats and these were normalized in HC rats (Table
1). H rats had lower glucose tolerance with a higher AUC
compared to C rats. CE attenuated this impairment of glucose
tolerance with lower AUC in HC rats compared to H rats (Fig.
1B; Table 1). Plasma insulin was higher in H rats compared to C
rats and it was lower in HC rats than H rats (Table 1). Plasma
concentrations of total cholesterol, TG, and NEFA were higher
in H rats compared to C rats. Plasma concentrations of total
cholesterol were lower in HC rats than in H rats (Table 1).
Plasma TG concentrations were higher in HC rats compared to
H rats, whereas their plasma NEFA concentrations did not differ.
Plasma total cholesterol and TG concentrations did not differ
between the C and CC rats, whereas plasmaNEFA concentrations
were higher in CC rats compared to C rats (Table 1).

Abdominal circumference was higher in H rats compared to
C rats. Abdominal circumference was higher in CC rats
compared to C rats, whereas it did not differ between H and
HC rats (Fig. 1C). Similarly, the total abdominal fat deposition
was higher in H rats compared to C rats. Total abdominal fat
deposition as well as retroperitoneal, epididymal, and omental
fat did not differ in CC and HC rats compared to C rats and H
rats, respectively (Table 1).

Cardiovascular structure and function. SBP was higher in H
rats compared to C rats. HC rats had lower SBP than H rats,
whereas SBP in CC rats did not differ from that in C rats (Fig.
1D). LVIDd and LVPWd were higher in H rats compared to C
rats. LVIDd was lower whereas LVPWd was higher in HC rats
compared to H rats. These variables did not differ between CC
and C rats (Table 2). Systolic volume was higher in H rats

TABLE 1 Effects of CE on physiological and metabolic variables in C, CC, H, and HC rats1

Variables

P value

C CC H HC Diet CE Diet 3 CE

Physiological variables

Water intake, mL/d 32.1 6 1.3b 36.7 6 2.0a 18.8 6 1.0c 18.2 6 0.9c ,0.0001 0.15 0.07

Food intake, g/d 31.9 6 0.7b 40.6 6 1.1a 20.7 6 0.5d 23.4 6 0.8c ,0.0001 ,0.0001 0.0007

Energy intake, kJ/d 358 6 8c 433 6 12b 442 6 10b 484 6 10a ,0.0001 ,0.0001 0.11

Energy efficiency, kJ/g 0.23 6 0.02b 0.21 6 0.02b 0.40 6 0.02a 0.45 6 0.03a ,0.0001 0.52 0.14

BMI, g/cm2 0.67 6 0.02b 0.70 6 0.02b 0.78 6 0.02a 0.82 6 0.02a ,0.0001 0.09 0.80

Metabolic variables

Basal blood glucose, mmol/L 4.0 6 0.2b 3.6 6 0.1b 5.0 6 0.2a 4.1 6 0.1b ,0.0001 0.0002 0.12

Blood glucose AUC2, mmol/L �min 680 6 12b 706 6 15b 782 6 16a 710 6 12b 0.0005 0.11 0.001

Plasma insulin, pmol/L 0.22 6 0.01b 0.24 6 0.01b 0.39 6 0.03a 0.26 6 0.03b 0.0002 0.020 0.002

Plasma total cholesterol, mmol/L 1.4 6 0.1b 1.5 6 0.1b 2.0 6 0.1a 1.6 6 0.1b 0.001 0.14 0.017

Plasma TG, mmol/L 0.4 6 0.1b 0.7 6 0.1b 0.7 6 0.1b 1.2 6 0.2a 0.0003 0.0003 0.32

Plasma NEFA, mmol/L 1.2 6 0.2b 2.3 6 0.2a 2.6 6 0.3a 2.6 6 0.3a 0.002 0.038 0.038

Retroperitoneal fat, mg/mm tibial length 184 6 15b 179 6 14b 381 6 22a 347 6 22a ,0.0001 0.30 0.44

Epididymal fat, mg/mm tibial length 110 6 8b 116 6 11b 232 6 16a 268 6 17a ,0.0001 0.13 0.27

Omental fat, mg/mm tibial length 89 6 10b 76 6 9b 183 6 15a 173 6 16a ,0.0001 0.38 0.91

Total abdominal fat, mg/mm tibial length 383 6 35b 370 6 28b 796 6 56a 788 6 73a ,0.0001 0.84 0.96

1 Values are mean6 SEM, n = 8–10. Means in a row with superscripts without a common letter differ, P , 0.05. C, corn starch-rich diet-fed rats; CC, corn starch-rich diet-fed rats

treated with coffee extract; CE, coffee extract; H, high-carbohydrate, high-fat diet-fed rats; HC, high-carbohydrate, high-fat diet-fed rats treated with coffee extract; NEFA,

nonesterified fatty acids.
2 AUC was calculated with x axis as the baseline.
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compared to C rats and it was lower in HC rats compared to H
rats (Table 2). IVSd was higher in H rats than in C rats and it
did not differ in CC and HC rats compared with C and H rats,
respectively. LVIDs was higher in H rats than in C rats and this
was normalized in HC rats (Table 2). The ratios of SBP:LVIDs
and SBP:systolic volume were lower and ESS:LVIDs was higher
in H rats compared to C rats. These indexes for ventricular

contractility were normalized in HC rats. Although relative
wall thickness did not differ between C and H rats, HC rats had
a higher relative wall thickness (Table 2). Fractional shortening
and ejection fractions were lower in H rats compared to C rats;
these variables were higher in HC rats than in H rats and did
not differ in CC rats compared to C rats (Table 2). Time from
mitral valve closure to opening, ejection time, and deceleration
time did not differ between the groups (Table 2). The ratio of
early mitral inflow velocity to late mitral inflow velocity was
lower in H rats compared to C rats, whereas it was higher in
HC rats compared to H rats without being affected in CC rats
compared to C rats (Table 2). Left ventricular mass estimated
from echocardiographic examination was higher in H rats
compared to C rats and it was lower in HC rats compared to H
rats. Wet weight of left ventricle (with septum) was higher in H
rats compared to C rats and was not affected by CE in both CC
and HC rats (Table 2). Right ventricular wet weight did not
differ between H and C rats, whereas right ventricular wet
weights were higher in CC and HC rats compared to those in C
and H rats, respectively (Table 2).

Left ventricle from H rats had a higher infiltration of
inflammatory cells (Fig. 2C) and collagen deposition (Fig. 2G)
than C rats (Fig. 2A,E). CE prevented the infiltration of
inflammatory cells (Fig. 2D) and collagen deposition (Fig. 2H)
in left ventricle of HC rats. Diastolic stiffness measured through
diastolic stiffness constant was higher in H rats compared to C
rats and was lower in HC rats than in H rats (Table 2).

Noradrenaline-induced contraction (Fig. 3A) and sodium
nitroprusside- (Fig. 3B) and acetylcholine- (Fig. 3C) induced
relaxations of isolated thoracic aortic rings were lower in H rats
than in C rats; these responses were normalized in HC rats. In
CC rats, acetylcholine-induced relaxation was higher than in C
rats (Fig. 3C) and noradrenaline-induced contraction (Fig. 3A)
and sodium nitroprusside-induced relaxation (Fig. 3B) did not
differ from C rats.

Hepatic structure and function. Liver from H rats had a
higher infiltration of inflammatory cells (Fig. 4C) and presence
of fat vacuoles (Fig. 4G) than did C rats (Fig. 4A,E) along with
higher liver wet weights (Table 3). Portal fibrosis was higher in
livers from H rats (Fig. 4K) compared to those from C rats (Fig.
4I). Although the fat deposition was attenuated in HC rats (Fig.
4H), the liver wet weights did not differ compared to H rats
(Table 3). CE prevented the infiltration of inflammatory cell and
portal fibrosis in HC rats (Fig. 4D,L).

Plasma activities of ALT, AST, ALP, and LDH were higher in
H rats than in C rats (Table 3). HC rats had lower plasma
activities of these enzymes compared to H rats (Table 3). CC rats
had lower plasma activities of ALT and ALP than C rats where
ASTand LDH did not differ compared to C rats (Table 3). Plasma
concentrations of albumin and total bilirubin did not differ
between the groups (Table 3). Plasma urea concentrations were
lower and plasma uric acid concentrations were higher in H rats
than in C rats. These changes were attenuated inHC rats (Table 3).

Discussion

Coffee is a complex beverage with potential health benefits and
problems, containing many bioactive compounds, including
phenolic acids with antioxidant properties, diterpenoid alco-
hols, and caffeine (20). Thus, understanding the overall effect of
the mixture of all the constituents in coffee is necessary. The
brewing process determines the constituents of CE (11,20);

FIGURE 1 Effects of CE on body weight (A), oral glucose tolerance

(B), abdominal circumference (C), and systolic blood pressure (D) in C,

CC, H, and HC rats. Values are mean6 SEM, n = 10. End-point means

without a common letter differ, P , 0.05. C, corn starch-rich diet-fed

rats; CC, corn starch-rich diet-fed rats treated with coffee extract; CE,

coffee extract; H, high-carbohydrate, high-fat diet-fed rats; HC, high-

carbohydrate, high-fat diet-fed rats treated with coffee extract.
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filtering was preferred to keep the phenolic acids intact and
reduce the diterpenoid content. In most previous studies, coffee
responses were characterized by focusing on one particular
condition, e.g., hypercholesterolemia (11,14,19–21,29). To
overcome this problem, we characterized the effects of CE in a
model with most of the complications of metabolic syndrome,
including obesity, hypertension, impaired glucose tolerance,

cardiovascular remodeling, nonalcoholic fatty liver disease, and
dyslipidemia (23).

High-carbohydrate, high-fat diet induced the symptoms of
metabolic syndrome in rats as in our previous studies (23–25).
We reported that these diet-induced symptoms can be either
reversed or prevented from further progression by intervention
with natural products such as purple carrots (30), olive leaf (24),

TABLE 2 Effects of CE on cardiovascular structure and function in C, CC, H, and HC rats1

Variables

P value

C CC H HC Diet CE Diet 3 CE

LVIDd, mm 6.61 6 0.12b 6.33 6 0.14b 7.46 6 0.11a 6.54 6 0.27b 0.004 0.001 0.07

LVPWd, mm 1.58 6 0.03c 1.62 6 0.04c 1.83 6 0.05b 2.06 6 0.04a ,0.0001 0.002 0.025

IVSd, mm 1.57 6 0.02b 1.62 6 0.04b 1.74 6 0.04a 1.78 6 0.04a ,0.0001 0.22 0.89

LVIDs, mm 3.31 6 0.18b 3.44 6 0.17b 4.86 6 0.14a 3.70 6 0.23b ,0.0001 0.008 0.001

Systolic volume, mL 41.1 6 6.8b 44.6 6 6.2b 120.2 6 7.8a 58.5 6 7.0b ,0.0001 0.0002 ,0.0001

SBP:LVIDs 40.1 6 2.1a 38.0 6 2.3a 30.9 6 1.4b 36.8 6 2.1a 0.014 0.35 0.05

SBP:systolic volume 3930 6 590a 3400 6 640a 1250 6 230b 2950 6 540a 0.005 0.28 0.041

ESS:LVIDs 0.92 6 0.08b 0.98 6 0.08b 1.15 6 0.07a 0.75 6 0.06b 0.73 0.011 0.001

Relative wall thickness 0.48 6 0.01b 0.51 6 0.02b 0.48 6 0.02b 0.60 6 0.02a 0.017 0.0002 0.017

Fractional shortening, % 52.6 6 1.6a 52.9 6 1.9a 38.3 6 1.4b 47.6 6 1.8a ,0.0001 0.007 0.011

Ejection fraction, % 86.9 6 1.6a 83.3 6 2.0ab 72.1 6 1.3c 80.9 6 1.4b ,0.0001 0.11 0.0004

MCMO, ms 114 6 4 114 6 4 114 6 4 104 6 4 0.22 0.22 0.22

Ejection time, ms 91 6 2 91 6 3 88 6 3 86 6 2 0.13 0.70 0.70

E:A ratio 1.91 6 0.12a 1.89 6 0.12a 1.61 6 0.11b 1.78 6 0.10a 0.04 0.17 0.049

Deceleration time, ms 52.1 6 2.0 55.0 6 2.3 55.5 6 4.0 61.2 6 3.3 0.12 0.16 0.64

Estimated left ventricular mass, g 0.67 6 0.02c 0.66 6 0.02c 0.91 6 0.03a 0.81 6 0.03b ,0.0001 0.038 0.09

Left ventricle + septum wet weight, mg/mm tibial length 18.7 6 0.8b 19.9 6 0.8ab 22.1 6 0.9a 21.5 6 1.0ab 0.007 0.74 0.31

Right ventricular wet weight, mg/mm tibial length 4.21 6 0.24b 5.02 6 0.27a 4.49 6 0.32b 5.14 6 0.29a 0.48 0.014 0.78

Left ventricular diastolic stiffness constant (k) 21.1 6 1.3b 20.2 6 1.2b 28.1 6 1.4a 24.1 6 1.5b 0.0003 0.07 0.28

1 Values are mean 6 SEM, n = 8–10. Means in a row with superscripts without a common letter differ, P , 0.05. C, corn starch-rich diet-fed rats; CC, corn starch-rich diet-fed rats

treated with coffee extract; CE, coffee extract; E:A, ratio of early mitral inflow velocity to late mitral inflow velocity; ESS, end-systolic wall stress; H, high-carbohydrate, high-fat

diet-fed rats; HC, high-carbohydrate, high-fat diet-fed rats treated with coffee extract; IVSd, interventricular septum thickness during diastole; LVIDd, left ventricular internal

diameter during diastole; LVIDs, left ventricular internal diameter during systole; LVPWd, left ventricular posterior wall thickness during diastole; MCMO, time from mitral valve

closure to opening; SBP, systolic blood pressure.

FIGURE 2 Effects of CE on inflammation and fibrosis in the heart. Hematoxylin and eosin staining of left ventricle showing infiltration of

inflammatory cells (A–D, inflammatory cells marked as “in”) from C (A), CC (B), H (C), and HC (D) rats. Picrosirius red staining of left ventricle

showing collagen deposition and hypertrophy (E–H, fibrosis marked as “fi” and hypertrophied cardiomyocytes as “hy”) from C (E), CC (F), H (G),

and HC (H) rats. C, corn starch-rich diet-fed rats; CC, corn starch-rich diet-fed rats treated with coffee extract; CE, coffee extract; H, high-

carbohydrate, high-fat diet-fed rats; HC, high-carbohydrate, high-fat diet-fed rats treated with coffee extract.
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chia seeds (25), and rutin (31). The same protocol was used in
this study to show that CE attenuated most of the changes in
cardiovascular and liver structure and function and in glucose
tolerance, whereas abdominal central obesity and dyslipidemia
were unaffected. Although previous studies of coffee have shown
higher serum cholesterol without changing TG concentrations
(19), we found that cholesterol was lower, with higher concen-
trations of TG and NEFA. This inability to lower TG and NEFA
may explain the lack of effect of CE on obesity.

In this study, CE supplementation in diet-induced metabolic
syndrome in rats lowered blood pressure, although earlier
studies characterizing the effects of coffee on hypertension in
humans reported conflicting results (32–34). Earlier reports
support a lowered risk for type 2 diabetes with coffee con-
sumption (35). This study shows that coffee intake in rats is
associated with lower basal blood glucose concentrations and
attenuation of impairment in glucose tolerance despite the

chronic consumption of a diet that impairs the glucose tolerance.
Similarly, plasma insulin was lower in CE-supplemented rats.

The cardiovascular structure showed attenuation of the
dilation and fibrosis in the left ventricle, whereas left ventricular
wall thickness was higher, indicating the presence of hypertro-
phy. Apart from these structural changes, ventricular contrac-
tility was enhanced with CE supplementation. These conditions
resemble the physiological hypertrophy seen in athletes where
the heart becomes more efficient. Recent studies have also
shown beneficial effects of coffee on liver disease, lower bright
liver score indicating fatty liver and liver cancer, because an
inverse relation was found between coffee consumption and the
development of liver complications (36,37). In this study, we
found protective effects of CE on the liver. In diet-induced
metabolic syndrome, there is development of nonalcoholic fatty
liver disease (23,31). Steatosis, inflammation, and fibrosis in the
liver developed by the H diet were attenuated with CE supple-
mentation along with improvements in liver function measured
through plasma liver enzymes.

In nonobese healthy men and women, caffeinated coffee
reduced flow-mediated dilation of brachial artery, indicating the
induction of endothelial dysfunction. This response was induced
by caffeine, because this detrimental effect was not seen with
decaffeinated coffee (38,39). However, these studies measured
acute effects. In healthy as well as diabetic women, long-term
caffeinated and decaffeinated coffee consumption was inversely
associated with the markers of inflammation and endothelial
dysfunction (40). Our study has shown that coffee attenuated
the vascular damage induced by the H diet. These results were
shown as higher vascular contraction with noradrenaline and
higher vascular relaxation with both sodium nitroprusside and
acetylcholine after precontraction with noradrenaline.

Abdominal obesity has been associated with the occurrence
of cardiovascular disease, nonalcoholic fatty liver disease, and
impairment in metabolic function, including glucose tolerance
(41,42). In this study, CE supplementation did not alter the
amount of fat present in the abdominal areas and the plasma
compared to H rats. However, the changes in structure and
function of the heart, blood vessels, and the liver in H rats were
attenuated. These results may classify the CE-supplemented rats
as metabolically healthy. One of the possible reasons could be
the change in types of fatty acid that were stored in the adipose
tissues. A further study determining the types of fatty acid
present in the abdominal area will help in understanding the
mechanisms.

The diterpenoid alcohols cafestol and kahweol may cause
deleterious effects of coffee (11,19,20,43,44), with the coffee
polyphenols producing benefits (20) and caffeine showing
contrasting results, including increases in cholesterol (22). Our
results suggest that all these components were active and the
effects observed were cumulative.

In this study, 50 g of Colombian coffee was used to make
50mL of CE, which was thenmixed in 1 kg of food. This provided
a daily dose of ~3 g coffee/kg body weight in rats. This dose
corresponds to 60 g coffee/d in a 70-kg human based on scaling
equation (45) or 35 g/d based on body surface area comparisons
between rats and humans (46). Generally, 7–8 g coffee is re-
quired to make a cup of coffee (19). Thus, the dose of coffee used
in this study corresponds to ~4–5 cups/d of coffee according to
body surface area comparisons and ~7–8 cups/d of coffee ac-
cording to scaling equations. Similarly, the daily dose of caffeine
from CE corresponds to 30–35 mg/kg in rats depending on their
body weight. This dose corresponds to ~0.6 g/d for a 70-kg
human (according to scaling equation) (45) and 0.35 g/d

FIGURE 3 Effects of CE on noradrenaline-induced contraction (A),

sodium nitroprusside-induced relaxation (B), and acetylcholine-induced

relaxation (C) in thoracic aortic preparations from C, CC, H, and HC rats.

Values are mean 6 SEM, n = 10. End-point means without a common

letter differ, P, 0.05. C, corn starch-rich diet-fed rats; CC, corn starch-

rich diet-fed rats treated with coffee extract; CE, coffee extract; H, high-

carbohydrate, high-fat diet-fed rats; HC, high-carbohydrate, high-fat

diet-fed rats treated with coffee extract.
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(according to body surface area calculations) (46). An earlier
report associated best performance with an intake of 0.4 g/d
caffeine in humans (47).

In conclusion, CE attenuated hypertension and impairment
in glucose homeostasis without affecting abdominal fat deposi-
tion and plasma lipid profile in diet-induced metabolic syndrome
in rats. It also attenuated the changes in structure and function of
the heart and the liver in these rats. A study in humans with .2
variables of metabolic syndrome could determine its beneficial
effects. Because coffee is one of the major nonalcoholic bev-
erages throughout the world, it is important to estimate the
extent of its effects on human health.
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TABLE 3 Effects of CE on hepatic structure and function in C, CC, H, and HC rats1

Variables

P value

C CC H HC Diet CE Diet 3 CE

Liver wet weight, mg/mm tibial length 244 6 11b 237 6 10b 312 6 15a 336 6 14a ,0.0001 0.51 0.23

Plasma ALT activity, U/L 35.0 6 1.3b 28.6 6 2.3c 58.4 6 2.0a 32.7 6 0.9bc ,0.0001 ,0.0001 ,0.0001

Plasma AST activity, U/L 79.0 6 4.8b 79.5 6 6.2b 108.9 6 7.0a 84.2 6 5.6b 0.006 0.049 0.041

Plasma ALP activity, U/L 172 6 11c 125 6 6d 247 6 12a 206 6 14b ,0.0001 0.0004 0.79

Plasma LDH activity, U/L 252 6 27b 248 6 21b 438 6 32a 319 6 35b ,0.0001 0.043 0.06

Plasma albumin, g/L 28.0 6 0.4 28.5 6 0.4 28.7 6 0.3 27.9 6 0.3 0.89 0.67 0.07

Plasma total bilirubin, mmol/L 2.2 6 0.1 2.3 6 0.2 2.5 6 0.1 2.0 6 0.2 1.0 0.21 0.07

Plasma urea, mmol/L 5.8 6 0.4a 4.8 6 0.5ab 3.0 6 0.3c 4.3 6 0.3b 0.0001 0.69 0.005

Plasma uric acid, mmol/L 37.1 6 2.6b 41.2 6 2.0b 60.1 6 3.8a 38.8 6 3.2b 0.001 0.007 0.0001

1 Values are mean 6 SEM, n = 8–10. Means in a row with superscripts without a common letter differ, P , 0.05. ALP, alkaline phosphatase; ALT, alanine transaminase; AST,

aspartate transaminase; C, corn starch-rich diet-fed rats; CC, corn starch-rich diet-fed rats treated with coffee extract; CE, coffee extract; H, high-carbohydrate, high-fat diet-fed

rats; HC, high-carbohydrate, high-fat diet-fed rats treated with coffee extract. LDH, lactate dehydrogenase.
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Online Supporting Material 

 

Supplemental Figure 3. HPLC analysis of kahweol and cafestol in Colombian coffee. 

 

Kahweol and cafestol measurements: 0.2 g of coffee powder was accurately weighed.  To this, 2 mL of 

2.5 mol/L KOH in ethanol was added and the solution was heated at 80° C for one hour to release the 

diterpenes from the fatty acids. 2 mL of water and 2 mL of methyl t-butyl ether was added. The sample 

was vortexed for 30 s and then centrifuged at 1800 × g. The upper ether layer was transferred to a 

separate tube and the sample was re-extracted with ether two more times. All ether extracts were 

combined and the ether was evaporated under nitrogen. Resulting solids were resuspended in 20 mL of 

50% methanol in water and filtered through a Millipore filter and injected into the HPLC. HPLC analysis 

was performed on an Waters 2690 with Waters XTerra C18 column (3.5 µm, 150 mm x 2.1 mm). A flow 

rate of 1 mL/min was used with injection volume of 10 µL. For detection, 290 nm (kahweol) and 230 nm 

(cafestol) wavelengths were used. Cafestol (MP Biomedicals, Seven Hills, Australia) and kahweol (Santa 

Cruz Biotechnology, Santa Cruz, CA) were used as standards in this procedure and calibration for 

kahweol and cafestol were carried out on concentrations between 3 and 80 mg/L. 

Kahweol 

Cafestol 

Kahweol 
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a b s t r a c t

Objective: Caffeine is a constituent of many non-alcoholic beverages. The pharmacologic actions of
caffeine include the antagonism of adenosine receptors and the inhibition of phosphodiesterase
activity. The A1 adenosine receptors present on adipocytes are involved in the control of fatty acid
uptake and lipolysis. In this study, the effects of caffeine were characterized in a diet-induced
metabolic syndrome in rats.
Methods: Rats were given a high-carbohydrate, high-fat diet (mainly containing fructose and beef
tallow) for 16 wk. The control rats were given a corn starch diet. These two treatment groups were
given caffeine 0.5 g/kg of food for the last 8 wk of the 16-wk protocol. The structure and function of
the heart and the liver were investigated in addition to the metabolic parameters including the
plasma lipid components.
Results: The high-carbohydrate, high-fat diet induced symptoms of the metabolic syndrome,
including obesity, dyslipidemia, impaired glucose tolerance, decreased insulin sensitivity, and
increased systolic blood pressure, associated with the development of cardiovascular remodeling
and non-alcoholic steatohepatitis. The treatment with caffeine in the rats fed the high-
carbohydrate, high-fat diet decreased body fat and systolic blood pressure, improved glucose
tolerance and insulin sensitivity, and attenuated cardiovascular and hepatic abnormalities,
although the plasma lipid concentrations were further increased.
Conclusion: A decreased total body fat, concurrent with increased plasma lipid concentrations,
reflects the lipolytic effects of caffeine in adipocytes, likely owing to the caffeine antagonism of A1
adenosine receptors on adipocytes.

� 2012 Elsevier Inc. All rights reserved.

Introduction

Caffeine is an alkaloid found in many food products including
coffee and tea. It is probably the most widely used psychoactive
drug [1]. Caffeine is a central nervous system stimulant, with
additional effects including increases in resting energy expen-
diture, endurance, physical performance, and cognitive function
and improvements in behavioral functions such as mood [2].
Caffeine from beverages is rapidly and completely absorbed from
the gastrointestinal tract and reaches peak concentrations in the
serum within 30 to 60 min [3]. Only 1% to 3% of caffeine is
excreted unchanged in the urine. The rate of caffeine metabolism
is variable, with a half-life of 4 to 6 h [3,4].

The most important mechanism of the action of caffeine
appears to be the antagonism of adenosine receptors, although
caffeine also inhibits phosphodiesterase [5]. Phosphodiesterase
inhibition is minimal at the serum caffeine concentrations found
after the consumption of beverages or food [5]. Adenosine
receptors are found throughout the body, mainly in the brain,
heart and blood vessels, respiratory tree, kidneys, adipose tissue,
and gastrointestinal tract [6]. The cardiovascular responses
to adenosine receptor activation have been studied for many
years [7]. However, adenosine receptor densities are w10-fold
higher in adipose tissue than in cardiac tissue [8]. Mature adipo-
cytes contain A1 adenosine receptors that inhibit lipolysis by
decreasing adenylate cyclase activity, suggesting that adenosine
receptors are a target for the control of obesity and diabetes [9].

Previous studies have shown the therapeutic effects of
caffeine in hypertension, metabolic parameters, and hepatic
fibrosis, which are components of the metabolic syndrome.

* Corresponding author. Tel.: þ61-7-4631-1319; fax: þ61-7-4631-1530.
E-mail address: Lindsay.Brown@usq.edu.au (L. Brown).

0899-9007/$ - see front matter � 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.nut.2012.02.013
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Caffeine (0.1% in drinking water) decreased plasma glucose and
insulin concentrations in rats fed high-sucrose and high-fat diets,
respectively, with a decrease of mean arterial pressure in the two
models [10]. Caffeine also decreased the increase in body weight
and visceral adiposity observed in rats fed a high-fat diet [10]. A
higher daily caffeine consumption in patients undergoing a liver
biopsy for clinical indications was associated with less severe
fibrosis at liver biopsy [11].

In our previous studies, rats fed a high-carbohydrate, high-fat
diet showed symptoms of the metabolic syndrome, with meta-
bolic abnormalities, cardiovascular remodeling, and non-
alcoholic steatohepatitis [12]. In the present study, we have
characterized the effects of caffeine in this diet-induced ratmodel
of the metabolic syndrome. This study included the character-
ization of the structure and function of the cardiovascular system
through echocardiography, systolic blood pressure measure-
ments, an isolated Langendorff heart preparation, histopa-
thology, and the vascular reactivity of the aorta. The structure and
function of the liver were studied by histopathologic and plasma
biochemical analyses. Similarly, body composition, abdominal fat
deposition, and plasma lipid profiles weremeasured to assess the
metabolic effects of caffeine.

Materials and methods

Rats and diets

All experimental protocols were approved by the University of Southern
Queensland animal experimentation ethics committee under the guidelines of
the National Health and Medical Research Council of Australia. Male Wistar rats
(8–9 wk old, weight 337 � 2 g, n ¼ 40) were supplied by The University of
Queensland biological resources facility. The rats were randomly assigned to one
of four experimental dietary groups: a corn starch diet (C; n ¼ 10), a corn starch
diet plus caffeine (CC; caffeine 0.5 g/kg of food, n ¼ 10), a high-carbohydrate,
high-fat diet (H; n ¼ 10), or a high-carbohydrate, high-fat diet plus caffeine
(HC; caffeine 0.5 g/kg of food, n ¼ 10). The composition of the corn starch and
high-carbohydrate, high-fat diets has been described in detail in our previous
studies [12,13]. The H and HC rats were given 25% fructose in drinking water in
addition to their respective diets, whereas normal drinking water without any
supplementation was given to the C and CC rats. The C and H rats were fed with
the respective diets for 16 wk. The CC and HC rats were fed the on C and H diets,
respectively, for the first 8 wk and then the diets were supplemented with
caffeine (Sigma-Aldrich Australia, Sydney, Australia) for the last 8 wk of the
protocol. All rats were given access ad libitum to food andwater andwere housed
individually in temperature-controlled 12-h light/dark conditions.

The rats were monitored daily for body weight and food and water intakes.
Systolic blood pressure measurements were performed on all rats at the end of
protocol as described in our previous study [12]. The abdominal circumference
and body length of the rats were measured using a standard measuring tape
during the period of anesthesia for blood pressure measurements [12]. The body
mass index, energy intake, and feed efficiency were calculated as described
previously [12].

Oral glucose tolerance and insulin tolerance tests

The oral glucose tolerance and insulin tolerance tests were performed 2 d
apart at 16 wk. For the oral glucose tolerance testing, the rats were food deprived
for 12 h. The fructose-supplemented drinking water in the H and HC groups was
replaced with normal water for the food-deprivation period. After the food-
deprivation period, the basal blood glucose concentrations were measured in
blood taken from the tail vein using a Medisense Precision Q.I.D. glucose meter
(Abbott Laboratories, Bedford,Q1 USA). The rats were then given glucose 2 g/kg of
body weight as a 40% solution by oral gavage. The tail vein blood samples were
taken at 30, 60, 90, and 120 min after the glucose administration [12,13]. From
these data, the area under the curve was calculated taking the x axis as the
baseline.

For the insulin tolerance tests, the basal blood glucose concentrations were
measured after 4 to 5 h of food deprivation as described earlier. The rats were
injected with insulin-R 0.33 IU/kg (Eli Lilly Australia, West Ryde, Australia)
intraperitoneally and the tail vein blood samples were taken at 30, 60, 90, and 120
min after an insulin injection. The rats were withdrawn from the test if the blood
glucose concentration decreased below 1.1 mmol/L and the glucose solution 4
g/kg was immediately administered by oral gavage to prevent hypoglycemia [13].

Body composition measurements

The lean mass and fat masses were measured using dual-energy x-ray
absorptiometry in all groups as previously described [12,13].

Isolated Langendorff heart preparation

The rats were euthanized with Lethabarb (pentobarbitone sodium; 100 mg/
kg intraperitoneally; Virbac, Peakhurst, Australia). After euthanasia, heparin (200
IU; Sigma-Aldrich Australia) was injected through the right femoral vein. The
abdomen was then opened and blood (w5 mL) was withdrawn from the
abdominal aorta, collected into heparinized tubes, and centrifuged at 5000 � g
for 15 min to obtain the plasma. The plasma was stored at �20�C before further

Fig. 1. Effects of caffeine on body weight (A), oral glucose tolerance (B), and insulin
sensitivity (C) in a diet-induced metabolic syndrome in rats. Values are presented as
mean � SEM (n ¼ 8–10). Diet, Caff, and Diet � Caff represent effects of diet, caffeine,
and the interaction between diet and caffeine, respectively. C, rats fed a corn starch
diet; CC, rats fed a corn starch diet plus caffeine; H, rats fed a high-carbohydrate,
high-fat diet; HC, rats fed a high-carbohydrate, high-fat diet plus caffeine.
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biochemical analysis. The hearts were removed and used in the isolated
Langendorff heart preparation to assess the left ventricular function of the rats in
all groups, as in our previous study [12].

Vascular reactivity

The thoracic aortic rings (w4mm in length) were suspended in an organ bath
filled with Tyrode physiologic salt solution bubbled with 95% O2–5% CO2, main-
tained at 35�C, and allowed to stabilize at a resting tension of w10 mN [12]. The
cumulative concentration–response curves (contraction) were obtained for
noradrenaline (Sigma-Aldrich Australia) and the cumulative concentration–
response curves (relaxation) were obtained for sodium nitroprusside (Sigma-
Aldrich Australia) and acetylcholine (Sigma-Aldrich Australia) after a submaximal
(w70%) contraction to noradrenaline [12].

Organ weights and histology

After performing the Langendorff heart perfusion studies, the hearts were
separated into right and left ventricles (with the septum, n ¼ 8). The two
ventricles were weighed. The livers and abdominal fat pads (retroperitoneal,
epididymal, and omental) were isolated and weighed (n ¼ 8). These organ
weights were normalized to the tibial length at the time of removal and
expressed as milligrams of tissue per millimeter of tibial length [12]. The heart
and liver from two rats in each group were used exclusively for the histopath-
ologic analysis, as in our previous study [12].

Biochemical analysis of plasma samples

The plasma activities of alanine transaminase, aspartate transaminase,
alkaline phosphatase, and lactate dehydrogenase and the plasma concentrations
of total cholesterol, triacylglycerols, albumin, total proteins, total bilirubin, urea,
and uric acid were determined using kits and controls supplied by Olympus using
an Olympus analyzer (AU 400, Olympus, Tokyo, Japan) [12]. Non-esterified fatty
acids (NEFAs) in the plasma were determined using a commercial kit (Wako,
Osaka, Japan) [12]. The plasma concentrations of insulin (Laboratory Diagnostics,
Kurnell, Australia) were measured with a commercial kit according to the
manufacturer-provided standards and protocols using a Titertek Multiskan MCC/
340 spectrophotometer (Flow Laboratories)Q2 [12].

Statistical analysis

All data are presented as mean � standard error of the mean. All the groups
were tested for variance using the Bartlett test and the variables that were not
normally distributed were transformed (using the log10 function) before

Table 1
Effects of caffeine on physiologic and metabolic parameters

Variables C CC H HC P

Diet Caffeine Diet � Caffeine

Initial body weight (g) 337 � 2 336 � 1 338 � 2 339 � 1 0.21 1.00 0.53
Final body weight (g) 395 � 7b 360 � 5c 480 � 8a 396 � 6b <0.0001 <0.0001 0.0007
Water intake (mL/d) 31.3 � 1.2a 29.5 � 1.9a 18.8 � 1.1b 19.5 � 1.4b <0.0001 0.70 0.39
Food intake (g/d) 30.8 � 0.6b 37.5 � 0.5a 23.2 � 0.6c 23.4 � 0.4c <0.0001 <0.0001 <0.0001
Energy intake (kJ/d) 350 � 14c 421 � 16b 478 � 11a 492 � 15a <0.0001 0.005 0.05
Feed efficiency (kJ/g) 0.16 � 0.02b 0.06 � 0.01c 0.32 � 0.02a 0.12 � 0.01b <0.0001 <0.0001 0.003
BMI (g/cm2) 0.63 � 0.01b 0.59 � 0.01c 0.72 � 0.01a 0.62 � 0.01b <0.0001 <0.0001 0.005
Caffeine intake (mg ∙ kg�1 ∙ d�1) 0 28.1 � 0.5 0 47.9 � 1.0* d d d

Abdominal circumference (cm) 19.6 � 0.4b 17.9 � 0.3c 23.3 � 0.4a 19.2 � 0.2b <0.0001 <0.0001 0.001
Whole-body lean mass (g) 317 � 4b 306 � 5bc 348 � 4a 295 � 5c 0.034 <0.0001 <0.0001
Whole-body fat mass (g) 71 � 4b 66 � 6b 152 � 7a 80 � 6b <0.0001 <0.0001 <0.0001
Basal blood glucose concentration (mmol/L) 4.0 � 0.1b 3.6 � 0.1c 5.0 � 0.1a 4.1 � 0.2b <0.0001 <0.0001 0.07
Area under curve (mmol ∙ L�1 ∙ min�1) 680 � 13b 480 � 15d 771 � 10a 562 � 14c <0.0001 <0.0001 0.73
Plasma insulin (pmol/L) 0.41 � 0.11 0.39 � 0.07 0.55 � 0.11 0.65 � 0.06 0.05 0.66 0.51
Total cholesterol (mmol/L) 1.3 � 0.1c 2.0 � 0.2b 2.0 � 0.1b 2.6 � 0.1a <0.0001 <0.0001 0.71
Triacylglycerols (mmol/L) 0.4 � 0.1c 0.5 � 0.0c 1.0 � 0.1b 1.5 � 0.2a <0.0001 0.02 0.11
NEFA (mmol/L) 1.1 � 0.2c 2.2 � 0.2b 2.8 � 0.3b 5.1 � 0.4a <0.0001 <0.0001 0.04
Retroperitoneal fat pads (mg/mm tibial length) 214 � 9b 132 � 6c 357 � 21a 198 � 10b <0.0001 <0.0001 0.005
Epididymal fat pads (mg/mm tibial length) 129 � 11b 104 � 8b 225 � 13a 122 � 7b <0.0001 <0.0001 0.0004
Omental fat pads (mg/mm tibial length) 93 � 6b 70 � 5b 194 � 12a 83 � 6b <0.0001 <0.0001 <0.0001
Total abdominal fat pads (mg/mm tibial length) 435 � 24b 305 � 18c 775 � 46a 402 � 21b <0.0001 <0.0001 0.0002

BMI, body mass index; C, rats fed a corn starch diet; CC, rats fed a corn starch diet plus caffeine; H, rats fed a high-carbohydrate, high-fat diet; HC, rats fed a high-
carbohydrate, high-fat diet plus caffeine; NEFA, non-esterified fatty acid
Values are presented as mean � SEM (n ¼ 8–10). Means without a common superscript letter in a row differ (P < 0.05)

* P < 0.0001 (Student’s t test) versus CC for caffeine intake.

Fig. 2. Effects of caffeine on trends in weekly mean energy intake (A) and weekly
feed efficiency (B) in a diet-induced metabolic syndrome in rats. Values are pre-
sented as mean and pooled SD at the end of the graph (n ¼ 10). C, rats fed a corn
starch diet; CC, rats fed a corn starch diet plus caffeine; H, rats fed a high-
carbohydrate, high-fat diet; HC, rats fed a high-carbohydrate, high-fat diet plus
caffeine.
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statistical analyses. These groups were tested for the effects of diets, treatment,
and/or their interactions by two-way analysis of variance. When the interaction
and/or the main effects were significant, the group means were compared using
the Newman–Keuls multiple-comparison post test. The weekly mean energy
intake and weekly mean feed efficiency were tested with one-way repeated
measures analysis of variance for trend analysis. P < 0.05 was considered
statistically significant. All statistical analyses were performed using GraphPad
Prism 5.00 for Windows (GraphPad, San Diego, CA, USA).

Results

Physiologic parameters and body composition

The H rats showed greater body weight, daily energy intake,
body mass index, and abdominal circumference than the C rats,
although they had lower daily water and food intakes compared
with C rats (Fig. 1A, Table 1). The caffeine treatment decreased
the body mass index and abdominal circumference in the CC and
HC compared with the C and H rats, respectively (Table 1). The
decrease in body weight started from the beginning of the

caffeine treatment in the CC rats, whereas it started after 4 wk of
treatment in the HC rats (Fig. 1A). The caffeine treatment in the
CC and HC rats did not affect daily water intake compared with
the C and H rats, respectively. The caffeine treatment increased
the daily food intake in the CC rats compared with the C rats
without the changing daily food intake of the HC rats compared
with the H rats (Table 1). The caffeine did not affect the daily
energy intake in the HC rats comparedwith the H rats, whereas it
increased the daily energy intake in the CC rats by increasing
daily food intake (Table 1). The whole-body lean mass and fat
mass were greater in the H rats than in the C rats. The lean and fat
masses were decreased in the HC rats compared with the H rats
but not in the CC rats (Table 1).

Metabolic parameters

The basal blood glucose concentrations and the area under
the curve for the oral glucose tolerance test were higher in the H

Table 2
Effects of caffeine on cardiovascular and hepatic functions

Variables C CC H HC P

Diet Caffeine Diet � Caffeine

Systolic blood pressure (mmHg) 129 � 1b 118 � 1c 145 � 1a 118 � 1c <0.0001 <0.0001 <0.0001
Left ventricular (with septum) wet weight

(mg/mm tibial length)
20.3 � 0.7ab 19.0 � 0.4b 21.8 � 1.1a 18.2 � 0.7b 0.65 0.003 0.14

Right ventricular wet weight (mg/mm tibial length) 4.82 � 0.23 4.57 � 0.39 4.47 � 0.32 3.81 � 0.18 0.07 0.13 0.49
Left ventricular diastolic stiffness constant 21.1 � 1.7b 20.4 � 1.4b 28.2 � 1.3a 22.5 � 1.6b 0.005 0.043 0.11
Liver wet weight (mg/mm tibial length) 257 � 13b 245 � 13b 297 � 11a 331 � 17a <0.0001 0.43 0.10
Plasma ALT activity (U/L) 38 � 3b 39 � 4b 55 � 3a 42 � 3b 0.004 0.08 0.04
Plasma AST activity (U/L) 75 � 4b 83 � 6b 102 � 5a 80 � 5b 0.02 0.17 0.005
Plasma ALP activity (U/L) 181 � 13c 148 � 13c 261 � 18b 363 � 20a <0.0001 0.04 0.0002
Plasma LDH activity (U/L) 253 � 29b 218 � 26b 458 � 31a 233 � 35b 0.0009 0.0001 0.004
Plasma albumin (mg/ml) 28.1 � 0.5 28.8 � 0.4 28.6 � 0.4 28.4 � 0.6 0.92 0.61 0.36
Plasma total bilirubin (mmol/L) 2.2 � 0.1ab 1.9 � 0.1bc 2.4 � 0.1a 1.6 � 0.2c 0.71 0.0002 0.07
Plasma urea (mmol/L) 5.2 � 0.2a 5.0 � 0.3a 3.3 � 0.3b 4.6 � 0.2a <0.0001 0.04 0.006
Plasma uric acid (mmol/L) 36 � 3b 33 � 4b 55 � 4a 30 � 5b 0.06 0.002 0.01

ALP, alkaline phosphatase; ALT, alanine transaminase; AST, aspartate transaminase; C, rats fed a corn starch diet; CC, rats fed a corn starch diet plus caffeine; H, rats fed
a high-carbohydrate, high-fat diet; HC, rats fed a high-carbohydrate, high-fat diet plus caffeine; LDH, lactate dehydrogenase
Values are presented as mean � SEM (n ¼ 8–10). Means without a common superscript letter in a row differ (P < 0.05)

Fig. 3. Effects of caffeine on inflammation and fibrosis in the heart. (A–D) Hematoxylin and eosin staining of the left ventricle showing infiltration of inflammatory cells from
rats fed a corn starch diet (A), a corn starch diet plus caffeine (B), a high-carbohydrate, high-fat diet (C), and a high-carbohydrate, high-fat diet plus caffeine (D). (E–H)
Picrosirius red staining of the left ventricle showing collagen deposition and hypertrophy from rats fed a corn starch diet (E), a corn starch diet plus caffeine (F), a high-
carbohydrate, high-fat diet (G), and a high-carbohydrate, high-fat diet plus caffeine (H). fi, fibrosis; hy, hypertrophied cardiomyocytes; in, inflammatory cells.
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rats than in the C rats, and these were lowered in the CC and HC
rats compared with the C and H rats, respectively (Table 1,
Fig.1B). The decreased response to insulin in the H rats compared
with the C rats was also improved in the HC rats (Fig. 1C). The
plasma insulin concentrations were unchanged between the
groups (Table 1). The plasma concentrations of total cholesterol,
triacylglycerols, and NEFAwere higher in the H rats than in the C
rats. The plasma concentrations of total cholesterol and NEFA
were higher in the CC and HC rats than in the C and H rats,
respectively, whereas triacylglycerols were higher only in the HC
rats than in H rats (Table 1). The retroperitoneal, epididymal, and
omental fat pads were larger in the H rats than in the C rats. The
HC rats showed a lowering of all three locations of abdominal fat,
whereas the CC rats showed a decrease only in the retroperito-
neal fat. The total abdominal fat pads were smaller in the CC and
HC rats compared with the C and H rats, respectively (Table 1).

The weekly mean energy intakes and feed efficiencies are
presented in Figure 2A and Figure 2B, respectively. For clarity,
only the group mean values are presented, with animal variance
indicated by the pooled standard deviations for each group. The
feed efficiencies were negative during the first week of feeding
the experimental diets in all groups but then recovered such that
all were positive by week 2, with no significant differences
between the treatment groups in weeks 5 to 8. The administra-
tion of caffeine fromweek 8 onward progressively decreased the
feed efficiency in the CC and HC rats compared with the C and H
rats, respectively, such that by weeks 13 through 16, the feed
efficiencies were negative for the CC and HC rats but remained
positive for the C and H rats (P < 0.0001). This decrease in feed
conversion efficiency in the caffeine-fed animals paralleled the
decreases in body weight seen in these animals (Fig. 1A).

Cardiovascular and hepatic parameters

The systolic blood pressurewas higher in the H rats than the C
rats, and this was normalized in the CC and HC rats (Table 2). The
left ventricular wet weights were unchanged between the C and
H rats, whereas this parameter was lowered in the HC rats
compared with the H rats. The right ventricular wet weights
were unchanged between the groups (Table 2). The heart tissue
from the H rats had more infiltration of inflammatory cells
(Fig. 3C) and collagen deposition (Fig. 3G) than from the C rats
(Fig. 3A, E) and this was prevented in the HC rats (Fig. 3D, H). The
left ventricular diastolic stiffness was greater in the H rats than in
the C rats, and this was lowered in the HC rats comparedwith the
H rats (Table 2). The H rats showed impaired vascular reactivity
compared with the C rats, including deceased contractile
responses to noradrenaline (Fig. 4A) and decreased relaxant
responses to sodium nitroprusside (Fig. 4B) and acetylcholine
(Fig. 4C). The CC and HC rats showed greater vascular responses
to noradrenaline-induced contraction compared with the C and
H rats, respectively (Fig. 4A). The HC rats showed normalized
relaxant responses to sodium nitroprusside (Fig. 4B) and
acetylcholine (Fig. 4C).

The livers from the H rats showed an increased infiltration of
inflammatory cells (Fig. 5C) compared with the C rats (Fig. 5A).
The fat vacuoles as evidence of steatosis were present in the
livers from the H rats (Fig. 5G) but were absent in the livers from
the C rats (Fig. 5E). The livers from the H rats but not the C rats
showed mild portal fibrosis (Fig. 5K). Caffeine inhibited the
infiltration of inflammatory cells (Fig. 5D), steatosis (Fig. 5H), and
portal fibrosis (Fig. 5L) in the HC rats. The liver wet weights were
greater for the H rats compared with the C rats, and this was
unchanged by the caffeine administration in the CC and HC rats

(Table 2). The plasma activities of alanine transaminase, aspar-
tate transaminase, alkaline phosphatase, and lactate dehydro-
genase were greater in the H rats than in the C rats. Caffeine
decreased the plasma activities of alanine transaminase, aspar-
tate transaminase, and lactate dehydrogenase in the HC rats
without affecting these activities in the CC rats, whereas caffeine

Fig. 4. Effect of caffeine on concentration–response curves of the thoracic aortic
rings to noradrenaline (A), sodium nitroprusside (B), and acetylcholine (C). Values
are presented as mean � SEM (n ¼ 8–10). Diet, Caff, and Diet � Caff represent the
effects of diet, caffeine, and the interaction between diet and caffeine, respectively.
C, rats fed a corn starch diet; CC, rats fed a corn starch diet plus caffeine; H, rats fed
a high-carbohydrate, high-fat diet; HC, rats fed a high-carbohydrate, high-fat diet
plus caffeine.

S. K. Panchal et al. / Nutrition xxx (2012) 1–8 5

Please cite this article in press as: Panchal SK, et al., Caffeine attenuates metabolic syndrome in diet-induced obese rats, Nutrition (2012),
doi:10.1016/j.nut.2012.02.013

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

NUT8762_proof ■ 26 March 2012 ■ 5/8

Page 170



increased the plasma activity of alkaline phosphatase in the HC
rats without changing it in the CC rats (Table 2). Although total
plasma bilirubin was unchanged between the C and H rats, the
HC rats showed lower plasma concentrations of total bilirubin
(Table 2). The plasma concentrations of urea decreased and uric
acid increased in the H rats compared with the C rats. The plasma
concentrations of urea and uric acid were normalized in the HC
rats (Table 2).

Discussion

The metabolic syndrome is the clustering of various risk
factors for cardiovascular disease and non-alcoholic fatty liver
disease [14]. These risk factors include central obesity, hyper-
tension, impaired glucose tolerance, dyslipidemia, and insulin
resistance [14]. Because caffeine is readily available in the diet
from widely consumed non-alcoholic beverages [15], it is
important to understand its effects on the functioning of organs
in chronic conditions such as the metabolic syndrome. Epide-
miologic studies have suggested that the incidence of the
metabolic syndrome is increasing in the worldwide population
[16]. In this study, we have evaluated the responses to caffeine in
rats fed a high-carbohydrate, high-fat diet as an appropriate
model for the human metabolic syndrome.

The physiologic and pharmacologic effects of caffeine have
been extensively studied and reviewed [1,2,17]. Although
caffeine has beneficial effects, including central nervous system
stimulant responses, the long-term consumption of caffeine has
been associated with the development of tolerance to caffeine
leading to lowered responses to caffeine after long-term
administration [18]. Thus, it will be an important issue to
adjust the dose of caffeine such that the development of

tolerance can be delayed. The role of adenosine receptors in the
development of tolerance to caffeine has been controversial
[19,20]. There are also possible adverse effects of caffeine during
pregnancy and fetal growth [21].

In this study, the rats fed the high-carbohydrate, high-fat diet
developed most of the symptoms associated with the human
metabolic syndrome, including central obesity, hypertension,
dyslipidemia, impaired glucose tolerance, cardiovascular
remodeling, and non-alcoholic fatty liver disease [12]. Caffeine
supplementation in these rats attenuated the obesity, hyper-
tension, cardiovascular remodeling, non-alcoholic fatty liver
disease, and metabolic parameters, including glucose tolerance
and insulin sensitivity. However, dyslipidemia was worsened.

Caffeine decreased the whole-body fat mass and the
abdominal fat pads. This indicates that there was a removal of fat
from the abdominal area, and this fat was not transported to the
other fat-storing areas, including subcutaneous fat, unlike in chia
seed-fed rats in which redistribution of abdominal fat occurs
[13]. The increase in plasma lipid components, especially NEFAs,
reflects the removal of fat from the abdomen after its conversion
to NEFAs by the process of lipolysis. These results suggest that
caffeine induced the lipolysis in adipocytes and, hence,
decreased the abdominal fat pads. The overall decreases in the
fat mass in the absence of a fat redistribution suggest that the
excess plasma lipids are being metabolized rather than stored in
the organs.

The rats, once adapted to the C or H diet, did not show any
change in energy intake. With caffeine administration, the rats
having a similar energy intake as their controls showed
a decrease in feed efficiency and, hence, body weight. The
decrease in feed efficiency may result from an increased energy
expenditure, thermogenesis, maldigestion, or malabsorption. In

Fig. 5. Effects of caffeine on inflammation, fat deposition, and fibrosis in the liver. (A–H) Hematoxylin and eosin staining of the liver showing inflammatory cells (A–D,
magnification 20�) and enlarged fat vacuoles (E–H, magnification 40�), respectively, from rats fed a corn starch diet (A, E), a corn starch diet plus caffeine (B, F), a high-
carbohydrate, high-fat diet (C, G), and a high-carbohydrate, high-fat diet plus caffeine (D, H). (I–L) Milligan trichrome staining of the liver showing fibrosis in the hepatic
portal region (magnification 20�) from rats fed a corn starch diet (I), a corn starch diet plus caffeine (J), a high-carbohydrate, high-fat diet (K), and a high-carbohydrate, high-
fat diet plus caffeine (L). fi, fibrosis; fv, fat vacuoles; in, inflammatory cells.
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previous studies, caffeine has shown thermogenic effects in lean
and obese subjects [22]. In another study, 0.025% caffeine
decreased the body fat in rats fed a high-fat diet by inducing
lipolysis and, hence, increasing NEFAs in the blood [23].

Adenosine strongly inhibited hormone-induced lipolysis [9]
and adenosine receptor agonists have been evaluated as lipid-
lowering agents [6], lowering plasma NEFAs and triacylglycer-
ols by suppressing lipolysis and triacylglycerol secretion [24]. In
the cardiovascular system, the activation of A1 receptors
decreased cardiac contractility and contributed to adverse
ventricular remodeling [25]. In contrast, 8-cyclopentyl-1,3-
dipropylxanthine, a selective A1 receptor antagonist, increased
lipolysis in isolated rat adipocytes without affecting lipogenesis
[26]. Caffeine acts as a non-selective antagonist on adenosine
receptors [5]. The antagonism of A1 adenosine receptors with
caffeine increased cyclic adenosine monophosphate production,
thereby increasing lipolysis and, hence, the removal of fat from
the adipocytes in the abdomen. This increased lipolysis was
observed as a further increase in the plasma concentrations of
triacylglycerols, total cholesterol, and NEFAs in the HC rats. The
antiobesity and cardioprotective effects of caffeine in this study
are consistent with the antagonism of adipocyte and car-
diomyocyte A1 adenosine receptors. Further, the improvements
in the liver structure and function could be due to liver A1
receptor antagonism because adenosine production and adeno-
sine receptor activation in the liver play critical roles in the
development of hepatic fibrosis [27,28]. Although serum
concentrations of caffeine after food or beverage consumption
have shown a minimal inhibition of phosphodiesterase activity
[5], the inhibition of phosphodiesterases has shown promise
against obesity and diabetes [29,30].

Although high NEFA concentrations increase the risk of
cardiovascular dysfunction and hepatic steatosis [31], such
complications did not present in this study despite much higher
plasma concentrations of NEFAs in the caffeine-supplemented
rats. These rats showed a decreased infiltration of inflamma-
tory cells, decreased collagen deposition, and decreased diastolic
stiffness in the left ventricle, an attenuation of non-alcoholic
steatohepatitis, and high plasma NEFA concentrations.

In our previous study, we investigated the effects of the H diet
on metabolic parameters [12]. Among these metabolic parame-
ters, the basal blood glucose concentrations and glucose toler-
ance were improved with caffeine supplementation. Other
changes included normalization of the plasma urea and uric acid
concentrations. Previous studies have reported that caffeine
increases serum urea concentrations [32], and the lowering of
serum uric acid concentrations has been attributed to compo-
nents of coffee other than caffeine [33].

The toxicityof caffeine is rarelyassociatedwithdeath, although
psychologic disturbances have been reported with very high
caffeine intakes inhumanstudies [1,17,34]. Theavailable data from
extensive literature surveys of human studies with caffeine have
indicated that the consumptionof caffeine�0.4 g/d in adults is not
associatedwith any adverse effects on health [2,17]. The dose used
in this study corresponds to caffeine w0.6 g/d according to
a scaling equation [35] andw0.35 g/d based on body surface area
calculations [36]. These doses are achievable in humans and are in
the range of safe doses for caffeine.

Conclusion

This study has defined the cardioprotective and hep-
atoprotective effects of caffeine in a diet-induced rat model of
the human metabolic syndrome. These protective effects were

accompanied by decreases in body weight and abdominal fat.
The decrease in abdominal fat could be due to an antagonism by
caffeine of A1 adenosine receptors present on adipocytes,
leading to lipolysis. Although the protective effects of caffeine
have been indicated with long-term feeding in the rats, the
translation of these results to humans could be compromised by
the development of caffeine tolerance after a long-term caffeine
intake.
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Abstract 

Obesity and dyslipidemia are metabolic defects resulting from impaired 

lipid metabolism. In turn, these disorders are associated with the development 

of cardiovascular disease and non-alcoholic fatty liver disease. Measures to 

correct the defects in lipid metabolism may attenuate obesity, dyslipidemia, and 

associated complications. ʟ-Carnitine supplementation was used in this study to 

enhance fatty acid oxidation to ameliorate these disturbances in lipid 

metabolism. Male Wistar rats (8-9 weeks old) were fed with either corn starch-

rich or high-carbohydrate, high-fat diets for 16 week. Separate groups were 

selected for ʟ-carnitine supplementation (1.2% in food) on either diet for the 

last 8 w eek of the protocol. High-carbohydrate, high-fat diet-fed rats showed 

central obesity, dyslipidemia, hypertension, impaired glucose tolerance, 

hyperinsulinemia, cardiovascular remodeling and nonalcoholic fatty liver 

disease. ʟ-Carnitine supplementation attenuated these high-carbohydrate, high-

fat diet-induced changes, together with modifications in lipid metabolism. This 

included inhibition of stearoyl-CoA desaturase-1 (SCD-1) activity in the tissues 

measured through SCD-1 activity index, reduced short-chain monounsaturated 

fatty acids storage in the tissues, and decreased polyunsaturated fatty acids 

contents in the tissues. Thus, ʟ-carnitine supplementation attenuated obesity, 

dyslipidemia, and complications associated with metabolic syndrome through 

inhibition of SCD-1 activity, preferential oxidation of polyunsaturated fatty 

acids, and storage of saturated fatty acids and relatively inert oleic acid in the 

tissues. 
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Introduction 

Obesity is a chronic pathological condition characterized by excess fat 

deposition in the adipose tissue. A major reason for the increasing incidence of 

obesity around the world is the combination of a cafeteria-style diet with higher 

energy densities together with lower expenditure of this energy (21,24,34). 

Cafeteria/Western diet is rich in saturated fats and carbohydrates, mainly 

fructose and sucrose. Increasing intake of lipogenic carbohydrates such as 

fructose (18) and saturated fats can lead to disturbance in the metabolism of 

these macronutrients in the body (38). Decreased insulin sensitivity, 

hyperinsulinemia, and dyslipidemia are the other factors associated with obesity 

(15) that contribute towards the imbalance in metabolism of fat and 

carbohydrate (11,14). These metabolic disturbances can worsen the structure 

and function of tissues including the heart, liver, and skeletal muscle (2), 

including cardiovascular remodeling and nonalcoholic fatty liver disease (26). 

ʟ-Carnitine is a quaternary amine synthesized from lysine and methionine 

in the liver and kidneys. ʟ-Carnitine is involved in fatty acid transport across 

mitochondrial membranes by carnitine palmitoyltransferase 1 (CPT1) for β-

oxidation (4). In humans, ʟ-carnitine is generally taken in the diet through meat 

products. If the requirement of ʟ-carnitine is not fulfilled from the diet, as in 

vegetarians, it is synthesized in the body along with an increase in the 

absorption from the diet (9). Deficiency of ʟ-carnitine in the body leads to 

pathophysiological complications including cardiomyopathy, encephalopathy, 

and skeletal muscle myopathy (8,37). 
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ʟ-Carnitine enhanced oxidation of long chain fatty acids in the liver and 

the heart (10). Oral ʟ-carnitine supplementation led to an increase in the total 

concentration of ʟ-carnitine in humans (3). Further, ʟ-carnitine supplementation 

decreased post-exercise venous concentrations of lactic acid (3). Athletes use ʟ-

carnitine for reducing body fat in order to lose weight by metabolism of long 

chain fatty acids (16).  

Administration of ʟ-carnitine could alleviate hypertension, obesity, 

dyslipidemia, insulin resistance, and fatty liver as the major signs of metabolic 

syndrome. ʟ-Carnitine decreased blood pressure and improved the structure and 

function of the heart in DOCA-salt-induced cardiovascular remodeling in rats 

(23). In fructose-fed rats, ʟ-carnitine reduced plasma concentrations of glucose, 

insulin, free fatty acids, and triglycerides, improved glucose tolerance, and 

showed protective effects on kidneys (32,33). A combination of either orlistat 

or sibutramine with ʟ-carnitine improved lipid profile, insulin resistance, body 

weight, and inflammation in type 2 diabetic patients more than with either 

orlistat or sibutramine (5,6). ʟ-Carnitine supplementation in type 2 di abetic 

patients did not change body weight, body mass index, fasting plasma glucose, 

and plasma total cholesterol, but reduced plasma triglycerides and total body fat 

(19). ʟ-Carnitine reduced plasma activities of aspartate transaminase (AST), 

alanine transaminase (ALT), and γ-glutamyl transpeptidase (GGT) and plasma 

concentrations of total cholesterol, triglycerides, and inflammatory markers 

along with attenuation of nonalcoholic steatohepatitis in patients (20). 
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In this study, we increased dietary ʟ-carnitine in high-carbohydrate, high-

fat diet-fed male Wistar rats to increase the oxidation of stored fat. The 

metabolic effects of ʟ-carnitine were characterized through measurements of 

body composition, glucose tolerance, and plasma lipid profile. Fatty acid 

composition of plasma, heart, liver, skeletal muscle, and retroperitoneal fat pads 

was measured to study the changes in metabolism and storage of fatty acids. 

Changes in cardiovascular structure and functions were evaluated through 

systolic blood pressure measurements, echocardiography, isolated Langendorff 

heart preparation, vascular responses including contraction and relaxation 

properties of thoracic aorta, and histopathology. Hepatic structure and function 

were determined through liver function tests and histopathology.  

Experimental procedure 

Rats, diets, and ʟ-carnitine supplementation 

All experimental protocols were approved by The University of 

Queensland and University of Southern Queensland Animal Experimentation 

Ethics Committees, under the guidelines of the National Health and Medical 

Research Council of Australia. Male Wistar rats (8-9 weeks old, weighing 339 

± 4 g, n =  48) were supplied by The University of Queensland Biological 

Resources facility. Rats were randomly divided into two experimental diet 

groups and were fed with either corn starch diet (C; n = 24) or high-

carbohydrate, high-fat diet (H; n = 24) for 16 weeks. After 8 weeks of feeding 

with respective diets, 12 r ats from each group were randomly separated and 
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treated with 1.2 %  ʟ-carnitine in food with same diet continued for further 8 

weeks (CLC and HLC, respectively). The remaining 12 r ats from both diet 

groups (C and H) were continued on the original diet without any treatment for 

further 8 w eeks. The diet of C rats mainly consisted of corn starch 

(polysaccharides) while the diet of H rats contained beef tallow (saturated and 

monounsaturated fats), fructose, and condensed milk. Compositions of C and H 

diets used in this study have been described in detail in our previous studies 

(25,29,30). C and CLC rats were given drinking water without any additives 

whereas drinking water for H and HLC rats were supplemented with 25% 

fructose. All rats were provided ad libitum access to food and water and were 

individually housed in temperature-controlled 12 hour light-dark conditions. 

Physiological and metabolic parameters 

Rats were monitored daily for body weight, food and water intakes. 

Abdominal circumference, body mass index (BMI), energy intake, and feed 

efficiency were measured as described (25). At the end of the protocol, rats 

were food-deprived for 12 hour s and oral glucose tolerance tests were 

performed as described (25). The blood glucose concentrations obtained from 

oral glucose tolerance tests were used to calculate the area under the curve by 

taking x-axis as the baseline. Body compositions of rats were measured at the 

end of the protocol (25,30). During terminal experiments, abdominal fat pads 

(separately as retroperitoneal, epididymal, and omental) were removed, 

weighed, and normalized to tibial length at the time of terminal experiments 

(25). Plasma concentrations of albumin, total bilirubin, urea, uric acid, total 
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cholesterol, and triglycerides were determined using kits and controls supplied 

by Olympus using an Olympus analyzer (AU 400, Tokyo, Japan) (25). Non-

esterified fatty acids (NEFA) in plasma were determined using a commercial kit 

(Wako, Osaka, Japan) (25). 

Cardiovascular structure and function 

Systolic blood pressure measurements: Systolic blood pressures of rats 

were measured under light sedation with Zoletil (tiletamine 10 mg/kg, 

zolazepam 10 mg/kg intraperitoneally), using an MLT1010 Piezo-Electric Pulse 

Transducer (ADInstruments, Sydney, Australia) and inflatable tail-cuff 

connected to a MLT844 Physiological Pressure Transducer (ADInstruments, 

Sydney, Australia) and PowerLab data acquisition unit (ADInstruments, 

Sydney, Australia). These measurements were performed every fourth week 

(25). 

Echocardiography: At the end of the protocol, echocardiographic 

examinations (Phillips iE33, 12MHz transducer) were performed to assess the 

cardiovascular structure and function in rats (25). 

Isolated Langendorff heart preparation: During terminal experiments, 

rats were euthanized with Lethabarb (pentobarbitone sodium, 100 mg/kg 

intraperitoneally; Virbac, Peakhurst, NSW, Australia). After euthanasia, heparin 

(200 IU; Sigma-Aldrich Australia, Sydney, Australia) was injected through the 

right femoral vein. The abdomen was then opened and blood (~6-8 ml) was 

withdrawn from the abdominal aorta, collected into heparinized tubes, and 
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centrifuged at 5,000 × g for 15 minutes to obtain plasma. Plasma was stored at -

20°C before further analysis. Hearts were removed and were used in isolated 

Langendorff heart preparation to assess left ventricular function of the rats (n = 

9 from each group) (25). After performing Langendorff heart perfusion studies, 

hearts were separated into right ventricle and left ventricle (with septum). Both 

ventricles were weighed. 

Vascular reactivity: Thoracic aortic rings from rats (~4 mm in length; n = 

10-12 from each group) were suspended in an organ bath maintained at 35˚C 

and filled with Tyrode physiological salt solution bubbled with 95% O2-5% 

CO2 and allowed to stabilize at a resting tension of ~10 mN. Cumulative 

concentration-response curves (contraction) were obtained for norepinephrine 

(Sigma-Aldrich Australia, Sydney, Australia) and cumulative concentration-

response curves (relaxation) were obtained for ACh (Sigma-Aldrich Australia) 

and sodium nitroprusside (Sigma-Aldrich Australia) following submaximal 

(70%) contraction to norepinephrine (25). 

Histology of the heart: Three rats were exclusively used for histology 

from each group. Hearts were removed from these rats soon after euthanasia 

and were processed for histological assessments for inflammatory cells and 

collagen deposition (25). 

Hepatic structure and function 

Livers (n = 9 from each group) were isolated and weighed. Liver portions 

from histology rats were isolated (n = 3 f rom each group) and fixed in 10% 
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neutral buffered formalin for three days. These portions were used to determine 

fat deposition, infiltration of inflammatory cells, and portal fibrosis (25). 

Plasma activities of ALT, AST, alkaline phosphatase (ALP), and lactate 

dehydrogenase (LDH) were measured to determine hepatic function (25). 

Fatty acid analysis 

Hearts (immediately after perfusion studies), liver portions (~6-8 g), 

retroperitoneal fat (~6-8 g), epididymal fat (~6-8 g), skeletal muscle (~6-8 g), 

and plasma (~2 ml) were isolated during terminal experiments (n = 6 from each 

group) and were stored at -20°C. These samples were then used for fatty acid 

analysis (30). The concentrations of the following fatty acids were determined 

in these samples: capric acid (C10:0), lauric acid (C12:0), dodecenoic acid 

(C12:1n-9), myristic acid (C14:0), myristoleic acid (C14:1n-5), palmitic acid 

(C16:0), palmitoleic acid (C16:1n-7), stearic acid (C18:0), vaccenic acid 

(C18:1trans-7), oleic acid (C18:1n-9), linoleic acid (C18:2n-6), α-linolenic acid 

(C18:3n-3), γ-linolenic acid (C18:3n-6), eicosanoic acid (C20:0), eicosenoic 

acid (C20:1n-9), eicosadienoic acid (C20:2n-6), dihomo-γ-linolenic acid 

(C20:3n-6), eicosatrienoic acid (C20:3n-3), arachidonic acid (C20:4n-6), 

eicosapentaenoic acid (C20:5n-3), behenic acid (C22:0), erucic acid (C22:1n-

9), docosadienoic acid (C22:2n-6), docosatetraenoic acid (C22:4n-6), 

docosapentaenoic acid (C22:5n-3), docosahexaenoic acid (C22:6n-3), 

lignoceric acid (C24:0), and nervonic acid (C24:1n-9). Margaric acid (C17:0) 

was used as an internal standard in this procedure. All fatty acids were 
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expressed as % of total recovered fatty acids. The n-3:n-6 ratio and stearoyl-

CoA desaturase-1 (SCD-1) activity index were calculated from fatty acid 

concentrations obtained (30).  

Statistical analysis 

All data are presented as mean ± SEM. Groups of rats were tested for 

variance using Bartlett’s test and variables that were not normally distributed 

were transformed (using log 10 f unction) prior to statistical analyses. These 

groups were tested for effects of diet, ʟ-carnitine, and their interactions by two-

way ANOVA. When interaction and/or the main effects were significant, means 

were compared using Newman-Keuls multiple comparison post-test. P < 0.05 

was considered significant. All statistical analyses were performed using 

GraphPad Prism version 5.00 for Windows (San Diego, California, USA). 

Results 

Physiological, compositional, and metabolic parameters 

H rats had higher body weight compared to C rats at 16 week and HLC 

rats showed lower body weight than H rats at 16 week. Food and water intakes 

were lower in H rats compared to C rats. Food and water intakes were 

unchanged in both HLC and CLC rats. Abdominal circumference along with 

retroperitoneal, epididymal, and omental fat pads were higher in H rats 

compared to C rats. These parameters were lowered in both CLC and HLC rats 

compared to C and H rats, respectively. HLC rats had lower fat mass compared 
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to H rats with no di fference in lean mass between the groups. Basal blood 

glucose concentrations, AUC during oral glucose tolerance test, and plasma 

insulin concentrations were normalized in HLC rats. Plasma lipid components 

including total cholesterol, triglycerides, and non-esterified fatty acids were 

normalized in HLC rats (Table 1).  

Plasma fatty acid composition: C16:0 and C16:1n-7 were increased and 

decreased, respectively, in plasma by ʟ-carnitine in both CLC and HLC rats 

compared to C and H rats, respectively. C18:0 and C18:2n-6 concentrations 

were unchanged between the groups. C18:1n-9 was increased while 

C18:1trans-7 was decreased in HLC rats compared to H rats. C20:4n-6 

concentrations were lower in H rats than in C rats and were unaffected by ʟ-

carnitine in plasma of both CLC and HLC rats. The remaining fatty acids were 

undetectable in plasma in all groups. Overall, saturated fatty acids (SFA) that 

were decreased in H rats compared to C rats were increased with ʟ-carnitine 

supplementation in both CLC and HLC rats whereas monounsaturated fatty 

acids (MUFA) were decreased in CLC and HLC rats compared to C and H rats, 

respectively. Polyunsaturated fatty acids (PUFA) were unchanged between the 

groups. SCD-1 activity was decreased in both CLC and HLC rats compared to 

C and H rats, respectively (Table 1).  

Cardiovascular structure and function 

Hearts from H rats showed presence of inflammatory cells (Figure 1C) 

and collagen deposition (Figure 1G). The infiltration of inflammatory cells and 
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collagen deposition were inhibited in HLC rats (Figure 1D and 1H). Systolic 

blood pressure was higher in H rats and lowered in HLC rats. Hearts from H 

rats showed higher left ventricular internal diameter during diastole (LVIDd), 

indicative of ventricular dilation, increasing systolic volume. These changes 

affected the ventricular functional parameters including fractional shortening, 

ejection fraction, E/A ratio, and left ventricular diastolic stiffness (Table 2). 

HLC rats showed normalized LVIDd, systolic volume, ejection fraction, 

fractional shortening, E/A ratio, and left ventricular stiffness (Table 2). 

Thoracic aortic responses to norepinephrine (Figure 2A), sodium nitroprusside 

(Figure 2B), and ACh (Figure 2C) were diminished in H rats but improved in 

thoracic aorta from HLC rats (Figure 2A, 2B, and 2C). 

Cardiac fatty acid composition: C16:0, C18:0, and C18:1n-9 were 

increased while C14:1n-5, C16:1n-7, C18:1trans-7, C18:3n-6, and C20:4n-6 

were decreased in both CLC and HLC rats. C18:2n-6 was increased only in 

CLC. Other fatty acids were not detected in any of the groups. Total 

concentrations of SFA in cardiac tissue were increased in both CLC and HLC 

rats whereas MUFA and PUFA were decreased in both CLC and HLC rats. 

Within PUFA, n-3 fatty acids were lower than n-6 fatty acids in both CLC and 

HLC rats. This was indicated by the decreased n-3:n-6 ratio. SCD-1 activity 

was completely inhibited in both CLC and HLC rats (Table 2). 
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Hepatic structure and function 

H rats showed presence of inflammatory cells (Figure 4C), fat vacuoles 

(Figure 4G), and mild portal fibrosis (Figure 4K) in the liver. HLC rats showed 

inhibition of infiltration of inflammatory cells (Figure 4D) and absence of fat 

vacuoles (Figure 4H) and portal fibrosis (Figure 4L). Livers from H rats 

showed higher wet weight and this was unaffected by ʟ-carnitine 

supplementation in HLC rats. However, the markers of hepatic function in 

plasma including ALT, AST, ALP, and LDH, which were increased in H rats, 

were normalized in HLC rats. No differences were observed in the plasma 

concentrations of albumin and total bilirubin between the groups. Plasma uric 

acid concentrations were higher while plasma urea concentrations were higher 

in H rats than in C rats. These biochemical changes were attenuated in HLC rats 

(Table 3). 

Hepatic fatty acid composition: C16:0, C18:0, and C18:1n-9 were 

increased whereas C14:1n-5, C16:1n-7, C18:1trans-7, and C18:2n-6 were 

decreased in both CLC and HLC rats. C14:0 was lower only in CLC rats 

whereas C20:3n-6 was unchanged between the groups. C20:4n-6 was lower in 

HLC rats. Other fatty acids were undetectable in liver. Overall, SFA were 

increased in both CLC and HLC rats while MUFA were increased only in HLC 

rats. PUFA were decreased in both CLC and HLC rats. n-3:n-6 fatty acids ratio 

was lower in both CLC and HLC rats compared to C and H rats, respectively 

(Table 3).  
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Skeletal muscle 

Fatty acid composition: C16:0, C18:0, and C18:1n-9 were increased 

whereas C14:0, C14:1n-5, C16:1n-7, C18:2n-6, and C18:3n-6 were decreased 

in both CLC and HLC rats. C18:1trans-7 was increased only in CLC rats. 

C20:4n-6 was lower in H rats than in C rats and it was increased in HLC 

compared to H rats. Total SFA and MUFA were increased while total PUFA 

were decreased in both CLC and HLC rats. n-3:n-6 ratio was unchanged 

between the groups. SCD-1 activities were lower in both CLC and HLC rats 

(Table 4). 

Fatty acid composition of retroperitoneal fat 

C14:0, C16:0, C18:0, and C18:3n-3 were increased while C14:1n-5, 

C16:1n-7, C18:2n-6, and C18:3n-3 were decreased in retroperitoneal fat pads 

from both CLC and HLC. In CLC rats, mostly C18:1n-9 was stored whereas in 

HLC rats, C18:1trans-7 was stored in the retroperitoneal fat pads. C20:0 was 

lowered in CLC whereas it was increased in HLC rats. All other fatty acids 

were not detected in retroperitoneal fat pads. Total SFA and MUFA were 

increased in retroperitoneal fat pads whereas PUFA were decreased in both 

CLC and HLC rats. n-3:n-6 ratio was unchanged between the groups. SCD-1 

activity was lowered in both CLC and HLC rats (Table 5).  
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Discussion 

This study has characterized the metabolic and physiological effects of ʟ-

carnitine in a model of diet-induced metabolic syndrome in rats. This model 

mimics the human metabolic syndrome including the development of 

cardiovascular remodeling, nonalcoholic steatohepatitis, renal damage, 

pancreatic hypertrophy, and hyperinsulinemia (25). ʟ-Carnitine 

supplementation in these rats attenuated the symptoms of metabolic syndrome 

including hypertension, impaired glucose tolerance, central obesity, 

dyslipidemia, and hyperinsulinemia. ʟ-Carnitine also attenuated ventricular 

remodeling including dilation and fibrosis, as well as hepatic steatosis and 

fibrosis, and improved the function of the left ventricle and the liver. 

Obesity is a chronic condition where excess fat is deposited in the body, 

especially the abdomen. Deposition of this excess fat in the abdomen is 

associated with the development of inflammatory organ damage including 

cardiovascular remodeling and nonalcoholic fatty liver disease (7,39). The 

presence of these complications is increasing throughout the world and the cost 

of health management is proportionately increasing (1). 

Removal of fat from the abdomen, with reduced triglycerides and NEFA 

in plasma confirms increased β-oxidation in obese rats due to ʟ-carnitine 

supplementation. In the heart, fatty acids are the major fuel source for energy 

supply (12). With addition of ʟ-carnitine to the diet, increased availability of ʟ-

carnitine may shift the energy supply in the heart to fatty acid oxidation. In our 
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previous study, ʟ-carnitine supplementation in an acute model of cardiovascular 

remodeling improved cardiac function (23). Reduced β-oxidation of fatty acids 

coupled with increased lipogenesis in the liver leads to steatosis followed by 

steatohepatitis (36) while increasing fatty acid oxidation by ʟ-carnitine 

attenuated steatohepatitis (20,40). 

ʟ-Carnitine decreased the proportion of pro-inflammatory n-6 and trans 

fatty acids in the heart and the liver leading to the accumulation of C18:1n-9 in 

all tissues. However, C20:4n-6 and C18:1trans-7 were increased in the skeletal 

muscle suggesting a substrate bias in different tissues. Importantly, 18:2n-6 in 

the adipose tissue of ʟ-carnitine-supplemented rats was substituted with 

equivalent amounts of C18:1n-9 and C18:1trans-7, respectively. This result 

strongly suggests that ʟ-carnitine selectively facilitated the transport and 

oxidation of C18:2n-6 therefore limiting the production of C20:4n-6 to exert its 

pro-inflammatory effects. All the tissues showed extremely low indexes for 

SCD-1 activity indicating the inhibition of conversion of SFA to MUFA. Thus, 

SFA were increased in the plasma and the tissues. At the same time, only 

plasma and the heart showed reductions in total MUFA whereas the liver and 

the skeletal muscle preferentially stored MUFA in the form of C18:1n-9. 

Retroperitoneal fat from CLC rats stored C18:1n-9 whereas HLC rats stored 

C18:1trans-7 in retroperitoneal fat. Similar results were obtained in our 

previous study with chia seed in obese rats (30). Higher SCD-1 activity has 

been implicated in obesity and cardiovascular disease with inhibition of SCD-1 

activity inducing an increase in fatty acid oxidation and decrease in body fat 
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(29). These results have been confirmed in this study with the decrease in the 

activity index of SCD-1 in all the tissues and attenuation of obesity and 

cardiovascular disease. Further study will be required to determine the 

mechanism of inhibition of SCD-1 by ʟ-carnitine. 

In fructose-fed rats, ʟ-carnitine supplementation reduced plasma 

concentrations of glucose, insulin, triglycerides, and NEFA, and the liver and 

muscle content of triglycerides and NEFA (31). Also, glycogen content in the 

liver and the muscle were increased along with reduced activity of glycogen 

phosphorylase. Similarly, ʟ-carnitine-treated rats showed reduced 

gluconeogenesis from different sources such as lactic acid, pyruvic acid, etc. 

(31). These observations clearly suggest that ʟ-carnitine supplementation 

increased glycogenesis and reduced glycogenolysis and gluconeogenesis in 

fructose-fed rats. These effects of ʟ-carnitine were observed in this study as 

lower blood glucose concentrations and plasma concentrations of insulin, 

triglyceride, and NEFA. These effects are supported by a recent study in piglets 

supplemented with ʟ-carnitine where 563 genes were differentially expressed 

by ʟ-carnitine supplementation, especially genes for the proteins and enzymes 

encoding for fatty acid uptake, fatty acid activation, and fatty acid oxidation 

(17). Similarly, genes for glycolysis were up-regulated and genes involved in 

gluconeogenesis were down-regulated (17).  

This study along with earlier studies supports that ʟ-carnitine 

supplementation attenuates the complications in carbohydrate and lipid 

metabolism in high carbohydrate, high fat-fed rats (4,22,27). Also, these 
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metabolic complications have been implicated in oxidative stress (35) including 

diminishing aortic relaxant responses (13). ʟ-Carnitine supplementation 

attenuated the metabolic complications and hence improved aortic responses to 

sodium nitroprusside and acetylcholine were observed in this study. 

In conclusion, high-carbohydrate, high fat diet-fed rats serve as a suitable 

animal model for the metabolic, cardiovascular and hepatic complications seen 

in human metabolic syndrome. ʟ-Carnitine supplementation in these rats 

attenuated the symptoms of metabolic syndrome, cardiovascular remodeling 

and non-alcoholic fatty liver disease. Also, SCD-1 activity was inhibited by ʟ-

carnitine and hence reduced short chain MUFA in the tissues. At the same time, 

PUFA, specially C18:2n-6, were preferentially subjected to oxidation whereas 

SFA and C18:1n-9 were stored in the tissues.  
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Figure 1. Effects of ʟ-carnitine supplementation on inflammation and fibrosis 

in rat heart. Top row represents hematoxylin and eosin staining of left ventricle 

showing infiltration of inflammatory cells (A-D, inflammatory cells marked as 

“in”; ×20) from C (A), CLC (B), H (C), and HLC (D) rats. Bottom row 

represents picrosirius red staining of left ventricle showing collagen deposition 

and hypertrophy (E-H, fibrosis marked as “fi” and hypertrophied 

cardiomyocytes as “hy”; ×40) from C (E), CLC (F), H (G), and HLC (H) rats. 
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Figure 2. Effects of L-carnitine supplementation on va scular responses of 

thoracic aortic preparations. Norepinephrine-induced contraction (A), sodium 

nitroprusside-induced relaxation (B), and ACh-induced relaxation (C). Values 

are mean ± SEM, n = 10 - 12. End-point means without a common letter differ, 

P < 0.05. D, LC, and D×LC represent effects of diet, effects of L-carnitine, and 

interaction between effects of diet and L-carnitine, respectively. 
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Figure 3. Effects of L-carnitine supplementation on i nflammation, fat 

deposition, and fibrosis in the liver. Top and middle rows represent 

hematoxylin and eosin staining of the liver showing inflammatory cells (A-D, 

marked as “in”; ×20) and enlarged fat vacuoles (E-H, marked as “fv”; ×40), 

respectively, from C (A,E), CLC (B,F), H (C,G), and HLC (D,H) rats. Bottom 

row represents Milligan’s trichrome staining of the liver showing fibrosis in the 

hepatic portal region (I-L, marked as “fi”; ×20) from C (I), CLC (J), H (K), and 

HLC (L) rats. 
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Chapter 8: Chronic ethanol consumption in rats fed a 

high-carbohydrate, high-fat diet  

Introduction 

Ethanol consumption is very common throughout the world as part of 

many beverages including beer, wine and whiskey [1]. Ethanol is a substantial 

source of energy (29.7 kJ/g), providing more energy than carbohydrates or 

proteins. Being a rich source of energy, it interferes with the handling of other 

nutrients and is responsible for malnutrition through impairment of 

gastrointestinal absorption and hepatic metabolism [2]. Chronic ethanol 

consumption leads to changes in the structure and function of the liver, 

including lipid accumulation (steatosis), steatohepatitis (steatosis, fibrosis and 

inflammation in the liver) and ultimately cirrhosis (advanced fibrosis and liver 

degeneration) [3]. Hepatic steatosis may originate from dietary lipids as 

chylomicrons, from adipose tissue as non-esterified fatty acids or from 

synthesis in the liver. Ethanol increases peripheral fat mobilisation, enhances 

hepatic triglyceride synthesis, decreases lipid oxidation in the liver and 

decreases hepatic lipoprotein release [4]. Fibrosis starts in the liver once these 

changes are initiated and the ethanol intake is chronic. Severe fibrosis leads to 

cirrhosis of the liver [4]. 

We have shown that a high-carbohydrate, high-fat diet induces non-

alcoholic steatohepatitis with fat accumulation, infiltration of inflammatory 

cells, perivascular fibrosis and increased plasma markers of liver function as 

part of diet-induced metabolic syndrome [5-8]. Other researchers have reported 

similar outcomes with diets rich in simple carbohydrates (such as fructose and 

sucrose) and animal fat [9-13]. Since ethanol causes a s imilar range of liver 

changes, ethanol administration may accelerate the changes in high-

carbohydrate, high-fat diet-fed rats, in the liver as well as in the heart and on 

metabolic function. The combination of ethanol with a high carbohydrate, high 

fat diet, analogous to modern dietary practice in countries such as Australia, 
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would then be predicted to worsen the myriad changes in metabolic syndrome.  

In contradiction to these findings, moderate consumption of red wine as 

part of the Mediterranean diet has been associated with decreased 

cardiovascular disease [14]; moderate, regular ethanol intake could then be a 

key ingredient in the French paradox. Further, ethanol administration decreased 

infarct size in ischaemia-reperfusion injury in rat hearts [15,16]. Thus, the 

responses to chronic moderate ethanol intake are difficult to predict, but could 

attenuate or worsen the responses to a high-carbohydrate, high-fat diet. 

This study measured the effects of chronic moderate ethanol feeding on 

metabolic parameters and structure and function of cardiovascular system and 

the liver in high-carbohydrate, high-fat diet-fed rats. The effects of ethanol 

feeding on the structure and function of the heart were characterised through 

echocardiography, isolated Langendorff heart preparation and histopathology 

while the structure and function of the liver were characterised through 

histopathology and plasma biochemical analyses. In addition, metabolic 

function was characterised through glucose tolerance testing and plasma lipid 

profile assessment. 

Methods and materials 

Rats and diets 

All experimental protocols were approved by University of Southern 

Queensland Animal Experimentation Ethics Committee, under the guidelines of 

the National Health and Medical Research Council of Australia. Male Wistar 

rats (8-9 weeks old, weighing 337 ± 1 g, n = 48) were obtained from The 

University of Queensland Biological Resources facility. The rats were 

randomly divided into four experimental groups and were fed with one of the 

following diets; corn starch diet with normal drinking water (C1; n = 12), corn 

1 Abbreviations used: ALP, alkaline phosphatase; ALT, alanine transaminase; AST, aspartate 
transaminase; CS, corn starch diet-fed rats; CE, corn starch diet-fed rats given 10% ethanol; 
DXA, Dual-energy X-ray absorptiometry; H, high-carbohydrate, high-fat diet-fed rats; HE, 
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starch diet with 10% (v/v) ethanol in drinking water (CE; n = 12), high-

carbohydrate, high-fat diet with 25% (w/v) fructose-supplemented drinking 

water (H; n = 12) and high-carbohydrate, high-fat diet with 10% (v/v) ethanol 

in 25% (w/v) fructose-supplemented drinking water (HE; n = 12). All groups 

were fed with these diets for 16 weeks. Compositions of C and H diets have 

been previously described in detail [5,7,8]. All the rats were given ad libitum 

access to food and water and were individually housed in temperature-

controlled 12-hour light/dark conditions.  

Physiological parameters 

Rats were monitored daily for body weight, food and water intakes. Oral 

glucose tolerance tests and systolic blood pressure measurements were 

performed on a ll groups of rats after 16 w eek as in previous study [5]. 

Abdominal circumference of rats was measured using a standard measuring 

tape while sedated for systolic blood pressure measurements [5]. 

Body composition measurements 

Dual-energy X-ray absorptiometric (DXA) measurements were 

performed on the rats after 16 weeks of feeding (2 days before rats were 

euthanased for pathophysiological assessments) using a Norland XR36 DXA 

instrument (Norland Corp., Fort Atkinson, USA). DXA scans were analysed 

using the manufacturer’s recommended software for use in laboratory animals 

(Small Subject Analysis Software, version 2.5.3/1.3.1, Norland Corp., Fort 

Atkinson, USA) as previously described [17]. The precision error of lean mass 

for replicate measurements, with repositioning, was 3.2%. 

Echocardiography 

high-carbohydrate, high-fat diet-fed rats given 10% ethanol; IVSd, interventricular septum 
thickness during diastole; LDH, lactate dehydrogenase; LVIDd, left ventriclar internal diameter 
during diastole; LVIDs, left ventriclar internal diameter during systole; LVPWd, left ventricular 
posterior wall thickness during diastole; MCMO, time from mitral valve closure to opening; 
NEFA, non-esterified fatty acids. 

Page 217



Echocardiographic examinations (Phillips iE33, 12MHz transducer) were 

performed to assess the cardiovascular structure and function in all rats at the 

end of protocol as previously described [5]. Briefly, rats were anaesthetised 

using Zoletil (tiletamine 25 mg/kg and zolazepam 25 mg/kg, i.p.; Virbac, 

Peakhurst, Australia) and Ilium Xylazil (xylazine 15 m g/kg, i.p.; Troy 

Laboratories, Smithfield, Australia) and positioned in dorsal recumbency. 

Electrodes attached to the skin overlying the elbows and right stifle facilitated 

the simultaneous recording of a lead II ECG. A short-axis view of the left 

ventricle at the level of the papillary muscles was obtained and used to direct 

acquisition of M mode images of the left ventricle for measurement of 

interventricular septum thickness during diastole (IVSd), left ventricular 

posterior wall thickness during diastole (LVPWd), left ventricular internal 

diameter during systole (LVIDs) and left ventricular internal diameter during 

diastole (LVIDd). Measurements were taken in accordance with the guidelines 

of the American Society of Echocardiography using the leading-edge method. 

Details of this method have been described previously [5,18]. 

Isolated Langendorff heart preparation 

Rats were euthanised with Lethabarb (pentobarbitone sodium, 100 mg/kg, 

i.p.; Virbac, Peakhurst, Australia). After euthanasia, heparin (200 IU; Sigma-

Aldrich Australia) was injected through the right femoral vein. The abdomen 

was then opened and blood (~5 mL) was withdrawn from the abdominal aorta, 

collected into heparinised tubes and centrifuged at 5000 × g for 15 minutes to 

obtain plasma. Plasma was stored at -20°C before further biochemical analysis. 

Hearts were removed and were used in isolated Langendorff heart preparations 

to assess left ventricular function of the rats as in previous study [5]. 

Hearts isolated from euthanased rats (n = 9) were perfused with modified 

Krebs–Henseleit bicarbonate buffer, containing (in millimolar): NaCl, 119.1; 

KCl, 4.75; MgSO4, 1.19; KH2PO4, 1.19; NaHCO3, 25.0; glucose, 11.0; and 

CaCl2, 2.16. B uffer was bubbled with 95% O2-5% CO2 and maintained at 
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35°C. Isovolumetric ventricular function was measured by inserting a latex 

balloon catheter into the left ventricle connected to a Capto SP844 MLT844 

physiological pressure transducer and Chart software on a Maclab system 

(ADInstruments). All left ventricular end-diastolic pressure values were 

measured during pacing of the heart at 250 beats per minute using an electrical 

stimulator. End-diastolic pressures were obtained from 0 up t o 30 m mHg for 

calculation of diastolic stiffness constant (κ, dimensionless) [5]. 

Vascular reactivity 

Thoracic aortic rings (~4 mm in length) were suspended in an organ bath 

filled with Tyrode physiological salt solution bubbled with 95% O2-5% CO2 

and maintained at 35˚C and allowed to stabilise at a resting tension of 

approximately 10 mN [5]. Cumulative concentration-response curves 

(contraction) were obtained for noradrenaline (Sigma-Aldrich Australia) and 

cumulative concentration-response curves (relaxation) were obtained for 

acetylcholine (Sigma-Aldrich Australia) and sodium nitroprusside (Sigma-

Aldrich Australia) following submaximal (70%) contraction to noradrenaline 

[5]. 

Organ weights and histology 

After performing Langendorff heart perfusion, hearts were separated into 

right ventricle and left ventricle (with septum) (n = 9) for weighing. Livers and 

abdominal fat pads (retroperitoneal, epididymal and omental) were isolated and 

weighed (n = 9). These organ weights were normalised to the tibial length at the 

time of removal and expressed as mg of tissue/mm of tibial length [5]. The 

heart and the liver of rats (n = 3 f rom each group) were exclusively used for 

histopathological analysis as in previous study [5]. Tissues were fixed in 10% 

neutral buffered formalin for 3 days. The tissue samples were then dehydrated 

and embedded in paraffin wax. For staining, thin sections (5 µm) of tissues 

were cut and fixed on slides. Heart sections were stained with picrosirius red to 

study collagen deposition and were analysed using laser confocal microscopy 
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(Zeiss LSM 510 upright Confocal Microscope). Haematoxylin and eosin stain 

was used to visualise infiltration of inflammatory cells in both the heart and the 

liver whereas Milligan’s stain was used to study the perivascular fibrosis in the 

liver. Haematoxylin and eosin stain was also used to visualise the presence of 

fat vacuoles in the liver. After staining with haematoxylin and eosin or 

Milligan’s stains, pictures were taken with a Zeiss Microscope. From each 

tissue sample, three slides were prepared and two random, non-overlapping 

fields were selected from each slide. A representative picture was randomly 

selected from each group. 

Biochemical analysis of plasma samples 

Plasma activities of alanine transaminase (ALT), aspartate transaminase 

(AST), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) and 

plasma concentrations of total cholesterol, triglycerides, albumin, total 

bilirubin, urea and uric acid were determined. These variables were measured 

using kits and controls supplied by Olympus using an Olympus analyser (AU 

400, Tokyo, Japan) [5]. Plasma non-esterified fatty acids (NEFA) were 

determined using a commercial kit (Wako, Osaka, Japan) [5]. 

Statistical analysis 

All data are presented as mean ± SEM. All the groups were tested for 

variance using Bartlett’s test and variables that were not normally distributed 

were transformed (using log 10 f unction) prior to statistical analyses. All 

groups were tested for effects of diet, ethanol, and their interactions by two-way 

ANOVA. When interaction and/or the main effects were significant, means 

were compared using Newman-Keuls multiple comparison post-test. Mean 

daily ethanol intake of CE and HE rats were compared using Student’s t test. P 

< 0.05 was considered significant. All statistical analyses were performed using 

GraphPad Prism version 5.00 for Windows (San Diego, California, USA). 
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Results 

Physiological and metabolic parameters 

As a preliminary study, rats fed with standard chow diet were given 5%, 

10% and 20% ethanol (n = 8-10 for each group) in drinking water for 16 weeks. 

No changes were observed in body parameters, cardiovascular and hepatic 

functions compared to chow-fed controls with 5% ethanol in drinking water 

(results not shown). With 20% ethanol in drinking water, rats did not gain body 

weight and showed less physical activity (results not shown). With 10% ethanol 

in drinking water, rats showed slight decreases in body weight. In terms of 

blood and plasma characteristics, there were minor differences between 10% 

and 20% ethanol feeding (results not shown). Thus 10% ethanol was selected 

for the study of the effects of a combination of ethanol and high-carbohydrate, 

high-fat diet. 

High-carbohydrate, high-fat diet-fed rats (H) had higher body weight than 

corn starch diet-fed rats (C). H rats fed ethanol (HE) had lower body weight 

compared to H rats whereas the body weights of C and corn starch rats fed 

ethanol (CE) did not differ (Table 1). C rats consumed more water than H rats. 

Water consumption was higher in HE rats than in H rats whereas water 

consumption of C and CE rats did not differ (Table 1). C rats ate more food 

than H rats. Food consumption of CE and HE rats did not differ compared to C 

and H rats, respectively (Table 1). Abdominal circumference was higher in H 

rats compared to C rats. Abdominal circumference was greater in CE rats than 

in C rats whereas abdominal circumference did not differ between H and HE 

rats (Table 1). Daily ethanol intake of CE rats was 6.31 ± 0.28 g/kg body 

weight and 4.49 ± 0.18 g/kg body weight in HE rats. 

Basal blood glucose concentrations were higher in H rats compared to C 

rats. CE and HE rats had lower blood glucose concentrations than C and H rats, 

respectively (Table 1). During oral glucose tolerance test, H rats showed 

impaired glucose tolerance indicated by higher blood glucose concentrations 
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compared to C rats after 120 m inutes of glucose load. After 120 m inutes of 

glucose loading, CE rats had lower blood glucose concentrations than C rats 

whereas blood glucose concentrations did not differ between H and HE rats 

(Figure 1A). Plasma total cholesterol, plasma triglyceride and plasma NEFA 

concentrations were higher in H rats compared to C rats, and lower in HE rats 

compared to H rats. Plasma total cholesterol and plasma triglycerides 

concentrations did not differ between C and CE rats whereas CE rats had higher 

plasma NEFA concentrations than C rats (Table 1). Retroperitoneal, epididymal 

and omental fat pads were increased in H rats compared to C rats, and lower in 

HE rats than in H rats. In CE rats, retroperitoneal fat was lower than in C rats 

whereas epididymal and omental fat content did not differ between C and CE 

rats (Table 1). Whole-body fat mass and lean mass were higher in H rats than in 

C rats. CE and HE rats did not differ in whole-body fat mass compared to C and 

H rats, respectively whereas the lean masses were lower in CE and HE rats 

compared to C and H rats, respectively (Table 1). 

Cardiovascular structure and function 

Systolic blood pressure was higher in H rats than in C rats after 16 weeks 

of the protocol. Systolic blood pressure did not differ in CE and HE rats 

compared to C and H rats, respectively (Figure 1B). LVIDd and LVIDs were 

higher in H rats compared to C rats, but did not differ in CE and HE rats 

compared to C and H rats, respectively (Table 2). Although LVPWd did not 

differ between C and H rats, CE and HE rats had lower LVPWd than C and H 

rats, respectively (Table 2). Relative wall thickness did not differ between C 

and H rats. CE rats had higher relative wall thickness than C rats whereas H and 

HE rats did not differ in relative wall thickness (Table 2). Fractional shortening 

and ejection fraction were lower in H rats compared to C rats. Ethanol feeding 

did not change fractional shortening in CE and HE rats compared to C and H 

rats, respectively. Ejection fraction was lower in CE rats than in C rats while it 

was higher in HE rats compared to H rats (Table 2). Ejection time did not differ
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between C and H rats while it was lower in CE rats than in C rats. Ejection time 

did not differ between H and HE rats. HCHF-fed rats had higher estimated left 

ventricular mass compared to CHOW- and CS-fed rats. Estimated left 

ventricular mass was higher in H rats than in C rats and this was unaffected by 

ethanol feeding (Table 2). Left and right ventricular wet weights did not differ 

between the groups (Table 2). Left ventricular diastolic stiffness was higher in 

H rats compared to C rats. Left ventricular diastolic stiffness did not change 

with ethanol feeding in both CE and HE rats (Table 2). Left ventricles from H 

rats showed infiltration of inflammatory cells (Figure 2C), fibrosis and 

hypertrophy (Figure 2G). These changes were absent in the left ventricles from 

C rats (Figure 2A & 2E). Left ventricles from HE rats showed infiltration of 

inflammatory cells (Figure 2D) whereas fibrosis was attenuated with ethanol 

feeding in HE rats (Figure 2H). Ethanol feeding did not affect infiltration of 

inflammatory cells, fibrosis and hypertrophy in CE rats (Figure 2B & 2F). 

Thoracic aortic contraction with noradrenaline was lower in H rats 

compared to C rats. Thoracic aortic rings from HE rats had higher contractile 

response to noradrenaline than H rats while this contractile response did not 

differ between C and CE rats (Figure 3A). Sodium nitroprusside-induced 

relaxation was lower in H rats compared to C rats. HE rats showed higher 

relaxant response to sodium nitroprusside than H rats while this response did 

not differ between C and CE rats (Figure 3B). H rats had lower relaxant 

response to acetylcholine compared to C rats. CE and HE rats showed higher 

relaxant responses to acetylcholine compared to C and H rats, respectively 

(Figure 3C).  
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Figure 1. Effects of 

combination of high-

carbohydrate, high-

fat diet and ethanol 

on oral glucose 

tolerance (A) and 

systolic blood 

pressure (B) in rats. 

Values are mean ± 

SEM, n = 12. E nd-

point means without 

a common letter 

differ, P < 0.05.  

C, corn starch diet-

fed rats; CE, corn 

starch diet-fed rats 

given 10% ethanol; 

H, high-

carbohydrate, high-

fat diet-fed rats; HE, 

high-carbohydrate, 

high-fat diet-fed rats 

given 10% ethanol. 
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Figure 2. Effects of combination of high-carbohydrate, high-fat diet and 

ethanol on inflammation and fibrosis in the heart from rats fed with different 

diets. Haematoxylin and eosin staining of left ventricle showing infiltration of 

inflammatory cells (A-D, inflammatory cells marked as “in”) from corn starch 

diet-fed rats (A), corn starch diet-fed rats given 10% ethanol (B), high-

carbohydrate, high-fat diet-fed rats (C) and high-carbohydrate, high-fat diet-fed 

rats given 10% ethanol (D). Picrosirius red staining of left ventricle showing 

collagen deposition and hypertrophy (E-H, fibrosis marked as “fi” and 

hypertrophied cardiomyocytes as “hy”) from corn starch diet-fed rats (E), corn 

starch diet-fed rats given 10% ethanol (F), high-carbohydrate, high-fat diet-fed 

rats (G) and high-carbohydrate, high-fat diet-fed rats given 10% ethanol (H). 
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Figure 3. Effects of 

combination of high-

carbohydrate, high-fat 

diet and ethanol on 

noradrenaline- induced 

contraction (A), sodium 

nitroprusside-induced 

relaxation (B) and 

acetylcholine-induced 

relaxation (C) in 

thoracic aortic 

preparations from rats. 

Values are mean ± 

SEM, n = 12. End-point 

means without a 

common letter differ, P 

< 0.05. 

C, corn starch diet-fed 

rats; CE, corn starch 

diet-fed rats given 10% 

ethanol; H, high-

carbohydrate, high-fat 

diet-fed rats; HE, high-

carbohydrate, high-fat 

diet-fed rats given 10% 

ethanol. 

 

Page 228



Hepatic structure and function  

Livers from H rats showed infiltration of inflammatory cells (Figure 4C), 

fat deposition (Figure 4G) and perivascular fibrosis (Figure K). These changes 

were not seen in the livers from C rats (Figure 4A, 4E & 4I). In HE rats, livers 

showed infiltration of inflammatory cells (Figure 4D), a further increase in fat 

deposition in the form of fat vacuoles (Figure 4H) as well as perivascular 

fibrosis (Figure 4L). In CE rats, infiltration of inflammatory cells (Figure 4B) 

and fibrosis (Figure 4F) were not observed whereas fat vacuoles were present 

(Figure 4J). 

Liver wet weight was higher in H rats compared to C rats. CE rats 

showed higher liver wet weight than C rats whereas HE rats showed lower liver 

wet weights compared to H rats (Table 3). H rats had higher plasma activities of 

ALT, AST, ALP and LDH compared to C rats, while these activities were 

lower in HE rats than H rats. C and CE rats did not differ in plasma activities of 

ALT, AST and LDH whereas plasma activity of ALP was lower in CE rats than 

in C rats (Table 3). Plasma albumin concentrations did not differ between C and 

H rats. HE rats had lower plasma albumin concentrations than H rats whereas 

plasma albumin concentrations did not differ between C and CE rats (Table 3). 

Plasma total bilirubin concentrations did not differ between C and H rats. CE 

rats had lower plasma concentrations of total bilirubin than C rats while plasma 

total bilirubin concentrations did not differ between H and HE rats (Table 3). 

Plasma urea concentrations were lower in H rats than in C rats. Plasma urea 

concentrations were higher in HE rats compared to H rats, although this 

parameter was not normalised. Plasma urea concentrations did not differ 

between C and CE rats. Plasma uric acid concentrations were higher in H rats 

compared to C. Plasma uric acid concentrations did not differ in CE and HE 

rats compared to C and H rats, respectively (Table 3). 
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Figure 4. Effects of combination of high-carbohydrate, high-fat diet and 
ethanol on inflammation, fat deposition and fibrosis in the liver from rats fed 
with different diets. Top and middle rows represent hematoxylin and eosin 
staining of the liver showing inflammatory cells (A-D, marked as “in”) (×20) 
and enlarged fat vacuoles (E-H, marked as “fv”) (×40) from corn starch diet-fed 
rats (A,E), corn starch diet-fed rats given 10% ethanol (B,F), high-
carbohydrate, high-fat diet-fed rats (C,G) and high-carbohydrate, high-fat diet-
fed rats given 10% ethanol (D,H). Bottom row represents Milligan’s trichrome 
staining of the liver showing fibrosis in the hepatic portal region (I-L, marked 
as “fi”) (×20) from corn starch diet-fed rats (I), corn starch diet-fed rats given 
10% ethanol (J), high-carbohydrate, high-fat diet-fed rats (K) and high-
carbohydrate, high-fat diet-fed rats given 10% ethanol (L). 
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Discussion 

Ethanol consumption is very common in most countries. In Australia, 

approximately 3,000 people die and 65,000 people are hospitalised every year 

as a result of excess ethanol consumption [19,20]. Ethanol-related deaths in 

Australia included a significant involvement of end-stage alcoholic liver 

cirrhosis as a cause of death [21]. A we b-based survey has shown a high 

prevalence of ethanol consumption among Australian University students [22]. 

Similar results have been obtained from different countries [23-25]. National 

Health and Medical Research Council guidelines recommend no more than two 

standard drinks (20 g alcohol/day) on any day for healthy men and women to 

reduce the risk of harm from alcohol-related diseases [26]. It is proposed that 

cirrhosis occurs faster in the presence of conditions such as viral hepatitis, 

obesity or iron overload [21]. 

Ethanol is absorbed very rapidly and without metabolism from the 

gastrointestinal tract (about 20% in stomach and 80% in small intestine). After 

absorption, it is distributed throughout the body and then metabolised. The 

main organ responsible for the metabolism of ethanol is the liver [27]. Initially, 

ethanol is converted to acetaldehyde by alcohol dehydrogenase in the 

cytoplasm of the hepatocytes. Nicotinamide adenine dinucleotide (NAD) acts 

as an electron acceptor in this reaction. Liver microsomes can oxidise alcohol 

with the use of NADP instead of NAD. Acetaldehyde is then converted to 

acetic acid by aldehyde dehydrogenase, using NAD as the electron acceptor. 

The acetic acid thus produced is then converted to acetyl-CoA, which is an 

intermediate of Krebs cycle and de novo lipogenesis [27]. Many mechanisms 

have been validated for the development of fatty liver with chronic ethanol 

consumption [28].  

Acetic acid produced from metabolism of ethanol decreases plasma non-

esterified fatty acids [29]. A similar decrease occurs in plasma glycerol 

concentrations [30]. Also, being a major site for glycerol metabolism, liver had 
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reduced glycerol clearance in presence of ethanol [31]. These studies conclude 

that consumption of ethanol leads to decreased lipolysis in the peripheral tissues 

and hence lower concentrations of non-esterified fatty acids and glycerol in 

plasma. However, these effects are seen with a lower dose of ethanol. Non-

esterified fatty acids have been involved increasing the risk of cardiovascular 

disease [32,33]. Thus, the reduction in plasma concentrations of non-esterified 

fatty acids with acute alcohol consumption may explain the cardioprotective 

effects of lower intake of alcohol. With higher dose of ethanol, the mobilisation 

of fatty acids from adipose tissue increased the plasma non-esterified fatty acid 

concentrations, although plasma triglycerides concentrations were lower [34]. 

The shift from NAD to NADH by ethanol inhibits the citric acid cycle 

and β-oxidation of fatty acids. At the same time, conversion of pyruvate to 

lactate is favoured. The increase in the ratios of NADH/NAD and 

lactate/pyruvate leads to inhibition of gluconeogenesis. These results were 

confirmed in both rat livers [35] as well as in humans [36]. When supply of 

glucose is limited as in the case of starvation, glucose is released from glycogen 

stores in the liver. In the case of chronic alcohol consumption, glycogenolysis is 

also impaired. Thus alcohol causes hypoglycaemia with impaired 

glycogenolysis and gluconeogenesis [36-38].  

In our previous studies, we have shown that a high-carbohydrate, high-fat 

diet in rats induced symptoms of non-alcoholic fatty liver disease, including the 

presence of fat vacuoles in the liver, infiltration of inflammatory cells, 

perivascular fibrosis and increased plasma activities of liver enzymes including 

transaminases [5]. Although these changes were seen in high-carbohydrate, 

high-fat diet-fed rats, it was concluded that these symptoms were only mild, as 

expected with this diet for a relatively short period. Since ethanol is a dietary 

component that causes severe damage to the liver in humans when taken 

chronically [3], this study was designed to measure the effects of a combination 

of high-carbohydrate, high-fat diet and ethanol. It was hypothesised that this 
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combination would cause more damage to the liver than the high-carbohydrate, 

high-fat diet alone. 

A combination of ethanol and high-carbohydrate, high-fat diet did not 

worsen the symptoms of metabolic syndrome in rats. Rather, some of the 

symptoms of metabolic syndrome including central obesity and dyslipidaemia 

were improved. Cardiovascular changes including left ventricular diameter, 

fractional shortening, ventricular diastolic stiffness and cardiac inflammation 

were similar to high-carbohydrate, high-fat diet alone whereas cardiac fibrosis 

and hypertrophy were attenuated with ethanol in high-carbohydrate, high-fat 

diet-fed rats. Vascular responses including smooth muscle contraction, 

endothelium-dependent and endothelium-independent vascular relaxations were 

improved in the ethanol and high-carbohydrate, high-fat diet-fed rats. 

Specifically, livers from high-carbohydrate, high-fat diet-fed rats given ethanol 

showed lower liver wet weight and plasma activities of liver enzymes compared 

to high-carbohydrate, high-fat diet-fed rats. However, the livers from ethanol-

fed rats with both corn starch diet and high-carbohydrate, high-fat diet showed 

more fat vacuoles than high-carbohydrate, high-fat diet alone. These results in 

rats showed that ethanol feeding (5-6 g/kg body weight/day) in rats caused 

hepatic steatosis. This effect of ethanol was independent of high-carbohydrate, 

high-fat diet as it was also observed in corn starch diet-fed rats. 

In conclusion, ethanol caused hepatic steatosis with both corn starch diet 

and high-carbohydrate, high-fat diet. However, hepatic inflammation and 

fibrosis were only observed with a combination of ethanol and high-

carbohydrate, high-fat diet. Also, this combination either improved the 

cardiovascular complications or did not affect them, consistent with responses 

to ethanol expected as part of the Mediterranean diet. It can be concluded that a 

combination of high-carbohydrate, high-fat diet and 10% ethanol can be used to 

mimic alcoholic steatohepatitis, but this model does not mimic the 

cardiovascular complications observed with high-carbohydrate, high-fat diet 

alone due to the cardioprotective effect of ethanol. 

Page 234



References 

1. Savolainen K, Liesto K, Männikkö A, Penttilä, Karhunen PJ. Alcohol 

consumption and alcoholic liver disease: evidence of a threshold level of effects 

of ethanol. Alcoholism, Clinical  and Experimental Research 1993;17:1112-

1117. 

2. Lieber CS. Alcoholic fatty liver: its pathogenesis and mechanism of 

progression to inflammation and fibrosis. Alcohol 2004;34:9-19. 

3. Mann RE, Smart RG, Govoni R. The epidemiology of alcoholic liver 

disease. Alcohol Research and Health 2003;27:209-219. 

4. Lieber CS. Mechanism of ethanol induced hepatic injury. 

Pharmacology & Therapeutics 1990;46:1-41. 

5. Panchal SK, Poudyal H, Iyer A, Nazer R, Alam MA, Diwan V, Kauter 

K, Sernia C, Campbell F, Ward L, Gobe G, Fenning A, Brown L. High-

carbohydrate, high-fat diet-induced metabolic syndrome and cardiovascular 

remodeling in rats. Journal of Cardiovascular Pharmacology 2011;57:611-624. 

6. Panchal SK, Poudyal H, Arumugam TV, Brown L. Rutin attenuates 

metabolic changes, nonalcohoilc steatohepatitis, and cardiovascular remodeling 

in high-carbohydrate, high-fat diet-fed rats. The Journal of Nutrition 

2011;141:1062-1069. 

7. Poudyal H, Campbell F, Brown L. Olive leaf extract attenuates cardiac, 

hepatic, and metabolic changes in high carbohydrate-, high fat-fed rats. The 

Journal of Nutrition 2010;140:946-953. 

8. Poudyal H, Panchal SK, Waanders J, Ward L, Brown L. Lipid 

redistribution by alpha-linolenic acid-rich chia seed inhibits stearoyl-CoA 

desaturase-1 and induces cardiac and hepatic protection in diet-induced obese 

rats. The Journal of Nutritional Biochemistry 2012;23:153-162. 

9. Buettner R, Parhofer KG, Woenckhaus M, Wrede CE, Kunz-Schughart 

LA, Schölmerich J, Bollheimer LC. Defining high-fat-diet rat models: 

metabolic and molecular effects of different fat types. Journal of Molecular 

Endocrinology 2006;36:485–501. 

10. Kawasaki T, Igarashi K, Koeda T, Sugimoto K, Nakagawa K, Hayashi 

Page 235



S, Yamaji R, Inui H, Fukusato T, Yamanouchi T. Rats fed fructose-enriched 

diets have characteristics of nonalcoholic hepatic steatosis. The Journal of 

Nutrition 2009;139:2067– 2071. 

11. Huang W, Metlakunta A, Dedousis N, Zhang P, Sipula I, Dube JJ, Scott 

DK, O'Doherty RM. Depletion of liver Kupffer cells prevents the development 

of diet-induced hepatic steatosis and insulin resistance. Diabetes 2010;59:347–

357. 

12. Sato A, Kawano H, Notsu T, Ohta M, Nakakuki M, Mizuguchi K, Itoh 

M, Suganami T, Ogawa Y. Antiobesity effect of eicosapentaenoic acid in high-

fat/high-sucrose diet-induced obesity: importance of hepatic lipogenesis. 

Diabetes 2010;59:2495–2504. 

13. Wada T, Kenmochi H, Miyashita Y, Sasaki M, Ojima M, Sasahara M, 

Koya D, Tsuneki H, Sasaoka T. Spironolactone improves glucose and lipid 

metabolism by ameliorating hepatic steatosis and inflammation and suppressing 

enhanced gluconeogenesis induced by high-fat and high-fructose diet. 

Endocrinology 2010;151:2040–2049. 

14. Rimm EB, Ellison RC. Alcohol in the Mediterranean diet. The 

American Journal of Clinical Nutrition 1995;61(6 Suppl):1378S-1382S. 

15. Sato M, Maulik N, Das DK. Cardioprotection with alcohol: role of both 

alcohol and polyphenolic antioxidants. Annals of the New York Academy of 

Sciences 2002;957:122-135. 

16. Fuchs FD, Chambless LE. Is the cardioprotective effect of alcohol real? 

Alcohol 2007;41:399-402. 

17. Ward LC, Battersby KJ. Assessment of body composition of rats by 

bioimpedance spectroscopy: Validation against dual-energy x-ray 

absorptiometry. Scandinavian Journal of Laboratory Animal Science 

2009;36:253-261. 

18. Brown L, Fenning A, Chan V, Loch D, Wilson K, Anderson B, Burstow 

D. Echocardiographic assessment of cardiac structure and function in rats. 

Heart, Lung and Circulation 2002;11:167-173. 

19. Liang W, Chikritzhs T, Pascal R, Binns CW. Mortality rate of alcoholic 

Page 236



liver disease and risk of hospitalization for alcoholic liver cirrhosis, alcoholic 

hepatitis and alcoholic liver failure in Australia between 1993 and 2005. 

Internal Medicine Journal 2011;41:34–41. 

20. Williams M, Mohsin M, Weber D, Jalaludin B, Crozier J. Alcohol 

consumption and injury risk: a case-crossover study in Sydney, Australia. Drug 

and Alcohol Review 2011;30:344-354. 

21. Duggan AE, Duggan JM. Alcoholic liver disease – assessment and 

management. Australian Family Physician 2011;40:590-593. 

22. Hallett JD, Howat PM, Maycock BR, McManus A, Kypri K, Dhaliwal 

S. Undergraduate student drinking and related harms at an Australian 

university: web-based survey of a large random samples. BMC Public Health 

2012;12:37. 

23. Karam E, Kypri K, Salamoun M. Alcohol use among college students: 

an international perspective. Current Opinion in Psychiatry 2007;20:213–221. 

24. Wechsler H, Nelson TF. What we have learned from the Harvard 

School Of Public Health College Alcohol Study: focusing attention on college 

student alcohol consumption and the environmental conditions that promote it. 

Journal of Studies on Alcohol and Drugs 2008;69:481–490. 

25. Wicki M, Kuntsche E, Gmel G. Drinking at European universities? A 

review of students’ alcohol use. Addictive Behaviors 2010;35:913–924. 

26. www.nhmrc.gov.au/your-health/alcohol-guidelines. 

27. Pawan GLS. Metabolism of alcohol (ethanol) in man. Proceedings of 

the Nutrition Society 1972;31:83-89. 

28. Sozio M, Crabb DW. Alcohol and lipid metabolism. American Journal 

of Physiology. Endocrinology and Metabolism 2008;295:E10-E16. 

29. Crouse JR, Gerson CD, DeCarli LM, Lieber CS. Role of acetate in the 

reduction of plasma free fatty acids produced by ethanol in man. Journal of 

Lipid Research 1968;9:509–512. 

30. Feinman L, Lieber CS. Effect of ethanol on plasma glycerol in man. The 

American Journal of Clinical Nutrition 1967;20:400-403. 

31. Lundquist FN, Winkler TK, Jensen BK. Glycerol metabolism in the 

Page 237



human liver: inhibition by ethanol. Science (New York) 1965;1:616-617. 

32. Boden G. Effects of free fatty acids (FFA) on glucose metabolism: 

significance for insulin resistance and type 2 diabetes. Experimental and 

Clinical Endocrinology & Diabetes 2003;111:121-124. 

33. Mathew M, Tay E, Cusi K. Elevated plasma free fatty acids increase 

cardiovascular risk by inducing plasma biomarkers of endothelial activation, 

myeloperoxidase and PAI-1 in healthy subjects. Cardiovascular Diabetology 

2010;9:9. 

34. Schapiro RH, Scheig RL, Drummey GD, Mendelson JH, Isselbacher 

KJ. Effect of prolonged ethanol ingestion on the transport and metabolism of 

lipids in man. The New England Journal of Medicine 1965;272:610-615. 

35. Krebs HA, Freedland RA, Hems R, Stubbs M. Inhibition of hepatic 

gluconeogenesis by ethanol. The Biochemical Journal 1969;112:117–124. 

36. Siler SQ, Neese RA, Christiansen MP, Hellerstein MK. The inhibition 

of gluconeogenesis following alcohol in humans. The American Journal of 

Physiology 1998;275:E897-E907. 

37. Lieber CS. Alcohol and the liver. Hepatology 1984;4:1243–1260. 

38. van de Wiel A. Diabetes mellitus and alcohol. Diabetes/Metabolism 

Research and Reviews 2004;20:263-267. 

Page 238



Chapter 9: Discussion and conclusion 

This thesis has firstly characterised an appropriate rat model to mimic 

diet-induced metabolic syndrome in humans and secondly evaluated the 

potential therapeutic benefits of interventions with natural products found in 

foods. Chapter 1 describes metabolic syndrome, cardiovascular remodelling 

and non-alcoholic fatty liver disease. Metabolic syndrome is prevalent 

throughout the world [1]. This combination of obesity, hypertension, 

dyslipidaemia and insulin resistance markedly increases the risk for 

development of cardiovascular disease, non-alcoholic fatty liver disease and 

diabetes, increasing both morbidity and mortality. The major players in the 

development of cardiovascular disease and non-alcoholic fatty liver disease are 

oxidative stress and inflammation.  

Chapter 2 describes the potential therapeutic benefits of polyphenols 

from natural products and some of the Indian spices on t he symptoms of 

metabolic syndrome. Polyphenols are plant secondary metabolites derived 

exclusively from the shikimate-derived phenylpropanoid and/or the polyketide 

pathway(s), featuring more than one phenolic ring and being devoid of any 

nitrogen-based functional group in their most basic structural expressions [2]. 

In this study, we focused on polyphenols or polyphenol-rich natural products as 

potential treatment strategies for metabolic syndrome. 

Research in metabolic syndrome, as in other human diseases, relies on 

appropriate animal models to test possible interventions in humans. Many 

rodent models are available, including genetic/spontaneous models, genetically-

engineered models, chemically-induced models and diet-induced models [1]. 

Since the human syndrome is mainly diet-induced rather than genetic, Chapter 

3.1 has argued that a diet-induced model in rats is the most appropriate model 

to mimic the human metabolic syndrome. Many different diets are available in 

the literature to induce obesity in rats and mice, usually with increased content 

of either simple carbohydrates such as fructose or sucrose, or increased 
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saturated fats. However, the high carbohydrate diet does not induce obesity and 

the high saturated fat diet does not mimic the human diet. The most appropriate 

model therefore incorporates a d iet with increased simple sugars as well as 

saturated fats, including trans fats.  

Characterisation of the chronic changes induced by this diet on metabolic, 

cardiovascular and liver parameters is given as Chapter 3.2 of this thesis. 

Young adult male Wistar rats were given a diet of 20% beef tallow, 17.5% 

fructose and 39.5% condensed milk along with 25% fructose in drinking water 

for 16 weeks [3-5]. A corn starch rich diet was used as a control for this diet, 

aiming to provide the same proportion of carbohydrates in the form of 

polysaccharides. Corn starch is a slowly digestible carbohydrate whereas 

fructose and sucrose are simple lipogenic carbohydrates which are absorbed 

easily in the gastrointestinal tract. Also, corn starch did not increase blood 

glucose concentrations, systolic blood pressure, abdominal fat deposition, 

plasma insulin or plasma lipid concentrations [3]. Thus, corn starch diet served 

as an appropriate control diet for comparison with the high-carbohydrate, high-

fat diet [3-5]. High-carbohydrate, high-fat diet-fed rats developed progressive 

increases in body weight, energy intake, central obesity, systolic blood 

pressure, dyslipidaemia and hyperinsulinaemia [3]. These changes were 

associated with development of cardiovascular remodelling including 

ventricular dilatation, ventricular stiffness and fibrosis and reduced ventricular 

function and non-alcoholic steatohepatitis including fat deposition, 

inflammation and fibrosis in the liver with increases in the plasma activities of 

marker enzymes for liver dysfunction [3]. This model was used to investigate 

the potential therapeutic effects of natural products since pathophysiological 

responses mimicking human metabolic syndrome were shown. The different 

responses to natural products used in this study have been summarised in Table 

1. 
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Initially, two flavonoids, rutin and its aglycone, quercetin, were studied 

for their effects in diet-induced metabolic syndrome in rats. Both rutin and 

quercetin inhibited infiltration of inflammatory cells in the heart and the liver, 

reduced collagen deposition in the left ventricle and perivascular fibrosis in the 

liver, improved ventricular and liver functions, reduced diastolic stiffness, 

improved vascular contraction and relaxation, prevented hepatic steatosis and 

improved glucose tolerance, although they had different effects on central 

obesity and dyslipidaemia. Rutin (100 mg/kg body weight/day) reduced 

abdominal fat, body weight and plasma lipid contents suggesting that the excess 

fat was either oxidised or excreted from the body (Chapter 4.1). In contrast, 

quercetin (50 mg/kg body weight/day) reduced abdominal fat without changing 

body weight and plasma lipid components. This suggests that the fat was 

moved from the abdominal area and either stored in subcutaneous areas or 

converted into muscle mass, hence producing no c hange in body weight 

(Chapter 4.2). Although the only chemical difference between rutin and 

quercetin is the presence of glucose and rhamnose moieties in rutin, there were 

differences in the responses to these compounds in diet-induced metabolic 

syndrome. These differences might arise from differences in the absorption and 

metabolism of these phytochemicals [6]. Molecular weights of rutin and 

quercetin are 610 and 302, respectively. Since rutin is almost double the 

molecular weight of quercetin and one molecule of rutin contains only one 

quercetin, the dose of rutin given was double the dose of quercetin. This was 

done in order to ensure that the effects seen from both rutin and quercetin were 

equivalent in terms of active constituents as the glycosidic part of rutin is 

cleaved before it is absorbed in the gastrointestinal tract.  

Similar results were shown with ellagic acid and ellagitannins. 

Ellagitannins are complex esters of ellagic acid with glucose while ellagic acid 

is a dilactone formed from 2 molecules of gallic acid. Ellagitannins induced 

reduction in body weight as well as abdominal fat, which indicates that the 

abdominal fat was either oxidised or excreted from the body, an effect also 

observed with rutin (Chapter 5.1). Unlike ellagitannins, ellagic acid-
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supplemented rats did not show reductions in total body fat whereas the 

abdominal fat was reduced (Chapter 5.2). This clearly indicates that the fat was 

removed from the abdominal area and stored in the subcutaneous areas without 

being converted into muscle mass. Thus, there were differences between the 

effects of ellagic acid and ellagitannins on body fat and body weight. However, 

both ellagitannins and ellagic acid prevented infiltration of inflammatory cells 

in the heart and the liver, reduced collagen deposition in the left ventricle and 

perivascular fibrosis in the liver, improved left ventricular and liver functions, 

reduced ventricular diastolic stiffness, improved vascular contraction and 

relaxation, prevented hepatic steatosis and improved glucose tolerance. 

Colombian coffee extract (Chapter 6.1) containing caffeine, chlorogenic 

acid and diterpenoids such as cafestol and kahweol was the only treatment in 

this thesis that did not reduce abdominal fat content. High-carbohydrate, high-

fat diet-fed rats given 5% coffee extract showed attenuation of cardiovascular 

remodelling and dysfunction, non-alcoholic steatohepatitis, impaired glucose 

tolerance and hypertension whereas central obesity and dyslipidaemia were 

unaffected. Other studies have shown correlations between presence of excess 

abdominal fat and dyslipidaemia with the occurrence of cardiovascular disease 

and non-alcoholic fatty liver disease [7-10]. Although abdominal fat and plasma 

lipids were not reduced by coffee extract, there were improvements in glucose 

tolerance, left ventricular function and liver function, prevention of cardiac and 

hepatic infiltration of inflammatory cells, prevention of hepatic steatosis and 

lowering of ventricular dimensions and ventricular diastolic stiffness. Among 

the major constituents of coffee, chlorogenic acid has been studied for its 

beneficial effects in metabolic syndrome [11-13]. Results with caffeine have 

been inconclusive [14-17] and there have been no s tudies with pure 

diterpenoids to show any effects in metabolic syndrome. Thus, we tested 

caffeine at approximately the same dose given through coffee extract (~30 

mg/kg body weight/day). When caffeine was given to the high-carbohydrate, 

high-fat diet-fed rats, they showed normalisation of body fat, glucose tolerance 

and insulin sensitivity along with lowering of systolic blood pressure, body 
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weight and abdominal fat. These effects were also accompanied by 

improvements in glucose tolerance, liver function, prevention of cardiac and 

hepatic infiltration of inflammatory cells, prevention of hepatic steatosis and 

lowering of ventricular diastolic stiffness. However, plasma lipid components 

were increased. These effects of caffeine were attributed to the antagonism of 

A1 adenosine receptors by caffeine (Chapter 6.2). Inhibition of A1 adenosine 

receptors activates lipolysis in the adipocytes hence reducing the abdominal fat 

and increasing plasma non-esterified fatty acids. The comparison between the 

two studies indicates that the effects of caffeine in reducing abdominal fat in 

coffee-fed rats were overpowered by responses to other constituents. 

Previously, diterpenoids from coffee have been reported to induce 

hyperlipidaemia [18-22]. Thus, the lack of change in abdominal fat with coffee 

extract is probably due to the opposing responses to caffeine and the 

diterpenoids. 

High fructose and fat in the diet are responsible for the increased 

incidence and prevalence of metabolic syndrome and associated complications. 

In obesity, de novo lipogenesis is increased and fat oxidation is decreased. ʟ-

Carnitine, the fatty acid transporter across the mitochondrial membrane, was 

given to the rats to increase the availability of ʟ-carnitine for increased fatty 

acid oxidation. ʟ-Carnitine treatment for the last 8 weeks of the protocol after 

induction of metabolic syndrome in high-carbohydrate, high-fat diet fed-rats 

reduced central obesity and dyslipidaemia, improved glucose tolerance and 

insulin sensitivity, and improved cardiovascular and hepatic structure and 

function. These improvements were accompanied by reduced stearoyl CoA 

desaturase-1 activity in the plasma, heart, liver, skeletal muscle and abdominal 

fat pads. Also, polyunsaturated fatty acids, mainly linoleic acid (C18:2n-6), 

were preferred for oxidation and saturated fatty acids and oleic acid were stored 

in the body (Chapter 7). Thus, ʟ-carnitine supplementation in obese rats 

attenuated the symptoms of metabolic syndrome, cardiovascular remodelling 

and non-alcoholic fatty liver disease through inhibition of stearoyl CoA 

desaturase-1 activity leading to reduced short chain monounsaturated fatty acids 
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in the tissues. Further, ʟ-carnitine directed C18:2n-6 preferentially for oxidation 

hence reducing n-6 fatty acid pathway to reduce inflammatory responses. 

The Western diet includes cafeteria diet combined with the consumption 

of ethanol, commonly as beer, wine or spirits. Both cafeteria diet and ethanol 

ingestion can induce steatohepatitis yet ethanol has been claimed to be 

cardioprotective. In combination, ethanol (10% in drinking water) and high-

carbohydrate, high-fat diet worsened hepatic steatosis without worsening 

inflammation or fibrosis. However, the combination diet improved left 

ventricular fibrosis and function but high-carbohydrate, high-fat induced 

changes in cardiac dimensions and diastolic stiffness were unchanged in 

ethanol-fed rats. These results support the French paradox where ingestion of 

alcoholic beverages such as wine with high-fat diet reduces the risk of 

cardiovascular disease (Chapter 8). 

Overall, this thesis has examined the effects of individual polyphenolic 

compounds or extracts produced from a single natural product. Some of the 

possible mechanisms of actions of these natural products have been described 

in Table 2. Literature studies have examined the effects of a combination of 

various natural products. A recent study investigated the effects of a 

combination of curcumin with piperine and quercetin in high-fat diet and low-

dose streptozotocin-induced diabetic rats [23]. In this study, Curcuma longa, 

Piper nigrum and Allium cepa were used to provide curcumin, piperine and 

quercetin, respectively. This combination of compounds improved plasma lipid 

profile and also reduced plasma glucose concentrations in diabetic rats [23]. In 

another study, a combination of quercetin (10 mg/kg/day) and α-tocopherol (10 

mg/kg/day) was effective in attenuating the isoproterenol-induced cardiac 

changes [24]. An in vitro study with MOLT-4 cells suggested that combination 

of quercetin and ellagic acid increased the activation of p53 and p21cip1/waf1 and 

the MAP kinases, JNK1/2 and p38, in a more than additive manner. This study 

suggested that quercetin and ellagic acid synergistically induced apoptosis in 

cancer cells [25]. The synergistic effects of fish oil and green tea extract with 

Page 245



querectin have recently been reviewed indicating the positive effects of the 

addition of these components with quercetin in the diet [26]. In contrast, 

another study with a combination of quercetin and coenzyme Q10 did not 

support the synergistic effects of these two molecules. This study indicated that 

the combination of quercetin and coenzyme Q10 was as effective as the 

individual compounds in diabetic rats [27]. 

 

Table 2. Possible mechanisms of action for treatments used in this thesis 

Treatment Possible mechanisms of action 

Rutin (1.6 g/kg in 
food) 

Increased energy expenditure, anti-oxidative and 
anti-inflammatory effects, increased apoptosis in 
liver 

Quercetin (0.8 g/kg in 
food) 

Fat distribution away from abdomen, anti-oxidative 
and anti-inflammatory effects, increased oxidation of 
fat, increased apoptosis in liver 

Oak bark extract (0.5 
ml/kg food) Anti-oxidative and anti-inflammatory effects 

Ellagic acid (0.8 g/kg 
in food) 

Fat distribution away from abdomen, anti-oxidative 
and anti-inflammatory effects, increased oxidation of 
fat 

Coffee extract (5% in 
food) Anti-oxidative and anti-inflammatory effects 

Caffeine (0.5 g/kg 
food) 

Inhibition of A1 adenosine receptors in adipocytes, 
cardiomyocyte and hepatocytes 

ʟ-Carnitine (1.2 % in 
food) 

Increased fat oxidation, stearoyl-CoA desaturase-1 
inhibition, preferential oxidation of n-6 fatty acids 

The results from studies described in this thesis were used to deduce the possible 
mechanisms of actions. 
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In conclusion, natural products, that are part of food, can be used as 

medicines to reduce the symptoms of metabolic syndrome, cardiovascular 

disease and fatty liver disease. Onions, apples, red wine, grapes, coffee and 

berries have been part of the human diet since antiquity. This study has 

certainly shown that these constituents of diet or the individual components of 

these constituents can improve many or even all of the symptoms of the 

metabolic syndrome and associated complications. However, every natural 

product has a different type of action and these actions can be seen to a 

different extent with each natural product. Overall, food can be medicine if 

taken in the proper amount and in the proper way. 
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Anthocyanins, phenolic acids and carotenoids are the predominant phytochemicals present in purple carrots. These phytochemicals could be

useful in treatment of the metabolic syndrome since anthocyanins improve dyslipidaemia, glucose tolerance, hypertension and insulin resistance;

the phenolic acids may also protect against CVD and b-carotene may protect against oxidative processes. In the present study, we have

compared the ability of purple carrot juice and b-carotene to reverse the structural and functional changes in rats fed a high-carbohydrate,

high-fat diet as a model of the metabolic syndrome induced by diet. Cardiac structure and function were defined by histology, echocardiography

and in isolated hearts and blood vessels; liver structure and function, oxidative stress and inflammation were defined by histology and

plasma markers. High-carbohydrate, high-fat diet-fed rats developed hypertension, cardiac fibrosis, increased cardiac stiffness, endothelial

dysfunction, impaired glucose tolerance, increased abdominal fat deposition, altered plasma lipid profile, liver fibrosis and increased

plasma liver enzymes together with increased plasma markers of oxidative stress and inflammation as well as increased inflammatory cell

infiltration. Purple carrot juice attenuated or reversed all changes while b-carotene did not reduce oxidative stress, cardiac stiffness or

hepatic fat deposition. As the juice itself contained low concentrations of carotenoids, it is likely that the anthocyanins are responsible

for the antioxidant and anti-inflammatory properties of purple carrot juice to improve glucose tolerance as well as cardiovascular and hepatic

structure and function.

Purple carrots: Anthocyanins: b-Carotene: Metabolic syndrome: High-carbohydrate, high-fat diet-fed rats

Diet plays an important role in the aetiology and prevention of
the risk factors of the metabolic syndrome(1). Many epidemio-
logical studies have shown a strong inverse association between
an increased consumption of fruits and vegetables and a
decreased incidence of CVD(2 – 5), especially stroke(3),
IHD(2,3), CHD(4) and blood pressure(5). Although the risk of
type 2 diabetes is not related to the consumption of fruit or
vegetables, the intake of antioxidant phytochemicals has been
associated with reduction in the risk of type 2 diabetes(6,7).
Close relationships between obesity, the metabolic syndrome
and the development of non-alcoholic fatty liver disease
(NAFLD) have been described, with most NAFLD
patients displaying multiple components of the metabolic
syndrome(8). However, the effects of increased intakes of fruit
and vegetables on NAFLD patients have not been studied.

Glucosinolates, flavonoids, tannins, carotenoids, phytates
and phyto-oestrogens represent the major classes of phyto-
chemicals present in fruits and vegetables(9). These nutrients
may improve health through many mechanisms, such as
reducing oxidative stress and inflammation, improving lipid
profiles, lowering blood pressure and enhancing glucose
metabolism(9). Anthocyanins, a subclass of flavonoids, are

pigments of red fruits such as cherries, plums, strawberries,
raspberries, blackberries, grapes, red and black currants and,
together with the phenolic acids, are the major phytochemicals
in the human diet(10). Although research on the therapeutic
uses of the phytochemicals in carrots started with the
demonstration of pro-vitamin A activity by Moore in
1929(11), few data exist on possible therapeutic benefits from
carrot varieties other than orange carrots where b-carotene
is the predominant phytochemical component.

Carrot varieties differ in colour from white to orange,
yellow, red and purple and contain different combinations
and quantities of macronutrients, fibre, vitamins, minerals
and phytochemicals including carotenoids, phenolic acids,
anthocyanins, isocoumarins, terpenes and sesquiterpenes(12,13).
The colour of orange carrots is due to higher concentra-
tions of a- and b-carotene; red carrots contain increased
lycopene and yellow carrots contain increased lutein
concentrations while white carrots have lower concentrations
of all carotenoids(13). The anthocyanidins and chlorogenic
acid are the major antioxidants in purple carrots(13,14).
The colour of purple carrots (Daucus carota L. ssp. sativus
var. atrorubens Alef.) comes from the presence of

*Corresponding author: Professor Lindsay Brown, fax þ61 7 4631 1530, email Lindsay.Brown@usq.edu.au

Abbreviations: CRP, C-reactive protein; H (8 weeks or 16 weeks), high-carbohydrate, high-fat; HC, high-carbohydrate, high-fat þ b-carotene; HP, high-

carbohydrate, high-fat þ purple carrot juice; NAFLD, non-alcoholic fatty liver disease.

British Journal of Nutrition (2010), 104, 1322–1332 doi:10.1017/S0007114510002308
q The Authors 2010
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anthocyanins such as cyanidin-3-(200-xylose-600-sinapoyl-
glucose-galactoside)(13,15). Additionally, at least forty phenolic
acids are present in purple carrots including chlorogenic and
caffeic acids as the predominant compounds(13). Purple carrots
also contain polyacetylene compounds such as falcarindiol,
falcarindiol 3-acetate and falcarinol(16). Purple carrots
remain a sparsely studied potential dietary component that
are rich in anthocyanins, phenolic acids and carotenoids(13).
b-Carotene, the best known of the large carotenoid family

of phytochemicals, is the major dietary source of vitamin A
(retinol). Epidemiological studies have inversely associated
circulating b-carotene concentrations with the risk of
hypertension(17,18) but not with type 2 diabetes(19,20). The
antioxidant as well as pro-oxidant actions of b-carotene are
widely known(21,22). Carotenoids, particularly b-carotene
and lycopene, protect animals and humans against oxidative
processes, especially in lipophilic environments such as
cell membranes by acting as free radical scavengers(23).
Carotenoids have been proposed as a dietary strategy to
prevent cancers, possibly by antioxidant actions and the
stimulation of intercellular communication via gap junc-
tions(23). In vivo, b-carotene prevented ethanol-induced liver
damage and improved hepatic antioxidant enzyme status in
rats(24). In streptozotocin-induced diabetic rats, b-carotene
treatment increased hepatic and cardiac antioxidant
enzymes(25), improved circulatory insulin and glucose
concentrations(26) but increased lipid peroxidation(25).

Epidemiological studies have shown that plant-based
diets protect against CVD and cancer; flavonoids, including
the anthocyanins, occur widely in plants and may
improve human health(27,28). In particular, the anthocyanins
may improve the symptoms of the metabolic syndrome
such as dyslipidaemia, impaired glucose tolerance and
hypertension(27,28). Anthocyanin-rich plant extracts lowered
plasma lipid concentrations in rat models of hyperlipidae-
mia(29,30) and an extract from black rice (Oryza sativa
L. indica) lowered plasma lipid concentrations and improved
insulin resistance in fructose-fed rats(31). Spontaneously
hypertensive rats fed on anthocyanin-rich purple maize,
purple sweet potato and red radish showed reduced blood
pressure and heart rate(32). Other constituents of carrots such
as the polyacetylenes may suppress inflammation in the
metabolic syndrome by decreasing lipopolysaccharide-
induced expression of inflammatory proteins in macrophages
and endothelial cells(12).

Although the phytochemical profile of purple carrots has
been reported, sparse information exists on the pharmacologi-
cal activity of purple carrot juice. The aims of the present
study were to determine whether purple carrot juice attenuates
or reverses the cardiovascular, liver and metabolic changes
produced in a high-carbohydrate, high-fat diet-fed rat model
of the metabolic syndrome and whether these responses are
comparable with that of b-carotene.

Diets with increased carbohydrates, mainly as fructose(33),
increased fats(34) or a combination of both(35) in rats have
been studied to mimic the human metabolic syndrome.
Maize starch is a slowly digestible carbohydrate(36) and
served as a control for the high-carbohydrate, high-fat diet in
the present study where the primary carbohydrate is fructose.
Unlike fructose, maize starch does not increase blood glucose,
plasma insulin or NEFA concentrations(35,36).

The present study characterised structural changes in the rat
heart by histology and echocardiography, while heart function
was assessed in vivo using echocardiography and ex vivo in
isolated perfused hearts. Systolic blood pressure was measured
and isolated thoracic rings were used to measure vascular
reactivity. Biochemical parameters (enzyme activities of
alanine transaminase, aspartate transaminase and alkaline
phosphatase as well as total plasma bilirubin concentrations)
were assessed, and along with histology, were used to define
structural and functional changes in the liver. Circulatory
markers of impaired metabolism (lactate dehydrogenase,
urea and oral glucose tolerance test), oxidative stress
(malondialdehyde and uric acid) and inflammation (C-reactive
protein; CRP) were measured.

Materials and methods

Purple carrot juice

Purple carrot juice was prepared by SDS Beverages Pty Ltd
(Irymple, VIC, Australia). Purple carrots were crushed in a
hammer mill with water acidified with citric acid. Following
separation of solids, pectinases were added to the juice and
mixed at 50–558C for clarification. The juice was then
subjected to pasteurisation, chilling and filtering through a
200mm mesh before evaporation was carried out to concen-
trate the juice to 60 brix. This 60 brix purple carrot juice
was processed through another 200mm mesh and a metal
analyser and stored at 48C. This product was added as a 5 %
supplement to either the maize starch or high-carbohydrate,
high-fat diet described below (Table 1).

Total monomeric anthocyanins were determined using
the pH differential method as previously described(37). Absor-
bance was measured at 520 and 700 nm. Total monomeric
anthocyanins were expressed as cyanidin-3-glucoside (molar
extinction coefficient of 26 900 litres/cm per mol and
molecular weight of 449·2 g/mol).

Carotenoid concentrations in purple carrot juice were
analysed on an Agilent 1100 series HPLC system equipped
with a photodiode array UV-visible detector (Agilent Technol-
ogies, Waldbronn, Germany). Separations were achieved on a
150 £ 3·0 mm internal diameter, 3mm particle size, analytical
scale YMC C30 reversed-phase column (YMC, Wilmington,
MA, USA). Elution was performed at a solvent flow rate of
1·0 ml/min and detection at 450 nm. The mobile phases
consisted of acetone and Milli-Q water. For routine analysis,
a 10–95 % linear gradient elution of acetonitrile and Milli-Q
water was pumped through the column at 1·0 ml/min over
30 min. All solvents were HPLC grade and contained
0·005 % trifluoroacetic acid (Sigma-Aldrich Australia,
Sydney, NSW, Australia) to enhance peak shape. Purple
carrot juice was dissolved in 100 % analytical grade methanol
and filtered through a Whatman polytetrafluoroethylene
(PTFE) membrane filter (0·45mm; Whatman PLC,
Maidstone, Kent, UK) before loading the sample (10ml
injection volume). The UV spectra of the different carotenoid
(all-trans-b-carotene, zeaxanthin and lutein) compounds
were recorded with a diode array detector. Carotenoids were
quantified using calibration curves of the corresponding
standard compounds at the specific absorption maximum.
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Rats

The experimental groups consisted of eighty-four male

Wistar rats (aged 8–9 weeks; weight 337 ^ 5 g) supplied by

The University of Queensland Biological Resources unit and

individually housed at the School of Biomedical Sciences

Animal House Facility. All experimental procedures were

approved by the Animal Experimentation Ethics Committee

of The University of Queensland under the guidelines of the

National Health and Medical Research Council of Australia.

All experimental groups were housed in a temperature-

controlled, 12 h light–dark cycle environment with ad libitum

access to water and the group-specific rat diet. Daily body

weight, feed and water measurements were taken to monitor

the day-to-day health of the rats. The rats were randomly

divided into six separate groups based on their diet: maize

starch (n 12); maize starch þ b-carotene (n 12); maize starch þ

purple carrot juice (n 12); high-carbohydrate, high-fat (H;

n 24); high-carbohydrate, high-fat þ b-carotene (HC; n 12);

high-carbohydrate, high-fat þ purple carrot juice (HP; n 12).

The full description of the diets is given in Table 1. In addition,

the drinking water of all high-carbohydrate, high-fat diet-fed

rats contained 25 % fructose. Both purple carrot juice and

b-carotene (Sigma-Aldrich Australia) were administered for

8 weeks starting 8 weeks after the initiation of the maize

starch or high-carbohydrate, high-fat diets. Twelve rats were

killed from the high-carbohydrate, high-fat diet group at

8 weeks to assess the pathophysiological state before purple

carrot or b-carotene intervention (H 8 weeks). Two rats

per group were taken for histological analysis. Two slides

were prepared per tissue specimen and two random, non-

overlapping fields pictured for analysis. Organs were also

collected from rats used for perfusion studies.

Systolic blood pressure was measured under light sedation
with intraperitoneal injection of Zoletil (tiletamine 15 mg/kg,
zolazepam 15 mg/kg; Virbac, Peakhurst, NSW, Australia).
Measurements were taken using an MLT1010 Piezo-Electric
Pulse Transducer (ADInstruments, Sydney, NSW, Australia)
and inflatable tail-cuff connected to a MLT844 Physiological
Pressure Transducer (ADInstruments) and PowerLab data
acquisition unit (ADInstruments).

For the oral glucose tolerance test, basal blood glucose
concentrations were measured in tail-vein blood using a
Medisense Precision Q.I.D glucose meter (Abbott Labora-
tories, Bedford, MA, USA) after an overnight (10–12 h)
feed deprivation. Fructose-supplemented drinking water in
H, HC and HP groups was replaced with normal water for
the overnight feed-deprivation period for the measurement
of basal blood glucose concentrations. The rats were given
glucose at 2 g/kg body weight as a 40 % solution via oral
administration. Tail-vein blood samples were taken at 0, 30,
60, 90 and 120 min following glucose administration.

Echocardiography

Echocardiographic examination (Philips iE33 system, 12 MHz
transducer; Philips Medical System, Andover, MA, USA) was
performed at 8 and 16 weeks as previously described(35,38).
Briefly, rats were anaesthetised using intraperitoneal Zoletil
(toletamine 15 mg/kg and zolazepam 15 mg/kg intraperi-
toneally; Virbac, Peakhurst, NSW, Australia) combined
with xylazine (10 mg/kg) (Ilium Xylazil; Troy Laboratories,
Sydney, NSW, Australia) and positioned in dorsal recum-
bency. Electrodes attached to the skin overlying the elbows
and right stifle facilitated the simultaneous recording of a
lead II electrocardiogram.

Table 1. Diet composition and energy contents of diets

Ingredient M MC MP H HC HP

Maize starch (g/kg) 570·00 570·00 570·00 – – –
Powdered rat feed (g/kg)* 155·00 155·00 155·00 155·00 155·00 155·00
HMW salt mixture (g/kg)† 25·00 25·00 25·00 25·00 25·00 25·00
Fructose (g/kg) – – – 175·00 175·00 175·00
Beef tallow (g/kg) – – – 200·00 200·00 200·00
Condensed milk (g/kg) – – – 395·00 395·00 395·00
Water (ml/kg) 250·00 250·00 200·00 50·00 50·00 –
Purple carrot juice (ml/kg) – – 50·00 – – 50·00
b-Carotene (mg/kg) – 400 – – 400 –
Energy (kJ/g) 11·23 11·23 11·67 17·93 17·93 18·37

Macronutrient composition‡
Total carbohydrates (g/kg) 600·25 600·25 600·25 515·67 515·67 515·67
Total fat (g/kg) 8·07 8·07 8·07 239·04 239·04 239·04
Total proteins (g/kg)§ 31·78 31·78 31·78 58·12 58·12 58·12
Total fibres (g/kg) 7·44 7·44 7·44 7·44 7·44 7·44
Total vitamins (g/kg) 0·32 0·32 0·32 0·32 0·32 0·32
Retinol (mg/kg) 4·0 4·0 4·0 4·0 4·0 4·0
Total minerals (g/kg)§ 0·13 0·13 0·13 0·44 0·44 0·44
Ash (g/kg) 0·63 0·63 0·63 0·00 0·00 0·00
Total moisture (g/kg) 326·4 326·4 276·4 154·0 154·0 104·0

M, maize starch diet; MC, maize starch þ b-carotene diet; MP, maize starch þ purple carrot juice diet; H, high-carbohydrate, high-fat diet; HC, high-
carbohydrate, high-fat þ b-carotene diet; HP, high-carbohydrate, high-fat þ purple carrot juice diet.

* Meat-free rat and mouse feed (Specialty Feeds) contained (g/kg feed): carbohydrate, 707·07; protein, 194·00; fat, 48·00; fibre, 48·00; total
vitamins, 2·08; total minerals, 0·85.

† Hubble, Mendel and Wakeman salt mixture(54) (MP Biochemicals, Seven Hills, NSW, Australia).
‡ Derived from powdered rat feed.
§ H, HC and HP diets additionally derive these micronutrients from condensed milk.
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A short axis view of the left ventricle at the level of the
papillary muscles was obtained and used for direct acquisition
of M-mode images of the left ventricle for measurement of
diastolic posterior wall thickness, left ventricular internal
systolic dimension and left ventricular end-diastolic diameter.
For these parameters, diastole was defined by the beginning of
the QRS complex on the simultaneously recorded electrocar-
diogram and systole identified as the nadir of systolic anterior
wall motion independent of the electrocardiogram complex.

Pulsed-wave Doppler velocity profiles of mitral inflow was
obtained from the left apical four-chamber view for measure-
ment of early (EM) and late (AM) mitral inflow velocity, mitral
inflow E-wave deceleration time, and time from mitral valve
closure to opening (MCMO). A pulsed-wave Doppler velocity
profile of the ascending aorta was obtained from a suprasternal
view for measurement of aortic (Ao) velocity, ejection time
(ET) and the diameter of the ascending aorta at the point of
transition to the transverse aorta.

Derived indices of left ventricular systolic function
(fractional shortening (FS%), ejection fraction (EF%)) were
calculated using well-established formulae(38). Left ventricular
mass was estimated using the standard cube equation as
previously described(35,38).

Isolated heart preparation

The left ventricular function of the rats in all treatment groups
was assessed using the Langendorff heart preparation.
Terminal anaesthesia was induced via intraperitoneal injection
of pentobarbitone sodium (Lethabarbw, 100 mg/kg). After
heparin (Sigma-Aldrich Australia) administration (100 IU)
through the right femoral vein, blood (about 5 ml) was taken
from the abdominal aorta. Isovolumetric ventricular function
was measured by inserting a latex balloon catheter into the
left ventricle connected to a Capto SP844 MLT844 physio-
logical pressure transducer and Chart software on a Maclab
system (ADInstruments Australia and Pacific Islands, Bella
Vista, NSW, Australia). All left ventricular end-diastolic
pressure values were measured while pacing the heart at 250
beats per min using an electrical stimulator. End-diastolic
pressures were obtained starting from 0 mmHg up to
30 mmHg. The diastolic stiffness constant (k, dimensionless)
was calculated as in previous studies(35,39).

Organ bath studies

Thoracic aortic rings (4 mm in length) were suspended in
an organ bath chamber with a resting tension of 10 mN.
Cumulative concentration–response (contraction) curves
were measured for noradrenaline (Sigma-Aldrich Australia);
concentration–response (relaxation) curves were measured
for acetylcholine (Sigma-Aldrich Australia) and sodium
nitroprusside (Sigma-Aldrich Australia) in the presence of a
submaximal (70 %) contraction to noradrenaline(35).

Organ weights

The right and left ventricles were separated after perfusion
experiments and weighed. Liver and abdominal fat were
removed following heart removal and blotted dry for
weighing. Perirenal, epididymal and omental fat were together

weighed as abdominal fat. Organ weights were normalised
relative to the tibial length at the time of their removal
(in mg/mm).

Histology

Immediately after removal, heart and liver tissues were fixed
in 10 % buffered formalin for 3 d with change of formalin
every day to remove traces of blood from the tissue. The
samples were then dehydrated and embedded in paraffin
wax. Thin sections (10mm) of left ventricle and the liver
were cut and stained with haematoxylin and eosin stain for
determination of inflammatory cell infiltration. Liver sections
were also stained with Milligan’s Trichrome stain to deter-
mine fibrosis. Collagen distribution was measured in the left
ventricle with picrosirius red stain. Laser confocal microscopy
(Zeiss LSM 510 upright Confocal Microscope)(35) with colour
intensity quantitatively analysed using NIH-imageJ software
(National Institutes of Health, Bethesda, MD, USA) was
used to determine the extent of collagen deposition in selected
tissue sections.

Plasma analysis

Briefly, blood was centrifuged at 5000 g for 15 min within
30 min after collection into heparinised tubes. Plasma samples
were separated and transferred to Eppendorf tubes for ana-
lysis. Plasma enzymic activities and analyte concentrations
were determined using kits and controls supplied by
Olympus using an Olympus analyser (AU 400; Olympus,
Tokyo, Japan): cholesterol, Olympus OSR6516 enzymic
colour test; TAG, Olympus OSR 6133 enzymic colour test;
lactate dehydrogenase, Olympus OSR6127 kinetic UV test;
urea, Olympus OSR 6134 kinetic UV test; uric acid, Olympus
OSR 6098 enzymic colour test; alanine transaminase, Olym-
pus OSR 6107 kinetic UV test; aspartate transaminase,
Olympus OSR 6109 kinetic UV test; alkaline phosphatase,
Olympus OSR 6004 knetic UV test; albumin, Olympus OSR
6101 photometric colour test; total bilirubin, Olympus
OSR 6111 photometric colour test. Globulin was calculated
as total protein-albumin. Plasma malondialdehyde concen-
trations were measured by HPLC (Shimadzuw) as previously
described(40). Plasma CRP was estimated using a commercial
kit (Kamiya Biomedical, CA, USA) according to manufacturer-
provided standards and protocols using a Cobas-Mira
automated analyzer (Roche Diagnostics, Basel, Switzerland).

Statistical analysis

All data are presented as mean values with their standard
errors. Results were tested for variance using Bartlett’s test
and data that were not normally distributed were transformed
(using log 10 function) before statistical analyses. Differences
between the groups were determined by one-way ANOVA
with the Newman–Keuls multiple comparison post test. For
non-parametric data (total plasma cholesterol, plasma NEFA,
lactate dehydrogenase, malondialdehyde and plasma urea
concentrations and feed intake), Kruskal–Wallis tests were
performed. All statistical analysis was performed using
GraphPad Prism version 5.00 for Windows (San Diego, CA,
USA). P,0·05 was considered as statistically significant.
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Results

Diet and supplement intake, body weight and metabolic
parameters

Purple carrot juice contained anthocyanins (total 5·53 mg/ml)
and traces of b-carotene (0·75mg/ml), lutein (0·54mg/ml) and
zeaxanthin (4·4mg/ml). The mean daily intakes of total antho-
cyanins and carotenoids were higher in the maize starch þ

purple carrot juice and maize starch þ b-carotene groups than
in the HP and HC groups, respectively, as the feed intake was
higher in all maize starch diet-fed rats (Table 2). However, the
carotenoid intakes in the maize starch þ purple carrot juice
and HP rats were extremely low due to the low carotenoid
content of the juice (Table 2).

The high-carbohydrate, high-fat diet induced an increased
body weight, especially with increased abdominal fat pads
and abdominal circumference, compared with maize starch
diet-fed rats (Table 2). Although high-carbohydrate, high-fat
diet feeding reduced feed and water intake, rats on this diet
had higher daily energy intake compared with maize starch
diet-fed rats (Table 2). Neither purple carrot juice nor
b-carotene supplementation altered daily feed, water or
energy intake. However, purple carrot juice supplementation
reduced percentage gain in body weight, abdominal fat pads
and abdominal circumference (Table 2). The high-carbo-
hydrate, high-fat diet produced impaired glucose tolerance,
increased plasma concentrations of total cholesterol, TAG,
NEFA, malondialdehyde, CRP and uric acid, increased lactate
dehydrogenase activity and decreased plasma urea concen-
tration (Table 2). Purple carrot juice supplementation
improved oral glucose tolerance (Table 2) and reduced
plasma total cholesterol, TAG, NEFA and CRP concentrations
(Table 2). Although b-carotene improved oral glucose
tolerance and reduced plasma CRP concentrations (Table 2),
it further increased plasma TAG and NEFA concentrations
(Table 2). Further, purple carrot juice supplementation
attenuated the changes in lactate dehydrogenase activity,
plasma uric acid, malondialdehyde and urea concentrations
in high-carbohydrate, high-fat diet-fed rats; these parameters
were unaltered by b-carotene supplementation (Table 2).

Cardiovascular structure and function

High-carbohydrate, high-fat diet-fed rats showed increased
left ventricular diastolic internal diameter and relative wall
thickness with increased estimated left ventricular mass and
wet weight in comparison with the maize starch diet-fed
rats (Table 3). Moreover, the high-carbohydrate, high-fat
diet reduced fractional shortening and ejection fraction and
increased ejection time (Table 3). Both b-carotene and
purple carrot juice supplementation reduced estimated left
ventricular mass and wet weight. In addition, b-carotene
reduced left ventricular diastolic internal diameter, increased
fractional shortening and ejection fraction and decreased
ejection time (Table 3). High-carbohydrate, high-fat diet-fed
rats showed sustained elevation in systolic blood pressure
after 4 weeks of diet administration as compared with maize
starch diet-fed rats (Table 3). Purple carrot juice as well as
b-carotene supplementation normalised blood pressure as
early as 4 weeks post-intervention (Table 3). Following
high-carbohydrate, high-fat diet feeding for 16 weeks,

diminished vascular responses were observed in isolated
thoracic aortic rings to noradrenaline, sodium nitroprusside
and acetylcholine when compared with maize starch diet-fed
rats (Fig. 1). However, this reduced thoracic aortic reactivity
was not observed after 8 weeks of high-carbohydrate,
high-fat diet feeding. Purple carrot juice and b-carotene
supplementation prevented any further decrease in sodium
nitroprusside- and acetylcholine-dependent vasorelaxation
(Fig. 1(B) and (C)) as compared with high-carbohydrate,
high-fat diet-fed rats at 8 weeks but failed to attenuate the
reduced contractility with noradrenaline (Fig. 1(A)).

Ex vivo cardiac function as measured in the Langendorff
isolated heart showed an increased diastolic stiffness
(Table 3) in the high-carbohydrate, high-fat diet-fed rats as
compared with the maize starch diet-fed group (Table 3).
Reduction in diastolic stiffness was only observed in purple
carrot juice-supplemented rats. Histological analysis revealed
that high-carbohydrate, high-fat diet-fed rats showed increased
infiltration by inflammatory cells into the left ventricle
(Fig. 2(E)) and increased interstitial collagen deposition and
hypertrophy (Fig. 2(I); Table 3) when compared with the
maize starch diet-fed rats (Fig. 2(A) and (H); Table 3).
Both purple carrot juice- and b-carotene-supplemented high-
carbohydrate, high-fat diet-fed rats showed normalised infiltra-
tion of inflammatory cells (Fig. 2(G); Fig. 2(F)) and reduced
collagen deposition with normalised hypertrophy (Fig. 2(N);
Fig. 2(M); Table 3). No major changes were observed in
purple carrot juice- and b-carotene-supplemented maize
starch diet-fed rats (Fig. 2(B), (C), (I) and (J); Table 3).

Hepatic structure and function

In comparison with maize starch diet-fed rats, high-
carbohydrate, high-fat diet-fed rats had elevated plasma
alanine transaminase, aspartate transaminase and alkaline
phosphatase activities although the albumin:globulin ratio
and plasma bilirubin concentrations remained unaffected
(Table 4). Purple carrot juice supplementation reversed liver
function abnormalities indicated by normalised activity of
these enzymes (Table 4). Although b-carotene supplementation
normalised transaminases activities in high-carbohydrate,
high-fat diet-fed rats, alkaline phosphatase activity remained
elevated (Table 4).

By histological examination, high-carbohydrate, high-fat diet
feeding to rats caused macrovesicular steatosis (Fig. 3(E))
resulting from accumulation of lipids in large and small droplets
within hepatocytes with markedly high portal inflammation
(Fig. 3(M)) and portal fibrosis (Fig. 3(T); Table 4) as
compared with the maize starch diet-fed rats (Fig. 3(A),
(H) and (P); Table 4). The purple carrot juice-supplemented
high-carbohydrate, high-fat diet-fed rats displayed minimal
signs of macrovesicular steatosis (Fig. 3(G)), portal
inflammation (Fig. 3(O)) or fibrosis (Fig. 3(V); Table 4). The
b-carotene-supplemented high-carbohydrate, high-fat diet-fed
rats displayed normalised portal inflammation (Fig. 3(N)) and
fibrosis (Fig. 3(P); Table 4) but showed obvious hepatocyte
ballooning and increased fat vacuole size and number
(Fig. 3(F)). No major hepatic changes were observed in purple
carrot juice- and b-carotene-supplemented maize starch diet-
fed rats (Fig. 3(C), (K) and (R) and 3(B), (J) and (Q); Table 4).
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Discussion

A combination of high carbohydrate and high fat in the diet
was used in the present study to mimic human diets that
have been associated with the development of the metabolic
syndrome. This diet produced changes in metabolic, cardio-
vascular and hepatic structure and functions such as excessive
abdominal fat deposition, impaired glucose tolerance, elevated
blood pressure and increased plasma lipid concentrations
together with increased plasma oxidative stress markers and
liver enzymes compared with maize starch diet-fed rats.
Further, histological evaluation of heart and liver showed
increased infiltration of inflammatory cells and increased
collagen deposition in addition to increased fat vacuoles in
the liver. This was accompanied by increased left ventricular
stiffness and decreased aortic reactivity.

The present study compares therapeutic responses from
anthocyanin-rich purple carrot juice with responses to
b-carotene in high-carbohydrate, high-fat diet-fed rats. Since
carotenoids are sparsely soluble in water, unlike anthocyanins,
the purple carrot juice was very low in carotenoids but high
in total anthocyanins. The present results suggest that many

responses to purple carrot juice differ from those following
b-carotene supplementation. b-Carotene and purple carrot
juice produced different responses on blood lipid profiles,
lipid deposition in the liver, plasma alkaline phosphatase
and lactate dehydrogenase activities, left ventricular stiffness
and plasma markers of oxidative stress such as uric acid and
malondialdehyde. The responses to b-carotene may be pro-
duced by vitamin A and its major metabolites, retinoic acid
and retinaldehyde. Rats fed with vitamin A and retinoic acid
showed a marked increase in hepatic and plasma concen-
trations of glycogen, cholesterol and acylglycerols with elev-
ated plasma NEFA and increased glucose incorporation into
liver lipids(41,42). Vitamin A stimulated fatty acid mobilisation
from adipose tissue and enhanced formation of glyceropho-
sphate through glycolysis, with consequent increases in the
acylglycerol synthesis in the liver(41). Additionally, both
retinoic acid and retinaldehyde inhibited adipogenesis(43).
Here we show that b-carotene prevented further increases in
abdominal fat weight after treatment. It is therefore likely
that b-carotene and its major metabolites suppress adipo-
genesis, thereby allowing excess accumulation of lipids in
the liver and the plasma.
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Fig. 1. Cumulative concentration–response curves for noradrenaline (A), sodium nitroprusside (B) and acetylcholine (C) in thoracic aortic rings from maize starch

diet (W), maize starch diet þ b-carotene (K), maize starch diet þ purple carrot juice (S), high-carbohydrate, high-fat diet for 8 weeks (L), high-carbohydrate, high-

fat diet for 16 weeks (A), high-carbohydrate, high-fat diet þ b-carotene (X) and high-carbohydrate, high-fat diet þ purple carrot juice (P)-fed rats. Values are

means for eight to ten rats per group, with standard errors represented by vertical bars. a,b Mean values with an unlike letter were significantly different (P,0·05).
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Fig. 2. Haematoxylin and eosin staining of left ventricle ( £ 20) showing inflammatory cells (marked as ‘in’) as dark spots outside the myocytes in maize starch

diet (A), maize starch diet þ b-carotene (B), maize starch diet þ purple carrot juice (C), high-carbohydrate, high-fat diet for 8 weeks (D), high-carbohydrate,

high-fat diet for 16 weeks (E), high-carbohydrate, high-fat diet þ b-carotene (F) and high-carbohydrate, high-fat diet þ purple carrot juice (G)-fed rats. Picrosirius

red staining of left ventricular interstitial collagen deposition (40 £ ) in maize starch diet (H), maize starch diet þ b-carotene (I), maize starch diet þ purple carrot

juice (J), high-carbohydrate, high-fat diet for 8 weeks (K), high-carbohydrate, high-fat diet for 16 weeks (L), high-carbohydrate, high-fat diet þ b-carotene (M) and

high-carbohydrate, high-fat diet þ purple carrot juice (N)-fed rats; fibrosis is marked as ‘fi’ and hypertrophied cardiomyocytes are marked as ‘hy’.
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In the heart, retinoic acid inhibited G protein-coupled recep-
tor-mediated hypertrophy as well as angiotensin II-induced
increases in intracellular Ca2þ in neonatal cardiomyocytes(44).
In vivo, retinoic acid suppressed myocardial cell hypertro-
phy(44) and prevented ventricular fibrosis and remodelling in
spontaneously hypertensive rats(45). b-Carotene and caroten-
oid breakdown products induced apoptosis in Jurkat E6.1
malignant T-lymphoblast cells(46) and human neutrophils(47)

but impaired mitochondrial respiration and elevated accumu-
lation of malondialdehyde(48). Thus, b-carotene as a precursor
of vitamin A and retinoic acid may increase lipid peroxidation,

decrease cardiac hypertrophy, and prevent cardiac fibrosis and
inflammation.

In contrast, purple carrot juice supplementation normalised
plasma TAG, total cholesterol and NEFA concentrations, con-
sistent with the hypolipidaemic responses to other anthocya-
nin-rich plant extracts such as blueberry leaf(29). NEFA is
involved both in insulin resistance and hypertension by
inhibiting aortic endothelial NO synthase activity through an
oxidative mechanism(49,50). The present results demonstrated
enhanced vascular relaxant responses, consistent with
improved NO production and lowered blood pressure.
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Fig. 3. Haematoxylin and eosin staining of hepatocytes ( £ 40) showing hepatocytes with enlarged fat vacuoles (marked as ‘fv’) and inflammatory cells (marked as

‘in’) (20 £ ) from maize starch diet (A, H), maize starch diet þ b-carotene (B, I), maize starch diet þ purple carrot juice (C, J), high-carbohydrate, high-fat diet for 8

weeks (D, K), high-carbohydrate, high-fat diet for 16 weeks (E, L), high-carbohydrate, high-fat diet þ b-carotene (F, M) and high-carbohydrate, high-fat diet þ

purple carrot juice (G, N)-fed rats. Milligan’s trichrome staining of the hepatic portal regions showing collagen (marked as ‘pf’) (20 £ ) in maize starch diet (O),

maize starch diet þ b-carotene (P), maize starch diet þ purple carrot juice (Q), high-carbohydrate, high-fat diet for 8 weeks (R), high-carbohydrate, high-fat diet

for 16 weeks (S), high-carbohydrate, high-fat diet þ b-carotene (T) and high-carbohydrate, high-fat diet þ purple carrot juice (U)-fed rats. bl, Hepatocyte

ballooning.

Table 4. Changes in hepatic structure and function

(Mean values with their standard errors for ten animals per group)

M MC MP H (8 weeks) H (16 weeks) HC HP

Parameter Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM Mean SEM

Liver wet
weight
(mg/mm)

303·3b,g,i 9·8 222·1a 7·0 231·2a 13·0 302·8c,f,h,i 12·9 328·5e,h 10·0 297·0d,e,f,g 8·9 273·7b,c,d 13·0

Liver fibrosis
(% surface
area)*

0·9a,b,c,d 0·02 1·1a,e,h,i 0·1 1·0b,e,f,g 0·1 3·6k 0·8 5·7 0·5 2·4c,f,h,j,k 0·3 1·8d,g,i,j 0·7

ALT (U/l) 32·9d,g,h,i 2·0 59·8k 7·0 31·0a,b,c,d 1·9 36·1c,f,h,j 2·2 55·3k 3·7 31·0a,e,f,g 3·6 41·2b,e,i,j 3·4
AST (U/l) 71·0a,h,g,i 4·0 118·1k 14·2 70·8a,b,c,d 5·1 77b,f,i,j,k 2·5 101·7 5·4 65·2c,e,f,h 3·0 75·3d,e,g,j 3·8
ALP (U/l) 154·7a,d,e 2·0 167·6c,e 6·5 133·6a,b 7·1 192·4f 5·2 208·4f,g 0·6 224·8g 14·3 153·5b,c,d 6·2
Albumin (g/l) 28·5a,b 0·6 27·7a 0·4 29·1a,b 0·6 28·0a 0·6 28·0a 0·2 27·4a 0·2 29·9b 0·5
Globulin (g/l) 29·6a,b 1·0 26·2b 0·8 29·4a,b 0·8 28·2a,b 0·8 28·7a,b 0·7 27·6a,b 0·7 29·9a 1·0
Total bilirubin

(mmol/l)
2·2a,b 0·1 3·0a 0·6 1·5b 0·07 2·2a,b 0·07 2·3a,b 0·05 2·1a,b 0·2 2·1a,b 0·1

M, maize starch diet; MC, maize starch þ b-carotene diet; MP, maize starch þ purple carrot juice diet; H, high-carbohydrate, high-fat diet; HC, high-carbohydrate, high-fat þ b-
carotene diet; HP, high-carbohydrate, high-fat þ purple carrot juice diet; ALT, alanine transaminase; AST, aspartate transaminase; ALP, alkaline phosphatase.

a–k Mean values within a row with unlike superscript letters were significantly different (P,0·05).
* Four animals per group.
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Left ventricular dysfunction has been correlated with
metabolic disturbances, oxidative stress and the appearance
of inflammatory cells preceding left ventricular fibrosis and
left ventricular stiffness(51). Purple carrot juice supple-
mentation reduced left ventricular stiffness, the number of
inflammatory cells and left ventricular collagen deposition.
Echocardiographic assessment showed improved systolic
function and decreased left ventricular dimensions following
purple carrot treatment. Along with other results, reduction
in lactate dehydrogenase activity and improved N homeo-
stasis with purple carrot juice supplementation could be indi-
cative of normalised metabolism leading to cardioprotective
effects. Our data also showed that uric acid concentrations
decreased in the purple carrot juice-treated rats. Uric acid,
the endproduct of purine metabolism and a major endogenous
water-soluble antioxidant(52), is increased in fructose-fed rats
following increased production of reactive oxygen species(33).
Additionally, the reduction in plasma malondialdehyde con-
centrations, a major product of PUFA peroxidation, suggests
in vivo antioxidant activity of purple carrot juice.

In contrast to b-carotene, purple carrot juice supple-
mentation reduced liver wet weight, portal inflammation, fat
deposition and portal fibrosis in the liver and showed total
restoration of liver function. We have shown that purple
carrot juice reversed the pathological features of NAFLD
in the high-carbohydrate, high-fat diet-fed rats. Increased
activities of the serum enzymes including aspartate trans-
aminase, alanine transaminase and alkaline phosphatase reflect
active liver damage. Inflammatory hepatocellular disorders
result in extremely elevated transaminase levels(53). Thus,
purple carrot juice treatment has a significant role in the
decrease or reversal of liver dysfunction since the activity of
these plasma enzymes was lower than in high-carbohydrate-
high-fat diet-fed rats and similar to maize starch diet-fed
rats. Both b-carotene and purple carrot juice reduced plasma
CRP concentrations, suggesting their possible in vivo
anti-inflammatory effects.

The present study demonstrates for the first time that
treatment of the metabolic syndrome induced by diet in rats
with purple carrot juice attenuates or reverses the changes in
cardiovascular and liver structure and functions as well as in
metabolic parameters, especially abdominal fat deposition
and plasma lipid profiles. As the juice itself contained low
concentrations of carotenoids, it is likely that the anthocyanins
are responsible for the antioxidant and anti-inflammatory
properties of purple carrot juice. Furthermore, b-carotene
alone produces limited and sometimes contradictory responses
compared with purple carrot juice in this rat model of the
metabolic syndrome.
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Abstract

Chia seeds contain the essential fatty acid, α-linolenic acid (ALA). This study has assessed whether chia seeds attenuated the metabolic, cardiovascular and
hepatic signs of a high-carbohydrate, high-fat (H) diet [carbohydrates, 52% (wt/wt); fat, 24% (wt/wt) with 25% (wt/vol) fructose in drinking water] in rats. Diets
of the treatment groups were supplemented with 5% chia seeds after 8 weeks on H diet for a further 8 weeks. Compared with the H rats, chia seed-supplemented
rats had improved insulin sensitivity and glucose tolerance, reduced visceral adiposity, decreased hepatic steatosis and reduced cardiac and hepatic inflammation
and fibrosis without changes in plasma lipids or blood pressure. Chia seeds induced lipid redistribution with lipid trafficking away from the visceral fat and liver
with an increased accumulation in the heart. The stearoyl-CoA desaturase-1 products were depleted in the heart, liver and the adipose tissue of chia seed-
supplemented rats together with an increase in the substrate concentrations. The C18:1trans-7 was preferentially stored in the adipose tissue; the relatively inert
C18:1n-9 was stored in sensitive organs such as liver and heart and C18:2n-6, the parent fatty acid of the n-6 pathway, was preferentially metabolized. Thus, chia
seeds as a source of ALA induce lipid redistribution associated with cardioprotection and hepatoprotection.
© 2012 Elsevier Inc. All rights reserved.
Keywords: Chia seed; α-Linolenic acid; Metabolic syndrome; High-carbohydrate, high-fat diet
1. Introduction

All three nutritionally important n-3 fatty acids, α-linolenic acid
(ALA; C18:3n-3), eicosapentaenoic acid (EPA; C20:5n-3) and
docosahexaenoic acid (DHA; C22:6n-3), reduce one or more risk
factors of cardiovascular disease as shown by epidemiological,
human, animal and cell culture studies [1–5]. In human diets, ALA,
Abbreviations: ALA, α-linolenic acid; ALP, alkaline phosphatase; ALT,
alanine transaminase; AST, aspartate transaminase; C, corn starch diet; CC,
corn starch+chia seed diet; CK, creatine kinase; CPT-1, carnitine palmitoyl-
transferase I; CRP, C-reactive protein; DHA, docosahexaenoic acid; DXA, dual-
energy X-ray absorptiometry; EPA, eicosapentaenoic acid; H, high–carbohy-
drate, high-fat diet; HC, high-carbohydrate, high-fat diet+chia seed; LDH,
lactate dehydrogenase; LV, left ventricle; LVIDd, left ventricle internal
diameter in diastole; LVIDs, left ventricle internal diameter in systole;
LVPWd, left ventricle posterior wall thickness in diastole; NEFA, nonesterified
fatty acids; SCD, stearoyl-CoA 9-desaturase; SREBP-1, sterol regulatory
element binding protein-1.
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the essential n-3 fatty acid, is usually derived from plant sources
such as flax seed, while EPA and DHA are ingested from fish, fish
oil supplements and other sea foods [1]. The richest botanical
source of ALA is the oil from chia seeds containing about 60% (wt/
vol) [6–10]. Chia seed (Salvia hispanica L.) was a major dietary
component in the Mayan and Aztec populations [6]. In sucrose-fed
rats, dietary chia seed prevented the onset of dyslipidemia and
insulin resistance and reduced visceral adiposity without affecting
glucose homeostasis [10]. Rats fed a 16% chia seed diet showed
increased plasma ALA, EPA and DHA concentrations, decreased
serum triglyceride content and increased serum high-density
lipoprotein content [9]. In humans receiving conventional therapy
for diabetes, chia seed reduced systolic blood pressure and C-
reactive protein (CRP) concentrations and increased serum ALA and
EPA concentrations without affecting body weight [11]. In another
human intervention study, dietary chia seed increased plasma
ALA concentrations, but EPA and DHA concentrations, body com-
position, biomarkers of inflammation and oxidative stress were
unchanged [12].

Despite ALA being the primary fatty acid of the pathway, it has
generated less scientific interest than EPA or DHA among the n-3 fatty
acids possibly due to the inefficient conversion of ALA to EPA and
DHA by humans [13]. Epidemiological and clinical evidence suggests

http://www.sciencedirect.com/science/journal/09552863
http://dx.doi.org/10.1016/j.jnutbio.2010.11.011
http://dx.doi.org/10.1016/j.jnutbio.2010.11.011
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that higher consumption of ALA is associated with reduced risk of
cardiovascular diseases [14–20]. A meta-analysis of five prospective
cohort studies showed that increased ALA consumption reduced
heart disease mortality [14]. The Lyon Heart Study concluded that
diets rich in ALA were more efficient than presently used diets in the
secondary prevention of cardiovascular diseases [15]. The cardiovas-
cular health study [16]; The Nurses' Health study [17,18]; the
National Heart, Lung, and Blood Institute Family Heart Study [19]
and the Health Professionals Study [20] concluded that higher ALA
intake was associated with a reduced risk of coronary heart disease
and related mortalities.

Metabolic syndrome is a clustering of interrelated risk factors
for cardiovascular disease and diabetes. These factors include
hyperglycemia, hypertension, dyslipidemia, central adiposity and
nonalcoholic fatty liver disease [21]. We have previously shown
that rats fed a high-carbohydrate, high-fat diet mimic many signs
of human metabolic syndrome [22,23]. Therefore, to determine the
responses of chia seed as a rich source of ALA on the signs of
metabolic syndrome, we investigated metabolic changes, cardio-
vascular and hepatic structure and function, lipid content and fatty
acid profiles in the liver, retroperitoneal adipose tissue and the
heart of rats fed either corn starch diet, high-carbohydrate, high-fat
diet or either diet containing 5% whole chia seed supplement. Liver
and adipose tissue were selected for their major role in fatty acid
metabolism, while the heart was selected because fatty acids
modulate its functions. Corn starch is a slowly digestible
carbohydrate [24] and served as a control for the high-carbohy-
drate, high-fat diet in this study where the primary carbohydrates
Table 1
Fatty acid profile and energy density of chia seed, C, CC, H and HC diets

Constituent Chia seed Diets

C

Corn starch, g/kg – 570.00
Powdered rat feeda, g/kg – 155.00
HMW salt mixture, g/kg – 25.00
Fructose, g/kg – –

Beef tallow, g/kg – –

Condensed milk, g/kg – –

Water, ml/kg – 250.00
Chia seed, g/kg – –

Macronutrient composition
Total carbohydrate, g/kg – 600.25
Total fat, g/kg – 8.07
Total protein, g/kg – 31.78
Total fiber, g/kg – 7.44
Total vitamins, g/kg – 0.32
Total minerals, g/kg – 0.13
Ash, g/kg – 0.63
Total moisture, g/kg – 326.38
Total calculated energy density, kJ/g 18.6 11.2
Total extractable lipids, g/kg (n=3) 272.6±0.1 6.2±0.1
Fatty acid, g/100g of total fatty acid content (n=3)
C14:0 2.8±0.4 10.0±0.9
C16:0 7.6±0.2 17.5±0.4
C18 3.4±0.6 0.6±0.0
C18:1n-9 8.7±0.4 34.5±2.3
C18:1trans-7 0.0±0.0 0.0±0.0
C18:2n-6 20.5±0.2 30.5±0.8
C18:3n-3 56.1±0.5 4.7±0.1
C20:0 0.3±0.1 0.0±0.0
Total SFA 14.1±0.5 28.3±1.4
Total MUFA 9.3±0.6 35.7±2.3
Total PUFA 76.7±0.8 36.0±0.9

For the dietary fatty acid compositions, each value is a mean±S.E.M. Number of repetitive exp
saturated fatty acid; PUFA, polyunsaturated fatty acid; MUFA, monounsaturated fatty acid.

a Meat-free rat and mouse feed (Speciality Feeds) contains the following (in g/kg of feed): c
total minerals, 0.85.
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are fructose and sucrose. Unlike fructose, corn starch does not
increase blood glucose, plasma insulin or nonesterified fatty acid
(NEFA) concentrations [22,24].
2. Materials and methods

2.1. Animals and diets

The experimental groups consisted of 48maleWistar rats (8–9 weeks old, 338±4 g)
supplied by The University of Queensland Biological Resources unit and individually
housed at the University of Southern Queensland Animal House. All experimentation was
approved by the Animal Experimentation Ethics Committee of the University of Southern
Queensland under the guidelines of the National Health and Medical Research Council of
Australia. The ratswere randomly divided into four separate groups (n=12 each) fed corn
starch (C), corn starch+chia seed (CC), high-carbohydrate, high-fat (H) and high-
carbohydrate, high-fat+chia seed (HC). All experimental groups were housed in a tem-
perature-controlled, 12-h light/dark cycle environment with ad libitum access to water
and the group-specific rat diet. Measurements of bodyweight and food andwater intakes
were taken daily to monitor the day-to-day health of the rats. Feed conversion efficiency
(%) was calculated as [mean body weight gain [g]/daily energy intake (kJ)]×100 [25].

All group-specific diets were custom prepared in our laboratory. Corn starch diet
was prepared by thorough mixing of corn starch, powdered rat feed (meat-free rat and
mouse feed; Speciality Feeds, Glen Forrest, WA, Australia), Hubble, Mendel and
Wakeman salt mixture (MP Biochemicals, Seven Hills, NSW, Australia) and water,
while the corn starch and part of water were replaced with condensed milk, fructose
and beef tallow in the high-carbohydrate, high-fat diet (Table 1). The drinking water in
all high-carbohydrate, high fat-fed rats was augmented with 25% fructose. Chia seed-
supplemented diets were prepared by replacing an equivalent amount of water in the
diet with thewhole seed (Table 1). The fatty acid composition of all group-specific diets
and chia seed is described in Table 1. Five percent of chia seed supplementation was
administered for 8weeks starting 8 weeks after the initiation of the corn starch or high-
carbohydrate, high-fat diet.
CC H HC

570.00 – –

155.00 155.00 155.00
25.00 25.00 25.00
– 175.00 175.00
– 200.00 200.00
– 395.00 395.00
200.00 50.00 –

50.00 – 50.00

600.25 515.67 515.67
8.07 239.04 239.04
31.78 58.12 58.12
7.44 7.44 7.44
0.32 0.32 0.32
0.13 0.44 0.44
0.63 0.00 0.00
296.38 153.98 123.98
12.2 17.9 18.7
11.6±0.1 187.0±2.3 193.9±0.4

15.6±0.2 3.7±0.1 4.7±0.1
14.5±0.1 24.6±0.5 26.9±0.5
4.9±0.1 24.2±0.2 21.9±0.4
24.7±0.4 0.9±0.5 3.4±0.6
0.0±0.0 40.8±0.8 34.1±0.2
25.5±0.0 2.7±0.1 3.0±0.1
12.6±0.0 0.1±0.1 2.1±0.4
0.4±0.0 0.2±0.1 0.3±0.1
35.5±0.3 53.1±0.7 54.9±1.0
25.5±0.4 44.1±0.6 40.0±0.7
39.1±0.1 2.8±0.0 5.1±0.3

eriments are indicated within parenthesis. HMW, Hubble, Mendel and Wakeman; SFA,

arbohydrates, 707.07; proteins, 194.00; fat, 48.00; fiber, 48.00; total vitamins, 2.08 and
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2.2. Systolic blood pressure

Systolic blood pressure was measured as previously described [22] under light
sedation following intraperitoneal (ip) injection of Zoletil (tiletamine 15 mg/kg,
zolazepam 15 mg/kg; Virbac, Peakhurst, NSW, Australia). Measurements were taken
using an MLT1010 Piezo-Electric Pulse Transducer (ADInstruments, Sydney, Australia)
and inflatable tail-cuff connected to an MLT844 Physiological Pressure Transducer
(ADInstruments) and PowerLab data acquisition unit (ADInstruments).

2.3. Oral glucose tolerance and insulin tolerance tests

The oral glucose tolerance and the insulin tolerance tests were performed 2 days
apart from each other at 16weeks. For oral glucose tolerance after 10–12 h of overnight
food deprivation, basal blood glucose concentrations were measured in blood taken
from the tail vein using Medisense Precision Q.I.D glucose meter (Abbott Laboratories,
Bedford, MA, USA). Fructose-supplemented drinking water in the H and HC groups was
replaced with normal water for the overnight food deprivation period. The rats were
given 2 g/kg body weight of glucose as a 40% solution via oral gavage. Tail vein blood
samples were taken at 30, 60, 90 and 120 min following glucose administration.

For insulin tolerance, basal blood glucose concentrations were measured after
4–5 h of food deprivation as above. The rats were injected ip 0.75 IU/kg insulin-R (Eli
Lilly Australia, West Ryde, NSW, Australia), and tail vein blood samples were taken at
0, 30, 60, 90 and 120 min. Rats were withdrawn from the test if the blood glucose
dropped below 1.1 mmol/L, and 4 g/kg glucose was immediately administered by oral
gavage to prevent hypoglycemia.

2.4. Echocardiography

Echocardiographic examination (Phillips iE33, 12MHz transducer) was performed
at 16 weeks as previously described [22,26]. Measurements were taken in accordance
with the guidelines of the American Society of Echocardiography using the leading-
edge method [27]. Briefly, rats were anesthetized using intraperitoneal Zoletil
(tiletamine 15 mg/kg and zolazepam 15 mg/kg ip; Virbac) and Ilium Xylazil (xylazine
15 mg/kg ip; Troy Laboratories, Smithfield, NSW, Australia) and positioned in dorsal
recumbency. Electrodes attached to the skin overlying the elbows and right stifle
facilitated the simultaneous recording of a lead II electrocardiogram. A short-axis view
of the left ventricle (LV) at the level of the papillary muscles was obtained and used for
direct acquisition of M-mode images of the LV for measurement of diastolic posterior
wall thickness (LVPWd), LV internal systolic dimension and LV end-diastolic
dimension (LVIDd).

2.5. Body composition measurements

Dual-energy X-ray absorptiometric (DXA) measurements were performed on the
rats after 8 and 16 weeks of feeding, 2 days before rats were killed for
pathophysiological assessments, using a Norland XR36 DXA instrument (Norland
Corp., Fort Atkinson, WI, USA). DXA scans were analyzed using the manufacturer's
recommended software for use in laboratory animals (Small Subject Analysis Software,
version 2.5.3/1.3.1; Norland Corp) as previously described [28]. The precision error of
lean mass for replicate measurements, with repositioning, was 3.2%. Visceral adiposity
index (%) was calculated as: ([retroperitoneal fat (g)+omental fat (g)+epididymal fat
(g)]/[body weight (g)])×100 and expressed as adiposity percent [29].

2.6. Isolated heart preparation

The left ventricular function of the rats in all treatment groups was assessed using
the Langendorff heart preparation. Terminal anesthesia was induced via ip injection of
pentobarbitone sodium (Lethabarb, 100 mg/kgip). After heparin (Sigma-Aldrich
Australia, Sydney, Australia) administration (200 IU) through the right femoral vein,
blood (∼5 ml) was taken from the abdominal aorta. Isovolumetric ventricular function
was measured by inserting a latex balloon catheter into the LV of the isolated heart
connected to a Capto SP844 MLT844 physiological pressure transducer and Chart
software on a Maclab system (ADInstruments Australia and Pacific Islands, Bella Vista,
NSW, Australia). All left ventricular end-diastolic pressure values were measured while
pacing the heart at 250 beats/min using an electrical stimulator. End-diastolic
pressures were obtained starting from 0 up to 30 mmHg. Diastolic stiffness constant
(κ, dimensionless) was calculated as in previous studies [22,30]. +dP/dt and −dP/dt
were calculated as the mean rate of contraction and relaxation, respectively, of at least
50 beats with the heart paced at 250 beats/min, and the end-diastolic pressure was
maintained at approximately 10 mmHg.

2.7. Aortic contractility

Thoracic aortic rings (4 mm in length) were suspended in an organ bath chamber
with a resting tension of approximately 10 mN. Cumulative concentration–response
(contraction) curves were measured for noradrenaline (Sigma-Aldrich Australia);
concentration–response (relaxation) curves were measured for acetylcholine (Sigma-
Aldrich Australia) and sodium nitroprusside (Sigma-Aldrich Australia) in the presence
of a submaximal (70%) contraction to noradrenaline [22].
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2.8. Organ weights

The right and left ventricles were separated after perfusion experiments and
weighed. Liver, retroperitoneal, epididymal and omental fat were removed following
heart removal and blotted dry for weighing. Organ weights were normalized relative to
the tibial length at the time of their removal (in mg/mm). Immediately after weighing,
the LV, liver and retroperitoneal fat were stored at −20°C in a 50-ml polypropylene
centrifuge tube for fatty acid analysis.
2.9. Fatty acid analysis

The extraction of tissue and dietary lipids was undertaken by manual solvent
extraction using a 2:1 chloroform/methanol mixture with 0.1% butylated hydro-
xytoluene as an antioxidant. Approximately 1–5 g of retroperitoneal fat, heart and liver
and 2 ml plasma were macerated into a 50-ml polypropylene centrifuge tube and were
mixed on a rotating device for 40 min with 20 ml of chloroform/methanol solvent and
then centrifuged at 2500 rpm for 5 min. The extraction procedure was repeated twice,
combining all of the extracting solvent and subsequently washing with ddH2O to
remove all polar material. Chloroform was evaporated under a stream of nitrogen on a
hot plate set at 60°C until the beakers reached constant weight. The beaker weights
were recorded for the calculation of gravimetric extractable lipid content [31].

Approximately 15–20 mg of extracted lipid samples with 1 mg of heptadecanoic
acid (C17) added as an internal standard was methylated in a clean 10-ml test tube.
Saponified lipids were extracted with 2 ml heptane and then transferred into an
autosampler vial for gas chromatography. Fatty acidmethyl esters were analyzed on an
Agilent J&W DB-23 column (60 m×0.25 mm×0.25 μm) (Agilent Technologies, Santa
Clara, CA, USA) by a Shimadzu GC-17A equipped with a flame ionization detector. The
injection and the detector temperatures were set at 250°C and 285°C, respectively. The
column temperature was set at 100°C for 2 min, raised at 10°C/min to 180°C, held for 5
min, raised at 5°C/min to 240°C and held for 25min. Carrier gas (helium) was passed at
110 kPa, with constant linear velocity of 15cm/s. A sample of 1 μL was injected with a
split ratio of 25. A multi-acid standard mixture was used for checking the performance
of the gas chromatography and as a recovery test for the sample preparation procedure.
Quantitation of the fatty acids in all samples was based on a linear calibration equation
obtained from the C17 standards. For identification purposes, a 28-fatty-acid methyl
ester mixture standard (Nu-Check Prep. Inc, Elysian, MN, USA) was used for retention
time (RT) calibration. A plot of carbon number versus log RT for the saturated series, 1°
of unsaturation and 2° of unsaturation allowed a relationship to be developed for
identification purposes.

All fatty acids were expressed as grams per 100 g of total recovered fatty acids. The
n-3:n-6 ratio was derived using the following formula:

n3:n6=[C18:3n-3+C20:3n-3+C20:5n-3+C22:5n-3+C22:6n-3]/
[C18:2n-6+C18:3n-6+C20:2n-6+C20:3n-6+C20:4n
-6+C22:2n-6+C22:4]n-6

As the diets were rich in C18:1n-9, the stearoyl-CoA 9-desaturase (SCD) index was
calculated as the ratio between C16:1n-7 and C16:0, and the ratio between C18:1n-9
and C18:0 was not considered.
2.10. Histology

Two rats per group were taken exclusively for histological analysis. Two slides
were prepared per tissue specimen and two random, nonoverlapping fields per slide
were taken to avoid biased analysis. Organs were also collected from rats used for
perfusion studies. Immediately after removal, heart and liver tissues were fixed in 10%
buffered formalin for 3 days and then dehydrated and embedded in paraffin wax as
previously described [22]. Thin sections (7 μm) of LV and the liver were cut and stained
with hematoxylin and eosin stain for determination of inflammatory cell infiltration.
Liver sections were also stained with Milligan's trichrome stain to determine fibrosis.
Collagen distribution was measured in the LV with picrosirius red stain. Laser confocal
microscopy (Zeiss LSM 510 upright Confocal Microscope) with color intensity
quantitatively analyzed using NIH-imageJ software (National Institute of Health,
USA) was used to determine the extent of collagen deposition in selected tissue
sections [22].
2.11. Plasma biochemistry

Briefly, blood was centrifuged at 5000×g for 15minwithin 30min of collection into
heparinized tubes. Plasma was separated and transferred to Eppendorf tubes for
storage at −20°C before analysis. Activities of plasma enzymes and analyte
concentrations were determined using kits and controls supplied by Olympus using
an Olympus analyzer (AU 400, Tokyo, Japan) as previously described [22]. Plasma CRP
was estimated using a commercial kit (Kamiya Biomedical, Thousand Oaks, CA, USA)
according to the manufacturer-provided standards and protocols using a Cobas-Mira
automated analyser.
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2.12. Statistical analysis

All data are presented as mean±S.E.M. Results were tested for variance using
Bartlett's test and variables that were not normally distributed were transformed
(using log 10 function) prior to statistical analyses. Data from C, CC, H and HC groups
were tested by two-way analysis of variance. When interaction and/or the main effects
were significant, means were compared using Newman-Keuls multiple-comparison
post hoc test. Where transformations did not result in normality or constant variance, a
Kruskal-Wallis nonparametric test was performed. A P value of b.05 was considered as
statistically significant. All statistical analyses were performed using GraphPad Prism
version 5.00 for Windows (San Diego, CA, USA).

3. Results

3.1. Dietary intake, body parameters and plasma biochemistry

Food intake was decreased in H and HC rats compared with C
and CC groups (Table 2). Chia seed supplementation did not change
water intake in either group, but food consumption was increased in
CC rats (Table 2). Chia seed supplementation increased energy
Table 2
Dietary intakes, body composition and anthropometrics, organ wet weights, tissue fatty acid

Variable C CC

Food intake, g/d (n=10) 33.9±0.9b 42.1±2.1a

Water intake, ml/d (n=10) 31.4±0.4a 31.7±0.8a

Chia seed intake, g/d (n=10) 0.0±0.0c 2.1±0.1a

Energy intake, kJ/d (n=10) 400.8±9.3b 503.1±18.1a

Body weight gain (8–16 weeks), % (n=10) 11.0±1.3b 22.6±1.5a

Feed conversion efficiency, % (n=10) 2.7± 0.1c 4.5± 0.3a

Bone mineral content, g (n=10) 12.4±0.2c 13.3±0.3bc

Total body fat mass, g (n=10) 75.5±4.4b 82.8±8.7b

Total body lean mass, g (n=10) 325.9±4.5b 343.5±9.2ab

Abdominal circumference, cm (n=10) 20.0±0.3b 20.4±0.3b

Visceral adiposity index, % (n=10) 4.4±0.3c 2.1±0.2d

Tissue wet weightse, mg/mm (n=10)
Retroperitoneal fat 169.4±12.6c 126.0±14.5c

Epididymal fat 105.3±7.0b 85.8±10.5b

Omental fat 102.8±11.4b 69.5±6.5c

Liver 204.2±22.2b 223.0±6.6b

Heart 22.3±0.3b 22.7±0.8b

Tissue lipid content, mg/g (n=6)
Retroperitoneal adipose tissue 396.2±25.3c 453.9±12.9c

Liver 25.9±2.4b 26.0±3.2b

Heart 29.8±0.7b 38.4±2.7b

Plasma 11.5±0.8 13.9±1.7
Plasma urea, mmol/L (n=10) 5.6±0.6a 5.1±0.4a

Plasma LDH, U/L (n=10) 191.1±18.2c 122.0±12.2c

Plasma uric acid, μmol/L (n=10) 25.9±1.4b 24.0±1.9b

Plasma CRP, μmol/L (n=10) 59.3±7.4b 58.2±5.9b

Plasma total cholesterol, mmol/L (n=10) 1.3±0.1b 1.4±0.1b

Plasma triglyceride, mmol/L (n=10) 0.4±0.0c 0.6±0.1c

Plasma NEFA, mmol/L (n=10) 1.2±0.1c 1.7±0.3bc

Plasma fatty acid, g/100g of total fatty acid content (n=6)
C14:0 75.56±2.32 73.24±3.27
C14:1n-5 1.01±0.18a 0.00±0.00b

C16:0 0.02±0.02b 2.75±0.2a

C16:1n-7 14.99±1.95a 9.24±1.21b

C18:1n-9 0.00±0.00b 2.25±0.34a

C18:1trans-7 3.20±0.13b 2.71±0.34b

C18:2n-6 1.71±0.18a 0.00±0.00b

C18:3n-6 0.00±0.00 1.32±0.50
C18:3n-3 1.45±0.16a 2.98±0.56b

C20:3n-3 0.00±0.00b 1.79±0.43a

C20:5n-3 2.07±0.07b 0.86±0.09c

C24:0 0.00±0.00b 0.33±0.02a

C22:6n-3 0.00±0.00c 0.64±0.08b

Total SFA 75.58±2.31 78.22±1.90
Total MUFA 19.19±2.22 14.19±1.42
Total PUFA 5.23±0.30 7.59±0.73
n3:n6 ratio 2.15±0.21b 9.10±2.41a

Each value is a mean±S.E.M. Means with superscript lettersa,b,c,d without a common letter d
saturated fatty acid; PUFA, polyunsaturated fatty acid; MUFA, monounsaturated fatty acid.

e Normalized against tibial length.
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intake compared with C and H diet-fed rats (Table 2). This increased
energy intake in the chia seed-supplemented rats corresponded with
increased body weight gain and feed conversion efficiency in both
groups without any change in abdominal circumference or total body
fat mass. However, chia seed supplementation reduced the visceral
adiposity index and increased bone mineral content in both groups
without altering the body lean mass (Table 2). The reduction in
visceral adiposity index was due to decreased retroperitoneal and
omental but not epididymal fat deposition in HC rats. In CC rats,
selective lowering of omental fat was observed (Table 2). Chia seed
supplementation decreased the total lipid content in the retroperi-
toneal fat and liver but increased the content in the heart (Table 2).
This lipid redistribution induced by chia seed supplementation was
associated with increased plasma triglycerides and NEFA, although
plasma total cholesterol concentrations were not affected (Table 2).
Chia seed supplementation also reduced heart wet weights.

Furthermore, chia seed supplementation normalized plasma urea
concentrations suppressed by H diet feeding and reduced lactate
composition and plasma biochemistry in C, CC, H and HC diet-fed rats

H HC P

Diet Treatment Interaction

22.9±0.3c 22.8±0.4c b.0001 .0014 .0011
19.7±0.3b 19.1±0.4b b.0001 .7714 .3856
0.0±0.0c 1.1±0.0b b.0001 b.0001 b.0001

452.5±12.4b 507.7±13.6a .0475 b.0001 .0946
15.2±1.9b 23.8±1.7a .1033 b.0001 .3593
3.3± 0.2b 4.6± 0.2a .0801 b.0001 .1913

13.9±0.1b 15.4±0.6a b.0001 .0017 .4018
153.9±6.6a 153.1±12.3a b.0001 .7049 .6371
345.9±8.9ab 368.1±10.0a .012 .0237 .7865
22.2±0.4a 22.0±0.2a b.0001 .7475 .3369
7.9±0.5a 5.9±0.3b b.0001 b.0001 .4479

387.6±26.0a 296.6±19.1b b.0001 .001 .2141
192.8±13.5a 169.6±13.4a b.0001 .0697 .8742
175.0±10.3a 147.4±5.7b b.0001 .0014 .7469
318.5±12.0a 288.6±5.8a b.0001 .6741 .0723
25.6±1.0a 23.4±0.4b .006 .2077 .0555

632.3±22.4a 527.1±19.4b b.0001 .2676 .0008
60.2±2.9a 29.8±3.2b b.0001 b.0001 b.0001
36.7±2.2b 47.5±4.4a .0106 .0029 .7012
13.5±2.8 14.2±1.1 .5385 .3834 .6233
3.7±0.3b 2.6±0.2b b.0001 .0549 .4616

386.6±34.8a 302.7±38.0b b.0001 .0097 .793
54.7±5.2a 32.9±3.7b b.0001 .0013 .0059

102.3±4.6a 54.6±2.6b .0009 b.0001 .0001
2.0±0.1a 1.8±0.1a b.0001 .6201 .1423
1.0±0.1b 1.6±0.2a b.0001 .0024 .1112
2.2±0.1b 4.7±0.3a b.0001 b.0001 b.0001

75.20±1.37 71.79±3.44 .7436 .3063 .8437
0.80±0.07a 0.29±0.11b .7227 b.0001 .0359
0.14±0.14b 2.34±0.31a .5064 b.0001 .2306

13.85±0.71a 7.59±0.89b .2891 .0001 .8442
0.00±0.00b 2.25±0.28a 1 b.0001 1
3.73±0.19b 8.75±1.07a b.0001 .0008 .0001
2.02±0.22a 0.00±0.00b .2884 b.0001 .2884
0.00±0.00 1.12±0.48 .7759 .0022 .7759
1.62±0.13a 2.22±0.93b .3456 .0023 .1435
0.00±0.00b 1.89±0.17a .831 b.0001 .831
2.65±0.34a 0.57±0.06c .4345 b.0001 .0267
0.00±0.00b 0.28±0.05a .3642 b.0001 .3642
0.00±0.00c 0.91±0.09a .0364 b.0001 .0364

75.34±1.35 74.41±3.17 .3853 .7118 .4431
18.38±0.89 18.88±1.96 .2676 .2009 .1217
6.28±0.65 6.71±1.26 .9176 .101 .2482
2.15±0.15b 10.99±4.26a .5748 .0001 .5748

iffer (P b.05). Number of repetitive experiments are indicated within parenthesis. SFA,
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Fig. 1. Glucose (2 g/kg) (A) and insulin (0.75 IU/kg) (B) tolerance in C, CC, H and HC diet-fed rats. Data are shown as means±S.E.M. Means of values at 120 min without a common
alphabet significantly differ. n=10/group.
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dehydrogenase (LDH) activity as a marker of decreased metabolic
activity, uric acid concentrations as a marker of fructose-induced
oxidative stress and plasma CRP concentrations as a marker of
inflammation (Table 1). In addition, chia seed-supplemented groups
showed improved glucose and insulin tolerance (Fig. 1).
Table 3
Changes in cardiovascular structure, function and fatty acid composition in C, CC, H and HC d

Variable C CC

LVIDd, mm (n=10) 6.4±0.2b 6.7±0.2b

LVPWd, mm (n=10) 1.7±0.0b 1.8±0.1b

Relative wall thickness (n=10) 0.4±0.01c 0.5±0.01b

Fractional shortening, % (n=10) 60.8±1.4a 64.0±1.9a

Ejection fraction, % (n=10) 84.8±1.6 89.0±1.1
Ejection time, ms (n=10) 85.1±4.0 85.8±3.3
Deceleration time, ms (n=10) 61.3±1.6c 70.8±1.4b

LV developed pressure, mmHg (n=10) 64.7±6.1a 51.3±4.5ab

+dP/dt, mmHg×s−1 (n=10) 1078.9±104.3a 1009.1±62.8a

−dP/dt, mmHg×s−1 (n=10) −613.5±66.2a −616.3±57.2a

Diastolic stiffness (k), (n=10) 22.8±0.7c 22.9±0.6c

Estimated LV mass, g (n=10) 0.7±0.0b 0.8±0.0b

LV+septum wet weighte, mg/mm (n=10) 19.0±0.4b 19.4±0.7b

Right ventricle wet weighte, mg/mm (n=10) 3.2±0.2b 3.3±0.2b

LV fibrosis, % surface area (n=4) 3.6±0.9b 3.5±0.7b

Systolic blood pressure, mmHg (n=10) 123.7±1.8c 138.3±3.3b

Fatty acids, g/100g of total fatty acid content (n=6)
C14:0 42.49±3.73b 53.44±3.72ab

C14:1n-5 0.72±0.15a 0.22±0.14b

C16:0 1.22±0.13b 8.45±0.70a

C16:1n-7 14.83±1.08a 1.01±0.29c

C18:0 0.49±0.04a 2.48±0.06b

C18:1n-9 0.53±0.05b 11.28±0.65a

C18:1trans-7 12.96±1.00a 2.05±0.09b

C18:2n-6 6.79±0.79 6.67±1.17
C18:3n-6 7.47±0.63a 0.00±0.00b

C18:3n-3 0.00±0.00b 0.60±0.15a

C20:4n-6 0.04±0.04a 0.23±0.07b

C20:5n-3 11.31±0.95a 6.19±0.34c

C22:5n-3 0.05±0.05b 1.29±0.41a

C24:0 0.29±0.19c 3.19±0.93a

C22:6n-3 0.77±0.16b 2.67±0.91c

Total SFA 44.53±3.60d 67.73±1.43b

Total MUFA 29.04±1.79a 14.56±0.89b

Total PUFA 26.43±2.18a 17.71±1.07b

n3:n6 ratio 0.86±0.06b 2.05±0.05a

Stearoyl-CoA 9-desaturase index 12.43±0.94a 0.11±0.02b

Each value is a mean±S.E.M. Means with superscript lettersa,b,c,d without a common letter d
saturated fatty acid; PUFA, polyunsaturated fatty acid; MUFA, monounsaturated fatty acid.

e Normalized against tibial length.
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The plasma fatty acid profile suggests that the chia seed-
supplemented rats resisted desaturation of C14:0 and C16:0 fatty
acids by SCD (Table 2). The SCD index could not be calculated in C and
H rats due to low concentrations of the saturated substrate. Both chia
seed-supplemented groups had increased plasma concentrations of
iet-fed rats

H HC P

Diet Treatment Interaction

7.7±0.2a 6.1±0.3b .1354 .0074 .0002
1.9±0.0ab 2.1±0.1a .0011 .0408 .4841
0.6±0.02a 0.4±0.01c .0006 .0006 b.0001

50.5±2.1b 59.2±2.2a .0004 .0038 .1617
83.8±1.3 84.4±1.6 .0557 .0987 .2118
86.9±2.6 89.6±6.6 .528 .7011 .8212
56.2±1.6c 64.2±1.5a .0005 b.0001 .6264
41.1±3.7b 57.4±3.8a .0674 .7596 .003

753.6±37.3b 1052.5±81.2a .0701 .1378 .0197
−373.9±21.9b −601.3±43.8a .0156 .0277 .0314

29.4±0.6a 26.5±0.6b b.0001 .8741 b.0001
1.1±0.1a 0.8±0.1b .0076 .1659 .0076

21.4±1.0a 19.2±0.3b .0847 .1503 .0466
4.2±0.2a 4.2±0.2a b.0001 .8625 .7107

12.6±1.2a 4.4±0.2a b.0001 .0003 .0004
150.7±3.6a 153.2±5.6a b.0001 .0316 .1222

54.07±5.35ab 58.05±1.18a .0458 .0635 .37
0.71±0.17a 0.00±0.00b .3983 .0002 .4399
2.26±1.49b 6.75±0.34a .6996 b.0001 .1198

10.23±2.00b 0.45±0.02c .0357 b.0001 .0932
0.69±0.08c 1.18±0.08d b.0001 b.0001 b.0001
0.31±0.07b 11.90±0.65a .6695 b.0001 .3738

11.41±1.57a 1.58±0.04b .2914 b.0001 .5688
4.75±0.82 5.23±0.31 .0492 .8307 .7218
4.26±1.02a 0.00±0.00b .0145 b.0001 .0145
0.0±0.0b 0.41±0.07a .2646 b.0001 .2646

0.49±0.05c 0.24±0.02b .0001 .543 .0002
8.92±0.95b 6.44±0.05c .1385 b.0001 .0714
0.00±0.00b 0.07±0.01b .006 .0048 .0103
0.21±0.12c 1.82±0.01b .1453 .0001 .1927
0.96±0.23b 5.60±0.23a .0047 b.0001 .0111

57.33±5.98c 67.95±0.87a .0847 .0001 .095
22.66±3.55c 13.93±0.63b .1046 b.0001 .1784
20.01±2.55b 18.12±0.3b .1053 .0072 .0682
1.28±0.28b 2.27±0.15a .0645 b.0001 .5478

13.47±2.94a 0.07±0.00b .7493 b.0001 .7301

iffer (P b.05). Number of repetitive experiments are indicated within parenthesis. SFA,



Fig. 2. Hematoxylin and eosin staining of LV (×20) showing inflammatory cells (marked as “in”) as dark spots outside the myocytes; C (A), CC (B), H (C) and HC (D) diet-fed rats.
Picrosirius red staining of left ventricular interstitial collagen deposition (×40) in C (E), CC (F), H (G) and HC (H) diet-fed rats. Collagen deposition is marked as “cd” and hypertrophied
cardiomyocytes are marked as “hy.”
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C18:1n-9, but increased concentrations of C18:1trans-7 were ob-
served only in HC group (Table 2). Both chia seed-supplemented
groups had depleted plasma C18:2n-6 and C20:5n-3 but increased
C18:3n-6, C18:3n-3, C20:4n-3 and C22:6 n-3 concentrations (Table 2).
Although the total saturated and unsaturated fatty acids remained
unchanged, the n3:n6 ratio was markedly enhanced in the plasma of
the chia seed-supplemented groups (Table 2).
3.2. Cardiovascular changes

Comparedwith H rats, HC groups had smaller LV internal diameter
with increased fractional shortening and deceleration time (Table 3).
In addition, chia seed reduced LV wet weight and reduced estimated
Fig. 3. Cumulative concentration–response curves for noradrenaline (A), sodium nitroprusside
are shown as means±S.E.M. Endpoint means without a common alphabet in each data set si
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LV mass (Table 3). However, chia seed supplementation did not
reduce blood pressure in either group.

After 16weeks, H rats showed greater infiltration by inflammatory
cells into the LV (Fig. 2C) as well as increased interstitial collagen
deposition (Fig. 2G; Table 3) compared with C rats (Fig. 2A and E;
Table 3). HC rats showed normalized inflammatory state (Fig. 2D) and
markedly reduced collagen deposition (Fig. 2H; Table 3), but no
changes in inflammatory cell infiltration or collagen deposition were
seen in CC rats (Fig. 2B and F; Table 3). The reduction in LV fibrosis is
consistent with reduced diastolic stiffness constant in HC diet-fed rats
(Fig. 2D and H; Table 3).

Furthermore, H feeding diminished vascular responses in isolated
thoracic aortic rings to noradrenaline, sodium nitroprusside and acetyl-
choline when compared with C rats (Fig. 3A-C). In isolated thoracic
(B) and acetylcholine (C) in thoracic aortic rings from C, CC, H and HC diet-fed rats. Data
gnificantly differ. n=8–10/group.
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aortic rings from HC rats, increased vasorelaxation was induced by
sodium nitroprusside and acetylcholine (Fig. 3B and C) in addition to
increased contractility to noradrenaline (Fig. 3A). Vascular responses in
isolated thoracic aortic rings from CC rats remained unchanged
compared with C rats (Fig. 3A-C).

Similar to the plasma fatty acid profile, chia seed-supplemented
rats resisted SCD action on C14:0 and C16:0 fatty acids in the heart
(Table 3). Both chia seed-supplemented groups had increased
concentrations of C18:0, C18:1n-9 but decreased concentrations of
C18:1trans-7 in the heart together with depleted C18:3n-6 and
C20:5n-3 but increased C18:3n-3, 22:5n-3, C22:6n-3 and C24:0
concentrations (Table 3). As a result of decreased desaturation of
C14:0 and C16:0, the total saturated fatty acid increased, and total
unsaturated fatty acid content decreased (Table 3). However, the
cardiac n-3:n-6 ratio was increased in the chia seed-supplemented
groups (Table 3).

3.3. Hepatic structure and function

H diet feeding elevated plasma markers of liver function in
comparison with C-fed rats (Table 4). HC diet feeding did not alter the
elevated alanine transaminase (ALT) activity but decreased the
aspartate transaminase (AST) activity (Table 4). ALP activity was
increased in the HC group (Table 4). Creatine kinase (CK) activity
decreased in both chia seed-supplemented groups, but none of the
other enzymes were affected in CC group (Table 4).

C (Fig. 4A, E and I) and CC (Fig. 4B, F and J) groups showed
negligible lipid accumulation, inflammatory cell infiltration or
fibrosis in the liver. H feeding for 16 weeks increased the size of
the fat vacuoles within the hepatocytes (Fig. 4C) with increased
portal inflammatory cell infiltration (Fig. 4G) and portal fibrosis
(Fig. 4K; Table 4). The HC diet-fed rats displayed normalized
macrovesicular steatosis (Fig. 4D), portal inflammation (Fig. 4H) and
fibrosis (Fig. 4I; Table 4).
Table 4
Changes in hepatic structure, function and fatty acid composition in C, CC, H and HC diet-fed

Variable C CC H

ALT, U/L (n=10) 31.0±1.8b 31.6±3.0b 46.2
AST, U/L (n=10) 76.0±3.5b 75.0±3.2b 104.8
ALP, U/L (n=10) 154.9±11.9b 188.4±30.5b 181.4
CK, U/L (n=10) 165.3±13.2b 70.4±11.0c 243.4
Liver fibrosis, % surface area (n=4) 1.6±0.2c 1.8±0.1c 7.4
Fatty acid, g/100g of total fatty acid content (n=6)
C14:0 6.69±0.98b 14.16±1.30a 3.10
C14:1n-5 1.72±0.14a 0.72±0.06b 0.79
C16 0.03±0.03b 19.96±0.41a 0.25
C16:1n-7 25.40±1.10a 3.74±0.75b 23.30
C18:0 0.00±0.00d 1.04±0.14a 0.32
C18:1n-9 0.00±0.00c 29.25±1.35b 1.52
C18:1trans-7 14.23±1.93a 0.00±0.00b 10.86
C18:2n-6 26.58±4.73b 8.60±0.96b 44.26
C18:3n-3 7.42±0.47a 3.42±0.30c 4.93
C20:0 0.40±0.02c 0.17±0.02b 0.19
C20:4n-6 0.64±0.07 0.67±0.34 0.73
C20:5n-3 10.85±2.89a 8.33±0.53b 7.96
C22:5n-3 0.16±0.07c 2.81±0.19b 0.05
C24:0 0.39±0.13b 4.11±0.68a 0.06
C22:6n-3 0.24±0.15c 2.16±0.16a 0.03
Total SFA 10.26±3.20b 39.46±1.40a 3.91
Total MUFA 40.35±1.07ab 33.75±1.83c 36.65
Total PUFA 49.38±3.93b 26.79±0.82c 59.43
n3:n6 ratio 0.99±0.23b 1.78±0.30a 0.35
Stearoyl-CoA 9-desaturase indexd – 0.19±0.04 78.84

Each value is a mean±S.E.M. Means with superscript lettersa,b,c,d without a common letter d
saturated fatty acid; PUFA, polyunsaturated fatty acid; MUFA, monounsaturated fatty acid.

d Negligible C16:0 fatty acid was detected in C diet-fed group, therefore showing a very h
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Similar to cardiac and plasma fatty acid profile, chia seed-
supplemented rats resisted stearoyl-CoA 9-desaturation of C14:0
and C16:0 fatty acids in the liver (Table 4). Both chia seed-
supplemented groups had increased concentrations of C14:0, C16:0,
C18:0 and C18:1n-9 but decreased concentrations of C18:1trans-7
and C18:2n-6 (Table 4). Although C20:4n-6 content in the liver
remained unchanged across all groups, both chia seed-supplemented
groups had depleted C18:3n-3 and C20:5n-3 but increased C22:5n-3,
C22:6n-3 and C24:0 concentrations (Table 4). As a result of decreased
desaturation of C14:0 and C16:0, the total saturated fatty acid
increased and total unsaturated fatty acid content decreased (Table
4). However, the liver n-3:n-6 ratio was increased in the chia seed-
supplemented groups (Table 4).

3.4. Retroperitoneal adipose tissue fatty acid composition

Similar to other tissues, chia seed-supplemented rats resisted
stearoyl-CoA 9-desaturation of C14:0 and C16:0 fatty acids (Table 5)
in the retroperitoneal adipose tissue. Both chia seed-supplemented
groups had increased concentrations of C14:0, C16:0 and C18:1trans-
7 but decreased concentrations of C18:2n-6 and C18:3n-6 (Table 5).
C18:3n-3 was increased in HC group (Table 5) despite the extremely
small amounts of fatty acids with chain length of more than 20 carbon
atoms detected in the adipose tissue of all groups, making accurate
quantification difficult. Consequently, the total saturated fatty acid
increased and total unsaturated fatty acid content decreased, but the
n-3:n-6 ratio in retroperitoneal fat was increased in the chia seed-
supplemented groups (Table 5).

4. Discussion

The aim of this study was to assess the metabolic, cardiac and
liver changes following 5% chia seed supplementation in high-
carbohydrate, high-fat (H) diet-fed rats with low n-3 fatty acids.
rats

HC P

Diet Treatment Interaction

±3.8a 45.4±4.9a .0002 .9777 .8452
±5.9a 76.4±8.1b .0099 .0118 .0183
±11.6b 251.1±12.5a .0209 .0083 .3333
±28.2a 122.3±17.3bc .0013 b.0001 .4867
±0.5a 3.6±0.2b b.0001 b.0001 b.0001

±0.59c 9.92±1.56b .0031 b.0001 .7832
±0.09a 1.05±0.09c .0575 b.0001 .2051
±0.05b 21.28±0.80a .1028 b.0001 .2363
±0.75a 1.31±0.32c .0088 b.0001 .8347
±0.07c 0.64±0.05b .6316 b.0001 .0003
±1.52c 40.16±1.34a b.0001 b.0001 .001
±3.37a 0.00±0.00b .3958 b.0001 .3958
±4.93a 7.18±0.29c .0289 b.0001 .0119
±0.15b 3.23±0.18c .0003 b.0001 .0011
±0.02b 0.47±0.04a .1045 .356 b.0001
±0.11 0.83±0.28 .5923 .7801 .8804
±2.31b 6.34±0.46c b.0001 .0001 .3082
±0.03c 1.56±0.08a b.0001 b.0001 b.0001
±0.06b 3.64±0.77a .4495 b.0001 .894
±0.03c 1.38±0.13b .001 b.0001 .0381
±0.61c 35.96±1.85b .023 b.0001 .4843
±1.86bc 42.70±1.26a .1047 .8605 .0006
±2.08a 21.34±1.16c .3362 b.0001 .0034
±0.12c 1.44±0.16ab .0329 .0003 .4911
±2.44 0.06±0.02 – – –

iffer (P b.05). Number of repetitive experiments is indicated within parenthesis. SFA,

igh stearoyl-CoA 9-desatururation index in this group.



Fig. 4. Hematoxylin and eosin staining of hepatocytes (×20) showing hepatocytes with enlarged fat vacuole (marked as “fv”) and inflammatory cells around the portal region (marked
as “pi”) (×20) from C (A, E), CC (B, F), H (C, G) and HC (D, H) diet-fed rats. Milligan's trichrome staining of the hepatic portal regions showing collagen (marked as “pf”) (×20) in C (I),
CC (J), H (K) and HC (L) diet-fed rats.

160 H. Poudyal et al. / Journal of Nutritional Biochemistry 23 (2012) 153–162
Rats fed H diet developed hypertension, impaired glucose and insulin
tolerance, dyslipidemia, hepatic steatosis, cardiac fibrosis and func-
tional deterioration, inflammation and abdominal obesity. With the
exception of elevated blood pressure and some plasma markers of
liver function, dietary chia seed supplementation attenuated struc-
tural and functional changes caused by H feeding. Chia seed
supplementation caused lipid redistribution away from the abdom-
inal cavity, suppressed stearoyl-CoA desaturase index and increased
n-3:n-6 ratio in various tissues.

Chia seed-supplemented rats improved insulin and glucose
tolerance, reduced visceral adiposity, decreased hepatic steatosis,
reduced cardiac and hepatic fibrosis and inflammation without
Table 5
Fatty acid composition of retroperitoneal fat and desaturase index from C, CC, H and HC diet-

Fatty acid, g/100g of total fatty
acid content (n=6)

C CC H

C14:0 0.00±0.00c 1.75±0.08b 0.00
C14:1n-5 2.17±0.04b 0.12±0.01c 2.81
C16:0 0.22±0.05b 31.15±1.60a 0.42
C16:1n-7 31.48±1.06a 2.44±0.27b 22.40
C18:0 0.22±0.03c 0.47±0.09c 0.62
C18:1trans-7 3.46±0.23c 40.99±1.52b 6.97
C18:2n-6 51.18±0.96b 10.78±0.80c 60.76
C18:3n-6 0.08±0.04b 0.33±0.21b 5.18
C18:3n-3 10.11±0.32a 10.45±0.80a 0.07
C20:0 0.66±0.13a 0.14±0.05c 0.35
Total SFA 1.10±0.14c 33.78±1.44a 1.48
Total MUFA 37.21±0.86c 43.98±1.37b 32.40
Total PUFA 61.70±0.92b 22.18±0.78c 66.12
n3:n6 ratio 0.20±0.01c 1.02±0.18a 0.00
Stearoyl-CoA 9-desaturase index 129.55±16.75a 0.08±0.01c 44.38

Each value is a mean±S.E.M. Means with superscript lettersa,b,c,d without a common letter di
saturated fatty acid; PUFA, polyunsaturated fatty acid; MUFA, monounsaturated fatty acid.

Page
changes in plasma lipids or blood pressure. However, the most
notable result from our study is the chia seed-induced lipid
redistribution with lipid trafficking away from the visceral fat and
liver with increased accumulation in the heart. Furthermore, the
selectivity for different fatty acids for the unsaturated and the
desaturated products of the 18 carbon length fatty acids was altered
in different tissues by chia seed supplementation.

The relative abundance of the C18:1n-9 was increased in the heart
and the liver of the chia seed-supplemented groups. The C18:1trans-7
was more selectively stored in the adipose tissue than the heart and
the liver, and the C18:2n-6 or its elongated Δ5 and Δ6 desaturase
products were depleted in all tissues suggesting that C18:2n-6 is
fed rats

HC P

Diet Treatment Interaction

±0.00c 2.55±0.11a b.0001 b.0001 b.0001
±0.10a 0.22±0.02c b.0001 b.0001 b.0001
±0.08b 23.62±0.68c .0004 b.0001 .0003
±0.21c 1.47±0.46b b.0001 b.0001 b.0001
±0.02c 1.10±0.10a b.0001 b.0001 .1143
±0.45d 59.91±1.29a b.0001 b.0001 b.0001
±0.47a 6.51±0.49d .0013 b.0001 b.0001
±0.08a 0.09±0.01b b.0001 b.0001 b.0001
±0.07c 3.12±0.42b b.0001 .0021 .0106
±0.02bc 0.54±0.04ab .5453 .0354 b.0001
±0.13c 28.09±0.50b .0025 b.0001 .0008
±0.43d 62.03±1.23a b.0001 b.0001 b.0001
±0.48a 9.85±0.93d b.0001 b.0001 b.0001
±0.00c 0.48±0.03b .0006 b.0001 .0776
±0.51b 0.06±0.02c b.0001 b.0001 b.0001

ffer (P b.05). Number of repetitive experiments are indicated within parenthesis. SFA,
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preferentially oxidized rather than stored. Trans-fatty acids only
undergo partial β-oxidation and are not the preferred substrate [32].
However, C18:1trans-7 can be efficiently converted to conjugated
linoleic acid by the action of stearoyl-CoA desaturase 1 (SCD-1) [33],
the activity of which is inhibited by C18:3n-3-enriched chia seed. The
fatty acid homeostasis in tissues of the chia seed-supplemented rats
was maintained so that the C18:1trans-7 was preferentially stored in
the adipose tissue; the relatively inert C18:1n-9 was stored in sen-
sitive organs such as liver and heart and the C18:2, n-6, the parent
fatty acid of the n-6 pathway, was preferentially oxidized. It is
therefore plausible that the mechanism of down-regulation of the n-6
pathway by n-3 fatty acids involves increasing the transport and
oxidation of C18:2n-6 into the mitochondria.

Our results are consistent with the inhibition of SCD-1 by ALA-
rich chia seed. SCD-1 is a Δ9 fatty acid desaturase that catalyzes the
rate-limiting step in the production of monounsaturated from
saturated fatty acids [34]. In addition to reduced MUFA synthesis,
SCD-1 deficiency or treatment with SCD-1-targeted antisense
oligonucleotides induced protection from obesity, cellular lipid
accumulation and insulin resistance in mice [35–37]. Fructose,
being more lipogenic than glucose, is a potent inducer of hepatic
Scd-1 [38–40], and this enzyme plays a pivotal role in fructose-
induced lipogenesis [41]. In addition to metabolic effects elicited by
dietary carbohydrates, fatty acids also modulate the transcriptional
activation of Scd-1 and other lipogenic genes [42, 43]. The binding of
sterol regulatory element binding protein-1 (SREBP-1) to the SREBP
response element of the Scd-1 promoter is decreased by dietary n-3
polyunsaturated fatty acid from fish oil [44]. In addition, increased
plasma palmitoleate, a product of SCD-1, in humans has been
independently associated with both hypertriglyceridemia and
abdominal adiposity [45]. Saturated fat-enriched diet induced
lipogenic genes in wild-type mice, with the induction of the Scd-1
and Cpt-1 gene [46]. On the contrary, in Scd-1-deficient mice, the
high saturated fat diet does not induce lipogenesis; instead,
mitochondrial fatty acid oxidation is increased [46]. However,
inhibition of SCD-1 in a low-fat diet could potentially increase the
diet intake to supplement the loss of unsaturated fatty acid due to
inhibition for normal metabolic function. This effect is clearly seen in
CC diet-fed rats where the dietary intake increases following chia
seed supplementation.

In Scd-1-deficient mice, a lack of functional SCD-1 decreases the
accumulation of hepatic triglycerides and cholesterol esters, down-
regulates de novo fatty acid synthesis in the liver and reduces
adiposity [37]. Furthermore, Scd-1−/− mice are resistant to high-
carbohydrate and high-fat diet-induced liver steatosis [47]. Scd-1−/−

mice have increased fatty acid β-oxidation in the liver [48], skeletal
muscle [49] and brown adipose tissue [50] and up-regulated AMP-
activated protein kinase pathway [48,49]. In addition to the
regulation of lipid metabolism, SCD-1 is involved in the regulation
of carbohydrate metabolism. Scd-1−/− mice have increased whole-
body glucose tolerance and elevated insulin sensitivity in skeletal
muscle and brown adipose tissue [51,52]. However, in the heart, the
lack of Scd-1 decreased mitochondrial fatty acid uptake and oxidation
while increasing glucose transport and oxidation [53]. In leptin-
deficient ob/ob mice, disruption of Scd-1 gene improved cardiac
function by correcting systolic and diastolic dysfunction without
altering plasma triglyceride and NEFA concentrations [54].

To the best of our knowledge, this is the first report of lipid
redistribution with a rich dietary source of any n-3 fatty acid
associated with cardioprotection and hepatoprotection. In addition,
we report an intricate pattern of fatty acid distribution in various
tissues from rats fed a chia seed-supplemented diet that would
probably lead to an improved lipid homeostatic condition. The results
warrant further research on the use of chia seed as a complimentary
therapy for treating some signs of metabolic syndrome.
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1. Introduction

Metabolic syndrome has usually been defined as the clustering of
interrelated risk factors for cardiovascular disease and type 2 diabe-
tes, including hyperglycemia, insulin resistance, hypertension,
hypertriglyceridemia, decreased HDL-cholesterol concentration,
and obesity [1]. While the prevalence of metabolic syndrome is
reaching pandemic proportions worldwide [2], studies have shown
that dietary modifications including low carbohydrate diets, low fat
diets, diets rich in fibers, Mediterranean diets and diets rich in phy-
tochemicals such as flavonoids and phenolic acids reduce one or
more risk factors of metabolic syndrome [3–5]. Another interven-
Fig. 1. The n�3 and n�6 PUFA metabolic pathways. PGE, prostaglandins; PGI, prostacyclin
5-HPEPE, 5-hydroperoxyeicosapentaenoic acid.
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tion to reduce risk in patients with metabolic syndrome may be an
increase in the relative abundance of omega-3 (n�3) polyunsatu-
rated fatty acids (PUFA) in the diet [5].

The cardioprotective effects of n�3 fatty acids, especially a-lin-
olenic acid (ALA), eicosapentaenoic acid (EPA), and docosahexae-
noic acid (DHA), have been defined by epidemiological, human,
animal, and cell culture studies [5–9]. Although ALA, EPA, and
DHA are grouped together as the n�3 PUFA, there is substantial
evidence suggesting that the individual fatty acids may have selec-
tive and potentially independent effects on cardiovascular health
[5–9]. In human diets, ALA is usually derived from botanical
sources with chia seed and flax seed being the richest sources. Fish,
s; LT, leukotriene; TX, thromboxane; 5-HPETE, 5-hydroperoxyeicosatetraenoic acid;
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fish oil supplements, and other sea foods primarily account for the
EPA and DHA in human diets [6]. Fish do not synthesize these long
chain n�3 fatty acids but accumulate EPA and DHA by consuming
plankton and algae as a part of the marine food chain [10].

Although humans and animals can synthesize saturated (SFA)
and monounsaturated (MUFA) fatty acids de novo, they lack the en-
zymes necessary to insert a cis double bond at the n�3 or the n�6
position of a fatty acid to synthesize ALA or linoleic acid (LA),
respectively [11]. The two essential fatty acids, ALA (n�3) and LA
(n�6), share a common metabolic pathway (Fig. 1) [12]. Conse-
quently, these fatty acids compete for the D6-desaturase in metab-
olism [13]. ALA as an essential fatty acid can be converted into EPA
and DHA. LA is a direct precursor of the pro-inflammatory arachi-
donic acid (AA) [14]. The ratio of n�6 to n�3 fatty acids in early hu-
man diets was probably almost equal. However, due to changes in
dietary habits, especially with the increased use of vegetable oils
such as soybean, corn, sunflower, safflower oil, and cotton seed oils
rich in LA [15], this ratio in the typical Western diet is now at least
10:1 [16].

Reducing the ratio of n�6:n�3 PUFA in the diet may reduce the
risk factors of metabolic syndrome, although an optimal ratio is yet
to be recommended [10,13,17]. However, whether n�6 fatty acids
mitigate or worsen cardiovascular diseases is controversial [15,18–
20]. Some studies attribute the cardioprotective properties of n�6
fatty acids to LDL-cholesterol lowering properties [19], while oth-
ers contradict these conclusions [20] mostly due to the potent
pro-inflammatory effects of specific eicosanoids derived from AA
[15]. Irrespective of the amount of n�6 fatty acids in the diet, there
is a growing consensus that incorporation of high levels of ALA and
the metabolically more active EPA and DHA in the diet is important
for reducing the risks of cardiovascular diseases [13,17].

This review will assess our current understanding of the effects
and potential mechanisms of actions of n�3 fatty acids on multiple
risk factors of metabolic syndrome leading to cardiovascular dis-
ease, especially hypertension, dyslipidemia, insulin resistance, oxi-
dative stress, and inflammation.
2. Metabolism of n�3 and n�6 series fatty acids

The n�3 and n�6 PUFAs contain the first cis double bond be-
tween the third and fourth carbon atoms (n�3) or the sixth and
seventh carbon atoms (n�6) from the methyl end of the fatty acids
[11]. LA (18:2n�6) and ALA (18:3n�3) are the parent fatty acids of
the n�6 and n�3 series [11]. Two series of PUFA are derived from
either LA or ALA by an alternating series of desaturation and elon-
gation reactions using the same enzyme complexes for both path-
ways [12] (Fig. 1). The first metabolite of the n�6 pathway in
mammals is c-linolenic acid (GLA; 18:3n–6) produced by the en-
zyme D6 desaturase [11,12]. This enzyme acts on ALA to produce
stearidonic acid (STA; 18:4n�3), the first metabolite of the n�3
pathway [11]. The major end-products of n�6 and n�3 pathways
are AA (20:4n�6) and DHA (22:6n�3), respectively, produced by
the action of D5 desaturases [11,12] with EPA (20:5n�3) as an
important intermediate of the n�3 pathway.

The lipoxygenase (LOX) and cyclooxygenase (COX) mediated
metabolism of AA and EPA has been the target in the management
of most inflammatory diseases. The action of LOX and COX on AA
and EPA generates a family of derivatives collectively called eicosa-
noids which includes prostaglandins (PG), thromboxanes (TX), leu-
kotrienes (LT), epoxides, and oxylipins [21]. The pro-inflammatory
series-4 leukotrienes are derived from AA by LOX and series-2
prostaglandins by the action of COX [22]. LOX/COX action on EPA
generates the anti-inflammatory series-5 leukotrienes and series-
3 prostaglandins and thromboxanes [22] (Fig. 1). Dihomogamma
linolenic acid (DGLA), the direct precursor of AA in the n�6 fatty
Page
acid pathway, competes with both AA and EPA for LOX and COX
[23,24]. LOX/COX action on DGLA yields series-1 prostaglandins
and thromboxanes that have potent anti-inflammatory, vasodilato-
ry, and anti-aggregatory effects [23,24]. Apart from eicosanoid pro-
duction, metabolism of EPA and DHA also generates resolution
phase interaction products such as E series and D series resolvins,
respectively [25–27]. Additionally, DHA metabolism yields protec-
tins such as docosatrienes and maresins, a novel class of macro-
phage mediators [27,28]. All EPA and DHA-derived resolvins,
protectins, and maresins induce pro-resolving actions during an
inflammatory response [25–28]. AA and DHA are the major acyl
components of structural lipids found in most tissue types [29].
Although the same set of enzymes synthesize AA and DHA from
their parent fatty acids, it is now well established that increased
dietary ALA inhibits the synthesis of AA from LA [30]. In rats fed
equivalent amounts of LA and ALA, there was a 20–40% reduction
in LA-derived PUFA incorporation into liver phosphoglycerides,
and a higher dietary ALA:LA ratio reduced the LA-derived PUFA
incorporation even further [30,31]. The increased dietary intake
of ALA decreased the metabolites of the n�6 pathway, especially
AA, the precursor of the 2-series prostaglandins. The metabolites
of n�3 series increased, attributed to effective competition of
ALA over LA for the D6 desaturase [32]. Furthermore, rats receiving
more dietary ALA showed reduced PG synthesis from AA than
those receiving LA alone [33,34].

However, chronic dietary intervention as well as stable-isotope
studies using ALA show that humans as well as rodents amongst
other mammals do not efficiently convert medium chain ALA to long
chain EPA or DHA [35–37]. In neonatal rats as well as guinea pigs,
DHA concentrations in the brain, retina, liver, and heart remained
comparable in animals fed either an ALA-rich diet or a high LA diet
[36,37]. In guinea pigs fed an ALA-rich diet, increases in ALA and
EPA but not DHA were observed in heart, liver, and adipose tissue
[38]. In humans, ALA is converted to EPA in low amounts (�8%)
and in even lower amounts to DHA (<0.1%) [35,39,40]. While most
radioactive tracer studies supporting this conclusion have used
5 min infusion and reported little or no newly synthesized EPA
and/or DHA [41–43], long chain metabolites of ALA may only appear
in the circulation after 60 min of infusion [44]. Also, studies with wo-
men and female rats show that females have higher conversion rates
than males, an effect mostly attributed to estrogen-mediated up-
regulation of D5 and D6 desaturases [45]. Nevertheless, in obese hu-
mans, ALA from flaxseed helped maintain plasma EPA and DHA con-
centrations without dietary fish or sea food and was associated with
preventing increases in weight gain, body mass index, and hip cir-
cumference [46]. Therefore, it is plausible that the physiological re-
sponses with ALA may be independent of its conversion to the longer
chain n�3 PUFA, particularly DHA. This would imply that the mech-
anism of action of ALA would also differ from the longer chain com-
pounds. In subsequent sections, the differences in responses as well
as the likely mechanisms of action of ALA (18C, medium chain) and
the long chain n�3 PUFAs (>18C) will be evaluated.
3. n�3 Fatty acids on risk factors of metabolic syndrome

3.1. Adiposity and dyslipidemia

The n�3 fatty acids reduce the risk for cardiovascular disease
partly by improving the blood lipid profile. However, both re-
sponses and mechanism of actions of the medium chain and long
chain n�3 fatty acids appear to be independent. ALA exerts most
of its effects by modulating lipoproteins, while EPA and DHA
may reduce triacylglycerol (TAG) synthesis and adiposity.

Daily supplementation with 20–50 g ALA-rich flaxseed reduced
total cholesterol and LDL-cholesterol concentrations in normolipi-
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demic [47–49] as well as hypercholesterolemic patients [50,51].
Ground flaxseed (38–40 g/day) also reduced lipoprotein-A and
apolipoproteins A-1 and B in postmenopausal women [52–54].
However, in overweight adults, ingestion of ALA-rich chia seed
(50 g/day) for 12 weeks did not affect measures of body composi-
tion, lipoproteins, or plasma concentrations of EPA and DHA but
increased plasma concentrations of ALA [55]. Medium flaxseed
doses (12.5 g/day) prevented the increase in plasma TAG concentra-
tions in hypercholesterolemic rabbits while low doses (0.04–0.2 g/
day) prevented the increase in total cholesterol concentrations in
LDL receptor-deficient mice [56,57]. In 1% cholesterol-fed rats,
dietary supplementation with ALA-rich flax and pumpkin seeds
(33% wt/wt) decreased total cholesterol, TAG in plasma and liver,
plasma LDL-cholesterol, atherogenic index, and LDL/HDL ratio
[58]. In addition, the ALA-rich diet increased PUFA (ALA and LA)
and MUFA (oleic and eicosaenoic acids) but decreased SFA (palmitic
and stearic acids) in total plasma and hepatic fatty acid content with
reduced lipid storage in hepatocytes [58]. However, n�3 fatty
acid-deprived rats, when given access to 5% flaxseed oil-enriched
diet, displayed increased body weight and adipose tissue mass [59].

In patients with type 2 diabetes and mixed hyperlipidemia who
were already receiving fluvastatin (80 mg/day), n�3 fatty acids
(EPA + DHA 4 g/day) reduced TAG, VLDL, and TAG/HDL-cholesterol
ratio and increased HDL-cholesterol in blood [60]. In healthy
males, fish oil and DHA-oil supplementation (4 g/day) for 15 weeks
lowered fasting plasma TAG concentrations and postprandial total
chylomicron concentration while increasing the HDL2/HDL3-cho-
lesterol ratio [61]. Increased HDL3 was associated with increased
visceral fat deposition and impaired VLDL function [62]. The Look
AHEAD (Action for Health in Diabetes) study examined the effects
of marine n�3 fatty acid intake in individuals with diabetes, its
association with adiposity, lipid profile and glucose homeostasis,
and its changes with behavioral lifestyle intervention for weight
loss in 2397 individuals [63]. Marine n�3 fatty acid intake was in-
versely associated with blood TAG concentrations and weakly
associated with HDL-cholesterol concentrations but there was no
association with non-HDL-cholesterol or adiposity [63]. In women
with polycystic ovary syndrome, consumption of n�3 fatty acids
(EPA + DHA 4 g/day) over 8 weeks reduced hepatic fat content
quantified using proton magnetic resonance spectroscopy [64]. In
addition, reductions in blood TAG concentrations and systolic
and diastolic blood pressure were observed [64]. In obese individ-
uals, body mass index, waist circumference, and hip circumference
were inversely correlated with EPA and DHA intakes [65]. In pa-
tients with dyslipidemia, consumption of EPA + DHA (3 g/day) in-
creased HDL-cholesterol and decreased TAG in blood after 3 and
6 months [66]. In another intervention study in patients with met-
abolic syndrome, purified fish oil n�3 fatty acids supplementation
for 6 months reduced body weight and serum concentrations of
LDL-cholesterol, total cholesterol and TAG at a relatively low dose
(180 mg EPA + 120 mg DHA capsule/day) [67]. It has been sug-
gested that the TAG-lowering effects of DHA and EPA may be
caused by decreased hepatic TAG secretion and enhanced clear-
ance of TAG from the plasma [61,68].

Ethyl esters of DHA from microalgae (0.6–5.0 g/kg/day) caused
dose-dependent decreases in TAG and total cholesterol concentra-
tions in rats fed a high-fructose diet [69]. In Sprague–Dawley rats,
feeding of fish oil at 10% of total dietary fat for 3 weeks suppressed
postprandial hypertriglyceridemia, increased lipoprotein lipase
activity in heart and liver, and reduced hepatic triacylglycerol
lipase activity [68]. Although dietary fish oil did not alter the rate
of lymphatic absorption of TAG or influence the half-lives of chylo-
micron or its remnants, secretion of TAG from the liver of rats
injected with Triton WR-1339 (an inhibitor of lipoprotein lipase)
was lower in the rats fed with DHA [68]. In rats fed either 3%
DHA or EPA-supplemented diets, total cholesterol concentrations
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were lower in the rats fed with DHA-supplemented diet, whereas
serum TAG concentrations were lower only in the rats fed with
EPA-supplemented diet [70]. In psychologically-stressed female
BALB/c mice, serum TAG concentrations were reduced by dietary
fish oil (17.6 g of DHA and 7.7 g of EPA per 100 g of fatty acid)
[71]. In Zucker rats, both dietary fish and krill oil (0.5% EPA + DHA
in the diet) reduced hepatic TAG concentration, but heart TAG con-
centrations were lower only in krill oil-fed rats [72].

In peroxisome proliferator-activated receptors-a (PPAR-a) null
mice, fish oil diet (8% of the total dietary fat) increased hepatic
diacylglycerol, TAG, and acyl-CoA [73]. However, in apolipoprotein
E (Apo-E)-knockout mice supplemented with 1% dietary fish oil,
atherosclerotic plaque formation was not prevented even though
concentrations of DHA and EPA were increased in plasma in differ-
ent forms (free fatty acids, TAG, phospholipids, and cholesteryl es-
ter fraction) [74]. Apo-E is required for clearance of TAG-rich
particles and it was therefore suggested that TAG-lowering effects
of long chain n�3 fatty acids may be due to their Apo-E modulatory
properties [74]. Apo-E-knockout mice fed on a fish oil diet showed
40% reduction in thrombin generation in addition to up-regulation
of genes contributing to lipid catabolism and down-regulation of
genes for c-glutamyl carboxylase and transcription factors impli-
cated in lipid synthesis [75].

Fish oil, when used at a dose providing 15% of total energy,
lowered subcutaneous (inguinal) and visceral (retroperitoneal
and epididymal) adipose tissue weights in high fat (33% lard)-
fed Wistar rats [76]. Similarly, fish oil supplementation (providing
40% of energy) reduced epididymal [77,78] and retroperitoneal
[78] fat in high fat-fed rats. Reduction in fat accumulation with
n�3 rich diet in rats was associated with reduction in adipocyte
hypertrophy [78,79]. In rats fed a high fat cafeteria style diet
(30% palmitic and 40% oleic acid) or 20% safflower oil, EPA (1 g/
kg/day) [80] and EPA + DHA mixture (5% dietary supplementa-
tion) [81] increased leptin gene expression and plasma leptin
concentrations with reduced retroperitoneal fat and food intake.
However, in high fat-fed C57BL/6J mice (20% dietary flax or corn
oil), dietary EPA/DHA (1–12% wt/wt of dietary lipids) reduced
mostly epididymal fat by limiting both hypertrophy and hyper-
plasia of adipocytes with lower EPA/DHA ratio favouring this ef-
fect [82].

The prevention of hypertrophy or hyperplasia of adipocytes
would ideally have to be followed by increased metabolism of
the dietary fat to prevent the accumulation of lipids in the liver
or circulation as there is decreased storage of lipids in the adipose
tissue. This is usually achieved by increased fatty acid oxidation in
liver, intestine, cardiac muscle, and skeletal muscle. Mitochondrial
carnitine palmitoyl transferase 1 (CPT1) facilitates fatty acid trans-
port in mitochondria for oxidation in these tissues. The mitochon-
drial expression of CPT1 is in turn regulated by PPARs [83]. In
C57BL/6J mice, feeding of ALA-rich semisynthetic high fat diet
(20% flax seed oil) with EPA/DHA (6% EPA, 51% DHA) concentrate
was associated with a three-fold stimulation of the expression of
genes encoding regulatory factors for mitochondrial biogenesis
and oxidative metabolism, mainly PPAR-c coactivator-1a and
nuclear respiratory factor-1 [84]. These effects were associated
with decreased lipogenesis in epididymal but not subcutaneous
fat [84]. Furthermore, rats fed with a non-purified high fat diet
supplemented with 15%, 20% or 44% fish oil had increased heart,
skeletal muscle, and adipocyte CPT1 specific activity and tissue
capacity, and a lower sensitivity of CPT1 to malonyl-CoA inhibition
[84,85]. Malonyl-CoA-mediated inhibition of CPT1 is reduced by
malonyl-CoA decarboxylase, which is regulated by AMP kinase
[85]. In primary cultured rat adipocytes, the stimulatory effect of
EPA on mRNA expression and secretion of visfatin, an adipokine
highly expressed in visceral adipose tissue, was dependent on
activation of AMP kinase by EPA [86].
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An alternative pathway for fat oxidation is mediated by perox-
isomal acyl-CoA oxidase, a relatively inefficient pathway for fat
oxidation, yielding over 30% more heat and therefore less ATP than
mitochondrial b-oxidation [87,88]. Dietary fish oil (40% energy) in
Fisher 344 rats induced peroxisomal acyl-CoA oxidase gene expres-
sion 2–3 fold in liver, skeletal muscle, and heart [77].

To reduce body fat storage, diet-derived or stored TAGs need to
be hydrolyzed into fatty acids for both CPT1 and peroxisomal acyl-
CoA oxidase to utilize. Lipoprotein lipase and adipose triacylglyc-
erol lipase play central roles in catalysing the hydrolysis of TAG
into fatty acids and monoacylglycerol in lipoproteins, skeletal mus-
cle and adipose tissue, respectively [89,90]. The evidence pre-
sented in this review strongly suggests that n�3 fatty acids up-
regulate both these enzymes to exert their hypotriacylglycerolemic
and lipolytic effects in the adipocytes. The expression of both lipo-
protein lipase and adipose triacylglycerol lipase seems to be regu-
lated by PPAR-a and PPAR-c [89,91,92]. There is enough evidence
to suggest that n�3 fatty acids and their metabolites are highly po-
tent ligands for PPAR-a and PPAR-c [73,93–97]. Even more intrigu-
ing is the existence of functional PPAR-a response elements in
genes encoding peroxisomal acyl-CoA oxidase [98], CPT [99],
HMG-CoA synthase [100], and mitochondrial uncoupling proteins
[101]. Furthermore, n�3 fatty acids suppressed the hepatic expres-
sion of sterol regulatory element-binding protein-1 (SREBP-1), a
transcription factor responsible for activating genes involved in
fatty acid synthesis, in a PPAR-a dependent process [94]. Therefore,
PPARs could be one of the early targets of n�3 fatty acids to main-
tain lipid homeostasis in the body by mechanisms outlined in
Fig. 2.
Fig. 2. Control of lipid and glucose metabolism at an expressional level by the n�3
fatty acids. TNF, tumor necrosis factor; TNFR, tumor necrosis factor receptor; PI3K,
phosphoinositide 3-kinase; AKT/PKB, thymoma viral proto-oncogene designated as
protein kinase B; PPAR, peroxisome proliferator-activated receptors; RXR, retinoid
X receptor; RA, retinoic acid; GPCR, G-protein coupled receptor; AC, adenylyl
cyclases; cAMP, cyclic adenosine monophosphate; PKA, protein kinase A.
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Clearly, enough data has been accumulated over the last decade
to understand the mechanisms of action of the long chain n�3 fatty
acids in reducing adiposity and dyslipidemia. However, the mech-
anism of action of ALA is not completely understood. Due to the
differences in pharmacological response to ALA and EPA/DHA, it
is plausible that ALA may exert its effects through alternate mech-
anisms and this warrants further investigation.

3.2. Glucose homeostasis and insulin resistance

Data with n�3 fatty acids for glucose homeostasis and insulin
resistance from humans and animals studied are inconsistent. Hu-
man studies suggest that none of the nutritionally important n�3
fatty acids improve insulin sensitivity. This is probably due to the
inverse association of insulin resistance and D5 desaturase activity
that could in turn reduce bioavailability of n�3 PUFA [102].

In obese, hypertensive patients, dietary fish or fish oil supple-
mentation had no independent effects on insulin or glucose
[103,104]. In mildly obese subjects, 15 mL/day of fish oil did not al-
ter the metabolic clearance rates of glucose at plasma insulin con-
centrations of approximately 100 and 1400 lU/mL during a
hyperinsulinemic, isoglycemic clamp [105]. Also, no changes were
reported in insulin binding to erythrocytes [105]. In healthy elderly
patients, maintaining dietary SFA and MUFA with n�6 and n�3
PUFA ratio adjusted by replacing n�6 PUFA with ALA, EPA, DHA,
or a mixture of EPA and DHA produced no differences in fasting
blood glucose, fasting insulin, or HOMA-IR [106]. In healthy indi-
viduals consuming fish oil (n�3 fatty acids; 3.6 g/day), minimal ef-
fects on insulin sensitivity, first phase insulin response, and
glucose tolerance were reported [107]. In non-diabetic elderly sub-
jects, fish oil capsule supplementation for 6 months (1 g/day,
180 mg EPA and 120 mg DHA) had no effect on insulin sensitivity
[108]. In type 2 diabetic adults, neither milled flaxseed nor flaxseed
oil (13 g/day for 12 weeks) altered glycemic control [109].

Although the Inuit Health in Transition Study reported an in-
verse association between erythrocyte membrane EPA and DHA
concentrations and the n�3/n�6 ratio with insulin resistance, the
study showed a positive association between ALA concentrations
and insulin resistance [110]. However, in young iron-deficient wo-
men, an oily fish diet decreased plasma insulin concentrations with
improved insulin sensitivity as compared to a red meat diet [111].
In patients with myocardial infarction or unstable ischemic at-
tacks, multiple bioactive lipid components including ceramides,
lysophosphatidylcholines and diacylglycerols, which are potential
mediators of lipid-induced insulin resistance and inflammation,
were decreased in groups fed with fatty fish diet, whereas in the
groups fed with lean fish, cholesterol esters and specific long-chain
TAG were increased [112].

In contrast, data from animal studies show that the n�3 fatty
acids strongly reduce insulin resistance and improve glucose toler-
ance, especially in murine models of metabolic syndrome and
type-2 diabetes. ALA deprivation in rats increased adipose tissue
mass, plasma glucose and insulin concentrations, and insulin resis-
tance index [59]. Rats deprived of n�3 fatty acids given access to
flaxseed oil-enriched diet displayed increased body weight and
adipose tissue mass, whilst the plasma glucose concentrations
and insulin resistance index decreased [59]. In rats fed high fat
diets (59% safflower oil), replacement of only 6% of LA from saf-
flower oil with long chain n�3 PUFAs from fish oil prevented the
development of insulin resistance, especially in liver and skeletal
muscle [113]. n�3 fatty acid rich fish oil-fed rats (fish oil providing
59% of total energy) showed increased rate of glycolysis and in-
creased glycogenesis compared to an isocaloric n�6 fatty acid-rich
sunflower oil-fed rats [114]. These effects were accompanied by
decreased intramuscular TAG content and increased percent pyru-
vate dehydrogenase versus tricarboxylic acid cycle flux [114]. In
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C57BL/6 mice fed with a 35% corn oil-based high fat diet supple-
mented with DHA/EPA (replacing 15% dietary lipids), rosiglitazone
(10 mg/kg diet) or a combination of DHA/EPA and rosiglitazone ex-
erted additive effects in prevention of obesity, adipocyte hypertro-
phy, low-grade adipose tissue inflammation, dyslipidemia, and
insulin resistance, while inducing adiponectin production, sup-
pressing hepatic lipogenesis, decreasing muscle ceramide concen-
trations, and improving glucose tolerance [115].

In ob/ob mice, dietary intake of fish oil (8% wt/wt) had insulin-
sensitizing actions in adipose tissue and liver [116]. Additionally,
PPAR-c, glucose transporters (GLUT) 2 and 4, and insulin receptor
substrate-1 (IRS-1)/insulin receptor substrate-2 (IRS-2) genes were
up-regulated with increased adiponectin secretion and AMP kinase
phosphorylation in n�3 fatty acid (EPA/DHA, 6% total dietary
lipid)-supplemented mice [116]. In this study, lipidomic analysis
showed that n�3 PUFA inhibited the formation of n�6 PUFA-derived
eicosanoids, while triggering the formation of n�3 PUFA-derived
resolvins and protectins, which mimicked the insulin-sensitizing
effects of n�3 PUFA [116]. In rats fed 12% canola oil-based diet, sup-
plemented with either ALA, EPA, DHA, or 1:1 EPA/DHA mixture
(0.5 g/kg), reductions in fasting blood glucose concentration, fasting
plasma insulin concentration, and HOMA-IR were observed with the
EPA/DHA mixture being most effective and ALA having the least ef-
fect [117]. In high sucrose diet-fed rats, 7% fish oil supplementation
reversed the insulin resistance and increased plasma leptin and
adiponectin concentrations but not their mRNA expression in the
adipose tissue [118].

PPAR-a seems to play a critical role in modulating the effects of
at least the long chain n�3 PUFAs. Fish oil supplementation (8% of
the total dietary fat) in wild-type mice restored hepatic insulin
sensitivity, whereas fish oil supplementation in PPAR-a null mice
failed to restore hepatic insulin sensitivity [73], suggesting that
EPA/DHA in fish oil may improve insulin sensitivity in a PPAR-a-
dependent manner. In high fat-fed rats (27% safflower oil), fish
oil feeding (8%, 13.5%, and 27% menhaden fish oil) almost exclu-
sively elevated plasma adiponectin concentrations and expression
in epididymal adipose tissue [119]. The increase of plasma adipo-
nectin by fish oil was completely blocked by administration of
the PPAR-c inhibitor, bisphenol-A-diglycidyl ether, in wild-type
mice but not in PPAR-a null mice [119]. In mice that were given
a single oral dose (400 ll) of synthetic TAG, hepatic expression of
genes encoding enzymes of the lipid and carbohydrate metabolism
pathways was affected most by DHA (519 out of 34000 genes stud-
ied) followed by ALA (400), LA (287), EPA (280), and oleic acid
(114) [120]. The majority of hepatic genes regulated by dietary
unsaturated fatty acids in wild-type mice did not show regulation
in PPAR-a-null mice. These results suggest that the effects of die-
tary unsaturated fatty acids on hepatic gene expression are almost
exclusively mediated through PPAR-a [120]. Increased IRS-1 phos-
phorylation is observed in insulin resistance and obesity with in-
creased c-Jun N-terminal kinase (JNK) activity [121]. In 3xTg-AD
transgenic mice, feeding of SFA (16% coconut oil) and n�6 PUFA
(5% safflower oil)-rich diet increased activity of JNK, phosphory-
lated IRS-1, and tau protein [122]. Treatment with 2.4% fish oil
for 4 months in these mice reduced phosphorylated JNK, IRS-1
and tau, and prevented the degradation of total IRS-1 [122]. DHA
also inhibited JNK and the phosphorylation of IRS-1 and tau in cul-
tured hippocampal neurons [122]. PPAR-a suppression induced by
a high saturated fat-rich diet induced JNK-dependent IRS-1Ser307

phosphorylation and this effect was ameliorated by 3.3% dietary
fish oil (EPA, 146 mg/g diet and DHA, 353 mg/g diet) [123].

While PPAR-a and JNK are currently the most promising targets
for the n�3 PUFAs to decrease blood glucose and insulin resistance,
data from last decade suggests that both PPAR-a and JNK are differ-
entially regulated in rodent and human cell lines [124–126]. The pri-
mary LOX product of LA, 13-hydroperoxy-9,11-octadecadienoic acid
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(13-HPODE), activated PPAR-a in rat FaO hepatoma cell line but not
in human HepG2 hepatoma cells [124]. PPAR-a agonists such as fen-
ofibric acid and phenylacetic acid up-regulated PPAR-a and associ-
ated genes in rat but not in human hepatocytes [125]. Humans, in
contrast to rodents, lack functional peroxisome proliferator re-
sponse elements in PPAR-a regulated genes encoding enzymes such
as acyl CoA oxidase [127,128]. This would invariably shift the lipid
homeostasis towards b-oxidation and less towards lipogenesis in
rodents but less so in humans thereby reducing lipids and
lipid-induced insulin resistance in rats. These species differences
demonstrate the inconsistencies in the insulin signaling and glucose
handling in response to n�3 PUFA in rats and humans. These factors
have to be carefully considered before extrapolating the results from
rodent studies to human trials.
3.3. Hypertension

Essential hypertension, very common in metabolic syndrome,
considerably increases the risk of cardiovascular diseases, even in
the absence of overt diabetes [129]. The beneficial effects of ALA,
EPA, and DHA in reducing hypertension and related cardiovascular
remodeling are well-documented. Three meta-analyses of placebo-
controlled trials have concluded that the n�3 PUFAs (3–15 g/day)
in fish oil, mainly EPA and DHA, cause small but clinically relevant
reductions in blood pressure (2–5 mmHg) in untreated hyperten-
sive individuals [130–132]. An international cross-sectional epide-
miologic study of 4680 men and women aged 40–59 from 17
population-based samples in China, Japan, United Kingdom, and
the U.S.A. reported that n�3 PUFA intake was inversely related to
blood pressure, in both hypertensive as well as normotensive pa-
tients [133]. EPA/DHA-rich n�3 capsules (4 g/day) lowered blood
pressure and heart rate in a double-blind, placebo-controlled inter-
vention in non-diabetic patients with chronic kidney disease stages
3–4 [134]. Purified fish oil n�3 fatty acids (180 mg EPA + 120 mg
DHA capsule/day) also reduced systolic blood pressure in patients
with metabolic syndrome [67]. Reductions in both systolic and dia-
stolic blood pressure have been reported in healthy postmeno-
pausal women, obese subjects as well as dyslipidemic patients
after consuming 40 g/day of ALA-rich ground flaxseed or 15–
20 g/day of flaxseed oil [135–137]. Similar effects with fish oil have
also been reported, where in a double-blind, placebo-controlled,
cross-over trial, supplementation with fish oil (1 g capsule/day;
38% DHA, 47% EPA) reduced seated blood pressure by 3.1 ± 1.0/
1.8 ± 0.6 mm Hg [138].

A recent study has highlighted the relationship between die-
tary n�3 PUFA deficiency (particularly ALA) and hypertension as
early as 24 weeks of age in female rats [139]. In conjunction
with this, ALA and fish oil as a source of n�3 PUFAs at a large
dose range of 0.44–6 g modulated vascular responses induced
by angiotensin II infusion [140–142]. Furthermore, prenatal defi-
ciency of dietary n�3 PUFAs induced hypertension in Sprague–
Dawley rats [143–145]. This was retained in later life even if
the concentrations were restored after supplementation of die-
tary canola oil, a rich source of ALA, as the n�3 PUFA source
[143].

The antagonistic effects of n�3 PUFA on angiotensin II receptors
may be responsible for modulation of hypertension (Fig. 3)
[146,147]. n�3 PUFA play an important role in neural mem-
brane-based receptor systems, such as photo-transduction in the
retina [148] which shares common morphology with angiotensin
II receptors, both being G protein–coupled receptors belonging to
the 7-transmembrane domain superfamily. Increases in COX/LOX
metabolites of EPA such as the vasodilative eicosanoids including
the thromboxanes could also act as physiological antagonists,
counteracting vasoconstriction caused by angiotensin II [149].
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Fig. 3. Possible inhibitory effects of n�3 PUFA (shown by dotted arrows) on pathways leading to hypertension. Ang II, Angiotensin II; ET-1, Endothelin-1; TX, thromboxane;
AT II-1, Angiotensin II receptor-1; TXR, thromboxane receptor; PLC, phospholipase C; PIP, Phosphatidylinositol phosphate; DAG, diacylglycerol; IP3, inositol triphosphate;
IP3R, inositol triphosphate receptor; PKC, protein kinase C; NHE, Na+-H+ exchanger; NCX, Na+-Ca2+ exchanger.
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Furthermore, reasonable evidence exists for an inhibitory role
of n�3 fatty acids on the renin-angiotensin system, specifically
on renin secretion and angiotensin converting enzyme (ACE) activ-
ity. In isolated perfused rat kidneys, flaxseed oil feeding as 20% of
total energy intake lowered renal venous renin secretion rates
[145]. Further, reduced ACE activity as well as expression in the
aorta [150] and reduction in blood pressure [151] have been re-
ported in 6 week old Spontaneously Hypertensive Rats (SHR) fed
with a 10% ALA-enriched diet. These observations are supported
by in vitro assays where EPA most effectively inhibited purified
ACE activity (EPA > ALA > DHA > GLA > LA > AA) and DHA was most
effective in inhibiting cultured leukocyte ACE activity (DHA > E-
PA > ALA = AA > LA > GLA) [152].

Increased blood pressure may also result from damaged endo-
thelium exhibiting dysfunctional relaxation following mechanical
or biochemical insults. Incorporation of EPA and DHA into mem-
brane phospholipids increased systemic arterial compliance
[153] as the endothelium of arteries acts as a modulator of vas-
cular tone. Dietary supplementation (10–20% of the diet) of ALA-
rich flaxseed protected against the loss of endothelial-dependent
vascular relaxation in SHR and cholesterol-fed rabbits [56,154].
Both DHA and EPA relaxed aortic rings isolated from SHR and
normotensive Wistar–Kyoto rats in a concentration-dependent
and intact endothelium-independent manner [155]. EPA and
DHA possibly improved endothelial function by enhancing the
release of NO [156]. This effect seems to be due to the lipid
and structural modification of caveolae, plasma membrane mi-
cro-domains that act as regulators of endothelial NO synthase
(eNOS) activity [157].

Early studies with long chain n�3 PUFA defined their involve-
ment in the calcium signaling process in contraction of the aorta.
In the presence of calcium-free medium, the n�3 fatty acids abol-
ished sustained norepinephrine contractions in isolated rat aortic
rings but did not reduce the phasic contractions when incubated
prior to norepinephrine contraction [158]. This effect may be re-
lated to intracellular calcium mechanisms, since both EPA and
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DHA reversed norepinephrine-induced sustained contractions in
the absence of extracellular calcium [158]. The same group also
demonstrated that mechanisms of vascular relaxation, such as cyc-
lic nucleotide elevation and calcium antagonism of potential-oper-
ated channels, are different from those induced by the n�3 PUFAs
[159]. DHA and EPA also inhibited a1-adrenoceptor mediated vas-
cular contractions induced by phenylephrine which were not al-
tered by the non-selective COX inhibitor indomethacin, the
potent antioxidant nordihydroguaiaretic acid or by removal of
the endothelium [160]. These results indicate the inhibition of
vasoconstriction by EPA and DHA is independent of vasodilators
such as prostaglandins, nitric oxide or other endothelium-derived
vasodilators. It is therefore plausible that n�3 PUFAs prevent the
increase in blood pressure by decreasing the production of
vasoconstrictors.

Unlike SFA, n�3 PUFAs reduced the formation of thromboxane
A2, a potent vasoconstrictor, and enhanced the production of
PGI3, a potent vasodilator [161,162]. In addition to this, EPA low-
ered the tissue concentrations of AA and enhanced those of GLA,
the precursor of the endogenous vasodilator, PGE1 [152]. Collec-
tively, these studies disprove the role of endothelium-derived
relaxing factors and cyclic nucleotide second messengers such as
cAMP and cGMP in the vasoactive properties of EPA and DHA.
The vasorelaxant properties of EPA and DHA may be mediated by
a specific inhibition downstream of a-adrenoceptor activation
(Fig. 3) [163]. KCl-induced contraction results from voltage-gated
channels and norepinephrine-induced contractions through li-
gand-gated calcium channels. Since both DHA and EPA evoked
greater relaxant responses in norepinephrine-contracted vessels
than in KCl-contracted vessels [158], it is most likely that the
vasorelaxant properties of at least the long chain n�3 PUFAs may
be intracellularly mediated.

Inhibiting Na+/K+–ATPase, the sodium pump, leads to an in-
crease in cytosolic Na+ concentrations. Cellular Na+ accumulation
raises the cytosolic Ca2+ concentration through the involvement
of the Na+/Ca2+ exchanger and thereby increases contraction in
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vascular smooth muscle or heart muscle. This sequence of events
may lead to hypertension [164]. Rats fed a 17% menhaden oil-sup-
plemented diet that contained DHA and EPA exhibited a decrease
in cardiac sarcoplasmic reticulum Ca2+-ATPase activity [165]. An
indirect inhibition of Na+/Ca2+ exchange by DHA and EPA [166]
would contribute as one of the mechanisms to lower blood pres-
sure (Fig. 3).

A growing body of evidence highlights the role of connexin 43
(Cx43), one of the major gap junction proteins in heart as well as
aorta, in regulating blood pressure. Cx43 activity is down-regu-
lated in protein kinase C (PKC)-independent hypertension models
such as SHR [167,168] and nitro-L-arginine methyl ester-induced
hypertension [169] and up-regulated in PKC-dependent models
of hypertension mediated by angiotensin II [170–173], endothe-
lin-1 [173,174], and a-adrenoceptor activation [175,176] thereby
suggesting the vital role of PKC in connexin activation. In SHR,
EPA (50 mg/day) and DHA treatment (30 mg/day EPA + DHA mix-
ture), besides reducing the elevated blood pressure, increased
Cx43 immunolabeling in endothelium and media with elevated
phosphorylation and reduced stimulated aortic NOS activity
[167,177]. The increase in functional Cx43 in these rats may there-
fore be due to increased PKC activity. Inhibiting JNK with SP600125
[anthra(1,9-cd)pyrazol-6(2H)-one 1,9-pyrazoloanthrone] or siRNA
up-regulated Cx43 protein concentrations in the presence of phen-
ylephrine [178]. Also, inhibition of reverse mode Na+/Ca2+ ex-
change with KB-R7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]
isothiourea mesylate) inhibited JNK activation and up-regulated
Cx43 protein expression [178].

Furthermore, emerging evidence also suggests that PKC and its
various isoforms directly regulate PPAR-a as well as PPAR-c [179–
181]. In COS-1 cells transfected with murine PPAR-a, inhibitors of
PKC (Go6976 and HBDDE – a-isoform inhibitors; rottlerin – d iso-
form inhibitor and staurosporine – non-specific inhibitor) decreased
Wy-14,643-induced PPAR-a activity [180]. Additionally, mutating
any of the four consensus PKC phosphorylation sites in PPAR-a
(S110, T129, S142, and S179) either prevented heterodimerization
of PPAR-a with retinoid X receptor-a, lowered the level of phosphor-
ylation of PPAR-a, or prevented PPAR-a from binding to DNA [180].
Furthermore, PPAR-c agonists such as rosiglitazone did not induce
edema or weight gain in PKC-ß knockout mice [179].

Since PKC is vital for functional PPARs and strong evidence ex-
ists for the action of n�3 PUFAs through these receptors for lipid as
well as glucose homeostasis, it is unlikely that the blood pressure
lowering effects of n�3 fatty acids are due to inhibition of PKC sig-
naling pathway. The blood pressure lowering effects of n�3 PUFAs
may to a large extent be attributed to LOX/COX-mediated vasodi-
lative eicosanoids synthesized from dietary or ALA-derived EPA.
Additionally, EPA and DHA could have inhibitory effects on intra-
cellular pathways involved in hypertension.

3.4. Oxidative stress

The potential role of oxidative stress as an early event in the
pathology of metabolic syndrome and cardiovascular diseases
has been widely noted [182]. Oxidative stress may play an impor-
tant role in the etiology of various risk factors of metabolic syn-
drome-related manifestations, including atherosclerosis,
hypertension, type 2 diabetes, adiposity, and insulin resistance
[182]. The role of n�3 PUFAs in reducing oxidative damage and
restoring free radical homeostasis is not completely understood.
Although some studies suggest that ALA, EPA, and DHA may reduce
oxidative damage in humans and animals [183–185], the data re-
main inconclusive.

Currently available data suggests that at least the long chain
n�3 PUFAs have no role in reducing the biomarkers of oxidative
damage. In judo athletes, 6 weeks of EPA + DHA supplementation
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(600 mg EPA + 400 mg DHA capsule/day) increased exercise-in-
duced oxidative stress defined as increased malondialdehyde, con-
jugated dienes, and NO concentrations [186]. In exercise-trained
men, daily supplementation with 2224 mg EPA + 2208 mg DHA
for six months had no effect on antioxidant capacity, oxidized
LDL, malondialdehyde, xanthine oxidase activity, and nitrate/ni-
trite ratio although blood hydrogen peroxide concentrations were
reduced in response to exercise [187]. In overweight or obese
men consuming a non-purified high-fat, high-fructose diet, acute
fish oil (1 g capsule; 400 mg EPA + 200 mg DHA) supplementation
had no effect on markers of oxidative stress (lipid hydroperoxides,
oxidized-LDL, total antioxidant status) [188]. F2-isoprostanes, the
products of free radical-induced peroxidation of membrane-bound
arachidonic acid, are considered a reliable biomarker of oxidative
stress [189]. In the LIPGENE study in subjects with the metabolic
syndrome, 1.24 g/day of DHA supplementation for 12 weeks did
not alter urinary concentrations of either 8-iso-PGF2a or 15-
keto-dihydro-PGF2a [190]. In patients with normal or slightly ele-
vated total blood cholesterol and TAG concentrations or both, sup-
plementation with krill oil (3.0 g/day, EPA + DHA = 543 mg) or fish
oil (1.8 g/day, EPA + DHA = 864 mg) did not change urinary 8-iso-
PGF2a concentrations after 7 weeks [189].

Although no evidence exists to show definitively that either of
the long chain n�3 PUFAs prevents oxidative damage, there is
some evidence to suggest that EPA and DHA at least improve
anti-oxidant enzyme status in humans. In patients on hemodialy-
sis, EPA + DHA (3 g/day) capsule supplementation for 2 months
increased circulating glutathione peroxidase and superoxide dis-
mutase activities in addition to increased ferric reducing antioxi-
dant power and reduced serum malondialdehyde concentrations
[191]. In elderly patients chronically exposed to particulate matter,
fish oil (2 g/day capsule; 52.4% DHA, 25.0% EPA, and 5.8% DPA)
increased superoxide dismutase activity as well as glutathione
plasma concentrations [192].

Few human studies have addressed the role of ALA in oxidative
stress and therefore this role remains poorly understood. In pa-
tients with hypercholesterolemia, 2 months supplementation with
wheat germ oil (8.6% ALA) down-regulated CD40L via an oxidative
stress-mediated mechanism with in vitro experiments showing de-
creased platelet reactive oxygen species production, reduced acti-
vation of NADPH oxidase and phosphorylation of p38 MAP
kinase, a protein implicated in the activation of NADPH oxidase
[193]. However, this study did not account for the high n�6 PUFA
or MUFA contents of wheat germ oil.

Down-regulation of the phagocytic and tissue-specific NADPH
oxidase subunits (NOX-4, gp91(phox), p47(phox), p22(phox)) has also
been reported with EPA + DHA administration (0.3 g/kg/day) by
gastric gavage for 12 weeks in Sprague–Dawley rats subjected to
5/6 nephrectomy, a model of chronic renal failure [184]. Parallel
observations in humans with long chain n�3 PUFAs are yet to be
made. Male Wistar rats after 30 days of dietary supplementation
with fish oil (0.4 g/kg/day) increased erythrocytic catalase activity
and decreased serum malondialdehyde and NO concentrations,
although no effects on erythrocytic superoxide dismutase and glu-
tathione peroxidase activities were reported [194]. In streptozoto-
cin-induced diabetic rats, treatment with DHA reduced plasma
malondialdehyde and increased glutathione concentrations with
increased glutathione peroxidase activity [195]. In a rat model of
uranyl nitrate-induced nephrotoxicity, dietary fish oil decreased li-
pid peroxidation, superoxide dismutase activity, glutathione per-
oxidase activity, and increased catalase activity [196]. In ApoE�/�

mice fed on a high fat (non-purified +2% high oleic sunflower
oil), high cholesterol chow diet supplemented with either 2% fish
oil or DHA oil, hepatic soluble epoxide hydrolase concentrations
were lowered by fish oil, but not DHA, compared with high-oleic
acid sunflower seed oil-fed rats [197]. In 1% cholesterol-fed rats,
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flaxseed and pumpkin seeds supplementation (33% wt/wt) de-
creased plasma and hepatic malondialdehyde concentrations and
improved efficiency of antioxidant enzyme systems [58].

In oligodendroglial OLN-93 cells, DHA, EPA, ALA, LA, AA, oleic or
stearic acids or a-tocopherol were added to the culture media to
study the effects of PUFA supplements on heat shock protein
(HSP) induction, altered cell survival properties and responses to
oxidative stress exerted by hydrogen peroxide [198]. Fatty acid
supplements caused the up-regulation of heme oxygenase-1
(HO-1) depending on the degree of desaturation (DHA having the
highest effect) [198]. However, in Ea.hy 926 endothelial cells,
DHA (50 lM) induced reactive oxygen species production in cells,
aggravated the lysophosphatidylcholine-induced oxidative stress,
and impaired the stimulation of histamine-induced eNOS activa-
tion [199]. EPA (90 lM) diminished the deleterious effect of lyso-
phosphatidylcholine as well as the histamine-stimulated eNOS
activity, although it did not modify the concentrations of reactive
oxygen species produced in the presence or absence of lysophos-
phatidylcholine or basal eNOS activity or the stimulating effect of
histamine on eNOS [199].

Although limited data are available to determine the underlying
anti-oxidative mechanisms of n�3 PUFAs, it is most likely a conse-
quence of reduction in AA synthesis by n�3 PUFAs as discussed
earlier since AA has been implicated as a major component in
NADPH oxidase activation [200]. Another plausible mechanism is
the prevention of eNOS stimulation over the basal level thereby
reducing the excess production of nitric oxide.

3.5. Inflammation

The n�3 PUFA such as ALA, EPA, and DHA compete with AA as
substrates for the formation of pro-inflammatory mediators, such
as leukotrienes, prostaglandins, and cytokines as discussed in Sec-
tion 3.4. Although these pro-inflammatory mediators, in appropri-
ate amounts, are beneficial in response to pathogenic infection,
chronic production can be dangerous and is implicated in causing
some of the pathological responses that occur in sub-clinical
inflammatory conditions [201]. In addition to competitive inhibi-
tion of the n�6 fatty acid pathway, n�3 PUFAs may also inhibit
production of inflammatory and fibrotic mediators including C-
reactive protein (CRP), interleukins (IL), tumour necrosis factor-a
(TNF-a), matrix metalloproteinases (MMP) 2 and 9, and tissue
inhibitors of metalloproteinase (TIMPs). Although the roles of cyto-
kines in inflammation have been well-documented [202], the exact
role of MMPs in inflammatory conditions is yet to be elucidated
even though MMP up-regulation is the hallmark of many inflam-
matory diseases such as arthritis and atherosclerosis [203].

In exercise-trained men, daily supplementation with 2224 mg
EPA + 2208 mg DHA for 6 months reduced resting CRP and TNF-a
concentrations and the changes were maintained throughout the
exercise [187]. Patients with combined dyslipidemia treated with
EPA and DHA for up to 6 months showed decreased plasminogen
activator inhibitor-1 (PAI-1), fibrinogen, MMP-2, MMP-9, TIMP-1,
TIMP-2, and hsCRP [66]. A study involving randomly selected Jap-
anese employees showed inverse relationships between dietary in-
take of ALA and serum CRP concentrations but no statistically
significant association with either EPA or DHA intake [204]. In
healthy middle-aged men receiving 3.5 g/day fish oil (1.5 g/day to-
tal n�3 PUFA), serum concentrations of cytokines, chemokines or
cell adhesion molecules were not affected as compared with pla-
cebo [205]. In subjects with metabolic syndrome, 1 g of fish oil cap-
sule supplementation for 6 months reduced CRP and Hsp27
antibody titres [67]. In a cross-sectional study with 5677 men
and women from the Multi-Ethnic Study of Atherosclerosis (MESA)
cohort, fish intake was inversely associated with plasma concen-
trations of pro-inflammatory IL-6, MMP-3, and CRP [206]. ALA (flax
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oil, 14 g/day) decreased IL-6 concentrations over 12 weeks with no
other changes in inflammatory cytokines in older adults with ALA
supplementation during a resistance-training program [207].

Decreased concentrations of IL-18, an independent risk factor of
coronary artery diseases, were positively correlated to increases in
serum EPA and DHA concentrations in elderly men at high risk for
atherosclerosis treated with 2.4 g/day of EPA + DHA supplement
[208]. In patients with coronary heart disease, a fatty fish diet de-
creased the ratio of AA to EPA in cholesterol ester and phospholipid
fractions and this effect was strongly correlated with the change in
IL-1 mRNA levels in peripheral blood mononuclear cells [209]. In
healthy Dutch elderly subjects consuming either 1.8 g EPA + D-
HA/day, 0.4 g EPA + DHA/day or 4.0 g high-oleic acid sunflower
oil/day, high EPA + DHA intake changed the expression of 1040
genes in human blood mononuclear cells including those involved
in nuclear transcription factor-B (NF-jB) signaling and eicosanoid
synthesis [210]. Healthy humans placed on fish oil supplement
(775 mg EPA/day) showed reduced expression of PI3Ka and PI3Kc
and the quantity of PI3Ka protein in mononuclear cells in addition
to reduced capacity of stimulated neutrophils to produce LTB4

ex vivo [211]. Furthermore, fish oil supplements (775 mg EPA/
day) reduced the expression of many pro-inflammatory or pleio-
tropic interleukins including IL-1b, IL-5, IL-10, IL-17, and IL-23
[211]. DHA increased the secretion of IL-1 by cystic fibrosis neutro-
phils, but did not affect the secretion of other cytokines or AA in
both cystic fibrosis as well as normal neutrophils [212]. It is there-
fore likely that the genetic effects of fish oil supplements result
from the EPA fraction. However, DHA may affect the anti-inflam-
matory effect by inhibiting the generation of pro-inflammatory
precursors [212].

In Sprague–Dawley rats subjected to 5/6 nephrectomy pro-
duced by surgical resection of the upper and lower thirds of one
kidney and removal of the other kidney, EPA + DHA administration
(0.3 g/kg/day) by gastric gavage for 12 weeks down-regulated
COX-2, PAI-1, transforming growth factor-b (TGF-b), connective
tissue growth factor, a-smooth muscle actin, fibronectin, Smad2,
and monocyte chemoattractant protein-1 (MCP-1), raised Smad7,
and attenuated extracellular signal-regulated kinases (ERK) 1/2
and NF-jB activation [184]. In rats subjected to aortic banding
and dietary supplementation with EPA + DHA or ALA at 0.7%,
2.3%, or 7% of energy intake, ALA supplementation had little effect
on left ventricular remodeling and dysfunction but EPA + DHA
dose-dependently increased EPA and DHA and decreased AA con-
centrations in cardiac membrane phospholipids, and prevented
the increase in left ventricular end-diastolic and -systolic volumes.
EPA + DHA resulted in a dose-dependent increase in the anti-
inflammatory adipokine, adiponectin. Supplementation with
EPA + DHA had anti-aggregatory and anti-inflammatory effects
shown by decreases in urinary thromboxane B2 and serum TNF-a
concentrations [213].

DHA and ALA suppressed apoptotic cell death in pancreatic aci-
nar cells exposed to hydrogen peroxide and inhibited the expres-
sion of inflammatory cytokines, IL-1b and IL-6 [214].
Macrophages treated with EPA and DHA showed reduced expres-
sion of TNF-a, IL-6, and MCP-1 compared to control cells or those
treated with SFA [215]. In addition to its anti-inflammatory effects
by suppressing LTB4 [216], ALA suppressed the synthesis of IL-1b,
IL-6, and TNF-a [217] probably at transcriptional level as both IL-
1 and TNF-a mRNA were reduced with ALA treatment. This effect
may account for the beneficial effects of n�3 PUFA in models of
chronic inflammatory disease [218].

Recent advances have highlighted the role of resolvins derived
from n�3 PUFA critical to their anti-inflammatory properties
[219]. These include E series resolvins (E1 or RvE1) from EPA, D
series resolvins (D1 or RvD1), and the neuroprotectins/protectins
(PDs) from DHA [219]. The anti-inflammatory effects of resolvins
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including reduced TNF-a and IL-13 production and reduced
inflammatory cell recruitment have been shown in in vitro studies
as well as in animal models of inflammation [25,220–223]. Resolv-
ins have been reviewed including their biosynthesis, structures
and effects [25,219]. Most mechanisms linking n�3 PUFA with
suppression of inflammation are associated either with their
anti-inflammatory metabolites or the suppression of the n�6 fatty
acid pathway.

4. Safety and nutrient-gene/nutrient-drug interactions of n�3
PUFAs

The n�3 PUFAs may interact with other dietary factors to
modulate the risk factors of metabolic syndrome. n�3 Fatty acid
deficiency for 24 weeks with higher dietary protein (30% casein
supplementation) induced hypertension in female rats [139].
Co-treatment of oligodendroglial OLN-93 cells with DHA and
a-tocopherol suppressed HO-1 up-regulation and restored cell
survival whereas treatment with DHA alone induced HO-1
up-regulation [198]. Analysis of the lipid profile demonstrated that
co-treatment of OLN-93 cells with DHA anda-tocopherol directly al-
tered the PUFA profile of the cell membranes by increasing n�9 fatty
acids such as mead acid at the expense of oleic acid [198].

Leptin modulates insulin action, stimulates glucose uptake and
fatty acid oxidation in addition to increased insulin secretion via
leptin receptors (LepR) present in pancreatic b cells, adipose tissue,
and muscle [224–226]. In individuals with metabolic syndrome,
low plasma n�3 and high n�6 PUFA status exacerbated the genetic
Fig. 4. Mechanism of action of n�3 PUFA on risk factors for metabolic syndrome. NHE, Na
insulin receptor substrate; JNK, c-jun N-terminal kinase.
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risk conferred by LEPR rs3790433 GG homozygosity to hyperinsu-
linemia and insulin resistance [227]. This study also reported a
negative correlation between LepR polymorphisms and hyperinsu-
linemia and insulin resistance in patients with high n�3 and low
n�6 PUFA [227].

In transgenic fat-1 mice with enhanced endogenous production
of n�3 PUFA infected with virulent H37Rv Mycobacterium tubercu-
losis, higher bacterial loads and less robust inflammatory responses
in lungs increased susceptibility to tuberculosis [228]. Macro-
phages from fat-1 mice had reduced pro-inflammatory cytokine
secretion, impaired oxidative metabolism, and diminished M.
tuberculosis-lysotracker co-localization within phagosomes and
were more readily infected with M. tuberculosis in vitro, compared
with wild-type macrophages [228]. It has been suggested that n�3
PUFAs, widely regarded as possessing anti-inflammatory proper-
ties, may also lead to immunosuppression [228].

More studies will be needed to understand interactions of n�3
PUFAs with other nutritional factors as well as genetic factors to
make informed dietary recommendations on n�3 PUFAs. It will
also be necessary to address any possible safety and toxicological
aspects of n�3 PUFAs.

5. Discussion and conclusions

Current evidence strongly suggests that PPARs, JNK, Na+, K+-
ATPase, and Na+–Ca2+ exchangers are early targets for n�3 PUFA
to attenuate symptoms of metabolic syndrome (Fig. 4). Although
it is unlikely that these are exclusive targets that elicit the
+–H+ exchanger; NCX, Na+–Ca2+ exchanger; CPT, carnitine palmitoyltransferase; IRS,
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Table 1
Summary of responses and probable target sites of ALA, EPA and DHA.

Physiological responses Probable targets

Risk Factor ALA EPA and DHA ALA EPA and DHA

Adiposity None � Reduces visceral adiposity
� Increases mitochondrial biogenesis and oxidative

metabolism

Unknown Leptin, PPAR-a, PPAR-c, peroxisomal acyl-CoA
oxidase

Dyslipidemia Reduces total
cholesterol,
LDL-cholesterol
and TAG

� Increases HDL-cholesterolReduces TAG
� Increases lipoprotein lipase activity
� Reduces TAG lipase activity

Unknown ApoE up-regulation

Insulin
resistance

� None in humans
� Animal studies show improved glucose tolerance and insulin resis-

tance index

Unknown None in humans. Animal studies suggest PPAR-a and
JNK as the most likely targets. Inconsistency possibly
due to lack of functional peroxisome proliferator
response elements in some PPAR-a regulated genes
in humans

Hypertension Reduces systolic blood pressure � Inhibits renin
secretion
� Reduces the

formation of
thromboxane
A2

� Inhibits ACE
� Structural modification of the blood vessel
� Inhibits Na+/K+–ATPase and Na+/Ca2+ exchange

Oxidative
stress

Data
inconclusive

Does not reduce oxidative damage but improves
serum antioxidant enzymes levels. Animal studies
show reasonable evidence of reducing oxidative
damage but also show pro-oxidant responses to EPA
and DHA at higher doses

Possible NADPH oxidase inhibition/reduced activation

Inflammation Reduces pro-inflammatory cytokines and LOX/COX metabolites of AA Suppression of the n�6 fatty acid pathway as well as pro-resolving actions
of resolvins, protectins and maresins derived from EPA and DHA
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therapeutic responses to n�3 fatty acids, there is growing consen-
sus that the anti-inflammatory effects of n�3 fatty acids are mainly
mediated by displacing the pro-inflammatory n�6 fatty acid path-
way (Fig. 4). It is also possible that the effects of n�3 fatty acids on
one of the risk factors of metabolic syndrome could mitigate the
other risk factors. For example, lipid-lowering effects of n�3 fatty
acids could also result in improved glucose handling, reduced
blood pressure and oxidative stress. Serum free fatty acids upreg-
ulate gluconeogenesis in the liver [229], and elevate both insulin
resistance and hypertension by inhibiting aortic NOS activity
through an oxidative mechanism [230,231]. In addition to reduced
NADPH oxidase and iNOS activities due to the anti-inflammatory
effects of n�3 fatty acids, metabolic correction by reducing blood
lipids and blood glucose may contribute to the anti-oxidative prop-
erties as well (Fig. 4).

Oxidative stress and inflammation are key and inter-related indi-
cations in obesity and metabolic syndrome [232,233]. Reactive oxy-
gen species targeted L-type calcium channels on the sarcolemma
and suppressed the Ca2+ current [234] thereby increasing the cyto-
solic Ca2+ concentration through mobilization of intracellular Ca2+

stores and/or through the influx of extracellular Ca2+ [235–237].
Both direct modulation of Ca2+ channels by reactive oxygen species
as well as reactive oxygen species-dependent increases in vascular
intracellular Ca2+ primarily via extracellular Ca2+ influx have been
conclusively demonstrated [237,238]. Therefore, it is plausible that
the reduction in oxidative stress by the n�3 fatty acids could also re-
sult in vasorelaxation. The interplay between various risk factors of
metabolic syndrome has to be carefully considered to elucidate the
mechanism of action of n�3 fatty acids.

It is clear that studies with ALA are insufficient compared to EPA
and DHA (Table 1). From the limited available data, physiological re-
sponses to ALA differ from EPA and DHA primarily in lipid handling.
While ALA has no effect on adiposity and body weight loss, EPA and
DHA reduce adiposity, and thereby favor body weight loss. Also, ALA
reduced LDL-cholesterol whereas EPA and DHA increased HDL-cho-
lesterol concentrations with increased cardiac and hepatic lipopro-
tein/TAG lipases. Most of the responses to all three n�3 PUFA
remain comparable, probably with closely associated mechanisms
of action in insulin resistance, hypertension, and inflammation
Page
(Table 1). Unlike with ALA, the probable targets of EPA and DHA
are seemingly well studied. However, it is still unclear whether there
are different molecular targets/pathways with EPA and DHA as most
studies employ EPA and DHA mixtures in purified forms as capsules
or oily fish diet/supplements. Since the conversion of EPA to DHA is
even less efficient than the conversion of ALA to EPA [35], EPA and
DHA could, at least in theory, exert their effects through indepen-
dent mediators. More studies need to be implemented with purified
EPA and DHA to differentiate their effects. Considering the promi-
nence of LOX/COX metabolites of AA in the risk factors of metabolic
syndrome, we speculate that displacement of AA by EPA contributes
to most, if not all, effects of oily fish diets/supplements in alleviating
the symptoms of metabolic syndrome, with minimal additional
effects from DHA.

Furthermore, since ALA shows higher affinity towards D6 desat-
urase than LA [35], the physiological responses to ALA could be
mediated through the derived EPA but direct responses to ALA re-
main possible. Evidently, more focused studies with each of the
three n�3 fatty acids are required to draw firm conclusions on
the mechanisms of action of the individual fatty acids. Also, in-
ter-species genetic and metabolic variations have to be carefully
considered for animal studies to ensure reliability and reproduc-
ibility of the results in humans.
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Poudyal H, Panchal SK, Ward LC, Waanders J, Brown L.
Chronic high-carbohydrate, high-fat feeding in rats induces reversible
metabolic, cardiovascular, and liver changes. Am J Physiol Endocri-
nol Metab 302: E000–E000, 2012. First published March 20, 2012;
doi:10.1152/ajpendo.00102.2012.—Age-related physiological changes
develop at the same time as the increase in metabolic syndrome in
humans after young adulthood. There is a paucity of data in models
mimicking chronic diet-induced changes in human middle age and
interventions to reverse these changes. This study measured the
changes during chronic consumption of a high-carbohydrate (as corn-
starch), low-fat (C) diet and a high-carbohydrate (as fructose and
sucrose), high-fat (H) diet in rats for 32 wk. C diet feeding induced
changes without metabolic syndrome, such as disproportionate in-
creases in total body lean and fat mass, reduced bone mineral content,
cardiovascular remodeling with increased systolic blood pressure, left
ventricular and arterial stiffness, and increased plasma markers of
liver injury. H diet feeding induced visceral adiposity with reduced
lean mass, increased lipid infiltration in the skeletal muscle, impaired
glucose and insulin tolerance, cardiovascular remodeling, hepatic
steatosis, and increased infiltration of inflammatory cells in the heart
and the liver. Chia seed supplementation for 24 wk attenuated most
structural and functional modifications induced by age or H diet,
including increased whole body lean mass and lipid redistribution
from the abdominal area, and normalized the chronic low-grade
inflammation induced by H diet feeding; these effects may be medi-
ated by increased metabolism of anti-inflammatory n-3 fatty acids
from chia seed. These results suggest that chronic H diet feeding for
32 wk mimics the diet-induced cardiovascular and metabolic changes
in middle age and that chia seed may serve as an alternative dietary
strategy in the management of these changes.

obesity; chia seed; omega-3 fatty acids; metabolic syndrome

METABOLIC SYNDROME is defined as a cluster of risk factors,
including type 2 diabetes mellitus, hypertension, dyslipidemia,
and central obesity, leading to cardiovascular diseases (3). The
worldwide pandemic of metabolic syndrome and, particularly,
central obesity has been attributed to increased consumption of
lipogenic sugars, such as fructose, together with saturated fats
(1, 37). The Western diet, characterized by excessive intake of
saturated and trans fatty acids and a low n-3-to-n-6 polyunsat-
urated fatty acid (PUFA) ratio, has been associated with
chronic diseases such as metabolic syndrome, renal diseases,
and arthritis (2, 12, 24, 36).

Early onset of obesity is a key predictor of type 2 diabetes,
dyslipidemia, hypertension, and obesity in young adulthood

and middle age (9, 13, 19, 20). Childhood or adolescent obesity
is a direct cause of cardiovascular disease in young, middle-
aged, and elderly populations and increased all-cause mortality
(25). The progression from childhood through middle age to
old age is associated with major changes in body composition,
including loss of skeletal muscle mass, disproportionate de-
cline in muscle strength, and increased abdominal fat accumu-
lation (18). These effects are accompanied by markedly re-
duced resting metabolic rate and physical activity and de-
creased insulin sensitivity, with a shift toward preferential
oxidation of carbohydrate over fat (18). This may lead to a
sharper decline in skeletal muscle mass and characteristic lipid
redistribution, with loss of subcutaneous fat and increased
infiltration into lean mass, in the elderly (4, 18).

The high global prevalence of obesity and metabolic syn-
drome in the �40-yr age group (14, 22, 23, 35), coupled with
age-related physiological changes, produces an intricate patho-
physiology for the management of metabolic syndrome in
old-age groups. Although the etiology and pathophysiology of
metabolic syndrome induced by high-carbohydrate, high-fat, or
a combination of both have been widely studied in animal
models mimicking the young adult human condition (27), there
is a paucity of data on physiological adaptations in models
mimicking the human middle age started on a high-carbohy-
drate, high-fat diet during adolescence or young adulthood.
Understandably, such data from human studies are sparse
because of the need to monitor the subjects over four decades
or more.

We previously reported that the chronic changes following a
high-carbohydrate (mainly fructose), high-fat (beef tallow) (H)
diet for 16 wk in young male Wistar rats mimic the changes in
humans, including abdominal obesity, increased total body fat
mass, elevated plasma lipids and blood pressure, impaired
glucose tolerance and insulin sensitivity, hepatic steatosis, and
cardiovascular remodeling, compared with those following a
high-carbohydrate (cornstarch), low-fat (C) diet (28). Our pre-
vious studies showed that chia seed as a source of dietary
�-linolenic acid (C18:3n-3) for 8 wk attenuated most risk
factors of metabolic syndrome in young H diet-fed rats (32).
Chia seed supplementation induced lipid redistribution, with
lipid trafficking away from the abdominal area, with increased
bone mineral content, feed conversion efficiency, and total
fat-free mass (32). In this study, we have investigated the
changes in body composition, fatty acid profiles of major
tissues, cardiovascular remodeling, and hepatic structure and
function following the administration of a C or H diet for 32
wk and the effects of chronic chia seed supplementation for the
final 24 wk of either diet. These rats were �10 mo of age at the
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end of the protocol and, therefore, could be defined as middle-
aged. Male Wistar rats live to �27–30 mo of age (11), and
most animal houses retire male Wistar rats as breeders at
�10–12 mo of age.

MATERIALS AND METHODS

Rats and diets. The experimental groups consisted of 48 male
Wistar rats (9–10 wk old) supplied by the University of Queensland
Biological Resources unit and individually housed at the University of
Southern Queensland Animal House. All experimentation was ap-
proved by the Animal Experimentation Ethics Committee of the
University of Southern Queensland under the guidelines of the Na-
tional Health and Medical Research Council of Australia. The rats
were randomly divided into four separate groups (n � 12 each) and
fed the C diet (335 � 1 g), the C diet � chia seed (CC; 338 � 1 g),
the H diet (336 � 2 g), or the H diet � chia seed (HC; 333 � 2 g).
All experimental groups were housed in a temperature-controlled,
12:12-h light-dark cycle environment with ad libitum access to water
and the group-specific rat diet. Body weight and food and water
intakes were measured daily to monitor the day-to-day health of the

rats. Feed efficiency (%) was calculated as follows: [mean body
weight gain (g)/daily energy intake (kJ)] � 100 (26).

The preparation and macronutrient composition of all four diets,
including the fatty acid profiles, are described elsewhere (28, 30, 32).
Briefly, the H diet consisted of 175 g of fructose, 395 g of sweetened
condensed milk, 200 g of beef tallow, 155 g of powdered rat food, 25
g of Hubble, Mendel-and-Wakeman salt mixture, and 50 g of water
per kilogram of diet. In the C diet, fructose and sweetened condensed
milk were replaced by the equivalent amount of cornstarch (570 g)
and the beef tallow was replaced by equivalent amounts of water (200 g)
per kilogram of diet. The chia seed-supplemented diets were prepared
by addition of 5% (wt/wt) of the seed replacing an equivalent amount
of water in the diet. Chia seed-supplemented diets were administered
for 24 wk starting 8 wk after commencement of C or H diet feeding.
Drinking water of the H and HC groups was augmented with 25%
fructose for the duration of the study.

Cardiovascular measurements. Systolic blood pressure was mea-
sured at 0, 8, 16, 24, and 32 wk under light sedation following
intraperitoneal injection of Zoletil [tiletamine (15 mg/kg) � zolaz-
epam (15 mg/kg); Virbac, Peakhurst, NSW, Australia] using a piezo-
electric pulse transducer (model MLT1010) and inflatable tail cuff

Table 1. Dietary intake, body composition, anthropometrics, organ wet weights, tissue fatty acid composition, and plasma
biochemistry in C, CC, H, and HC groups

n

Group P Value

C CC H HC Diet Treatment Interaction

Food intake, g/day 10 39.4 � 0.6* 38.9 � 0.5* 28.6 � 1.0† 25.9 � 0.7‡ �0.0001 0.0337 0.14
Water intake, ml/day 10 24.1 � 1.4† 36.6 � 2.9* 23.5 � 1.1† 30.7 � 0.9* 0.07 �0.0001 0.14
Chia seed intake, g/day 10 0.0 � 0.0† 1.9 � 0.1* 0.0 � 0.0† 1.3 � 0.1* �0.0001 �0.0001 �0.0001
Energy intake, kJ/day 10 442.2 � 6.4* 475.3 � 6.5* 593.6 � 23.3† 583.8 � 12.2† �0.0001 0.41 0.13
Feed efficiency, % 10 2.5 � 0.3‡ 6.0 � 0.4† 6.0 � 0.8† 7.2 � 0.6* 0.0002 0.0002 0.047
Body wt gain (8–16 wk), % 23.6 � 2.0‡ 48.7 � 2.7* 37.0 � 4.3† 47.3 � 3.8* 0.08 �0.0001 0.0324
Visceral adiposity index, % 10 6.9 � 0.8† 6.6 � 0.4† 11.2 � 0.8* 7.0 � 0.4† 0.0007 0.0011 0.0039
Bone mineral content, g 8–10 15.8 � 0.5† 19.5 � 0.8* 19.1 � 0.5* 19.1 � 0.5* 0.0188 0.0034 0.0034
Total body lean mass, g 8–10 277.1 � 9.5† 334.6 � 12.7* 240.8 � 7.4‡ 336.5 � 7.0* 0.08 �0.0001 0.05
Total body fat mass, g 8–10 185.9 � 23.5† 260.5 � 29.0*† 334.7 � 24.4* 261.9 � 15.8*† 0.0031 0.97 0.0036
Body fat, % 8–10 37.9 � 3.4† 41.7 � 3.2† 55.6 � 2.1* 42.2 � 1.8† 0.0025 0.09 0.004
Tissue wet wt, mg/mm tibial length 10

Retroperitoneal fat 291.5 � 51.2† 376.2 � 26.3† 673.4 � 68.3* 425.2 � 40.4† �0.0001 0.1 0.0017
Epididymal fat 227.7 � 46.7† 249.6 � 22.1*† 342.4 � 27.0* 286.5 � 19.6*† 0.0186 0.58 0.21
Omental fat 171.5 � 19.9† 194.6 � 18.1† 327.2 � 35.7* 152.5 � 11.3† 0.0187 0.0023 0.0001
Liver 234.6 � 11.2‡ 292.0 � 5.1† 319.4 � 11.3*† 337.8 � 13.8* �0.0001 0.0013 0.08
Heart 22.2 � 1.0† 27.1 � 1.1‡ 27.6 � 1.2‡ 28.8 � 1.5‡ 0.006 0.0167 0.14

Tissue lipid content, mg/g 6
Retroperitoneal fat 767.7 � 40.9* 690.7 � 35.9† 726.1 � 16.2* 662.4 � 27.1† 0.28 0.0369 0.83
Liver 59.1 � 10.1 54.7 � 7.7 74.3 � 7.1 57.7 � 2.9 0.22 0.21 0.39
Skeletal muscle 67.5 � 3.9† 15.8 � 2.0‡ 176.1 � 23.4* 28.1 � 5.2‡ �0.0001 �0.0001 0.0008
Heart 23.9 � 0.8† 32.2 � 6.2* 23.4 � 3.2† 45.6 � 9.5* 0.31 0.0238 0.28

Plasma total cholesterol, mmol/l 10 1.6 � 0.2*† 1.1 � 0.05† 1.9 � 0.2* 1.6 � 0.1*† 0.0114 0.0114 0.51
Plasma triglyceride, mmol/l 10 0.6 � 0.1† 1.0 � 0.1† 0.7 � 0.1† 1.4 � 0.2* 0.07 0.0002 0.26
Plasma NEFA, mmol/l 10 2.2 � 0.3 2.7 � 0.3 2.5 � 0.3 3.1 � 0.3 0.25 0.08 0.87
Plasma fatty acid, g/100 g total fatty acid

content
6

C16:0 52.06 � 1.36 51.32 � 2.64 47.76 � 2.34 42.86 � 2.74 0.0128 0.24 0.38
C16:1n-7 0.00 � 0.00 0.00 � 0.00 0.00 � 0.00 0.00 � 0.00 1 1 1
C18:0 15.07 � 0.60 14.97 � 1.16 15.87 � 0.35 15.51 � 0.88 0.42 0.78 0.87
C18:1n-9 13.25 � 0.90† 11.84 � 1.14† 20.86 � 1.65* 26.14 � 3.23* �0.0001 0.33 0.1
C18:2n-6 6.27 � 0.50‡ 12.98 � 1.20* 7.08 � 0.49‡ 9.34 � 0.31† 0.06 �0.0001 0.0053
C18:3n-3 0.00 � 0.00† 3.66 � 1.47* 0.00 � 0.00† 2.16 � 0.30* 0.33 0.0009 0.33
C20:4n-6 13.35 � 1.12* 5.23 � 0.46‡ 8.44 � 0.86† 3.99 � 0.40‡ 0.0007 �0.0001 0.027
Total SFA 67.12 � 1.24 66.29 � 3.05 63.62 � 2.50 58.37 � 3.36 0.0445 0.27 0.42
Total MUFA 13.25 � 0.90† 11.84 � 1.14† 20.86 � 1.65* 26.14 � 3.23* �0.0001 0.33 0.1
Total PUFA 19.62 � 1.01*† 21.87 � 2.18* 15.52 � 1.16† 15.49 � 0.40† 0.0009 0.42 0.41

n-3-to-n-6 ratio 0.00 � 0.00† 0.21 � 0.08* 0.00 � 0.00† 0.16 � 0.02* 0.55 0.0002 0.55

Values are means � SE; n, number of repetitive experiments. C, high-carbohydrate, low-fat; CC, C diet � chia seed; H, high-carbohydrate, high-fat; HC, H
diet � chia seed; NEFA, nonesterified fatty acid; MUFA, monounsaturated fatty acid; PUFA, polyunsaturated fatty acid; SFA, saturated fatty acid. Means within
a row with different symbols (*, †, ‡) are significantly different (P � 0.05).
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connected to a physiological pressure transducer (model MLT844)
using a PowerLab data acquisition unit (ADInstruments, Sydney,
Australia), as previously described (32).

At 32 wk, rats were anesthetized using intraperitoneal Zoletil, as
previously described (6, 30), and echocardiographic examination
(Hewlett Packard Sonos 5500, 12-MHz transducer) was performed, in
accordance with the guidelines of the American Society of Echocar-
diography, using the leading-edge method (34).

Terminal anesthesia was induced via injection of pentobarbitone
sodium (Lethabarb, 100 mg/kg ip). Heparin (200 IU; Sigma-Aldrich
Australia, Sydney, Australia) was administered through the right
femoral vein, and blood (�5 ml) was collected from the abdominal
aorta. After blood withdrawal, the rate of pressure increase (�dP/dt)
and decrease (	dP/dt) and the diastolic stiffness constant were as-
sessed using the Langendorff isolated heart preparation, as previously
described (5, 30, 32), and a latex balloon catheter connected to a
Capto SP844 MLT844 physiological pressure transducer and Chart
software on a Maclab system (ADInstruments Australia and Pacific
Islands, Bella Vista, NSW, Australia).

Thoracic aortic rings (�4 mm long) were suspended in an organ
bath chamber with a resting tension of �10 mN. Cumulative concen-
tration-response (contraction) curves were measured for norepineph-
rine (Sigma-Aldrich Australia); concentration-response (relaxation)
curves were measured for acetylcholine (Sigma-Aldrich Australia)
and sodium nitroprusside (Sigma-Aldrich Australia) in the presence of
a submaximal (70%) contraction to norepinephrine (30).

Oral glucose tolerance and insulin tolerance tests. The oral glucose
tolerance test (OGTT) and the insulin tolerance test (ITT) were
performed 2 days apart at 32 wk. For the OGTT, basal blood glucose
concentrations were measured in blood taken from the tail vein using
a Medisense Precision QID glucose meter (Abbott Laboratories,
Bedford, MA) after 10–12 h of overnight food deprivation. The rats
were given glucose (2 g/kg body wt) as a 40% solution via oral
gavage. Tail vein blood samples were taken at 0, 30, 60, 90, and 120
min following glucose administration.

For the ITT, basal blood glucose concentrations were measured
after 4–5 h of food deprivation, as described above. The rats were
injected with insulin-R (0.75 IU/kg ip; Eli Lilly, West Ryde, NSW,
Australia), and tail vein blood samples were taken at 0, 30, 60, 90, and
120 min. Rats were withdrawn from the test if the blood glucose
concentrations dropped below 1.1 mmol/l, and 4 g/kg glucose solution
was immediately administered by oral gavage to prevent hypoglyce-
mia. For the OGTT and ITT, fructose-supplemented drinking water in
the H and HC groups was replaced with normal water for the
food-deprivation period.

Body composition measurements. A dual-energy X-ray absorpti-
ometer (DXA; model XR36, Norland) was used for DXA measure-
ments on the rats after 32 wk of feeding, 2 days before rats were
euthanized for pathophysiological assessments. DXA scans were
analyzed using the manufacturer’s recommended software for use in
laboratory animals (Small Subject Analysis Software, version 2.5.3/
1.3.1, Norland), as previously described (38). The precision error

Fig. 1. Changes in body weight (A), abdominal circumference (B), and systolic blood pressure (C) at 32 wk in rats fed the cornstarch-rich (C) diet, the C diet � chia
seed (CC), the high-carbohydrate, high-fat (H) diet, and the H diet � chia seed (HC). Values are means � SE; n � 10 per group. End-point means without a common
lower-case letter (a–d) in each data set are significantly different.

E3CHRONIC MODEL OF DIET-INDUCED OBESITY

AJP-Endocrinol Metab • doi:10.1152/ajpendo.00102.2012 • www.ajpendo.org

tapraid4/zh1-aend/zh1-aend/zh101112/zh16552d12z xppws S�1 4/26/12 8:57 MS: E-00102-2012 Ini: 06/kl/dlh

Page 290



of lean mass for replicate measurements with repositioning was
3.2%. Visceral adiposity index (%) was calculated as follows:
{[retroperitoneal fat (g) � omental fat (g) � epididymal fat
(g)]/body weight (g)} � 100 (17).

Organ weights. The right ventricle and left ventricle (LV, with
septum) were separated after perfusion experiments and weighed.
Liver, retroperitoneal fat, epididymal fat, and omental fat were re-
moved following heart removal and blotted dry for weighing. Organ
weights were normalized relative to the tibial length at the time of
their removal (in mg/mm). Immediately after they were weighed, LV,
liver, skeletal muscle, and retroperitoneal fat were stored at 	20°C in
50-ml polypropylene centrifuge tubes for fatty acid analysis.

Fatty acid analysis. Tissue and dietary lipids were extracted by
manual solvent extraction using a 2:1 chloroform-methanol mixture
with 0.1% butylated hydroxytoluene as an antioxidant, as described in
previous studies (16).

Approximately 15–20 mg of extracted lipid samples, with 1 mg of
heptadecanoic acid (C17:0) added as an internal standard, were
methylated in a clean 10-ml test tube. Saponified lipids were extracted
with 2 ml of heptane and then transferred to an autosampler vial for
gas chromatography. Fatty acid methyl esters were analyzed on an
Agilent J&W DB-23 column (60 m � 0.25 mm � 0.25 
m; Agilent
Technologies) by a gas chromatograph (model GC-17A, Shimadzu)
equipped with a flame ionization detector. A multiacid standard
mixture was used to check the performance of the gas chromatograph
and as a recovery test for the sample preparation procedure. Quanti-
tation of the fatty acids in all samples was based on a linear calibration
equation obtained from the C17:0 standard. For identification pur-
poses, standard containing a mixture of 28 fatty acid methyl esters
(Nu-Check Prep) was used for retention time calibration. A plot of
carbon number vs. logarithm of retention time for the saturated series,
one degree of unsaturation, and two degrees of unsaturation allowed
a relationship to be developed for identification purposes. All fatty
acids are expressed as grams per 100 g of total recovered fatty acids.
The n-3-to-n-6 ratio was derived using the following formula: (C18:
3n-3 � C20:3n-3 � C20:5n-3 � C22:5n-3 � C22:6n-3)/(C18:2n-6 �
C18:3n-6 � C20:2n-6 � C20:3n-6 � C20:4n-6 � C22:2n-6 �
C22:4n-6).

Histology. Two rats per group were used exclusively for histolog-
ical analysis. Two slides were prepared per tissue specimen; two
random, nonoverlapping fields per slide were taken to avoid biased
analysis. Organs were also collected from rats used for ex vivo
studies. Immediately after removal, heart and liver tissues were fixed

in 10% neutral buffered formalin for 3 days and then dehydrated and
embedded in paraffin wax, as previously described (30). Thin (7-
m)
sections of LV and liver were cut and stained with hematoxylin-eosin
for determination of inflammatory cell infiltration. Collagen distribu-
tion in LV was determined using picrosirius red stain. The extent of
collagen deposition in selected tissue sections was determined by laser
confocal microscopy (Zeiss LSM 510 upright confocal microscope),
with color intensity quantitatively analyzed using ImageJ software
(National Institutes of Health) (30).

Plasma biochemistry. Briefly, blood was centrifuged at 5,000 g for
15 min within 30 min of collection into heparinized tubes. Plasma was
separated and transferred to Eppendorf tubes for storage at 	20°C
before analysis. Activities of plasma enzymes and analyte concen-
trations were determined using an Olympus analyzer (model AU
400) and kits and controls supplied by Olympus, as previously
described (30).

Statistical analysis. Values are means � SE. Results were tested
for variance using Bartlett’s test, and variables that were not normally
distributed were transformed (using log10 function) prior to statistical
analyses. Data from C, CC, H, and HC groups were tested by two-way
ANOVA. When interaction and/or the main effects were significant,
means were compared using Newman-Keuls multiple-comparison
post hoc test. Where transformations did not result in normality or
constant variance, a Kruskal-Wallis nonparametric test was per-
formed. P � 0.05 was considered statistically significant. All statis-
tical analyses were performed using Prism version 5.00 for Windows
(GraphPad, San Diego, CA).

RESULTS

Dietary intake, body parameters, and plasma biochemistry.
H rats consumed less food than C rats but equivalent volumes
of water throughout the 32 wk (Table 1). Despite the lower
food intake, the mean energy intake, feed efficiency, and,
therefore, increases in body weight were higher in H than C
rats throughout the 32-wk feeding period because of the higher
energy density of the H diet (Table 1, Fig. 1A). Consequently,
chronic H diet feeding increased measures of whole body and
abdominal adiposity, such as total body fat mass, abdominal
circumference, abdominal fat (retroperitoneal, epididymal, and
omental), and visceral adiposity index (Table 1, Fig. 1B). The
increase in body weight was the combination of an increase in

Fig. 2. Glucose (2 g/kg; A) and insulin (0.75 IU/kg; B) tolerance in C, CC, H, and HC groups. Values are means � SE; n � 8–10 per group. End-point means
without a common lower-case letter in each data set are significantly different.
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total body fat mass and a decrease in total body lean mass
induced by 32 wk of H diet feeding (Table 1). The bone
mineral content was higher in H than C rats (Table 1).

Chia seed supplementation for 24 wk, starting at 8 wk of the
feeding period, increased and maintained a higher water intake
in the CC and HC rats but lowered food intake only in the HC
rats compared with their respective controls throughout the
feeding period (Table 1). Despite the added dietary energy
from chia seed supplementation, the energy intake remained
unchanged in CC and HC rats compared with C and H rats,
respectively (Table 1). However, chia seed-supplemented
rats showed increased feed efficiency and, therefore, in-
creased body weight compared with C rats (Table 1, Fig.
1A). These effects were accompanied by increased lean
mass in CC and HC rats but increased bone mineral content
only in CC rats (Table 1). Chia seed supplementation did not
change whole body adiposity but decreased the visceral

adiposity index, abdominal fat, and abdominal circumfer-
ence (Table 1, Fig. 1B).

Although H diet feeding for 32 wk did not alter plasma total
cholesterol, triglyceride, or nonesterified fatty acid concentra-
tions, chia seed supplementation decreased plasma total cho-
lesterol in CC rats and increased plasma triglycerides in HC
rats (Table 1). H diet feeding increased the lipid content of
skeletal muscle, but not heart, liver, or retroperitoneal fat
(Table 1). Chia seed supplementation decreased the lipid con-
tent in retroperitoneal fat and increased it in the heart of CC
and HC rats, whereas chia seed supplementation decreased the
lipid content in skeletal muscle of HC rats (Table 1). H diet
feeding also decreased the tolerance to exogenous glucose and
insulin, and these effects were attenuated by chia seed supple-
mentation (Fig. 2).

The fatty acid profile of the plasma shows that H diet feeding
increased the total plasma monounsaturated fatty acids (MUFA;

Table 2. Changes in cardiovascular structure, function, and fatty acid composition in C, CC, H, and HC groups

n

Group P Value

C CC H HC Diet Treatment Interaction

Heart rate, beats/min 316 � 16 275 � 16 305 � 19 266 � 26 0.61 0.0495 0.96
IVSd, mm 10 1.99 � 0.05 2.01 � 0.07 1.99 � 0.09 1.99 � 0.05 0.88 0.88 0.88
LVIDd, mm 10 7.34 � 0.19† 7.82 � 0.28† 8.77 � 0.28* 7.84 � 0.14† 0.0033 0.34 0.0042
LVPWd, mm 10 1.98 � 0.05 1.97 � 0.05 2.00 � 0.05 2.00 � 0.04 0.6 0.92 0.92
IVSs, mm 10 3.34 � 0.10 3.14 � 0.10 3.42 � 0.14 3.18 � 0.11 0.6 0.06 0.86
LVIDs, mm 10 3.48 � 0.24 4.13 � 0.25 3.98 � 0.31 3.95 � 0.21 0.53 0.23 0.19
LVPWs, mm 10 3.39 � 0.07 3.07 � 0.12 3.34 � 0.10 3.25 � 0.15 0.57 0.08 0.32
Fractional shortening, % 10 52.8 � 2.4 47.5 � 1.6 52.3 � 3.3 49.7 � 1.9 0.72 0.11 0.58
Vmax, m/s
Ascending aorta 10 1.01 � 0.04† 0.82 � 0.03‡ 1.22 � 0.06* 0.83 � 0.05‡ 0.0231 �0.0001 0.0378
Descending aorta 10 0.84 � 0.03† 0.81 � 0.03† 1.10 � 0.04* 0.82 � 0.03† 0.0002 �0.0001 0.0005
Ejection time, ms 10 80.6 � 3.5 83.7 � 3.5 87.1 � 3.3 90.1 � 3.1 0.06 0.37 0.99
Diastolic volume, 
l 10 422.4 � 32.1† 519.1 � 56.2† 724.0 � 61.5* 507.5 � 27.3† 0.0037 0.21 0.0019
Systolic volume, 
l 10 49.8 � 10.7 81.0 � 14.5 76.8 � 18.4 69.0 � 11.1 0.6 0.41 0.17
Stroke volume, 
l 10 372.6 � 25.8† 438.1 � 44.4† 647.3 � 63.9* 438.5 � 19.1† 0.0024 0.1 0.0024
Estimated LV mass, g 10 1.02 � 0.05† 1.12 � 0.06† 1.31 � 0.07* 1.12 � 0.03† 0.0116 0.41 0.0116
Cardiac output, ml 10 116.6 � 8.6† 120.3 � 14.0† 201.7 � 26.3* 114.7 � 9.0† 0.0187 0.0141 0.008
Ejection fraction, % 10 88.8 � 1.8 85.2 � 1.4 88.9 � 3.1 86.8 � 1.5 0.68 0.18 0.72
Relative wall thickness 10 0.54 � 0.02 0.52 � 0.03 0.46 � 0.02 0.51 � 0.01 0.0408 0.48 0.11
Systolic blood pressure, mmHg 10 135.4 � 1.1† 126.7 � 1.7‡ 167.6 � 3.5* 134.3 � 2.2† �0.0001 �0.0001 �0.0001
Systolic wall stress, mmHg 10 70.7 � 6.5† 86.9 � 6.9† 101.7 � 10.2* 83.9 � 7.0† 0.08 0.92 0.0358
LV developed pressure, mmHg 10 55.9 � 2.6* 47.6 � 2.9*† 39.5 � 1.9† 54.8 � 5.0* 0.001 0.2971 0.1729
�dP/dt, mmHg/s 10 990.3 � 49.4* 893.2 � 46.5*† 716.9 � 32.1† 1016.6 � 118.7* 0.0077 0.1578 0.2926
	dP/dt, mmHg/s 10 	575.0 � 33.3* 	409.9 � 26.1*† 	362.3 � 18.9† 	568.0 � 61.7* �0.0001 0.602 0.4838
Diastolic stiffness 10 27.8 � 0.9† 27.8 � 0.9† 35.9 � 1.7* 29.4 � 1.6† 0.0216 0.0216 0.001
LV � septum wet wt, mg/mm 10 18.8 � 0.8† 21.5 � 0.9*† 22.7 � 1.2* 23.3 � 0.9* 0.0061 0.1 0.28
RV wet wt, mg/mm 10 3.4 � 0.3 5.5 � 0.4 4.9 � 1.1 5.6 � 0.6 0.25 0.0485 0.3
Fatty acid, g/100 g of total fatty acid content 6

C16:0 27.80 � 1.04* 22.31 � 0.79† 23.76 � 1.52† 19.22 � 0.61‡ 0.0028 0.0001 0.66
C16:1n-7 1.74 � 0.10* 0.00 � 0.00† 0.63 � 0.07* 0.00 � 0.00† �0.0001 �0.0001 �0.0001
C18:0 18.83 � 0.50‡ 22.70 � 0.41† 21.63 � 0.75† 24.90 � 0.20* �0.0001 �0.0001 0.56
C18:1n-9 10.62 � 0.69† 8.05 � 0.84† 14.18 � 0.68* 10.42 � 0.70† 0.0006 0.0003 0.42
C18:1trans-7 4.21 � 0.06* 4.08 � 0.15* 2.50 � 0.08† 2.97 � 0.10† �0.0001 0.11 0.0087
C18:2n-6 11.01 � 0.91† 18.21 � 0.32* 9.04 � 0.38‡ 11.97 � 0.31† �0.0001 �0.0001 0.0008
C20:4n-6 16.96 � 0.33* 12.83 � 0.35§ 15.81 � 0.49† 14.42 � 0.29‡ 0.56 �0.0001 0.0015
C22:5n-3 0.78 � 0.20† 3.63 � 0.18* 1.92 � 0.16† 3.77 � 0.24* 0.0041 �0.0001 0.0197
C22:6n-3 7.45 � 0.33§ 8.19 � 0.40‡ 10.53 � 0.50† 12.33 � 0.53* �0.0001 0.0101 0.25
Total SFA 47.24 � 0.50* 45.01 � 0.63*† 45.38 � 0.84*† 44.12 � 0.46† 0.0398 0.0113 0.45
Total MUFA 16.57 � 0.75* 12.13 � 0.88† 17.31 � 0.73* 13.39 � 0.73† 0.21 �0.0001 0.74
Total PUFA 36.19 � 1.14† 42.86 � 0.56* 37.31 � 1.02† 42.49 � 0.79* 0.68 �0.0001 0.42

n-3-to-n-6 ratio 0.30 � 0.02§ 0.38 � 0.02‡ 0.50 � 0.03† 0.61 � 0.02* �0.0001 0.0005 0.52
Stearoyl-CoA desaturase index 0.06 � 0.00* 0.00 � 0.00† 0.03 � 0.00* 0.00 � 0.00† �0.0001 �0.0001 �0.0001

Values are means � SE; n, number of repetitive experiments. Left ventricular (LV) � septum and right ventricular (RV) wet weights were normalized against
tibial length at the time of removal. IVSd and IVSs, interventricular septal wall thickness at end diastole and end systole; LVIDd and LVIDs, LV internal diameter
in diastole and systole; LVPWd and LVPWs, LV posterior wall dimension in diastole and systole; Vmax, aortic pulse wave velocity; �dP/dt, rate of pressure
increase; 	dP/dt, rate of pressure decrease. Means within a row with different symbols (*, †, ‡, §) are significantly different (P � 0.05).
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mainly C18:1n-9) without changing the total saturated fatty
acids (SFA) and PUFA compared with the C rats (Table 1).
Chia seed supplementation increased C18:2n-6 and C18:3n-3
and decreased the proinflammatory C20:4n-6 in the plasma
(Table 1).

Cardiovascular structure, function, and fatty acid composition.
Compared with C rats, the H diet induced eccentric hypertro-
phy, characteristic of increased preload, defined as increased
LV internal diameter in diastole, without changes in relative
wall thickness or end-systolic dimensions (Table 2). Conse-
quently, H rats showed impaired systolic function with in-
creased wall stress, increased diastolic stiffness, decreased
developed pressure, and decreased dP/dt compared with C rats

(Table 2). However, fractional shortening, ejection time, and
ejection fraction were not affected (Table 2). Additionally,
diastolic and stroke volumes and, consequently, cardiac output
were elevated in H rats compared with C rats, but heart rate
was not affected (Table 2). The ascending and descending
aortic pulse wave velocities (Vmax) increased in H rats com-
pared with C rats, suggesting arterial stiffening (Table 2).
These changes were accompanied by increased estimated LV
mass and LV wet weight. H diet feeding also increased systolic
blood pressure throughout the 32-wk protocol (Fig. 1C).

CC and HC rats showed normalized LV volumes and ec-
centric hypertrophy and, hence, the consequent abnormalities
induced by H diet feeding (Table 2). CC and HC rats showed

Fig. 3. A–D: hematoxylin-eosin-stained sections of left ventricle showing inflammatory cells (in) as dark spots outside the myocytes in C (A), CC (B), H (C),
and HC (D) groups. Magnification �20. E–H: picrosirius red-stained sections of left ventricle showing interstitial collagen deposition (cd) in C (E), CC (F), H
(G), and HC (H) groups. Magnification �40. hy, Hypertrophied cardiomyocytes.

Table 3. Changes in hepatic structure, function, and fatty acid composition in C, CC, H, and HC groups

n

Group P Value

C CC H HC Diet Treatment Interaction

Plasma ALT, U/l 10 24.8 � 1.0† 19.2 � 1.6§ 34.8 � 2.7* 29.8 � 1.0† �0.0001 0.004 0.86
Plasma AST, U/l 10 109.5 � 9.3* 67.0 � 2.3† 78.2 � 4.9† 75.9 � 3.9† 0.06 0.0004 0.0012
Plasma LDH, U/l 10 497.2 � 82.4 317.7 � 27.3 328.5 � 46.2 345.1 � 39.2 0.17 0.12 0.06
Plasma ALP, U/l 10 114.6 � 6.0* 111.8 � 5.5* 153.0 � 16.5† 183.6 � 1.8‡ �0.0001 0.14 0.08
Bilirubin, 
mol/l 10 2.3 � 0.2* 1.7 � 0.1† 2.1 � 0.1* 1.8 � 0.2† 0.75 0.0073 0.35
Fatty acid, g/100 g total fatty acid content 6

C16:0 26.08 � 0.86* 22.71 � 0.63† 25.80 � 0.45* 22.89 � 0.67† 0.94 0.0001 0.73
C16:1n-7 5.11 � 0.81* 4.82 � 0.80* 1.66 � 0.25† 1.64 � 0.18† �0.0001 0.8 0.82
C18:0 10.83 � 1.42 8.92 � 1.34 8.50 � 1.05 10.95 � 0.39 0.9 0.81 0.07
C18:1n-9 31.31 � 2.02‡ 21.56 � 1.07§ 50.08 � 2.84* 39.03 � 1.05† �0.0001 �0.0001 0.74
C18:1trans-7 4.19 � 0.12* 3.81 � 0.32* 1.58 � 0.22† 1.87 � 0.10† �0.0001 0.83 0.13
C18:2n-6 7.91 � 0.62† 13.06 � 0.74* 4.44 � 0.38‡ 7.64 � 0.47† �0.0001 �0.0001 0.1
C18:3n-3 0.00 � 0.00‡ 8.73 � 0.93* 0.00 � 0.00‡ 1.66 � 0.10† �0.0001 �0.0001 �0.0001
C20:4n-6 10.67 � 1.43* 4.83 � 0.45† 4.86 � 1.13† 5.05 � 0.37† 0.0084 0.0079 0.005
C20:5n-3 0.00 � 0.00‡ 3.29 � 0.13* 0.00 � 0.00‡ 1.65 � 0.14† �0.0001 �0.0001 �0.0001
C22:5n-3 0.00 � 0.00‡ 3.35 � 0.23* 0.00 � 0.00‡ 1.41 � 0.12† �0.0001 �0.0001 �0.0001
C22:6n-3 3.09 � 0.41† 4.76 � 0.42* 1.69 � 0.77‡ 4.55 � 0.27* 0.12 0.0002 0.25
Total SFA 37.73 � 1.16* 31.81 � 1.82† 35.68 � 0.74*† 34.78 � 0.95*† 0.71 0.0121 0.06
Total MUFA 40.61 � 2.76† 30.18 � 1.95‡ 53.32 � 2.83* 42.53 � 1.06† �0.0001 0.0001 0.94
Total PUFA 21.67 � 2.21† 38.01 � 1.39* 10.99 � 2.17‡ 22.69 � 1.08† �0.0001 �0.0001 0.21

n-3-to-n-6 ratio 0.16 � 0.01‡ 1.14 � 0.06* 0.15 � 0.06‡ 0.70 � 0.02† �0.0001 �0.0001 �0.0001
Stearoyl-CoA desaturase index 0.19 � 0.03* 0.21 � 0.04* 0.07 � 0.01† 0.07 � 0.01† 0.0002 0.73 0.73

Values are means � SE; n, number of repetitive experiments. ALT, alanine aminotransferase; AST, aspartate aminotransferase; ALP, alkaline phosphatase;
LDH, lactate dehydrogenase. Means within a row with different symbols are significantly different (P � 0.05).
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normalized diastolic stiffness and systolic wall stress. Chia
seed supplementation normalized systolic blood pressure after
12 wk of treatment (Fig. 1C) compared with H rats and
decreased Vmax measured at the end of the protocol (Table 2).

After 32 wk, H rats showed greater infiltration of inflamma-
tory cells into the LV (Fig. 3C), as well as increased interstitial
collagen deposition (Fig. 3G), compared with C rats (Fig. 3, A
and E). Chia seed supplementation normalized inflammatory
state (Fig. 3D) and markedly reduced collagen deposition in
HC rats (Fig. 3H). Minimal changes were seen in CC rats (Fig.
3, B and F). The reduction in LV fibrosis and inflammation was
consistent with the reduced diastolic stiffness in HC rats (Fig.
3, D and H, Table 3).

Furthermore, H diet feeding diminished endothelium-depen-
dent relaxation to acetylcholine (Fig. 4C) but did not affect the
endothelium-independent relaxation to sodium nitroprusside
(Fig. 4B) or the �1-adrenoceptor-mediated vascular contraction
to norepinephrine in isolated thoracic aortic rings compared
with C rats (Fig. 4A). Although chia seed supplementation did
not change �1-adrenoceptor responses, it improved endothelium-
dependent and -independent relaxation in isolated thoracic
aortic rings (Fig. 4). This effect may contribute to the blood
pressure-lowering response to chia seeds.

Similar to the plasma fatty acid profile, H rats showed
increases in the proportion of total MUFA compared with C
rats but maintained the proportions of SFA and PUFA in the
heart (Table 2). Chia seed supplementation decreased C16:0,
C16:1n-7, and C18:1n-9 but increased C18:0 (Table 2). CC and
HC rats accumulated C18:2n-6 and depleted its elongation
product, C20:4n-6, and increased elongation products of C18:
3n-3 (C20:5n-3 and C22:6n-3). These results strongly suggest
the preferential metabolism of the n-3 PUFA by �6- and
�5-desaturases, thereby inhibiting the proinflammatory n-6
metabolism pathway.

Hepatic structure, function, and fatty acid composition. H
rats showed elevated plasma alanine transaminase and alkaline
phosphatase activities compared with C rats (Table 3). How-
ever, aspartate transaminase activity was elevated in the C rats,
and plasma lactate dehydrogenase activity and total bilirubin
concentration remained unchanged (Table 3). Chia seed sup-
plementation normalized plasma activities of alanine transam-
inase, aspartate transaminase, and lactate dehydrogenase, while
alkaline phosphatase activity was increased in HC rats, and CC
and HC rats showed reduced plasma bilirubin concentrations
(Table 3). Additionally, H rats showed increased inflammatory
cell infiltration (Fig. 5C) and lipid deposition (Fig. 5G) com-

Fig. 4. Cumulative concentration-response curves for norepinephrine (A), sodium nitroprusside (B), and acetylcholine (C) in thoracic aortic rings from C, CC,
H, and HC groups. Values are means � SE; n � 8–10/group. End-point means without a common lower-case letter in each data set are significantly different.
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pared with C rats (Fig. 5, A and E). CC (Fig. 5, B and F) and
HC (Fig. 5, D and H) rats showed normalized macrovesicular
steatosis and portal inflammation.

H diet feeding increased the total MUFA (mainly C18:1n-9)
content and decreased the total PUFA (C18:2n-6 and C20:
4n-6) content in liver compared with C rats (Table 3). Chia
seed supplementation decreased the MUFA content and in-
creased C18:2n-6, C18:3n-3, C20:5n-3, C22:5n-3, and C22:
6n-3, consequently increasing the n-3-to-n-6 ratio (Table 3).
C20:4n-6 decreased only in the CC rats (Table 3).

Adipose tissue and skeletal muscle fatty acid composition.
Similar to the fatty acid profile in liver and heart, H diet
feeding increased C18:0 and C18:1n-9 and decreased C16:1n-7
and C18:2n-6 content in adipose tissue compared with C rats
(Table 4). Chia seed supplementation decreased C16:0 and
C18:0 in HC rats and C16:1n-7 and C18:1n-9 in CC rats. These
effects were accompanied by increased proportions of C18:
2n-6 and C18:3n-3 in adipose tissue (Table 4).

Similarly, the skeletal muscle of H rats had increased pro-
portions of C18:1n-9 and decreased proportions of C18:2n-6
(Table 5). Chia seed supplementation increased SFA (C16:0

and C18:0) and n-6 fatty acids (C18:2n-6 and C20:4n-6) and
decreased C18:1n-9 in skeletal muscle. C18:3n-3, C22:5n-3,
and C22:6n-3 were increased in the chia seed-supplemented
groups (Table 5).

DISCUSSION

We have shown that long-term C or H diet feeding in male
Wistar rats closely mimics the changes in normal middle-aged
humans and the pathophysiology of middle-aged humans with
metabolic syndrome, respectively. Compared with our previ-
ous studies of young rats fed a C diet for 16 wk (28, 32),
chronic C diet feeding for 32 wk induced age-dependent
physiological changes without metabolic syndrome, such as
disproportionate increases in total body lean and fat mass,
reduced bone mineral content, cardiovascular remodeling with
increases in systolic blood pressure, LV, and arterial stiffness,
and increased plasma markers of liver injury. Compared with C
diet feeding, H diet feeding for 32 wk induced increases in
visceral adiposity with reduced lean mass, impaired glucose
tolerance and insulin sensitivity, and increased LV and arterial

Fig. 5. Hematoxylin-eosin staining of hepatocytes showing inflammatory cells (in) around the portal region in C (A), CC (B), H (C), and HC (D) groups and
hepatocytes with enlarged fat vacuole (fv) in C (E), CC (F), H (G), and HC (H) groups. Magnification �20.

Table 4. Fatty acid profiles of retroperitoneal adipose tissue and desaturase index in C, CC, H, and HC groups

Group P Value

C CC H HC Diet Treatment Interaction

C14:0 1.56 � 0.04‡ 1.36 � 0.08§ 2.20 � 0.02* 1.95 � 0.06† �0.0001 0.0005 0.65
C14:1n5 0.15 � 0.00* 0.00 � 0.00† 0.14 � 0.03* 0.00 � 0.00† 0.74 �0.0001 0.74
C16:0 24.57 � 0.46* 23.71 � 0.73* 21.01 � 0.24† 18.67 � 0.22‡ �0.0001 0.0024 0.12
C16:1n-7 9.37 � 0.43* 5.77 � 1.10† 2.18 � 0.15‡ 2.23 � 0.15‡ �0.0001 0.0078 0.0064
C18:0 2.29 � 0.11‡ 2.56 � 0.08‡ 7.07 � 0.32* 5.96 � 0.30† �0.0001 0.08 0.007
C18:1n-9 46.92 � 0.40† 33.98 � 0.54‡ 63.04 � 0.44* 62.91 � 0.72* �0.0001 �0.0001 �0.0001
C18:1trans-7 5.41 � 0.14* 4.15 � 0.10† 0.86 � 0.28‡ 0.60 � 0.29‡ �0.0001 0.0024 0.0336
C18:2n-6 9.23 � 0.40* 16.54 � 0.59* 3.00 � 0.11§ 5.50 � 0.14‡ �0.0001 �0.0001 �0.0001
C18:3n-3 0.44 � 0.03‡ 11.94 � 0.29* 0.00 � 0.00§ 2.19 � 0.05† �0.0001 �0.0001 �0.0001
Total SFA 28.42 � 0.55† 27.63 � 0.84† 30.78 � 0.50* 26.57 � 0.49† 0.3 0.0006 0.0112
Total MUFA 61.85 � 0.29† 43.90 � 0.75‡ 66.22 � 0.49* 65.73 � 0.59* �0.0001 �0.0001 �0.0001
Total PUFA 9.73 � 0.46* 28.47 � 0.70* 3.00 � 0.11§ 7.69 � 0.13‡ �0.0001 �0.0001 �0.0001
n-3-to-n-6 ratio 0.05 � 0.00‡ 0.73 � 0.03* 0.00 � 0.00‡ 0.40 � 0.02† �0.0001 �0.0001 �0.0001
Stearoyl-CoA desaturase index 0.39 � 0.02* 0.25 � 0.06† 0.10 � 0.01‡ 0.12 � 0.01‡ �0.0001 0.08 0.0227

Values are means � SE. Means within a row with different symbols are significantly different (P � 0.05).
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stiffening, cardiac fibrosis, hypertension, and hepatic steatosis.
These results are consistent with the effects of 16 wk of H diet
feeding (28), except 32 wk of H diet feeding additionally
induced arterial stiffening and loss of lean mass and increased
fat storage typical of the aging process (18).

The cardiovascular remodeling with the H diet aggravates
the typical characteristics of a middle-aged human heart. Age-
dependent structural deterioration of the heart includes LV, as
well as cardiomyocyte, hypertrophy, increased collagen depo-
sition, and stiffening of the ventricular wall (15). The func-
tional manifestation of these changes includes impaired dia-
stolic function without alterations of systolic function, with
preserved fractional shortening, ejection fraction, stroke vol-
ume, cardiac output, and resting heart rate (15). In addition to
these changes, H diet feeding increased diastolic and stroke
volume while maintaining resting heart rate and systolic vol-
ume, thereby increasing cardiac output. These increases in
diastolic volume and stroke volume are due to the increased
preload and consequent eccentric hypertrophy characteristic of
H diet feeding (28).

The shift from young adulthood to middle age is associated
with changes in arterial function, such as impaired distensibil-
ity with increased Vmax, a noninvasive clinical measure of
aortic stiffness (10, 15). Age and blood pressure are indepen-
dently associated with increased Vmax (10). However, in-
creased arterial stiffness is not exclusively the result of age-
dependent deterioration of arterial structure but may also be
affected by the endothelial regulation of vascular smooth
muscle tone. Aging arteries have increased endothelial perme-
ability and reduced endothelium-dependent relaxation re-
sponses to acetylcholine (15, 21). Consistent with the litera-
ture, H diet feeding increased Vmax, elevated systolic blood
pressure, and reduced vasodilator response to acetylcholine in
isolated thoracic aorta. However, neither �1-adrenoceptor-me-
diated vascular contraction to norepinephrine nor endothelium-
independent relaxation response to sodium nitroprusside was
affected. This suggests that the H diet selectively reduced
production or availability of nitric oxide from the endothelium
while preserving the contractility of vascular smooth muscle
and nitric oxide-mediated vasodilation pathways.

In the absence of the traditional cardiovascular risk factors,
obesity and type 2 diabetes are associated with increased
arterial stiffness (10, 33). H diet feeding produced increased
whole body and visceral adiposity, with the loss of lean mass
and increased accumulation of fat in the skeletal muscle. These
effects may have been mediated by reduced skeletal muscle
mitochondrial function and generalized decline in muscle pro-
tein synthesis with aging (18).

The loss of muscle mass is coupled with gradual loss of
subcutaneous fat after young adulthood (7). This is where
dietary supplementation with chia seed may be an important
strategy in improving the quality of life in an aging population.
Consistent with our previous report (32), 24 wk of chia seed
supplementation attenuated and maintained most structural and
functional modifications induced by age or the H diet. More
importantly, chia seed supplementation increased whole body
lean mass and reduced abdominal fat, but not whole body fat,
therefore suggesting lipid redistribution away from the abdom-
inal area. As the total lipid content in major tissues, such as
skeletal muscle and liver, decreased or remained unchanged, it
is plausible that most of the fat from the viscera was redistrib-
uted as subcutaneous fat. Additionally, chia seed supplemen-
tation normalized the chronic low-grade inflammation induced
by H diet feeding. This effect is most likely caused by the
decrease in the proinflammatory n-6 fatty acid metabolism seen
as increased precursor (C18:2n-6) and decreased or unchanged
product (C20:4n-6), together with increases in the anti-inflam-
matory fatty acids of the n-3 series (C18:3n-3, C20:5n-3,
C22:5n-3, and C22:6n-3) in all tissues. The n-3 series fatty
acids have been well studied for their role in maintaining
cardiovascular structure and function, as well as reducing the
risk factors of metabolic syndrome (31). Although the high
�-linolenic acid content may play an important role in miti-
gating the responses to chronic chia seed supplementation, chia
seed is also a rich source of proteins [�25% (wt/wt)] and
minerals (mainly calcium and phosphorus) (8), which may also
contribute to some of the observed effects, especially on body
composition. More importantly, the response to chia seed
supplementation was maintained from our previously reported
16-wk study, and no major adverse effects were observed (32).

Table 5. Fatty acid profiles of skeletal muscle and desaturase index in C, CC, H, and HC groups

Group P Value

C CC H HC Diet Treatment Interaction

C14:0 1.73 � 0.06† 1.41 � 0.10‡ 2.43 � 0.10* 1.95 � 0.06† �0.0001 �0.0001 0.34
C14:1n-5 0.00 � 0.00† 0.00 � 0.00† 0.20 � 0.02* 0.00 � 0.00† �0.0001 �0.0001 �0.0001
C16:0 25.44 � 0.35*† 27.33 � 0.33* 21.74 � 0.84‡ 24.04 � 1.05† �0.0001 0.0082 0.78
C16:1n-7 8.73 � 0.69* 6.60 � 0.80† 2.91 � 0.30‡ 2.50 � 0.22‡ �0.0001 0.0346 0.14
C18:0 3.32 � 0.21‡ 8.38 � 0.67† 7.13 � 0.66† 10.26 � 0.62* �0.0001 �0.0001 0.11
C18:1n-9 44.42 � 0.28† 22.97 � 0.83‡ 57.99 � 2.07* 42.14 � 2.79† �0.0001 �0.0001 0.13
C18:1trans-7 5.50 � 0.09* 3.88 � 0.07† 1.23 � 0.33§ 2.17 � 0.04‡ �0.0001 0.07 �0.0001
C18:2n-6 9.65 � 0.35† 14.28 � 0.62* 4.01 � 0.37§ 8.19 � 0.38‡ �0.0001 �0.0001 0.62
C18:3n-3 0.00 � 0.00‡ 5.48 � 0.29* 0.28 � 0.03‡ 1.91 � 0.14† �0.0001 �0.0001 �0.0001
C20:4n-6 1.22 � 0.14† 2.81 � 0.38* 0.82 � 0.42† 2.32 � 0.37* 0.21 0.0002 0.9
C22:5n-3 0.00 � 0.00‡ 2.18 � 0.19* 0.00 � 0.00‡ 1.24 � 0.17† 0.0015 �0.0001 0.0015
C22:6n-3 0.00 � 0.00† 4.12 � 0.37* 0.00 � 0.00† 3.27 � 0.60* 0.24 �0.0001 0.24
Total SFA 30.48 � 0.38† 37.12 � 0.39* 31.80 � 1.43† 36.26 � 1.52* 0.83 �0.0001 0.32
Total MUFA 58.64 � 0.53* 33.45 � 1.58‡ 63.09 � 2.15* 46.80 � 2.84† 0.0002 �0.0001 0.0349
Total PUFA 10.88 � 0.46‡ 29.43 � 1.25* 5.11 � 0.73§ 16.94 � 1.39† �0.0001 �0.0001 0.0039
n-3-to-n-6 ratio 0.00 � 0.00§ 0.73 � 0.03* 0.07 � 0.01‡ 0.60 � 0.03† 0.18 �0.0001 0.0002
Stearoyl-CoA desaturase index 0.34 � 0.03* 0.24 � 0.03† 0.14 � 0.02‡ 0.11 � 0.01‡ �0.0001 0.0135 0.16

Values are means � SE. Means within a row with different symbols are significantly different (P � 0.05).
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In addition, while 8 wk of chia seed supplementation failed to
attenuate increased blood pressure as a result of H diet feeding
for 16 wk (32), blood pressure was normalized with chronic
chia seed supplementation.

However, there are striking differences in the handling of
SFA, MUFA, and trans fatty acids with both H diet and chia
seed supplementation compared with our 16-wk study (32).
We found that 32 wk of C or H diet feeding decreased the net
proportion of trans fats, as well as the desaturation index,
therefore decreasing MUFA and increasing SFA content com-
pared with our previous study (32). Also, H diet feeding for 32
wk induced preferential storage of C18:1n-9 over C16:1n-7 as
the primary MUFA compared with the C rats. Because of this
change in fatty acid content, the stearoyl-CoA desaturase index
was normalized with 32 wk of H diet feeding, as the index is
calculated as a ratio of C16:0 to C16:1n-7. In contrast to the
16-wk study (32), chia seed supplementation in this study only
affected the n-6 and n-3 PUFA metabolism, and not SFA,
MUFA, or trans fatty acids. Since mammals can produce fatty
acids up to C18:1 in situ following a series of elongation and
desaturation reactions (29), these results strongly suggest a
transition in fatty acid metabolism with age toward increased
lipogenesis, as the complete pathway would result in the
formation of C18:1n-9 or C16:1n-7 as the final products
irrespective of the starting substrate (29). In heart, liver, and
skeletal muscle, the proportions of C18:1n-9 were reduced in
rats supplemented with chia seed compared with H rats and
remained comparable to or lower than proportions of C18:1n-9
in C rats, suggesting a possible inhibitory role of chia seed in
lipogenesis.

These results validate our hypothesis that long-term con-
sumption of the C diet mimics the process of aging, while H
diet feeding exacerbates this process, with cardiovascular re-
modeling, obesity, loss of lean mass, and liver injury. Chia
seeds may serve as a complementary dietary strategy to man-
age age-related morbidity due to the unique lipid redistribution,
increased lean mass, and other cardiovascular and hepatic
protective responses.

ACKNOWLEDGMENTS

We thank James Dorward (Chialife, Main Beach, QLD, Australia) for the
supply of chia seeds and Jason Brightwell (Prince Charles Hospital, Brisbane,
Australia) for the acquisition of echocardiographic images.

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the authors.

AUTHOR CONTRIBUTIONS

H.P. and L.B. developed the original study aims and analyzed and inter-
preted the data; H.P. and S.K.P conducted the experiments; L.W. performed
dual-energy X-ray absorptiometry and provided nutritional advice; J.W. as-
sisted in gas chromatographic techniques; H.P. and L.B. prepared manuscript
drafts, with all authors contributing to the final version; L.B. has been the
corresponding author throughout the writing process.

REFERENCES

1. Abete I, Astrup A, Martinez JA, Thorsdottir I, Zulet MA. Obesity and
the metabolic syndrome: role of different dietary macronutrient distribu-
tion patterns and specific nutritional components on weight loss and
maintenance. Nutr Rev 68: 214–231, 2010.

2. Agatston AS. The end of the diet debates? All fats and carbs are not
created equal. Cleve Clin J Med 72: 946–950, 2005.

3. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato
KA, Fruchart JC, James WP, Loria CM, Smith SC Jr. Harmonizing
the metabolic syndrome: a joint interim statement of the International
Diabetes Federation Task Force on Epidemiology and Prevention; Na-
tional Heart, Lung, and Blood Institute; American Heart Association;
World Heart Federation; International Atherosclerosis Society; and Inter-
national Association for the Study of Obesity. Circulation 120: 1640–
1645, 2009.

4. Borkan GA, Hults DE, Gerzof SG, Robbins AH, Silbert CK. Age
changes in body composition revealed by computed tomography. J Geron-
tol 38: 673–677, 1983.

5. Brown L, Duce B, Miric G, Sernia C. Reversal of cardiac fibrosis in
deoxycorticosterone acetate-salt hypertensive rats by inhibition of the
renin-angiotensin system. J Am Soc Nephrol 10 Suppl 11: S143–S148,
1999.

6. Brown L, Fenning A, Chan V, Loch D, Wilson K, Anderson B,
Burstow D. Echocardiographic assessment of cardiac structure and func-
tion in rats. Heart Lung Circ 11: 167–173, 2002.

7. Buffa R, Floris GU, Putzu PF, Marini E. Body composition variations
in ageing. Coll Anthropol 35: 259–265, 2011.

8. Bushway AA, Belyea PR, Bushway RJ. Chia seed as a source of oil,
polysaccharide, and protein. J Food Sci 46: 1349–1350, 1981.

9. Casey VA, Dwyer JT, Coleman KA, Valadian I. Body mass index from
childhood to middle age: a 50-y follow-up. Am J Clin Nutr 56: 14–18,
1992.

10. Cecelja M, Chowienczyk P. Dissociation of aortic pulse wave velocity
with risk factors for cardiovascular disease other than hypertension: a
systematic review. Hypertension 54: 1328–1336, 2009.

11. Chan V, Fenning A, Hoey A, Brown L. Chronic �-adrenoceptor antag-
onist treatment controls cardiovascular remodeling in heart failure in the
aging spontaneously hypertensive rat. J Cardiovasc Pharmacol 58: 424–
431, 2011.

12. Cordain L, Eaton SB, Sebastian A, Mann N, Lindeberg S, Watkins
BA, O’Keefe JH, Brand-Miller J. Origins and evolution of the Western
diet: health implications for the 21st century. Am J Clin Nutr 81: 341–354,
2005.

13. Deckelbaum RJ, Williams CL. Childhood obesity: the health issue. Obes
Res 9 Suppl 4: 239S–243S, 2001.

14. Ervin RB. Prevalence of Metabolic Syndrome Among Adults 20 Years of
Age and Over, by Sex, Age, Race and Ethnicity, and Body Mass Index:
United States, 2003–2006. National Health Statistics Reports 1–7. At-
lanta, GA: Centers for Disease Control, 2009.

15. Ferrari AU, Radaelli A, Centola M. Aging and the cardiovascular
system. J Appl Physiol 95: 2591–2597, 2003.

16. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation
and purification of total lipides from animal tissues. J Biol Chem 226:
497–509, 1957.

17. Jeyakumar SM, Vajreswari A, Giridharan NV. Chronic dietary vitamin
A supplementation regulates obesity in an obese mutant WNIN/Ob rat
model. Obesity (Silver Spring) 14: 52–59, 2006.

18. Johannsen DL, Ravussin E. Obesity in the elderly: is faulty metabolism
to blame? Aging Health 6: 159–167, 2010.

19. Juhola J, Magnussen CG, Viikari JS, Kahonen M, Hutri-Kahonen N,
Jula A, Lehtimaki T, Akerblom HK, Pietikainen M, Laitinen T,
Jokinen E, Taittonen L, Raitakari OT, Juonala M. Tracking of serum
lipid levels, blood pressure, and body mass index from childhood to
adulthood: the Cardiovascular Risk in Young Finns Study. J Pediatr 159:
584–590, 2011.

20. Juonala M, Magnussen CG, Berenson GS, Venn A, Burns TL, Sabin
MA, Srinivasan SR, Daniels SR, Davis PH, Chen W, Sun C, Cheung
M, Viikari JS, Dwyer T, Raitakari OT. Childhood adiposity, adult
adiposity, and cardiovascular risk factors. N Engl J Med 365: 1876–1885,
2011.

21. Kim SY, Park JT, Park JK, Lee JS, Choi JC. Aging impairs vasodi-
latory responses in rats. Korean J Anesthesiol 61: 506–510, 2011.

22. Li JB, Wang X, Zhang JX, Gu P, Zhang X, Chen CX, Guo R, Wu M.
Metabolic syndrome: prevalence and risk factors in southern China. J Int
Med Res 38: 1142–1148, 2010.

23. Marquez-Sandoval F, Macedo-Ojeda G, Viramontes-Horner D, Fer-
nandez Ballart JD, Salas Salvado J, Vizmanos B. The prevalence of
metabolic syndrome in Latin America: a systematic review. Public Health
Nutr 14: 1702–1713, 2011.

E10 CHRONIC MODEL OF DIET-INDUCED OBESITY

AJP-Endocrinol Metab • doi:10.1152/ajpendo.00102.2012 • www.ajpendo.org

AQ: 4

tapraid4/zh1-aend/zh1-aend/zh101112/zh16552d12z xppws S�1 4/26/12 8:57 MS: E-00102-2012 Ini: 06/kl/dlh

Page 297



24. Moussavi N, Gavino V, Receveur O. Could the quality of dietary fat, and
not just its quantity, be related to risk of obesity. Obesity (Silver Spring)
16: 7–15, 2007.

25. Must A, Strauss RS. Risks and consequences of childhood and adolescent
obesity. Int J Obes Relat Metab Disord 23 Suppl 2: S2–S11, 1999.

26. Novelli EL, Diniz YS, Galhardi CM, Ebaid GM, Rodrigues HG, Mani
F, Fernandes AA, Cicogna AC, Novelli Filho JL. Anthropometrical
parameters and markers of obesity in rats. Lab Anim 41: 111–119, 2007.

27. Panchal SK, Brown L. Rodent models for metabolic syndrome research.
J Biomed Biotechnol 2011: 351982, 2011.

28. Panchal SK, Poudyal H, Iyer A, Nazer R, Alam MA, Diwan V, Kauter
K, Sernia C, Campbell F, Ward L, Gobe G, Fenning A, Brown L.
High-carbohydrate, high-fat diet-induced metabolic syndrome and cardio-
vascular remodeling in rats. J Cardiovasc Pharmacol 57: 611–624, 2011.

29. Poudyal H, Brown L. Stearoyl-CoA desaturase: a vital checkpoint in the
development and progression of obesity. Endocr Metab Immune Disord
Drug Targets 11: 217–231, 2011.

30. Poudyal H, Campbell F, Brown L. Olive leaf extract attenuates cardiac,
hepatic, and metabolic changes in high carbohydrate-, high fat-fed rats. J
Nutr 140: 946–953, 2010.

31. Poudyal H, Panchal SK, Diwan V, Brown L. Omega-3 fatty acids and
metabolic syndrome: effects and emerging mechanisms of action. Prog
Lipid Res 50: 372–387, 2011.

32. Poudyal H, Panchal SK, Waanders J, Ward L, Brown L. Lipid
redistribution by �-linolenic acid-rich chia seed inhibits stearoyl-CoA
desaturase-1 and induces cardiac and hepatic protection in diet-induced
obese rats. J Nutr Biochem 23: 153–162, 2012.

33. Rider OJ, Tayal U, Francis JM, Ali MK, Robinson MR, Byrne JP,
Clarke K, Neubauer S. The effect of obesity and weight loss on aortic
pulse wave velocity as assessed by magnetic resonance imaging. Obesity
(Silver Spring) 18: 2311–2316, 2010.

34. Sahn DJ, Allen HD. Real-time cross-sectional echocardiographic imag-
ing and measurement of the patent ductus arteriosus in infants and
children. Circulation 58: 343–354, 1978.

35. Sawant A, Mankeshwar R, Shah S, Raghavan R, Dhongde G, Raje H,
D’Souza S, Subramanium A, Dhairyawan P, Todur S, Ashavaid TF.
Prevalence of metabolic syndrome in urban India. Cholesterol 2011:
920983, 2011.

36. Siri-Tarino PW, Sun Q, Hu FB, Krauss RM. Saturated fat, carbohy-
drate, and cardiovascular disease. Am J Clin Nutr 91: 502–509, 2010.

37. Stanhope KL, Havel PJ. Fructose consumption: potential mechanisms
for its effects to increase visceral adiposity and induce dyslipidemia and
insulin resistance. Curr Opin Lipidol 19: 16–24, 2008.

38. Ward LC, Battersby KJ. Assessment of body composition of rats by
bioimpedance spectroscopy validation against dual-energy X-ray absorp-
tiometry. Scand J Lab Anim Sci 36: 253–261, 2009.

E11CHRONIC MODEL OF DIET-INDUCED OBESITY

AJP-Endocrinol Metab • doi:10.1152/ajpendo.00102.2012 • www.ajpendo.org

tapraid4/zh1-aend/zh1-aend/zh101112/zh16552d12z xppws S�1 4/26/12 8:57 MS: E-00102-2012 Ini: 06/kl/dlh

Page 298



Appendix E: Conference presentations during the 
candidature 

1. Oral presentation on “Ibuprofen attenuates metabolic and 

cardiovascular symptoms in rats fed a high carbohydrate/high fat 

(HCHF) diet” in International Conference of Australian Health and 

Medical Research Congress on November 20, 2008 at Brisbane 

Convention and Exhibition Centre, Brisbane, Australia. 

2. Oral presentation on “Does a high carbohydrate/high fat (HCHF) diet 

in rats induce oxidative stress-related metabolic and cardiovascular 

symptoms? in International Conference of Society for Free Radical 

Research (Australia) on November 30, 2008 at Bio21, The University 

of Melbourne, Melbourne, Australia. 

3. Poster presentation on “Rutin attenuates symptoms of metabolic 

syndrome” in International Conference of Society for Free Radical 

Research (Malaysia/Asia) on Chemoprevention and Translational 

Research held during July 9 to 12, 2009 at Langkawi, Malaysia. 

4. Poster presentation on “Attenuation of non-alcoholic steatohepatitis by 

rutin” in International Conference on Polyphenols held during August 

24 to 27, 2010 at Montpellier, France. 

5. Oral presentation on “Rutin attenuates non-alcoholic steatohepatitis in 

high-carbohydrate, high-fat diet-fed rats” in International Liver 

Congress organised by The European Association for the Study of the 

Liver held during March 30 to April 3, 2011 at Berlin, Germany. 

6. Oral presentation on “Differential effects of rutin and quercetin in diet-

induced metabolic syndrome in rats” in National level conference on 

Natural Products in Healthcare organised by Gurunanak College of 

Pharmacy, Nagpur, India held during November 24 to 26, 2011 at 

Nagpur, India. 
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