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A B S T R A C T

Background: Attention deficit hyperactivity disorder (ADHD) is a neurodevelopmental disorder that affects a
person’s sleep, mood, anxiety, and learning. Early diagnosis and timely medication can help individuals with
ADHD perform daily tasks without difficulty. Electroencephalogram (EEG) signals can help neurologists to
detect ADHD by examining the changes occurring in it. The EEG signals are complex, non-linear, and non-
stationary. It is difficult to find the subtle differences between ADHD and healthy control EEG signals visually.
Also, making decisions from existing machine learning (ML) models do not guarantee similar performance
(unreliable).
Method: The paper explores a combination of variational mode decomposition (VMD), and Hilbert transform
(HT) called VMD-HT to extract hidden information from EEG signals. Forty-one statistical parameters extracted
from the absolute value of analytical mode functions (AMF) have been classified using the explainable boosted
machine (EBM) model. The interpretability of the model is tested using statistical analysis and performance
measurement. The importance of the features, channels and brain regions has been identified using the glass-
box and black-box approach. The model’s local and global explainability has been visualized using Local
Interpretable Model-agnostic Explanations (LIME), SHapley Additive exPlanations (SHAP), Partial Dependence
Plot (PDP), and Morris sensitivity. To the best of our knowledge, this is the first work that explores the
explainability of the model prediction in ADHD detection, particularly for children.
Results: Our results show that the explainable model has provided an accuracy of 99.81%, a sensitivity of
99.78%, 99.84% specificity, an F-1 measure of 99.83%, the precision of 99.87%, a false detection rate of
0.13%, and Mathew’s correlation coefficient, negative predicted value, and critical success index of 99.61%,
99.73%, and 99.66%, respectively in detecting the ADHD automatically with ten-fold cross-validation. The
model has provided an area under the curve of 100% while the detection rate of 99.87% and 99.73% has
been obtained for ADHD and HC, respectively.
Conclusions: The model show that the interpretability and explainability of frontal region is highest compared
to pre-frontal, central, parietal, occipital, and temporal regions. Our findings has provided important insight
into the developed model which is highly reliable, robust, interpretable, and explainable for the clinicians to
detect ADHD in children. Early and rapid ADHD diagnosis using robust explainable technologies may reduce
the cost of treatment and lessen the number of patients undergoing lengthy diagnosis procedures.
1. Introduction

Attention deficit hyperactivity disorder (ADHD) or hyper-kinetic
disorder is one of the most common neurodevelopmental disorders of
childhood and also affects adults. Global pervasiveness of ADHD in
children and adolescents is approximately 2.2% (0.1–8.1%) while in
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adults it is 2.8% (0.6–7.3%) [1]. The pervasiveness of ADHD is 9.4%
in the USA, 7% in western countries, and 1.6 to 17.9% in India [2,3].
The pervasiveness of ADHD is higher among boys than girls during
childhood and males than females during adulthood [2]. In India, the
vailable online 18 February 2023
010-4825/© 2023 The Authors. Published by Elsevier Ltd. This is an open access ar

https://doi.org/10.1016/j.compbiomed.2023.106676
Received 5 October 2022; Received in revised form 9 January 2023; Accepted 13 F
ticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

ebruary 2023

https://www.elsevier.com/locate/compbiomed
http://www.elsevier.com/locate/compbiomed
mailto:smith7khare@gmail.com
https://doi.org/10.1016/j.compbiomed.2023.106676
https://doi.org/10.1016/j.compbiomed.2023.106676
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2023.106676&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Computers in Biology and Medicine 155 (2023) 106676S.K. Khare and U.R. Acharya
prevalence of ADHD in school children was found to be 11.3%, whereas
it was 6% in 9–10 and 10–15 year age groups, respectively [2]. Children
and adults who have ADHD may experience symptoms like impulse
control (oppositional defiant, borderline personality, and antisocial
personality), mood (depressive, dysthymic, bipolar, and cyclothymic),
anxiety (generalized anxiety, agoraphobia, post-traumatic stress, and
social phobia), substance use (alcohol and drug dependence), learning
problems (reading, written expression, and mathematics), and sleep dis-
orders (rhythm disturbance, excessive daytime sleepiness, obstructive
sleep apnea, restless legs/periodic limbs, etc.) [2]. The demographic
variable risk factors of ADHD in children include parents’ educational
level, gender, mother’s occupation, living with a single parent, and
birth order [4,5]. The factors related to a family are brain injury, con-
sumption of alcohol and tobacco during pregnancy, premature delivery,
low birth weight, and exposure to chemicals like lead during pregnancy
or at a young age [1,3,6].

Late or untreated ADHD increases risk factors like poor social skills,
delayed learning, poor academic performances, low self-confidence and
esteem, increased probability of committing crimes, and susceptibility
to injury [7,8]. Timely detection, effective diagnosis, and proper medi-
cation help children with ADHD perform routine tasks and learn . Over
time, different techniques like a one-to-one interview with an expert,
continuous performance tests (CPTs), neuroimaging techniques, elec-
trocardiogram (ECG) signals, magnetoencephalogram (MEG) signals,
and electroencephalogram (EEG) signals have been suggested for the
detection of ADHD [9–12]. The CPTs and one-to-one interviews with an
expert are time-consuming, error-prone, and have a high probability of
false detection. Neuroimaging techniques are radioactive, bulky, costly,
and require additional recordings [9]. Koh et al. [11] have obtained
low performance in the detection of ADHD using ECG signals. The
MEG signals acquisition is bulky, costly, and requires isolated room to
suppress surrounding noise which makes their usage in ADHD detection
very limited [11]. The EEG signals are capable to track the changes
occurring in the brain during ADHD. The EEG signals have been used
to detect brain abnormalities and physiological disorders like motor
imagery tasks, seizures, emotions, and drowsiness [13–16]. Also, EEG
acquisition is non-invasive, portable, and low-cost solution.

Over the years, many EEG-related studies have been presented for
the automatic detection of ADHD. The analysis of event-related po-
tential (ERP) investigated the neurological changes happening during
auditory tasks of GO and NOGO in different brain regions in ADHD
subjects [17]. Their study showed the brain’s frontal portion has differ-
ences in ERP during pre and post-treatment. The EEG signals acquired
during the CPTs of GO and NOGO sessions have been investigated
using bandpass filtering, independent component analysis (ICA), and K-
nearest neighbour (KNN) classifier [18]. The study of brain functional
dynamics has been done using different non-linear features, frequency
band-power features, radial basis function neural network (RBFNN),
and support vector machine (SVM) [19]. In [20], the classification of
EEG signals using an SVM classifier and logical Karnaugh map during
visual CPT, emotional CPT, eyes open, and eyes closed have been
performed.

A fast Fourier transform (FFT) has been investigated to study the
absolute and relative activity of EEG signals from delta (1–3 Hz),
theta (4–7 Hz), alpha1 (8–9 Hz), alpha2 (10–13 Hz), total alpha (8–
13 Hz), and beta (14–30 Hz) rhythms. Their study found increased
theta activities in anterior regions whereas the reduced posterior beta
activity in ADHD EEG segments [21]. The use of FFT with the Hanning
window to evaluate relative power spectral density (PSD), absolute PSD
of rhythms, and total PSD of EEG signals have been classified using
the SVM classifier [22]. The filtering techniques have been analyzed to
study spectral analysis of mean and relative mean power of rhythms to
detect ADHD [23]. Their study reported higher average power of delta
and theta rhythms and increased delta to a beta ratio in ADHD than that
of HC children [23]. Various nonlinear features based on correlation
2

dimension (CorrD), fractal dimension (FD), entropies, and Lyapunov
exponent (LE) have been classified using the SVM classifier [24]. Many
nonlinear features (LE, Katz, Higuchi, and Sevcik FD) are extracted and
classified using the multilayer perceptron (MLP) model [25,26]. The
SVM and KNN classifiers have been studied to classify covariance, Burg
covariance, and relative power features selected using the covariance
technique [27]. The SVM classifier has been presented to classify the
features extracted from the preprocessed EEG signals using ICA [28].
An adaptive model called VHERS has been explored to detect ADHD
in children [29]. Different rhythms’ mean power and ratios have been
studied to detect ADHD [30,31]. The convolutional neural networks
(CNN) model capable of extracting and classifying in-depth features has
been used to detect ADHD [32,33]. In [34], empirical mode decom-
position (EMD) and discrete wavelet transform techniques have been
used to extract different bands. The nonlinear features from these bands
have been classified using various classifiers. In [35], nonlinear causal
relationship estimation by an artificial neural network (nCREANN) and
direct directed transfer function has been used to extract the spectral
information of connectivity patterns for ADHD detection. A hybrid
model composed of long–short term memory and CNN (ConvLSTM)
with an attention mechanism has been developed for encoding the
spatiotemporal representation for ADHD detection [36]. In [37], a
combination of directed phase transfer entropy, feature selection by
genetic algorithm, and the artificial neural network has been used
to detect ADHD. An eight-point start pattern to construct a direct
graph combined with tunable q wavelet transform and wavelet packet
decomposition has been used for feature extraction classified with KNN
classifiers [38].

Studies discussed in the literature have shown limited performance
in the extraction of hidden information from EEG signals [10]. Few
methods used direct feature extraction from EEG signals, whereas
techniques like FD, entropy and LE produced degraded performance
due to noise and inappropriate selection of scaling range. The filtering
techniques that use rhythmic analysis require proper filter coefficients
for sharp boundaries of filters. FFT suffers from noise sensitivity, lo-
calization in time–frequency domain, poor spectral estimation, and
improper localized spikes [39]. Although CNN-based techniques si-
multaneously provide feature extraction and classification but have
higher memory requirements. In addition, the existing techniques use
an empirical choice of ML models. One ML model does not guarantee
similar performance when multiple testing combinations are used. The
current ML lacks robustness and local and global explainability of the
models in making predictions [40]. This urgently demands an effective,
robust, explainable model for detecting ADHD and HC EEG segments.
To address this, an explainable and interpretable model combining vari-
ational mode decomposition (VMD) and Hilbert transform (HT)-based
two-level signal analysis method VMD-HT and explainable boosting
machine (EBM) classifier is used to detect ADHD in children. To the best
of our knowledge, this is the first work that explores the explainability
of the model prediction in ADHD detection, particularly for children.
The model was evaluated using multiple classifier performance using a
ten-fold cross-validation technique. The effectiveness of the explainable
model was evaluated by computing nine performance measures (PM)
such as accuracy (ACC), precision (PRS), negative predictive value
(NPV), critical success index (CSI), sensitivity (SNS), false detection
rate (FDR), specificity (SPF), F-1 score (F-1), and Mathew’s correlation
coefficient (MCC). Further, we have used a glass-box and black-box
model interpretations using an EBM model with four explainable char-
acteristics i.e. Local Interpretable Model-Agnostic Explanations (LIME),
Partial Dependence Plot (PDP), Shapley Additive explanations (SHAP),
and Morris sensitivity (MS) to find local and global explainability of
the model. Finally, we have tested our developed explainable model
using the ten-fold cross-validation technique, and compared the model
performance with existing state-of-the-art (SOTA) classifications and
ADHD detection techniques to study the model robustness. The remain-
ing part of the paper is arranged as follows: Section 2 presents materials
and methods, Section 3 gives results and performance analysis, discus-
sion on existing SOTA is provided in Section 4, and Section 5 concludes

the paper.
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Fig. 1. Graphical representation of the proposed explainable and interpretable ADHD model.
2. Materials and methods

This section consists of details of the EEG dataset, analysis to obtain
analytic modes using VMD-HT, features, and decision-making. The
steps of the proposed explainable and interpretable model are shown
in Fig. 1.

2.1. Dataset

This work used a publicly available EEG dataset from IEEE data
port [41,42]. It comprises 60 HC and 61 ADHD children, including boys
and girls with age ranging from 7–12 years. An experienced psychiatrist
diagnosed subjects with ADHD as per DSM-IV criteria [43]. ADHD
subjects have taken Ritalin (is a central nervous system stimulant med-
ication used to treat ADHD) for about six months. HC children had no
history of hard head injury, epilepsy, drug abuse, psychiatric disorders,
or any reported high-risk behaviors. A visual attention task was used
to record EEG since one of the deficits in ADHD is visual attention.
Children were asked to count the number of cartoon characters from
pictures shown during the task. For a better visibility, the picture size
was kept large enough to be countable by children. The image shown
to them was randomly selected, consisting of five to sixteen characters.
Images were displayed immediately and uninterrupted after the child’s
response to a continuous stimulus during EEG recordings. The duration
of EEG recordings depended on a child’s response speed during the
cognitive visual task. A 19-channel EEG recorder built per a 10–20 in-
ternational system was used to record EEG of frontal, parietal, occipital,
and central regions (Fz, Cz, Pz, C3, T3, C4, T4, Fp1, Fp2, F3, F4, F7, F8,
P3, P4, T5, T6, O1, O2). Two electrodes were below and above the right
eye to record eye movement. Each EEG recording was recorded using
a sampling frequency of 128 Hz. A notch filter of 50 Hz removes the
noise and power line disturbances. A sixth-order Butterworth bandpass
filter (0.1–60 Hz) was used to remove the unwanted frequencies and
artifacts. After pre-processing, the EEG signals were segmented into 4-
sec durations. Finally, we have obtained total EEG segments of 2289
and 1843 for ADHD and HC subjects, respectively. To perform the
brain region analysis, we have considered six different brain regions:
prefrontal, frontal, central, parietal, occipital, and temporal [44]. The
prefrontal is composed of Fp1 and Fp2, channels F3, F4, F7, F8, and
Fz make up the frontal region, the central region is formed by C3,
3

Fig. 2. Brain region configuration for different channels.

C4, and Cz channels, the parietal is formed by P3, P4, P7, P8, and Pz
channels, occipital is composed of O1 and O2 while temporal is from
T7 and T8 channels, respectively. The brain region formation with its
corresponding channel configuration is shown in Fig. 2.

2.2. Variational Mode Decomposition-Hilbert Transform (VMD-HT)

EEG signal in its raw form is difficult to analyze and classify due
to its non-linearity, complexity, and non-stationary nature. To get
detailed information and representative characteristics of a signal it is
required to decompose it into multi-components. However, the existing
methods of decomposition yielded limited performance. For example
(i) empirical mode decomposition (EMD): ad-hoc nature due to lack of
mathematical theory and lacks the ability for backward error correc-
tion due to recursive shifting, (ii) empirical wavelet transform (EWT):
require predefined filter-bank boundaries, (iii) EMD and EWT: inability
to cope with noise properly, and (iv) wavelets: suffers hard-band limits.
The ability of VMD to concurrently estimate the corresponding modes
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Fig. 3. Typical EEG signal and its corresponding modes obtained from VMD.
and adaptively determine the relevant band and hence, balance the
error between them [45]. The modes generated by VMD are such
that they are band-limited about a center frequency and collectively
reconstruct an input signal optimally either perfectly or in a least-
square sense. Moreover, the modes generated using VMD have some
optimality in dealing with noise. It is due to the above reason that VMD
has been used in the analysis of mechanical gearbox fault diagnosis and
biomedical signal processing [43,46–48].

VMD decomposes a real-valued input signal into a fixed number
of components with specific sparsity properties. Bandwidth in the
spectral domain is chosen as a sparsity for each mode. The bandwidth
of each mode can be accessed by following steps: (a) the unilateral
frequency spectrum of each mode is computed by applying HT; (b)
the frequency spectrum of each mode is shifted to ‘‘baseband’’ by
respective estimated center frequency; and (c) Finally, squared 𝐿2
norm is applied to estimate the bandwidth which results into following
constraint problem [45]:

min
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where 𝑧(𝑡) is the original signal, ℎ𝑚 is the 𝑚th mode, 𝑀 is total
number of modes, and 𝑤𝑚 is the corresponding frequencies of 𝑚th
mode. The constraint problem is converted into an unconstrained one
by using Lagrangian multipliers (𝜆) and quadratic penalty factor (𝑎̂).
Thus, an introduction of 𝑎̂ and 𝜆 for a better convergence property.
The augmented Lagrangian  is denoted as [45]:
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A typical example of modes obtained after VMD decomposition is
illustrated in Fig. 3.

In the second stage, HT is applied to modes of VMD. One-
dimensional (1-D) HT () is a shift-invariant, and linear operator that
maps all 1-D sine functions into their corresponding sine functions and
vice-versa [49]. HT is assumed as an all-pass filter characterized by a
transfer function denoted as:

𝑔̂(𝑤) = −𝑗𝑠𝑔𝑛(𝑤) =
−𝑗𝑤
|𝑤|

(3)

Thus, HT in spectral domain is a multiplier operator whose impulse
response is denoted as 𝑔(𝑡) = 1∕(𝜋𝑡). The HT of any real-valued func-
tion (𝑧(𝑡)) is defined as Cauchy principal value (𝑝.𝑣.) of convolutional
4

integral [45]:

(𝑧(𝑡)) = 𝑧(𝑡) ∗ 1
𝜋𝑡

= 1
𝜋
𝑝.𝑣.∫

∞

−∞

𝑧(𝑇 )
𝑡 − 𝑇

𝑑𝑇
(4)

A purely real signal (𝑧(𝑡)) in its analytical form can be represented as:

𝑧𝑎(𝑡) = 𝑧(𝑡) + 𝑗(𝑧(𝑡))

= 𝐴𝑚(𝑡)𝑒𝑗𝜙(𝑡)
(5)

where 𝐴𝑚(𝑡) =
√

𝑧(𝑡)2 +(𝑧(𝑡))2 is the magnitude of signal 𝑧(𝑡), and 𝜋(𝑡)
is an instantaneous phase = 𝑎𝑟𝑐𝑡𝑎𝑛((𝑧(𝑡))∕𝑧(𝑡)). The analytical modes
obtained after applying HT called an AMF if and only if it satisfies the
following conditions [50].

1. The mean value must be zero for an envelope defined by its local
minima and maxima at any time.

2. The number of zero crossings and extremes must be equal or, at
most, differ by one.

3. The weighted bandwidth of 𝐿2 norm must be small.
4. Analytic mode is (𝑧(𝑡)) = 𝐴𝑚(𝑡)𝑒𝑗𝜙(𝑡), such that 𝐴𝑚 and 𝜙(𝑡) must

be smoothed functions and 𝜙(𝑡) > 0.

The AMF obtained from VMD-HT extracts the following properties of
EEG signals:

1. AMF rotates around a unique center in a specific direction.
2. Due to the multi-resolution properties of generated AMF, it will

extract hidden and representative information of EEG signals.
3. The variations of EEG signals are captured in terms of time-

dependent frequency and amplitude components.

Amplitude envelope (AE) is obtained from different AMFs. Figs. 4 and
5 show an example of a typical amplitude envelope obtained using
VMD-HT for HC and ADHD subjects, respectively. It is evident from
Figs. 4 and 5 amplitudes of EEG signals of ADHD and HC children
are in the same amplitude range, due to which getting representative
information is challenging. But, there is a significant difference in
amplitude envelope fifth and sixth AMF of ADHD and HC subjects.
Hence, AE obtained from VMD-HT provide discriminant information
compared to the EEG signals.

2.3. Features

In this work, we have extracted many features from the analytical
modes obtained from VMD-HT. A total of forty-one features including
entropy measures, statistical measures, and nonlinear measures. These
features are denoted in Table 1. The details of these features are
discussed in [14,51–58].
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Fig. 4. Examples of an absolute amplitude envelope obtained for HC.
Fig. 5. Examples of an absolute amplitude envelope obtained for ADHD.
Table 1
Details of the features used for our proposed model.

Nonlinear features Statistical features

Renyi entropy (RE) [14,51] Minima (MIN) [53]
Corrected conditional entropy (CCEN)
[55]

Second quartile (Q2) [56]

Conditional entropy (CEN) [55] Third quartile (Q3) [14]
Tsallis entropy (TEN) [14,55] Maxima (MAX) [53]
Fuzzy entropy (FEN) [52] Median (MED) [53]
Sure entropy (SuE) [56] Mean (MEAN) [53]
Shannon entropy (SHEN) [14,55] Second moment (MOM2) [56]
Permutation entropy (PEN) [14] Third moment (MOM3) [59]
Kraskov entropy (KEN) [56] Standard deviation (SD) [53]
Log entropy (LEN) [14] Peak value (PEAK) [56]
Average amplitude change (AAC) [59] Integral EEG (IEEG) [59]
Wavelength (WL) [59] First quartile (Q1) [59]
Hjorth activity (HA) [56] Inter quartile range (IQR) [14]
Hjorth mobility (HM) [14] Root mean square (RMS) [14]
Higuchi fractal dimensions (HFD) [52] Mean absolute value (MAV) [56]
Skewness (SKEW) [56] Clearance factor (CF) [60]
Kurtosis (KURT) [56] Mean deviation from max (M1)
Spectral flatness (SPF) [60] Mean deviation from min (COV)
Hjorth complexity (HjC) [14] Mean deviation from range (R1)
Hurst exponent (HE) [52,54] –
Modified mean absolute value type1
(MAV1) [59]

–

Modified mean absolute value type2
(MAV2) [59]

–

2.4. Decision making

Nowadays, many artificial intelligence (AI) models have been in-
creasingly used for accurate prediction in healthcare, finance, indus-
tries, etc. These models are facilitated and eased human lives in one or
5

the other way, especially in healthcare data analytics. As the decisions
made by the underlying ML or DL model directly affect the life and
death of an individual, it becomes necessary for the researchers to
make a predictable, interpretable, robust, and explainable decision-
making model. Therefore, the predictions and decisions made by such
models are fair with the least bias or with the least discrimination.
Thus, this paper presents an explainable and interpretable ML model
for the decision-making of ADHD in children. For this, an EBM model
in combination with black-box explainers like LIME, SHAP, PDP, and
MS is explored [61].

2.4.1. Glass-box model
The models designed to be interpretable are termed glass-box or

intrinsic models. The glass-box models make model-specific interpre-
tations with an exact explanation of losses or gains. In this work, an
EBM model is a generalized additive model (with automatic interaction
detection) is used to predict ADHD and HC classes [62]. The EBM model
provides detection accuracy comparable to state-of-the-art black-box
models while being perfectly interpretable. The EBM models provide
slow training of the model compared to other glass-box models with
highly compact and fast at prediction time. We have also compared
the ACC of EBM model with various benchmark classifiers like decision
tree (DT), KNN, random forest (RF), and narrow neural network (NNN)
models to show the effectiveness and robustness of our developed
model. The generalized additive model for EBM can be expressed
as [62]

𝑓 (𝐸[𝑦]) = 𝛽0 +
∑

𝑔𝑖(𝑥𝑖) (6)

where 𝛽0 is intercept, 𝑦 is observations and 𝑥𝑖 are dependent variables.
The learning or training of each feature function 𝑔 of EBM is performed
𝑖
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Fig. 6. Illustrative interpretations and explanations procedure using glass-box and black-box models.
by using either boosted gradient or bagging algorithm. The training is
performed on each feature function in a round-robin fashion with a
very low learning rate. The round-robin provides an insight scenario of
how each feature function is contributing in making predictions. EBM
can also detect and include pairwise interaction terms by [62]

𝑓 (𝐸[𝑦]) = 𝛽0 +
∑

𝑔𝑖(𝑥𝑖) +
∑

𝑔𝑗,𝑖(𝑥𝑗 , 𝑥𝑖) (7)

2.4.2. Black-box model
The black-box explainers (post hoc technique) are model agnos-

tic, which provide model analysis after training. It assumes access
to the model’s inputs and output, thus, only providing approximate
explainability. The models are trained on existing techniques. The
black-box models offer local as well as global explanations. Local
explanations aim to explain individual predictions, while global de-
scriptions explain model behavior. In our work, we have used LIME and
SHAP for predicting local explanation whereas PDP and MS for global
explainability.

• LIME : creates a brand-new dataset made up of altered samples
and the related black-box model predictions. The weighting of the
interpretable model that LIME trains on this new dataset is based
on how close the sampled examples are to the instance of interest.
Any model like DT, may be used as the interpretable model.
Locally, the learned model should be a good approximation of
the predictions made by the ML model; however, a good global
approximation is not required. This kind of accuracy is also called
local fidelity. The LIME explanations can be denoted as [63]

𝑒𝑥𝑝𝑙𝑎𝑛𝑎𝑡𝑖𝑜𝑛𝑠(𝑦) = argmin
𝑓𝜖𝐹

𝐿(𝑔, 𝑓 , 𝜋𝑦) +𝛺(𝑓 ) (8)

where 𝑦 is the instances in the model 𝑓 , 𝐿 is the loss function
measuring the closeness of explanation w.r.t. predicted model 𝑔,
𝛺(𝑓 ) is the complexity measured by number of feature matrix or
variables, and 𝜋𝑦 is proximity measure.

• SHAP: Shapley values are calculated using the SHAP explanation
approach from coalitional game theory [64]. The feature values
of a data instance act as players in a coalition. We can equally
distribute the ‘‘payout’’ (i.e., the prediction) among the charac-
teristics by using Shapley values. The Shapley value explanation
is portrayed as an additive feature attribution approach, a lin-
ear model, which is its novelty. SHAP specifies the explanation
as [64]

𝑔(𝑦′) = 𝜙0 +
𝑀
∑

𝑗=1
𝜙𝑗𝑦

′
𝑗 (9)

where explanation model is denoted by 𝑔(𝑦′), 𝑦′ = {0, 1}𝑀 is
coalition vector, 𝑀 denotes maximum coalition size, and 𝜙𝑗 is
the feature attribution.
6

• MORRIS: It is often known as the one-step-at-a-time (OAT) global
sensitivity analysis, modifies the level (discretized value) of just
one input every run [65,66]. In comparison to other sensitivity
analysis algorithms, it is quicker (needs fewer model iterations),
but at the cost of being unable to discern non-linearities from
interactions. This is used to assess whether inputs are important
enough for further analysis.

• PDP: It displays the small influence of one or two features on
an ML model’s anticipated result [67]. A PDP can demonstrate
whether there is a linear, monotonic, or complicated relationship
between the target and a feature. Partial dependence graphs, for
instance, always display a linear connection when used with a
linear regression model. It is denoted as [67]

𝑓𝑠(𝑥𝑠) = 𝐸𝑋𝑐
[𝑓𝑠(𝑥𝑠, 𝑋𝐶 )] = ∫ 𝑓𝑠(𝑥𝑠, 𝑋𝐶 )𝑑𝑃 (𝑋𝐶 ) (10)

where 𝑥𝑠 are the features and 𝑋𝐶 is the features used in the ML
model 𝑓𝑠

The graphical representation of glass-box and black-box interpretations
and explanations steps are illustrated in Fig. 6 [61].

3. Results

An EEG-stratified signal of 4s is given as input to VMD. Several
decomposition parameters of VMD must be tuned to decompose the
signals into modes. In this work, penalty factor 𝑎̂ = 2000; time-step
of the dual ascent 𝜏 = 0; modes 𝑀 = 5; to distribute all omegas
start uniformly 𝑖𝑛𝑖𝑡 = 1; and tolerance of convergence criterion = 1e-
3; are selected. It is noteworthy that all the parameters are selected
empirically and kept uniform throughout the experiment. Modes ob-
tained from VMD are converted to their analytical form using HT to
evaluate amplitude envelope from its corresponding AMF. Different
features are computed to reduce amplitude envelope dimensionality
and extract representative information forms. Forty-one attributes have
been evaluated from the 19 channels to form a combined feature
matrix. The combined feature matrix of size 779 × 4132 is applied to
each mode’s EBM and other glass-box models. The feature matrix for
HC EEG segments is 779 × 1843, while for ADHD, it is 779 × 2289.
The exemplary histogram distribution for ADHD and HC EEG segments
obtained for Hjorth mobility, Shannon entropy, fuzzy entropy, and
Renyi entropy is denoted in Fig. 7 while the histogram distribution
obtained for ADHD and HC EEG segments of T7, P3, F7, and Fp1
channel is shown in Fig. 8. It is evident from the histogram plots that
all the features provide discriminable ability due to the non-uniform
distribution of both the classes and the channels.

After obtaining the feature matrix, it is fed as an input to the glass-
box model, i.e. EBM, to check the detection ability. The classification is
performed using a tenfold cross-validation technique. The boosted tree
algorithm is used for making predictions with 50 learners. The learning
rate is set to default within the initialization. The feature matrix is
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Fig. 7. Histogram of features obtained for ADHD (denoted by 0) and HC (denoted by 1) EEG segments.
Fig. 8. Histogram of channels obtained for ADHD (denoted by 0) and HC (denoted by 1) EEG segments.
divided into ten equal parts, of which nine parts have been used for
training and one for testing. To test the significance of the proposed
EBM model, we have used benchmark glass-box models like DT, KNN,
NNN, and RF to evaluate the performance measure. A flow diagram
of ML interpretability and explainability using glass-box and black-box
analysis is shown in Fig. 9. At first, the feature matrix (combining
features and channels) is classified using EBM and benchmark glass-box
models for all the modes. The best mode is identified and considered
for further evaluation. Second, brain region analysis is performed for
benchmark glass-box models including EBM for the best mode. The
best performing region and classifier model are identified. Later, the
EBM model analysis for interpretability (feature and channel rank
7

using univariate analysis) and explainability (LIME, SHAP, PDP, and
MS) analysis. Finally, performance measurement and comparison are
performed for the combined feature matrix, frontal region, and third
quartile feature.

Table 2 shows the ACC obtained using the benchmark glass-box
model in different modes for combined features. The first mode yielded
the least ACC, indicating that its characteristics overlap in a certain
way. For each glass-box model, the fifth mode, in contrast, has offered
the most significant identification rate. In mode five, the highest ACC
with 99.81% is provided by the EBM glass-box model, while the least
is obtained for the DT classifier. Table 2 reveals that the fifth mode
has the most discriminable properties, which have been captured and
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Fig. 9. Flow diagram of ML interpretability and explainability using glass-box and black-box analysis.
.

Table 2
Accuracy (%) obtained for glass-box models with combined feature matrix
(Features × Channels).

Classifier M-1 M-2 M-3 M-4 M-5

DT 69.96 67.02 69.75 73.57 97.23
KNN 71.92 69.36 74.45 82.95 98.97
NNN 74.47 71.75 77.48 81.73 98.21
RF 77.77 75.10 78.65 83.36 99.02
EBM 81.12 78.97 80.20 84.15 99.81

Table 3
Accuracy (%) obtained for different brain region with fifth mode using glass-box models

Region DT KNN MLP RF EBM

Prefrontal 86.56 86.99 84.81 93.10 94.39
Frontal 94.32 96.01 94.46 98.97 99.14
Central 90.76 90.09 95.53 94.57 96.36
Parietal 94.60 95.89 93.91 97.71 98.21
Occipital 82.83 85.03 84.36 92.31 92.93
Temporal 86.89 86.39 87.03 91.12 91.83

predicted accurately by the EBM model. This is because the amplitude
and frequency contents in the fifth mode for ADHD and HC differs
significantly, which resulted in the generation of non-overlapping fea-
tures. As the fifth mode has extracted better time-dependent frequency
and amplitude components of EEG signals, further analysis is performed
in this mode. The effectiveness of ML models varies greatly. A model’s
superior performance on one type of analysis does not imply that it will
do equally well on other forms of analysis. Therefore, to evaluate the
effectiveness of the EBM model, we have performed the brain region
analysis. The ACC obtained using DT, KNN, NNN, RF, and EBM models
for various brain regions in the fifth mode is shown in Table 3. It is
evident from Table 3, the frontal region has the highest distinguishable
characteristics compared to other brain regions. The ACC of 99.14%
for the frontal region using the EBM showed the effectiveness of the
brain’s frontal region in detecting ADHD. The analysis suggests that the
temporal region captures the most subtle alterations, but the frontal
region collects insight and minute information regarding changes oc-
curring throughout ADHD. The second-best performance is provided by
the parietal, followed by the central, prefrontal, and occipital regions.
Again, the performance of the EBM model outperformed other models,
making it practical and precise.

We have also performed a feature-level analysis on the channel to
check the ability to classify ADHD and HC EEGs. The accuracy obtained
for each of the forty-one features is shown in Table 4. The analysis
shows that the prediction provided by the third quartile feature is the
highest among all, with an ACC of 99.59%, whereas the second and
third ACC is obtained for Renyi entropy and fuzzy entropy, respectively.
On the other hand, permutation entropy and kurtosis have been the
minor discriminable feature in detecting ADHD. Table 5 show the PM
8

Table 4
Featurewise accuracy (%) obtained for all the channels using EBM glass-box model.

Feature ACC Feature ACC Feature ACC Feature ACC

RE 99.43 IEEG 98.87 MAV2 99.45 SSL 93.95
CCEN 86.55 AAC 96.49 MIN 90.68 SPF 88.68
CEN 88.85 Q1 96.12 MAX 99.09 SKEW 89.23
FEN 99.14 Q2 97.53 M1 84.75 KURT 74.65
TEN 98.16 Q3 99.59 MEAN 98.95 R1 99.02
SuE 76.55 IQR 94.16 HA 92.92 RMS 96.58
SHEN 99.37 WL 92.15 MOM2 95.85 HE 88.49
PEN 70.65 PEAK 94.81 MOM3 98.98 HjC 85.63
KEN 82.71 MAV 97.46 MED 92.85 HFD 76.55
LEN 98.49 MAV1 99.45 SD 88.44 HM 96.62
COV 88.78 – – – – – –

Table 5
Performance measure (%) obtained for different combinations (All features, brain
region, and feature level) using EBM model.

PM Combined Prefrontal Frontal Central Parietal Occipital Temporal Q3

ACC 99.81 94.39 99.14 96.35 98.21 92.93 91.83 99.59
SNS 99.78 93.62 98.97 96.88 98.36 91.42 90.51 99.44
SPF 99.84 95.40 99.36 95.70 98.02 95.03 93.67 99.79
F1 99.83 95.00 99.22 96.69 98.38 93.77 92.80 99.63
MCC 99.61 88.66 98.26 92.62 96.38 85.77 83.52 99.18
PRS 99.87 96.41 99.48 96.50 98.40 96.24 95.21 99.83
NPV 99.73 91.88 98.72 96.16 97.97 88.84 87.67 99.31
FDR 0.13 3.59 0.52 3.50 1.60 3.76 4.79 0.17
CSI 99.66 90.47 98.46 93.59 96.81 88.27 86.57 99.27

Table 6
Confusion matrix obtained using our proposed model.

ADHD HC

ADHD 99.87 (%) 0.13 (%)
HC 0.27 (%) 99.73 (%)

report of the proposed explainable model for different configurations.
It can be noted that our developed model has provided an effective
analysis in detecting ADHD and HC. The PM report reveals that our
model captured detailed information for each PM report. Lastly, we
have provided a percentage confusion matrix report shown in Table 6.
Our model can correctly detect 99.87% and 99.73% of ADHD and
HC EEGs. To evaluate the binary classification ability of our proposed
model, we have evaluated the receiver operating characteristics (ROC)
and the area under the curve (AUC) for all features, including the
frontal region, and the third quartile feature shown in Fig. 10. It
has been seen that an AUC of 100%, 99.95%, and 99.48%, for all
features, Q3 feature, and frontal region, respectively. The graphical and
numerical analysis shows that our model is accurate and effective.

Further, the interpretability of the glass-box model is analyzed using
univariate analysis to check the channel and feature ranking. For this,
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Fig. 10. ROC and AUC curve obtained for the proposed explainable and interpretable model: (a) All features, (b) Q3 feature, and (c) Frontal region.
the feature matrix of all the features for the frontal channel is used.
Similarly, for evaluating the score of each channel, a feature matrix
of channels is applied. The univariate score obtained for each feature
and channel are shown in Figs. 11 and 12. It can be interpreted that,
among entropy features, Shannon entropy and Tsallis entropy provided
the highest discriminability. Average amplitude change, wavelength,
mean deviation from max and mean deviation from range are among
the top distinguishable nonlinear measures, whereas third quartile,
median, and max are among the top-ranked statistical measures. Simi-
larly, frontal channels provide the highest discriminability for channel
analysis, specifically by Fz, followed by the parietal and central region
channels. To realize the practical implementation of our proposed
model in real-time, we have performed the accuracy analysis to get the
optimal feature combination. To accomplish this, we have used feature
and channel rank from univariate ranking. Based on the channel rank
obtained from Fig. 12, the most discriminant channel (Fz) is used. For
this channel (Fz), we have created a feature matrix for our developed
classifier based on the feature rank obtained in Fig. 11. The accuracy
provided by different combinations of features based on the univariate
ranking is shown in Fig. 13. It has been observed that with an increase
in the number of features, the accuracy tends to rise to a maximum
point of 98.71% with 17 features. After this optimum number of feature
combination, the accuracy of the model for a single channel either
remain the same of tend to reduce. Thus, the feature dimensionality
of our developed model is reduced significantly from 779 to only 17.
9

Lastly, we have performed a black-box analysis to study how the
decisions and predictions have been performed by our best-performing
glass-box model, i.e. the EBM classifier. The explanations for local
predictions have been carried out with LIME and SHAP explanations.
The LIME explanations for local predictions in channels are shown
in Fig. 14, whereas for features, local descriptions are illustrated in
Fig. 15. Fz has the greatest ability to collect insights into ADHD and
HC EEGs, according to the local explainability of the channels provided
by LIME. Similar to how channels like F8, Pz, Cz, and P7 often help to
collect local characteristics, it makes sense to trust these channels while
training the model. However, since they appear to be non-significant
in one or more instances, channels like Fp2, F4, O2, T8, and C3
cannot be entirely relied on to make predictions. In contrast, the third
quartile, average amplitude change, wavelength, fuzzy entropy, mean,
and integral EEGs are some of the most reliable characteristics when
investigating the capacity to generate local predictions produced in
feature-level analysis. Another well-known SHAP technique has been
applied to capture the details of local-level explainability. Figs. 16 and
17 illustrate the local-level explanations for channels and features. It
has been observed that SHAP explainability shows that Fp2, Fz, F7,
F4, Pz, Cz, P3, and P4 captures local predictions. These are the most
trusted channels to be relied upon while building a trainable model for
ADHD detection. Features like average amplitude change, wavelength,
third quartile, second moment, mean, and maxima can often be used
for ADHD detection by experts. Physicians and clinicians can also use
the features like Shannon and fuzzy to capture local details to build a
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Fig. 11. Feature rank obtained for each feature using univariate ranking.

Fig. 12. Channel rank obtained for each channel using univariate ranking.

Fig. 13. Variations of accuracy w.r. to the number of features.
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Fig. 14. Results obtained using LIME local explainability for different channels.
Fig. 15. Results obtained using LIME local explainability for various features.
trainable model. Similarly, the global explainability of the model ana-
lyzed by the PDP model shows that frontal channel and entropies (fuzzy
and Shannon) provide global discrimination, as shown in Figs. 18 and
19. Similarly, MS has also been used to study the explanations for
global prediction. Figs. 20 and 21 provide MS obtained for features
and channels. It can be observed from the Figures that Fz provides
contributions to overall predictions, Pz, F7, P3, P4, etc., contributes
towards overall predictions. Similarly, fuzzy entropy, Shannon entropy,
average amplitude change, wavelength, third quartile, Hjorth mobility,
mean deviation from range, etc., contribute significantly to the model’s
overall predictions during training and testing.

4. Discussion

Finally, it is compared with existing state-of-the-art techniques to
test the performance of VMD-HT. Table 7 shows the performance
comparison of VMD-HT with state-of-the-art using children’s ADHD
EEG dataset. It can be noted from this table that existing ADHD
detection models evaluate their model performance with limited per-
formance measures. Also, many models evaluated their performance
with a limited number of features, fewer subjects, and empirical choice
11
classification techniques. In such scenarios, the decision made by these
models is unreliable as it may not guarantee and yield similar per-
formance in a clinical scenario. Also, existing models provide decent
performance in ADHD detection when making decisions. But, users or
experts do not get any visibility into the model or steps that have
contributed to the final decision. Due to the absence of explanation
in these situations, clinicians frequently express their reluctance to em-
ploy such systems in clinical settings. Explaining the decision-making of
ML models may provide confidence to clinicians to employ such models
for ADHD detection. Therefore, we have presented an explainable
model for ADHD detection to overcome the above-mentioned issues.
Explainable frameworks assist clinicians to understand the decision-
making of the model. It provides insights into the model about the
overall decision-making and the features that contributed to the de-
tection of ADHD. Implementation of explainability has achieved three
benefits:

Trust in the ML model: The local and global explanations using visual
analysis provide transparent and interpretable reasoning about the
individual and overall predictions.

Improved troubleshooting: The use of explainability also improves
debugging of ML models. It also helps in troubleshooting the model’s
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Fig. 16. Results obtained using SHAP local explainability for various channels.
Fig. 17. Results obtained using SHAP local explainability for different features.
working. E.g. over time, if a model predicts HC EEGs as ADHD, trou-
bleshooting helps to identify the reason for the decision and try to
improve it.

Tackling bias and other potholes: With explainability, identifying
and correcting bias in the source is easy. It also helps in detecting
irregularities in the dataset.

Using explainability, our model has obtained the highest perfor-
mance using a relatively larger dataset (61 ADHD and 60 HC children)
as used by [25,26,32,35–38]. The combination of VMD-HT and an
explainable glass-box black-box model proposed for ADHD detection
12
has provided interpretable, effective, accurate, and explainable results.
The performance measures of 99.81%, 99.78%, 99.84%, 99.83%, and
99.87% ACC, SNS, SPF, F-1, and PRS, respectively show that the
proposed method is better than the existing state-of-the-art techniques
using the same even with a relatively large dataset. Our explainable
model has identified an optimal combination of brain regions, channel
labels, and feature sets yielded the highest model performance. The
explainable ADHD detection in this paper focused on explaining the
significance of features and channels contributing to high performance.
The explanations provided by our proposed model are limited to feature
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Fig. 18. Results obtained using PDP global explainability for various channels.
Fig. 19. Results obtained using PDP global explainability for different features.
engineering and channel selection for ADHD detection. However, our
model fails to explain the clinical significance and characteristics of
ADHD which are traditionally used by clinicians. It has also been
observed that our developed model has yielded high performance in all
the brain regions. Since we have tested our model on a single dataset,
the accuracy may vary from one dataset to another, resulting in low
accuracy on the same brain regions. The frontal area, specially Fz and
F8 channel labels combined with third quartile, fuzzy, and Shannon
entropies, capture minute changes in the irregularities of ADHD and HC
EEGs and contributed significantly to high performance. The findings
by our explainable model reported the significance of frontal regions,
Fz channel, and nonlinear features for ADHD detection [11,24,26,35].
The key features of our developed model are listed below.

• The model is accurate and effective as it has provided the highest
classification rate.
13
• It is robust and precise since it has been tested on different
scenarios (brain regions, feature analysis, and combined analysis).

• The model has obtained optimal performance with reduced di-
mensionality of only seventeen features and one channel.

• Our developed model is explainable and interpretable as it has
provided insight into the key predictors.

• It is efficient because it has been developed using a tenfold
cross-validation technique and surpassed SOTA techniques’ per-
formance.

However, the model has the following limitations:

• In this work, we have used EEG features instead of clinical
features. Hence, neurologists may find it difficult to understand
the model prediction results. Also, the explanation of EEG features
with SHAP may have little use.
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Fig. 20. Results obtained using Morris Sensitivity Convergence Index for global explainability for various channels.
Fig. 21. Results obtained using Morris Sensitivity Convergence Index for global explainability for different features.
Table 7
Summary of performance (%) comparison with other state-of-the-art techniques developed for automated detection of ADHD using EEG signals.

Authors (Year) Number of subjects Method used Performance measures (%)

ACC SNS SPF F-1 PRS

Khoshnoud et al. [19] (2017) 12 ADHD and 12 HC Band power, En, largest LE, and MSS 83.33 – – – –
Abibullaev and An [22] (2011) 7 ADHD and 3 HC PSD-based analysis 97 – – – –
Boroujeni et al. [24] (2019) 50 ADHD and 26 HC En, FD and CorrD, and LE 96.05 98 92.31 – –
Ogrim et al. [30] (2012) 62 ADHD and 36 HC Absolute power 85 85 85 – –
Snyder et al. [31] (2008) 97 ADHD and 62 HC Mean power and ratio of rhythms 89 87 94 – –
Zhang et al. [33] (2019) 50 ADHD and 58 HC BFN using PLI and CNN 94.39 97.83 91.8 – –
Allahverdy et al. [26] (2016) 29 ADHD and 20 HC Katz, Higuchi, Sevcik FD and LE 96.7 98.9 95.2 – –
Mohammadi et al. [25] (2016) 30 ADHD and 30 HC Non-linear features, DISR, and MLP 93.65 – – – –
Moghaddari et al. [32] (2020) 31 ADHD and 30 HC Frequency band separation and CNN 98.48 – 99 98.49 98.51
Khare et al. [29] (2022) 61 ADHD and 60 HC VHERS 99.95 100 99.89 99.9 99.91
Talebi et al. [35] (2022) 61 ADHD and 60 HC nCREANN 99
Bakhtyari et al. [36] (2022) 46 ADHD and 45 HC ConvLSTM 99.75 99.75 – 99.74 99.74
Ekhlasi et al. [37] (2021) 61 ADHD and 60 HC connectivity matrices 89.1 – – – –
Tanko et al. [38] (2022) 61 ADHD and 60 HC EPSPatNet86 97.19 97.12 – 97.15 97.18
Proposed 61 ADHD and 60 HC VMD-HT 99.81 99.78 99.84 99.83 99.87
• Due to the limited publicly available ADHD dataset in children,
the proposed model is tested on a single EEG dataset.

In the future, we plan to focus our study on detecting ADHD at an
early stage and also detecting other mental abnormalities like conduct
disorder (CD) and ADHD + CD.
14
5. Conclusion

The EEG signal does not provide significant discriminant infor-
mation. Hidden characteristics and representative data from EEG are
obtained in terms of amplitude envelope using VMD-HT. Our analysis
proves that the frontal region plays a crucial role in detecting ADHD
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in children. Also, Fz, F7, Pz, P7, and Cz channels are significant in
capturing local and global predictions. Also, entropy feature, specifi-
cally SHEN and FEN, nonlinear feature, i.e. AAC and WL, and Q3 and
MAX statistical features, have yielded the best performance in terms
of interpretability and explainability. These features capture not only
local-level prediction explainers but also provide global explanations.
We conclude that our developed model is not only accurate in ADHD
detection but also effective, robust, predictive, and explainable. Our
goal is to provide a model where the user can understand and cre-
ate instances of the prediction process to obtain model performance.
Healthcare organizations and research institutes constantly look for
predictive and explainable models for various brain disorders. Our
model is one such step to provide predictive and explainable for ADHD
detection. Specialists may use our model to detect children with ADHD,
transfer the knowledge about the predictions, and implement models
in hospitals/research institutes. We conclude our paper with following
major contributions

• Various brain regions have been analyzed to find the most suit-
able region for the detection of ADHD.

• Identification of most significant channel and optimal number of
features required to yield maximum performance.

• Explored a glass-box and black-box model interpretations using
an EBM model with four explainable characteristics (LIME, PDP,
SHAP, and MS) to find local and global explainability of the
model.

• Tested our developed explainable model using the ten-fold cross-
validation technique and compared the model performance with
existing SOTA classifications and ADHD detection techniques to
study the model robustness.
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