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The precise monitoring and timely alerting of river water levels represent critical measures aimed 
at safeguarding the well-being and assets of residents in river basins. Achieving this objective 
necessitates the development of highly accurate river water level forecasts. Hence, a novel hybrid 
model is provided, incorporating singular value decomposition (SVD) in conjunction with kernel-
based ridge regression (SKRidge), multivariate variational mode decomposition (MVMD), and the 
light gradient boosting machine (LGBM) as a feature selection method, along with the Runge–Kutta 
optimization (RUN) algorithm for parameter optimization. The L-SKRidge model combines the 
advantages of both the SKRidge and ridge regression techniques, resulting in a more robust and 
accurate forecasting tool. By incorporating the linear relationship and regularization techniques of 
ridge regression with the flexibility and adaptability of the SKRidge algorithm, the L-SKRidge model 
is able to capture complex patterns in the data while also preventing overfitting. The L-SKRidge 
method is applied to forecast water levels in the Brook and Dunk Rivers in Canada for two distinct 
time horizons, specifically one- and three days ahead. Statistical criteria and data visualization tools 
indicates that the L-SKRidge model has superior efficiency in both the Brook (achieving R = 0.970 and 
RMSE = 0.051) and Dunk (with R = 0.958 and RMSE = 0.039) Rivers, surpassing the performance of other 
hybrid and standalone frameworks. The results show that the L-SKRidge method has an acceptable 
ability to provide accurate water level predictions. This capability can be of significant use to academics 
and policymakers as they develop innovative approaches for hydraulic control and advance sustainable 
water resource management.

Keywords Water level forecasting, Singular value decomposition, Kernel ridge regression, Runge–Kutta 
algorithm, Light gradient boosting machine

Precise river water level predictions are imperative for flood alerts and efficient water resource management1–3. 
Researchers commonly use time series hydrological forecasting techniques to forecast future water level data. 
These forecasts provide significant insights into flood protection, catastrophe management, and resource 
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management2,4,5. Forecasting river water levels (WL) is crucial for planning and addressing climate-related 
problems due to its dependence on hydro-meteorological aspects and inherent uncertainty. Precisely forecasting 
river flow patterns over high, medium, and low ranges is a challenging endeavor owing to their distinct nonlinear 
dynamics and hydrological processes. This complexity requires the creation of developed data-driven models6–8.

Diverse methodologies are employed to develop water level models that incorporate physical processes9,10. 
While physical models delve into the mechanism and dynamics of river flow, their adaptability is restricted by 
predictand variables, catchment conditions, and model parameters11,12. Nonlinearities arising from hydrological 
interactions and the mutual dependence of hydrological factors impede the predictive accuracy of physical 
models13. In contrast, data-driven methodologies aim to identify relationships among variables affecting water 
flow. They tackle the nonlinear attributes of predictor variables14. In conclusion, physical approaches use partial 
differential equations with constraints on boundaries, but data-driven models depend specifically on input-
target parameter correlations, which simplifies model comprehending and reduces complexity.

The reliability of data-driven methods for water level prediction of rivers has been on the rise, as indicated 
by studies15–17. Employing artificial neural networks (ANN) as versatile tools, researchers have crafted single 
hidden layer of ANNs for forecasting both short-term18,19 and long-term11 variations in WL, treating the ANN 
as a black-box model. Wei created a forecasting methodology for river stages during typhoons in Taiwan’s 
Tanshui River Basin, comparing lazy (k-nearest neighbor (kNN) and locally weighted regression (LWR)) and 
eager (support vector regression (SVR), linear regression (REG), and artificial neural network (ANN)) learning 
approaches20. Using data from 50 typhoon events and hourly hydrological data from 1996 to 2007, results showed 
that ANN and SVR outperformed REG, while LWR was more effective than kNN, highlighting model-dependent 
performance. Deo and Şahin used the extreme learning machine (ELM) model to simulate average streamflow 
levels at three locations in eastern Queensland, showing its superiority compared to the ANN model16. The ELM 
model used nine predictors and ultimately resulted in acceptable precision measures (R2 = 0.964–0.997). Anh 
et al. developed a daily water level forecasting model based on the wavelet-ANN (WAANN) approach21. This 
method combined the benefits of wavelet method with ANN. Findings demonstrated that WAANN surpassed 
the conventional ANN model. Wang et al. devised a technique using a dilated causal convolutional neural 
network (DCCNN) which is capable of providing water-level predictions with lead durations ranging from 1 to 
6 h18. The model was tested on a dataset of 16 typhoon events in Taiwan. The findings showed that the DCCNN 
outperformed existing support vector machine (SVM) and multilayer perceptron (MLP) methods.

Zhu et al. utilized the feed forward neural network (FFNN) and Deep learning (DL) to forecast monthly lake 
water levels in 69 temperate lakes in Poland for one month ahead5. The research indicated that the FFNN and 
DL models exhibited strong performance, with just negligible differences. The results showed that traditional 
methods might be enough to forecast lake water level. Phana and Nguyen introduced a hybrid method that 
included linear and nonlinear models1. Their methodology combines statistical MLMs with autoregressive 
integrated moving average (ARIMA) for predicting water levels.

To assess its efficacy, they applied this method to real datasets from the Vu Quang, Hanoi, and Hung Yen 
hydrological stations, revealing significant improvements in forecasting performance compared to other methods. 
Barzegar et al. improved long-term water level forecasts for Lake Michigan and Lake Ontario by combining 
the boundary corrected maximal overlap discrete wavelet transform (BC-MODWT) data preprocessing with a 
hybrid convolutional neural network (CNN) and long-short term memory (LSTM) (CNN-LSTM) model22. The 
suggested model’s performance was compared with the BC-MODWT-based MLMs, including random forest 
(RF) and SVR. From the results, the CNN-LSTM model performed better than the other models. An effective 
method to enhance the lake water level forecasting accuracy was shown using the BC-MODWT-CNN-LSTM 
model.

Masrur Ahmed et al. presented a novel hybrid DL model for the prediction of short-term river water levels 
(SWL)15. This model integrates the CNN, bi-directional long short-term memory (BiLSTM), and ant colony 
optimization (ACO) with a two-phase decomposition technique over several prediction time horizons. By 
combining variational mode decomposition (VMD), complete ensemble empirical mode decomposition with 
adaptive noise (CEEMDAN), and efficient feature extraction approaches, the CVMD-CBiLSTM model attained 
a high level of accuracy. Jamei et al. developed research aimed at forecasting daily floodwater levels in Australia’s 
Clarence River at the Baryulgil and Lilydale stations from 2005 to 20212. Their novel methodology used a hybrid 
framework that integrated time-varying filter-based empirical mode decomposition (TVF-EMD) with feature 
selection using classification and regression trees (CART). Their results demonstrated that the CART-TVF-
EMD-CFNN model surpassed other models at both stations.

Zakaria et al. utilized three machine learning algorithms (i.e., multi-layer perceptron neural network (MLP-
NN), LSTM, and extreme gradient boosting (XGBoost)) to develop water level forecasting models for Malaysia’s 
Muda River23. The results showed that the MLP model had a higher accuracy of 0.871, which was superior to 
both the LSTM model (0.865) and the XGBoost model (0.831). Wang et al. evaluated five data preprocessing 
techniques VMD, wavelet packet decomposition (WPD), CEEMDAN, extreme-point symmetric mode 
decomposition (ESMD), and singular spectrum analysis (SSA)) in conjunction with a GRU model for forecasting 
monthly runoff24. The results showed that VMD and WPD increased accuracy. Xu and Wang25 presented an 
ensemble prediction model that employs least squares support vector machine (LSSVM) in conjunction with 
VMD, dung beetle optimization (DBO), and error correction (EC) to improve runoff forecast accuracy in the 
Ganjiang and Heihe River basins. The findings suggest that the proposed model could achieve high accuracy and 
enhance forecasts of extreme values.

Prior research has predominantly relied on the original version of MLMs and different types of optimization 
algorithms to derive optimal parameters22,26. The present study develops a novel version of Kernel Ridge regression 
(KRidge), called SKRidge, that combines the singular value decomposition (SVD) with Ridge regression. 
SKRidge enhances the precision and stability of the regression model by the integration of these two approaches. 
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This makes it a potential method for predictive modeling. The proposed hybrid method integrates Ridge with 
SKRidge to create a linearly related model known as L-SKRidge. The Runge–Kutta (RUN) algorithm is used to 
improve control parameters for the L-SKRidge model in WL forecasting. Prior research has demonstrated the 
effectiveness and frequent usage of the RUN algorithm in various model tuning applications27–29. Therefore, 
the main goal of the present study is to evaluate the efficiency and capacity of MLMs in predicting water levels 
at various time frames in the future. The goal is to develop a thorough and dependable tool for academics 
and professionals that are interested in using MLMs for making water level projections in the future that 
extend beyond a single step. To the best of the authors’ awareness, the study introduces a pioneering attempt in 
crafting a novel structure for the kernel ridge regression model. It incorporates multivariate variational mode 
decomposition (MVMD) for real-world hydrological forecasting and employs the MARCOS methodology to 
identify the best machine learning model.

Models background
The work aims to improve the accuracy and efficiency of regression analysis by using singular value 
decomposition (SVD) and Ridge regression to compute the regression parameters (ψ) for the KRidge model. 
SVD decomposes incoming data into orthogonal components, therefore separating salient characteristics. 
The regression variable (ψ) is derived from the SVD output. This enables the model to effectively utilize input 
variables. It captures complex relationships while maintaining stability against multicollinearity using Ridge 
regression’s L2 regularization.

To create the proposed model, L-SKRidge, it is systematically applied SVD to highlight essential features, 
computed the regression parameters (ψ), and refined them using Ridge regression. Eventually, L-SKRidge uses 
both strategies into a hybrid model that equilibrates the predictions of both the SKRidge and conventional Ridge 
procedures based on a linear combination. The suggested model is also optimized using the Runge–Kutta (RUN) 
method. This novel methodology seeks to significantly improve the precision and efficacy of regression analysis 
and provide a reliable instrument for forecasting.

To implement the proposed framework, several techniques are developed, including the proposed ML model, 
the optimization method, the measurement of alternatives and ranking according to compromise solution 
(MARCOS), the decomposition method, the feature selection approach, and the criterion evaluation. These 
methods are described at the following sections.

linear regression
Multiple linear regression (MLR)30 outlines the association between the input variable u and a set of target 
variables {x1, x2, …, xM }. A MLR with M independent variables can be represented as follows:

 u = ϕ0 + ϕ1x1 + ϕ2x2 + · · · + ϕmxm (1)

In Eq. (1), the training phase provides knowledge of the independent variables x and dependent variables y, and 
the primary task is to determine the regression coefficients (ϕ).

Ridge regression
Multicollinearity issues can complicate MLR models, leading to challenges in accurate estimation. This 
complexity often leads to increased variance in the estimated regression coefficients and wider confidence 
intervals, resulting in significantly reduced estimation accuracy and poorer stability31. In simpler terms, in the 
MLR, when regression coefficients are substantial, even slight shifts in the data can have a substantial impact on 
prediction outcomes31.

Ridge regression is utilized to streamline the model by diminishing the significance of less important 
coefficients. It employs L2 regularization to the fitness function of linear regression, transforming the coefficient 
solution problem into a conditional optimization challenge32. This approach aims to simplify the coefficients and 
enhance the method’s capability. The fitness function of ridge regression is defined in Eq. (2).

 
Z (ϕ) =

K∑
k=1

(uk − ϕ · xki)2 + η ∥ϕ∥2
2 (2)

where η has a positive amount. The η parameter is used to regulate the ∥ϕ∥2
2.

By derivative of Eq. (2), the parameter ϕ can be calculated by Eq. (3).

 ϕ =
(
xT x + µ0I

)−1
xT u (3)

where I  indicates the identity matrix, and µ0 expresses penalty coefficient. For computing the forecasted 
quantity, we establish the subsequent equation.

 ûRidge = Xϕ (4)

Saunders and Gammerman33 advocated employing kernel functions (Kr) for customizing Ridge Regression (RR). 
The kernel ridge regression (KRidge) technique33 is used to derive Eq. (5), which builds upon the fundamental 
research of Vapnik34.
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û = h (x) =

K∑
k=1

βkKr (x, xk) (5)

The kernel function (Kr (x, xk)) serves as a measure of relationship between variables, with the weights 
specified by βk . The procedure for establishing these weights includes optimizing the quantity of modifications 
applied to the fitness function.

 
Z (ϕ) =

K∑
k=1

(uk − ϕ · xki)2 + ηβT Krβ (6)

Consequently, Eq. (7) resembles Ridge Eq. (3) with the sole difference being the substitution of all dot products 
with the Kr through the kernel method. To obtain an accurate value for the coefficients α, they can be defined 
by Eq. (7).

 β = (Kr + µI)−1 XT u (7)

where U = (U1, . . . , Uk)T .

The KRidge employs the Kr as an input parameter to calculate the Kr. In this study, the matrix computation is 
accomplished through the utilization of an efficient wavelet function (WF). The proposed Kr can be formally 
formulated in Eq. (8)35.

 
Krij = cos

(
α × − (xi − xj)2

δ

)
× exp

(
− (xi − xj)2

4 × ρ

)
 (8)

where α,δ, and ρ demonstrates three main unknown parameters of kernel function. In this work, the RUN 
optimization algorithm is employed to specify the main parameters of Kr.

Singular value decomposition (SVD)
The SVD36 is a commonly used method for analyzing an input by separating it into different components, which 
allows for the discovery of several important and interesting qualities that are intrinsic to the original input. The 
SVD has the capability to decrease the number of dimensions by means of matrix decomposition. Given any i × n 
matrix X, the SVD decomposition can be represented as follows:

 Xi×n = Qi×iDi×nZT
n×n = QDZT  (9)

where D is a matrix where the only non-zero elements are on the diagonal. These diagonal elements represent 
singular values of the matrix X. According to Fig. 1, in order to mathematically express X, three matrices must 
be applied sequentially: scaling (D), rotation by (ZT ), and further rotation by Q. Also, the I represents identity 
matrix and the Q and Z matrices reflect unit orthogonal vectors, it follows that:

Fig. 1. Conceptualization of the SVD.
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 QT Q = I, ZT Z = I  (10)

Compute the regression variables employing the SVD and Ridge approaches.
In the present section, the SVD and Ridge approaches are used to calculate the regression parameters (ψ) for 
the KRidge model, which improves model precision. Here X can be substituted in Eq. (3) by its SVD derivation. 
Additionally, it will be performed calculations for (XTX) and (XXT):

 XTX = ZDQT QDZT = ZD2ZT  (11)

 XXT = QDZT ZDQT = QD2QT (12)

Applying Eqs. (11) and (12) in Eq. (3):

 ψ =
(
Z

(
D2 + µ0I

)
ZT

)−1
ZDQT u (13)

We can utilize the property that matrices H, J, and M adhere to the following relationship:

 (HJM)−1 = MH−1J−1 (14)

 

ψ =
(
ZT

)−1

︸ ︷︷ ︸
Equals Z
ZT Z = I

(
D2 + µ0I

)−1
Z−1Z︸ ︷︷ ︸
Equals I

DQT u

= Z
(
D2 + µ0I

)−1
DQT u

 (15)

According to37, Eq.  (3) can be resolved by employing SVD. Furthermore, matrix Q is identified as a lower-
dimensional matrix.

Hybrid SVD, KRidge, and ridge methods
This part provides a description of the proposed hybrid ML model to forecast the WL. In this regard, the KRdige 
uses the SVD to calculate the regression parameter (ψ). The SVD is applied to the input variables and allows the 
framework to generate more efficient inputs by simultaneously utilizing the properties of the Ridge and SVD 
approaches. Equation (16) is defined to construct the SKRidge.

 βnew = (Krnew + µI)−1 XT
newu (16)

in which

 XT
new = ψXT  (17)

 Krnew = Kr (Xnew, Xnew,j) (18)

Additionally, Eq. (19) is used to calculate the predicted variable (û).

 ûSKRR = Krnew · βnew  (19)

The objective of the present research was to improve the accuracy and efficiency of the framework. The proposed 
hybrid model (L-SKRidge) was developed by combining the SKRidge model with the Ridge approach through 
a linear connection. The hybrid model is shown as shown in Fig. 2. Pseudo code of the proposed model was 
presented in Algorithm 1.

 ûL−SKRR = θ · ûSKRR + (1 − θ) · ûRidge (20)

where θ has a positive amount within the range of [0, 1], and computed by the RUN algorithm.
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Algorithm 1. Pseudo-code of L-SKRidge method.

RUN optimization method
Recently, researchers have developed numerous optimization algorithms to address various optimization 
problems. However, many of these methods draw inspiration from nature and lack a strong mathematical 
foundation38,39. Therefore, this study employs a mathematically grounded optimization technique known 
as Runge–Kutta optimization (RUN). The Runge–Kutta optimization algorithm was formulated with the 
foundation of the Runge–Kutta method40. The enhanced solution quality operator and the Runge–Kutta search 
mechanism (SM) make up the algorithm’s two operators. The RUN algorithm’s primary steps are described in 
the following subsections.

Updating solutions
The RUN algorithm is based on the RK method, and employs the SM to modify the current solution (xk) at 
each iteration.

 
V1 =

{ (xrd1 + v · A · r · xrd1) + A · SM + γ · randn · (xrdb − xrd) ifrand < 0.5
(xrdb + v · A · r · xrdb) + A · SM + γ · randn · (xc1 − xc2) otherwise  (21)

Fig. 2. Schematic of the SKRidge model.
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where v is used to represent an integer with the value of either 1 or − 1; r expresses a random coefficient in the 
range of [0, 2]; xc1 and xc2 express two positions, selected randomly within the range of [1, N]; N expresses the 
population size; A indicates an adaptive coefficient; and γ expresses a random coefficient. SM  is formulated as:

 
SM = 1

6 (xRuKu) ∆x (21-1)

 xRuKu = w1 + 2 × w2 + 2 × w3 + w4 (21-2)

 
w1 = 1

2∆x
(rand · xw − ϑ · xb) (21-3)

 ϑ = round (1 + rand) · (1 − rand) (21-4)

 
w2 = 1

2∆x
(rand · (xw + a1 · k1 · ∆x) − (ϑ · xb + a2 · k1 · ∆x)) (21-5)

 
w3 = 1

2∆x

(
rand ·

(
xw + a1 ·

(1
2w2

)
· ∆x

)
− (ϑ · xb + a2 ·

(1
2w2

)
· ∆x

)
 (21-6)

 
w4 = 1

2∆x
(r · (xw + a1 · w3 · ∆x) − (ϑ · xb + a2 · w3 · ∆x)) (21-7)

where xw and xb indicate the worst and best positions; and a1 and a2 express two random numbers within the 
range of [0, 1]. ∆x is formulated as:

 ∆x = 2 · rand · |D| (21-8)

 D = rand · ((xb − rand · xavg) + χ) (21-9)

 
χ = rand · (xk − rand · (U − L)) · exp

(
−4 · It

MIt

)
 (21-10)

where D indicates a random differential vector; U  and L express the upper and lower bound; It indicates the 
iteration count; MIt indicates the upper limit for the number of iterations; and xavg  indicates the average of 
solutions at each iteration. In this research, xw and xb express as follows:

 

iff (xk) < f (xbst,k)
xb = xk

xw = xbst,k

else

xb = xbst,k

xw = xk

end

 (21-11)

where xbst,k  represents the best solution that was achieved from three different solutions that were chosen 
randomly (xc1, xc2, and xc3). A is formulated as:

 A = 2 · (0.5 − rand) × F  (21-12)

 
F = 10 × exp

(
−12 · rand ·

(
It

MIt

))
 (21-13)

xrdb and xrd1 are given by:

 xrdb = ω × xk + (1 − ω) × xc1 (21-14)

 xrd1 = ω × xbest + (1 − ω) × xlbest (21-15)

where ω represents a number that has been independently generated and falls within the range of 0 to 1; xbest 
indicates the best solution explored so far; and xlbest expresses the best position attained during the ongoing 
iteration.

Enhanced solution quality (ESQ)
RUN utilizes a robust operator termed the enhance solution quality (ESQ), denoting enhanced solution quality, 
to elevate solution quality and prevent the occurrence of local solutions. The RUN algorithm creates solution V1 
by employing the following method to carry out the ESQ operator.
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ifrand < 0.5
ifw < 1

V1 = xnew + φ · β · |(xnew − xavg) + randn|
else

V1 = (xnew − xavg) + φ · β · |(2 · rand · xnew − xavg) + randn|
end

end

 (22)

 
β = rand (0,2) · exp

(
−τ ·

(
It

MIt

))
 (22-1)

 
xavg = xc1 + xc2 + xc3

3
 (22-2)

 xnew = Ω × xavg + (1 − Ω) × xbest (22-3)

where Ω represents a random number that generates between 0 and 1. Additionally, τ  signifies another random 
number, specifically 5 ×rand value, while φ represents an integer with possible values of 1, 0, or − 1.

As solution V1 might not yield a superior objective function result compared to solution xk  (i.e., where 
f (V1) > f(xk)), an additional attempt is made to generate a potential solution. This new solution, denoted as 
xnew3, is constructed through the following formulation:

 

if rand < ϱ

V1 = (V1 − rand · V1) + AF · (rand · xRuKu + (2 · rand · xb − V1))
end

 (23)

in which

 
ϱ = rand (0, 2) × exp

(
−5 · rand ·

(
It

MIt

))
 (24)

In Eq. (23), ϱ represents a dynamic parameter, and its value decreases over the last iteration. The Flowchart of 
RUN algorithm was depicted in Fig. 3.

Measurement of alternatives and ranking according to compromise solution (MARCOS)
Analysis of many options in a given context is the focus of multi-criteria decision making (MCDM), a field of 
study with applications across many disciplines41. The MCDM is quickly becoming one of the most widely used 
decision-making techniques across many different fields. In this investigation, the problem was solved with the 
assistance of MARCOS due to its consistency and convenience of use with utility-based features in terms of both 
negative and positive solutions. The following is a description of the steps involved in the MARCOS method:

Step 1: Consider P  as the set of decision criteria (P = {P1, P2, . . . , Pj}) and B as the set of alternative 
routes (B = {B1, B2, . . . , Bl}). We begin by constructing an initial decision-making matrix. In this 

Fig. 3. Flowchart of RUN algorithm.
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matrix, AIS = {xais1 , xais2, . . . , xaisj} represents the anti-ideal solution in the first row, while 
IS = {xis1, xis2 , . . . , xisl } represents the ideal solution in the last row. Therefore, the initial enlarged decision-
making matrix is structured as outlined below:

 

Matrix =




xais1 xais2 . . . xaisl

x11 x12 . . . x1l

x21 x22 . . . x2l

. . . . . . . . . . . .
xj1 xj2 . . . xjl

xis1 xis2 . . . xisl


 (25)

where AIS and IS represent the least favorable and most favorable attributes for each decision criterion. 
Here, xij  corresponds to the performance of method i concerning decision criterion j. l denotes the number of 
methods, and j signifies the number of decision criteria, with i ranging from 1 to l and k ranging from 1 to j. The 
attribute values are computed using Eqs. (26) and (27)42.

 
AIS = min

i
xik if j ∈ B, max

i
xik if k ∈ nB (26)

 
IS = max

i
xik if j ∈ B, min

i
xik if k ∈ nB (27)

where B and nB pertain to the advantageous and disadvantageous decision criteria.

Step 2: The initial normalized decision matrix, denoted as E = [eij ]k×j , is formed using the properties of 
decision criteria as defined in Eqs. (28) and (29):

 
eij = xis

xij
if k ∈ nB (28)

 
eij = xij

xis
if j ∈ B (29)

where eij  denotes the normalized attribute of method i and decision criterion j.

Step 3: The original weighted normalized decision matrix, denoted as S = [sij ]k×j , is created by multiplying the 
normalized characteristic with its associated weight as described in Eq. (30):

 sij = eij × wj  (30)

where wj  indicates the weighted normalized amount of method i and decision criterion j.

Step 4: The utility degrees of AIS and IS are calculated utilizing Eqs. (31) and (32):

 
g+

i = Ci

Cisi
 (31)

 g−
i = Ci

Caisi
 (32)

where Ci (i = 1, 2, . . . , j) indicates the sum of the elements of matrix s, which is calculated by Eq. (33).

 
Ci =

j∑
k=1

Cik  (33)

Step 5. Formulating the utility function (UF) for the evaluated option possibilities as specified in Eq. (34).

 

f (gi) = g+
i + g−

i

1 + 1−f(g+
i )

f(g+
i ) + 1−f(g−

i )
f(g−

i )
 (34)

The UF related to the AIS is denoted as f
(
g−

i

)
, and the UF associated with the IS is expressed as f

(
g+

i

)
. These 

functions can be computed utilizing Eqs. (35) and (36) respectively.

 
f

(
g−

i

)
= g+

i

g+
i + g−

i

 (35)
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f

(
g+

i

)
= g−

i

g+
i

+g−
i

 (36)

where f
(
g−

i

)
 and f

(
g+

i

)
 represent the positive and negative UFs of method i.

Decomposition method
To decompose the input dataset in this study, the MVMD method introduced by43 was used. The MVMD 
technique takes the standard variational mode decomposition (VMD) and expands it to a space with more than 
one dimension. The technique guarantees mode alignment across different variables and adds a useful feature 
for managing multivariate data43. In contrast to EMD, which use recursive filtering, MVMD makes advantage 
of the common frequency components that are present in multivariate datasets in order to produce intrinsic 
mode functions (IMFs). Below are the comprehensive stages of MVMD applied to input data x(t), composed of 
N channels, depicted as [x1 (t) , x2 (t) , · · · , xN (t)]:

 (1)  Let’s consider the presence of M multivariate modulated fluctuations ζl (t) that satisfy the following as-
sumption:

 
x (t) =

M∑
l=1

ϱl (t) (37)

where ϱl (t) = [ϱl,1 (t) , ϱl,2 (t) , · · · , ϱl,N (t)], and ϱl,N (t) , l = 1, 2, · · · , N  represents the data’s -th element 
corresponding to channel n.

 (2)  To acquire the analytical representation ϱl
+ (t) for each vector in ϱl (t), the Hilbert transform is applied 

to calculate the one-sided frequency spectrum (OSFS). Subsequently, a complex exponential e−jψlt with 
a central frequency ψl (t) is utilized to implement harmonic combination and shift the resultant OSFS to 
the baseband. The last step involves calculating the L2 norm of the gradient function of the harmonically 
conveyed ϱl

+ (t) to provide an estimate of the bandwidth of each mode ϱl (t).

 Because a singular frequency element (FE) ψl (t) is used to execute harmonic combining of the full vector 
ϱl

+ (t), it is essential to locate a common FE for multivariate fluctuations ϱl (t) throughout multiple chan-
nels. This is because a single FE is used to carry out harmonic combining of the whole vector. Therefore, it 
is necessary for the collective influence of the IMFs to possess the capability to accurately decompose the 
original signal, while simultaneously minimizing the total bandwidth of the IMFs. Given the underlying 
assumption, the corresponding optimization problem with constraints could be expressed in the following 
manner43:

 

minmize
{ϱl,m(t)},{ψl}

{∑
l

∑
n

∥∥∥∂t

[
ϱl,n

+ (t) e−jψlt
]2

2

∥∥∥
}

subject to
∑

l

ϱl,n (t) = xn (t) , n = 1, 2, . . . , N
 (38)

where ϱl,n
+ (t) indicates the analytical modulated signal associated with l in channel n; {ϱl,n (t)} represents a 

set of multivariate modulated oscillations; ∂t [·] denotes the partial derivative with respect to time; and {ψln} 
indicates to a set of center frequencies of {ϱl,n (t)}.

 (3)  To solve the variational problem that was described before, the additional Lagrange function is used as 
shown previously.

 

L ({ϱl,n (t)} , {ψl} , σn (t)) = φ
∑

l

∑
n

∥∥∂t

[
ϱl,n

+ (t) e−jψlt
]∥∥2

2
+

∑
n

∥∥∥∥∥xn (t) −
∑

l

ϱl,n (t)

∥∥∥∥∥

+
∑

n

〈
σn (t) , xn (t) −

∑
l

ϱl,n (t)

〉  (39)

where φ represents the penalty factor; σn (t) indicates the Lagrange multiplier; ⟨·, ·⟩ stands for the vectors’ inner 
product.
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 (4)  To continually update the variables ϱl,n (t) , ψl and σn (t) in the frequency domain for a certain difficult 
unrestricted variational problem described in Eq. (40)43, the alternative direction technique of multipliers 
is utilized.

 

ϱ̂k+1
l,n (ψ) =

x̂n (ψ) −
∑

i̸=l
ϱ̂l,n (ψ) + σ̂c(ψ)

2

1 + 2θ (ψ − ψl)2

ϕk+1
l (ψ) =

∑
n

∫∞
0 ϕ |ϱ̂l,n (ψ)|2 dψ∑

n
∫∞

0 |ϱ̂l,n (ψ)|2 dψ

σ̂k+1
n (ψ) = σ̂k

n (ψ) + ϕ

[
x̂n (ψ) −

∑
l

ûk+1
l,n (ψ)

]
 (40)

where the signals in the frequency domain reflect the Fourier transform of the signals in the related time frame 
and are indicated by the notation xn (ψ) and σn (ψ), respectively. The number of iterations is represented 
by the parameter k, whereas the time step is represented by the variable. By using the aforementioned update 
algorithms, it is feasible to dynamically divide the signal’s bandwidth, leading to the formation of M narrow-
band IMFs. In addition, the MVMD algorithm has the ability to simultaneously handle numerous data channels. 
This functionality not only guarantees precise mode alignment across numerous channels but also enhances the 
resilience of the signal decomposition process.

Feature selection
The existence of a large number of characteristics, which might make it difficult to recognize patterns, is a 
problem that often arises in the course of data analysis. As a result, one typical strategy is to make use of a feature 
selection technique with the end goal of reducing the total number of features44,45. In this regard, the light 
gradient boosting machine (LGBM) method is employed to specify the most important input variables. The 
LGBM is a highly efficient and scalable gradient boosting system that utilizes decision tree (DT) algorithms46. It 
is characterized by its quick execution, distributed computing capabilities, and superior efficiency. Many other 
machine learning applications use it for classification and feature selection. LGBM is an ensemble technique 
that combines the outputs of many decision trees (by a simple arithmetic addition) to generate a robust 
generalization46,47.

To develop an LGBM model with T trees, the iterative training process for a dataset of n data points can be 
described as follows46:

 
ŷ

(it)
i =

n∑
j=1

hn (xj) = ŷ
(it−1)
l + hit (xj) (41)

where ŷ(it)
i  indicates the estimation amount of the j-th at it-th iteration. The hit represents function for it-th 

DT.

The hs of each iteration can be determined by minimizing the following loss as much as feasible.

 
L(it) =

it∑
n=1

f
(

yj , ŷ
(it)
i

)
+

Mit∑
it=1

ω (hit) (42)

The initial term represents the loss function between the actual and predicted values, while the regularization 
component is composed of ω (hit). LGBM stands as an implementation of gradient boosting decision trees 
(GBDT). LGBM uses two distinct strategies across the training and partitioning of each individual DT (h): 
gradient-based one-side sampling (GOSS) and leaf-wise growth. Consequently, the LGBM model is used to 
identify the best features for the WL forecasting in this study.

Criterion evaluation
The ability of each MLM was assessed utilizing seven statistical metrics: R (correlation coefficient), Nash–Sutcliffe 
efficiency (NSE), RMSE (root-mean-square error), index of agreement (IA), U95% (uncertainty coefficient at a 
95% confidence level), MAPE (mean absolute percentage error), and maximum absolute error (MaxAE)28,48,49. 
Statistical criteria were used to assess the accuracy and reliability of the models. The following equations outline 
the mathematical relationships for the criteria.
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R =
∑N

k=1

(
W LM,k − W LM

)
×

(
W LF,k − W LF

)
√∑N

k=1(W LM,k − W LM )2 ×
∑N

k=1(W LF,k − W LF )2
 (43)

 

RMSE =

√√√√ 1
N

N∑
k=1

(W LM,k − W LF,k)2 (44)

 MaxAE = maxk=1,...,N |W LM,k − W LF,k| (45)

 
MAP E = 1

N

N∑
k=1

∣∣∣∣
W LM,k − W LF,k

W LM,k

∣∣∣∣ × 100 (46)

 
IA = 1 −

∑N

k=1 (W LF,k − W LM,k)2

∑K

k=1

(∣∣(W LF,k − W LF

)∣∣ +
∣∣(W LM,k − W LM

)∣∣)2 , 0 < IA ≤ 1 (47)

 U95% = 1.96
√

SD2 + RMSE2 (48)

 
NSE = 1 −

∑N

k=1 (W LM,k − W LF,k)2

∑N

k=1

(
W LM,k − W LM

)2  (49)

where the W LF,k  and W LM,k  indicate the forecasted and measured values of the WL, respectively. The averages 
of forecasted and measured values are determined by W LF  and W LM , respectively. N represents the size of 
the data collection, whereas SD represents the standard deviation. A suitable MLM would provide R and NSE 
values of 1, signifying perfect correlation and precision. Additionally, it would provide MAPE, RMSE, U95%, and 
MaxAE values of 0, indicating the best effectiveness.

Modelling development
This research has developed a new modern intelligent framework for multi-temporal forecasting of the river 
water level in two case studies of Atlantic Canada province, Prince Edward Island (PEI). The aim of this research 
is to several hydro-meteorological signals like F, H, P, T, DP, and HD have been dedicated in the in Dunk and 
Brook Rivers over the 01/01/2015 to 31/12/2019. The MVMD decomposition constitutes the modern hybrid 
model, LGBM feature selection, and MCDM-based SVD-Kernel ridge regression scheme optimized by the RUN 
mathematical foundations algorithm to forecast the river WL. Also, to validate the primary model (MVMD-
L-SKRidge), four advanced models, namely LASSO (Least Absolute Shrinkage and Selection Operator), 
CFNN, KRidge (Kernel Ridge Regression), and dRVFL (Deep random vector functional Link), were adopted 
in complementary (MVMD-KRidge, MVMD-dRVFL, MVMD-LASSO, and MVMD-CFNN) and standalone 
counterpart frameworks.

Here, the MVMD decomposition technique is performed in MATLAB programming tool. The rest of the 
model is developed in the Python platform using the MEALPY50, Scikit-learn51, and LGBM open-source 
libraries. All computational attempts have been performed on a laptop with the 3.10 GHz Intel Core i7 CPU and 
8 GB RAM. All the modeling stages can be seen as a roadmap, as shown in Fig. 4. The main steps in the figure to 
forecast water level in Brook and Dunk Rivers are described as follows:

 1.  Data collection: The first step is to gather time series datasets t forecast water level in the Dunk and Brook 
rivers in Canada. In this regard, seven parameters (F, WL, T, HD, P, DP, and H) are gathered.

 2.  Feature selection: The LGBM method is used to select the most important features to predict water level fluc-
tuations.

 3.  Time lag selection: Auto-Correlation Function (ACF), partial Auto-correlation function (PACF), and 
cross-correlation (CrC) analysis are employed to identify appropriate time lags.

 4.  Decomposition of input variables: Decomposition of input variables is carried out by the use of the MVMD 
technique. Various oscillatory patterns within the data can be discovered using the process of decomposing 
variables into IMFs.

 5.  Feature importance in decomposed signals: The LGBM method is once again used to identify the most signifi-
cant IMFs. This stage guarantees the selection of the most important elements of the decomposing signals to 
decrease the dimension and more precise forecasts.

 6.  Modeling and forecasting: Five ML models (LASSO, CFNN, KRidge, dRVFL, and L-SKRidge) are implement-
ed to forecast the water levels at both rivers.

 7.  Model evaluation with MARCOS method: The MARCOS method is applied to determine the best model. This 
method uses seven metrics (R, RMSE, MAPE, NSE, IA, MaxAE, and U95%) to specify the best model.

 8.  Graphical analysis for model assessment: Different graphical tools are used to evaluate and verify the ML 
models even further. These comprise scatter plots to compare model predictions against actual observations, 
violin plots to show relative error’s distribution and spread, Taylor plots to summarize model performance 
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in pattern and amplitude terms, and empirical cumulative distribution function (ECDF) plots to evaluate the 
forecast error distribution among models.

 9.  Specify and best model: Graphical analysis and statistical metrics is used to select the best model for predict-
ing water levels in the Brook and Dunk rivers. These evaluations ensure that the selected model not only 
predicts the actual dataset well, but also provides reliable and precise forecasts.

The main steps to prepare the input for the machine learning models are outlined as follows:
Step 1: Optimal estimation of the significant features for standalone models.
Prior to applying any pre-processing procedures, the datasets are separated into 70% training and 30% testing 

subsets. This division is required to develop an artificial intelligence model capable of forecasting WL on a 
multi-temporal daily basis. In the first stage, all the meteorological factors were assessed to recognize the most 
important for every horizon and case study separately. Due to this, the LGBM feature (LGBM-FS) scheme has 
been implemented to evaluate all the features based on the importance values. Figure 5 and Appendix A depict 
the variation of the feature importance values of LGBM-FS for the Brook River. According to the results, it can 
be concluded that for all the underlying case studies, the F, H, and DP with the higher importance values have 
considered the influential feature to construct the forecasting models.

Step 2: Specify the time-lags.
Given the highly non-stationary nature of the input signal, a robust technique is required to estimate the sub-

sequence lags associated with optimal input features from the previous pre-processing stage. In this regard, in 
order to characterize the significant lags, sub-components of input signals for simple (standalone) models were 
extracted using ACF and the PACF associated with each selected input signal, including F, H, and DP in Brook 
and Dunk Rivers, for the -one and -three days ahead were computed for 20 lags to survey the best antecedent 
sub-components aimed at the hybrid model configuration. The results of ACF are displayed in Appendix B. In 
addition, the results of PACF are in Fig. 6. Based on the ACF, selecting the optimal time lags was challenging; 
therefore, the PACF was used. According to Fig. 6, the first three lags equivalent to the antecedent information 
associated with the previous three days were adopted as proper input features for reconstructing the simple 
(standalone models) in one and three days ahead horizons. In this research, to further confirm the selection 
of time lags, the cross-correlation (CrC) method was also applied (Fig. 7). Based on this figure and the PACF 
results, the first three lags were chosen to forecast the WL at the two stations.

The MVMD approach decomposed all the input features to minimize signal complexity before putting them 
into the ML models. This was done to create the complimentary models. Figure 8 demonstrates the decomposed 
sub-components of the discharge flow parameter using the MVMD technique as a sample of the signal 

Fig. 4. Graphical steps of WL forecasting using the proposed framework.
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decomposition process. Here, the mode decomposition number (k) is the most important tuning parameter 
of the MVMD method, and it is a crucial component in achieving satisfactory precision. It is used a trial-and-
error approach to determine the optimal value of k at each station. Following the aforementioned method, the 
best value of (k) for the Dunk River was 12 and for the Brook River it was 10. The default settings for the other 
setup parameters were used as a starting point: 2000 for Alfa, 10–7 for tolerance, zero for DC, and zero for Inti. 
The next step is to apply the three-lag time sub-sequences to the decomposed signals related to the features that 
were chosen. In order to improve the forecasting procedure’s precision and decrease computing costs, the most 
important components have been filtered through the LGBM-FS method. This process is executed with 30% of 
the whole dataset. The most promising decomposed features calculated using MVMD were selected from the 
pool to use in the ML models. Figure 9 reveals the results of the LGBM-FS technique for filtering the significant 
sub-components related to all the constructive features in the Brook and Dunk Rivers of PEI. It should be noted 
that the results of Dunk River are depicted in Appendix A.

Step 3: Machine learning configuration and tuning hyperparameters.
One of the most important phases of developing forecasting models is tuning ML model parameters. 

Using non-optimal hyperparameters could decrease the models’ precision and lead to an unfair comparison 
between the comparative prediction methods. For this purpose, the RUN method was used to optimize the 
main parameters (θ) of the L-SKRidge method. Notably, the main parameters of the other ML models (KRidge, 
LASSO, CFNN, and dRVFL) are optimized using the RUN algorithm. Tables 1 and 2 report the optimal values 
of the hyperparameter related to the ML models for Brook and Dunk Rivers, respectively. For instance, the main 
hyperparameters of the dRVFL and CFNN are the number of layers, neuron number, activation function, and 
hidden layer neuron number, respectively, their adjustments are more complicated than the KRidge and LASSO 
models.

The datasets were normalized within the range of [0, 1] before they were utilized as inputs for the model’s 
goal and predictor variables. This normalization procedure guaranteed that each variable had a similar order of 
magnitude. A linear-based normalization technique was used to achieve this, which can be stated as follows52:

 
XN = XReal − XMIN

XMAX − XMIN

where XN  represents normalized input data, XReal represents real-time values data, XMIN  represents the 
minimum real-time values, and XMAX  denotes the maximum real-time values.

Case study and data preparation
The main aim of the present research is to evaluate the efficiency and ability of MLMs to forecast water levels in 
multiple steps in the future for two rivers, Brook and Dunk, situated in the Prince Edward Island (PEI) province 
near the Gulf of Saint Lawrence in Canada. Figure 10 shows the geographical location of the Brook and Dunk 
Rivers in PEI. The Carruthers Brook Station near St. Anthony (Station No. 01CA003) is located on Brook River 
at 46° 44′ 38″ N latitude and 64° 11′ 13″ W longitude and has a gross drainage area of 46.8 km2. The Dunk River 
Station at Wall Road (Station No. 01CB002) is on the Dunk River at a latitude of 46° 20′ 45″ N and longitude of 
63° 38′ 00″ W, a gross drainage area of 114 km2 (https://wateroffice.ec.gc.ca/).

The Brook and Dunk Rivers on PEI are significant for their ecological, agricultural, and recreational aspects. 
Both rivers provide essential habitats for wildlife, facilitate local agriculture via water supply and drainage, 

Fig. 5. Significant feature extraction using the LGBM FS scheme for every horizon and case study.
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and enhance PEI’s natural ecology. The Brook and Dunk rivers are significant for flood control, water quality 
management, and provide recreational activities like fishing and canoeing, therefore improving the surrounding 
community’s quality of life. Studies on the Brook and Dunk Rivers have shown problems with agricultural 
runoff, sedimentation, and nutrient leaching. Attempts at water level monitoring by the PEI Department of 
Environment, Energy and Climate Action show that phosphorus and nitrogen levels often surge during spring 
runoff, hence possibly degrading water quality and causing algal blooms54,55. Additionally, seasonal variations 
in water levels are prevalent, with heightened runoff occurring during spring thaw and intense precipitation, 
potentially leading to localized floods and impacting agricultural output56,57 by eroding the topsoil. Effective 

Fig. 6. PACF examination of all the input features to construct the feeding components of the complementary 
models.
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monitoring of water levels using modern techniques may enhance watershed management plans to safeguard 
PEI’s freshwater resources58.

According to an analysis of historical hourly meteorological reports and model reconstructions from 1980 
to 2016, the climate of PEI is characterized by moderate summers, cold winters with snow and wind, and partly 
cloudy throughout the year (https://weatherspark.com). July is the hottest month of the year in PEI (average 
maximum temperature of 24 °C), and January is the coldest month with an average minimum temperature of 

Fig. 7. The outcomes of cross correlation to estimate the significant lags of the selected input features related to 
the simple models based on the importance values of the ten lags.
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− 9 °C. Rainfall in PEI occurs continuously throughout the year. October is the wettest month (average rainfall 
of 60 mm), and February is the driest month (average rainfall of 15 mm). There is significant seasonal variation 
in monthly snowfall in PEI. February has the highest snowfall, with an average snowfall of 142 mm.  (   h t t p s : / / w 
e a t h e r s p a r k . c o m     ) .  

To develop a multi-step-ahead water level forecast model for the Brook and Dunk rivers, hydrological and 
meteorological parameters obtained from the stations in the study area were utilized as input data (from 2015 to 

Fig. 8. MVMD-based decomposition process of discharge signals as the sample in Boork (A) and Dunk (B) 
Rivers.
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2019 with daily time-step). The parameters are water level (m) (WL), flow (m3/s) (F), heat degree days (°C) (HD), 
total precipitation (mm) (P), mean temperature (°C) (T), relative humidity (%) (H), and dew point temperature 
(°C) (DP). Table 3 presents the statistical summaries of the parameters employed to develop the ML model.

For the Brook River, the data sets of T (°C), HD (°C), DP (°C), and H (%) collected from Carruthers 
Brook Station have distributions of approximately symmetric (-0.34 < Skewness < 0.28) and close to normal 
(2.01 < kurtosis < 2.63). Also, at the Brook River, the data sets of the Total Precipitation (mm), Flow (m3/s), and 

Fig. 9. Outcomes of the LGBM-FS scheme on the most effective sub-components extraction among available 
pool of decomposed sub-sequences in every horizon for Brook river.
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Level (m) are extremely skewed (Skewness values > 1) and with high positive values of Kurtosis (> 3) indicating 
Leptokurtic distribution (Table 3).

For the Dunk River at the Dunk River Station, the data sets of T (°C), HD (°C), DP (°C), and H (%) with 
skewness values between [− 0.5, 0.5] are nearly symmetrical and close to normal distributions (0 < Kurtosis < 3). 
The data sets of Total Precipitation (mm), Flow (m3/s) and Level (m) with Skewness values [6.57, 2.34] are 

Time horizon Models Tuning parameter models

t + 1

Simple-ML

L-SKRR α = 3.07E + 01, δ = 1.42E + 02, ρ = 2.07E + 01, µ = 1.63E − 07, µ0 = 9.36,θ = 0.65
KRidge α = 6.66E + 10, δ = 1.98E + 12, ρ = 1.73E + 12,µ = 1.73E − 13

dRVFL NoLs = 4, NoNs = 10, Scf = 200, Acf = sign, C = 2.00E+10

LASSO Alpha = 1.00E−10

CFNN Structure = [5 5 1]

MVMD-ML

L-SKRR α = 1.06E + 02, δ = 3.16E + 01, ρ = 1.64E − 01, µ = 1.12E − 03, µ0 = 2.05E − 08,θ = 0.82
KRidge α = 6.66E + 10, δ = 1.98E + 12, ρ = 1.73E + 12,µ = 1.73E − 13

dRVFL NoLs = 10, NoNs = 20, Scf = 200, Acf = sign, C = 2.00E+10

LASSO Alpha = 1.00E−06

CFNN Structure = [3 3 1]

t + 3

Simple-ML

L-SKRR α = 1.98E + 01, δ = 5.84E + 00, ρ = 2.00E + 01, µ = 2.71E − 04, µ0 = 1.81E − 05,θ = 0.64
KRidge α = 2.24E − 05, δ = 7.99E + 02, ρ = 2.00E + 03,µ = 7.99E − 02

dRVFL NoLs = 5, NoNs = 20, Scf = 300, Acf = sign, C = 2.00E+10

LASSO Alpha = 1.00E−04

CFNN Structure = [4 3 1]

MVMD-ML

L-SKRR α = 1.00E − 20, δ = 3.52E + 02, ρ = 2.19E − 02, µ = 1.02E − 01, µ0 = 1.45E − 03,θ = 0.82
KRidge α = 4.82E + 01, δ = 1.98E + 03, ρ = 2.00E + 03,µ = 2.47E − 02

dRVFL NoLs = 5, NoNs = 100, Scf = 200, Acf = sign, C = 2.00E+10

LASSO Alpha = 1.00E−10

CFNN Structure = [3 3 1]

Table 2. Adjust the control parameter quantities for simple-ML and MVMD-ML models to forecast the future 
behavior of Dunk.

 

Time Methods Values of parameters

t + 1

Simple-ML

L-SKRR α = 1.98E + 02, δ = 2.04E + 01, ρ = 2.98E − 01, µ = 1.71E − 03, µ0 = 1.96E − 6,θ = 0.71
KRidge α = 3.59E + 09, δ = 2.00E + 12, ρ = 5.17E + 08,µ = 1.00E − 12

dRVFL NoLs* = 10, NoNs = 20, Scf* = 200, Acf = sign, C = 1.00E+10

LASSO Alpha = 0.001

CFNN Structure = [5 3 1]

MVMD-ML

L-SKRR α = 1.62E + 10, δ = 7.75E + 09, ρ = 2.14E + 09, µ = 1.00E − 12, µ0 = 1.00E − 3,θ = 0.62
KRidge α = 4.69E + 09, δ = 2.00E + 12, ρ = 2.56E + 08,µ = 4.63E − 14

dRVFL NoLs = 20, NoNs = 300, Scf = 800, Acf = sign, C = 1.00E + 08

LASSO Alpha = 1.00E-08

CFNN Structure = [4 3 3 1]

t + 3

Simple-ML

L-SKRR α = 5.30E + 00, δ = 8.37E + 00, ρ = 1.29E − 02, µ = 3.47E + 00, µ0 = 9.73,θ = 0.74
KRidge α = 5.12E + 08, δ = 3.49E + 11, ρ = 1.16E + 11,µ = 1.00E − 12

dRVFL NoLs = 5, NoNs = 50, Scf = 10, Acf = sign, C = 1.00E+10

LASSO Alpha = 1.00E−04

CFNN Structure = [5 5 1]

MVMD-ML

L-SKRR α = 1.04E + 04, δ = 1.92E + 04, ρ = 1.91E + 03, µ = 1.00E − 10, µ0 = 0.78,θ = 0.54
KRidge α = 1.00E − 12, δ = 1.49E + 10, ρ = 9.49E + 09, µ = 1.00E − 10, 

dRVFL NoLs = 10, NoNs = 150, Scf = 100, Acf = sign, C = 1.00E+10

LASSO Alpha = 1.00E−10

CFNN Structure = [3 3 1]

Table 1. Adjust the control parameter quantities for simple-ML and MVMD-ML models to forecast the 
future behavior of Brook. NoNs* = Number of neurons, NoLs* = Number of layers, Acf * = activation function 
Scf* = scaling factor.
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highly skewed and have Leptokurtic distributions (Kurtosis > 3) at the Dunk River Station (Table 3). Figure 11 
demonstrates the original signals related to the input features and the water level in two cases study.

Result and discussion
The standalone version of the models L-SKRidge, dRVFL, LASSO, KRidge, CFNN, and their MVMD-based 
hybrid version to forecast WL at (t + 1) and (t + 3) employing a set of metrics to measure and examine the 

Metric F (m3/s) T (°C) HD (°C) P (mm) DP (°C) H (%) WL(m)

Brook

Min 0.11 − 19.70 0.00 0.00 − 24.88 38.25 0.29

Average 1.11 6.02 12.39 3.27 2.21 77.09 0.50

Max 20.20 25.20 37.70 74.00 22.18 100.00 2.24

Median 0.52 6.00 12.00 0.00 2.53 77.79 0.44

SD 1.82 10.18 9.60 7.23 10.27 11.62 0.21

Kur 24.73 2.06 2.01 21.95 2.20 2.63 10.45

Skew 4.10 − 0.12 0.28 3.78 − 0.24 − 0.34 2.37

Dunk

Min 0.55 − 19.70 0.00 0.00 − 24.88 38.25 0.50

Average 2.62 6.02 12.39 3.27 2.21 77.09 0.68

Max 42.60 25.20 37.70 74.00 22.18 100.00 1.84

Median 1.91 6.00 12.00 0.00 2.53 77.79 0.65

SD 2.79 10.18 9.60 7.23 10.27 11.62 0.13

Kur 71.47 2.06 2.01 21.95 2.20 2.63 13.74

Skew 6.57 − 0.12 0.28 3.78 − 0.24 − 0.34 2.34

Table 3. Descriptive Statistics related to the hydro-meteorological two cases study.

 

Fig. 10. Geographic location of the Brook and Dunk Rivers stations in PEI province of Canada, developed by 
ArcMap53.
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performance accuracy in Brook and Dunk River Canada. The outcomes are presented mainly in tabular form as 
well as different ranges of diagnostic plots to evaluate these models for forecasting purposes.

Tables 4 and 5 demonstrate water level (WL) forecasting for Brook River to evaluate the performance of the 
standalone L-SKRidge, dRVFL, LASSO, KRidge, and CFNN models (Table 4) and their MVMD-based hybrid 
version (Table 5) at (t + 1) and (t + 3). The MVMD coupled with L-SKRidge model outperforms hybrid and 
standalone models and appears to be the most precise forecasting method based on (R = 0.971, RMSE = 0.054, 
NSE = 0.940, MaxAE = 0.484, U95% = 0.148)-train and (R = 0.970, RMSE = 0.051, NSE = 0.937, MaxAE = 0.411, 

Fig. 11. Time series graph of all date sets for (A) Brook and (B) Dunk.

 

Scientific Reports |         (2025) 15:7596 21| https://doi.org/10.1038/s41598-025-90628-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


U95% = 0.142)-test at (t + 1), followed by MVMD-based KRidge, CFNN, dRVFL, and LASSO models. The 
MVMD-based L-SKRidge model was better at predicting WL at (t + 3) than other MVMD-based and stand-
alone methods used to predict WL at Brook River (Tables 4 and 5). Furthermore, the MVMD-based L-SKRidge 
model performed better for Brook River for both forecasting horizons (t + 1) and (t + 3) than other standalone 
and MVMD based methods (Table 4 and 5). It is also noteworthy that the hybrid models were better than their 
standalone counterpart models revealing better forecasting ability. The forecasting improvement in MVMD 
based L-SKRidge model based on NSE can be seen up to 12% at (t + 1) and 33% at (t + 3). Moreover, a significant 

Methods Mode R RMSE MAPE NSE IA MaxAE U95%

WL (t + 1)

L-SKRidge
Train 0.971 0.054 7.371 0.940 0.984 0.484 0.148

Test 0.970 0.051 6.309 0.937 0.982 0.411 0.142

dRVFL
Train 0.951 0.068 8.532 0.905 0.975 0.938 0.188

Test 0.963 0.066 7.860 0.896 0.968 0.469 0.176

LASSO
Train 0.948 0.070 8.553 0.899 0.973 0.961 0.194

Test 0.960 0.066 8.022 0.895 0.968 0.465 0.178

KRidge
Train 0.951 0.072 10.631 0.893 0.971 0.925 0.194

Test 0.963 0.061 8.362 0.909 0.972 0.435 0.170

CFNN
Train 0.964 0.059 8.123 0.928 0.981 0.856 0.163

Test 0.955 0.062 8.527 0.907 0.973 0.380 0.172

WL (t + 3)

L-SKRidge
Train 0.967 0.056 7.019 0.935 0.983 0.355 0.156

Test 0.928 0.079 8.664 0.849 0.957 0.535 0.215

dRVFL
Train 0.916 0.089 11.357 0.838 0.954 1.109 0.245

Test 0.912 0.088 10.735 0.813 0.942 0.692 0.240

LASSO
Train 0.912 0.090 11.648 0.831 0.952 1.128 0.251

Test 0.915 0.086 10.445 0.820 0.944 0.706 0.236

KRidge
Train 0.914 0.093 13.404 0.823 0.950 1.094 0.253

Test 0.916 0.084 10.943 0.831 0.948 0.675 0.232

CFNN
Train 0.932 0.081 10.000 0.864 0.964 1.068 0.224

Test 0.882 0.096 11.026 0.776 0.935 0.636 0.266

Table 5. Performance of the hybrid MVMD based L-SKRidge, dRVFL, LASSO, KRidge, and CFNN models 
based on assessment metrics in Brooke River.

 

Methods Mode R RMSE MAPE NSE IA MaxAE U95%

WL (t + 1)

L-SKRidge
Train 0.903 0.094 7.880 0.816 0.946 1.624 0.262

Test 0.893 0.092 8.145 0.797 0.941 0.915 0.254

dRVFL
Train 0.853 0.115 11.799 0.728 0.915 1.603 0.318

Test 0.853 0.110 11.030 0.706 0.897 1.070 0.303

LASSO
Train 0.844 0.118 11.616 0.712 0.909 1.707 0.327

Test 0.857 0.109 10.513 0.711 0.898 1.066 0.301

KRidge
Train 0.888 0.101 10.016 0.787 0.937 1.562 0.281

Test 0.873 0.099 9.875 0.762 0.926 1.051 0.275

CFNN
Train 0.893 0.099 8.905 0.797 0.939 1.676 0.275

Test 0.881 0.096 9.131 0.775 0.934 1.008 0.267

WL (t + 3)

L-SKRidge
Train 0.756 0.144 13.715 0.571 0.839 1.685 0.400

Test 0.726 0.141 12.778 0.519 0.818 1.177 0.389

dRVFL
Train 0.705 0.156 15.763 0.497 0.804 1.698 0.433

Test 0.705 0.146 14.376 0.482 0.788 1.157 0.403

LASSO
Train 0.702 0.157 15.716 0.492 0.800 1.682 0.435

Test 0.705 0.146 14.148 0.483 0.788 1.159 0.403

KRidge
Train 0.718 0.154 18.032 0.507 0.812 1.707 0.427

Test 0.712 0.143 15.275 0.506 0.804 1.161 0.396

CFNN
Train 0.726 0.152 16.633 0.524 0.828 1.558 0.420

Test 0.686 0.149 15.249 0.463 0.799 1.155 0.412

Table 4. Performance of the standalone L-SKRidge, dRVFL, LASSO, KRidge, and CFNN models based on 
assessment metrics in Brook River.
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increase in accuracy can be seen in other MVMD-based dRVFL, LASSO, KRidge, and CFNN methods compared 
with the standalone version.

Tables 6 and 7 illustrate the efficacy of the MVMD-based hybrid and solo models in predicting WL for 
Dunk River at (t + 1) and (t + 3). Analysis of Tables 6 and 7 demonstrates that the MVMD-based L-SKRidge 
model consistently achieved the best precision in forecasting WL at both (t + 1) and (t + 3), as shown in the 
tables previously mentioned, in comparison to other models. The MVMD-based L-SKRidge model achieved 
superior performance metrics, with training scores of R = 0.975, RMSE = 0.030, MAPE = 2.690, NSE = 0.951, and 

Methods Mode R RMSE MAPE NSE IA MaxAE U95%

WL (t + 1)

L-SKRidge
Train 0.975 0.030 2.690 0.951 0.987 0.238 0.082

Test 0.958 0.039 3.371 0.914 0.976 0.275 0.108

dRVFL
Train 0.936 0.047 4.374 0.876 0.966 0.345 0.131

Test 0.905 0.060 5.168 0.801 0.941 0.392 0.162

LASSO
Train 0.933 0.048 4.386 0.870 0.964 0.361 0.134

Test 0.908 0.059 5.080 0.806 0.943 0.398 0.160

KRidge
Train 0.937 0.049 4.872 0.867 0.964 0.362 0.133

Test 0.914 0.054 4.725 0.834 0.951 0.387 0.151

CFNN
Train 0.929 0.051 4.752 0.854 0.961 0.530 0.140

Test 0.911 0.060 5.268 0.800 0.948 0.510 0.161

WL (t + 3)

L-SKRidge
Train 0.951 0.041 3.628 0.905 0.974 0.322 0.115

Test 0.915 0.054 4.637 0.837 0.954 0.397 0.150

dRVFL
Train 0.907 0.057 5.104 0.822 0.949 0.498 0.157

Test 0.880 0.066 5.466 0.757 0.924 0.499 0.180

LASSO
Train 0.906 0.057 5.145 0.821 0.949 0.493 0.157

Test 0.881 0.065 5.441 0.761 0.926 0.501 0.178

KRidge
Train 0.934 0.048 4.117 0.869 0.962 0.491 0.134

Test 0.885 0.064 4.857 0.769 0.928 0.536 0.176

CFNN
Train 0.910 0.056 5.333 0.824 0.952 0.422 0.155

Test 0.877 0.066 5.650 0.759 0.932 0.456 0.180

Table 7. Performance of the hybrid MVMD based L-SKRidge, dRVFL, LASSO, KRidge, and CFNN models 
based on assessment metrics in Dunk River.

 

Methods Mode R RMSE MAPE NSE IA MaxAE U95%

WL (t + 1)

L-SKRidge
Train 0.894 0.060 3.587 0.799 0.940 0.972 0.167

Test 0.876 0.065 3.660 0.762 0.927 0.725 0.179

dRVFL
Train 0.821 0.077 5.864 0.674 0.893 1.048 0.212

Test 0.755 0.090 5.845 0.549 0.846 0.968 0.246

LASSO
Train 0.804 0.080 6.072 0.647 0.881 1.071 0.221

Test 0.757 0.090 5.975 0.544 0.838 0.920 0.246

KRidge
Train 0.871 0.068 5.263 0.746 0.921 1.026 0.185

Test 0.850 0.071 4.506 0.719 0.907 0.789 0.196

CFNN
Train 0.888 0.062 4.057 0.786 0.937 0.958 0.171

Test 0.867 0.068 4.395 0.743 0.923 0.662 0.186

WL (t + 3)

L-SKRidge
Train 0.789 0.082 5.636 0.622 0.866 1.084 0.228

Test 0.727 0.094 5.387 0.506 0.816 1.093 0.257

dRVFL
Train 0.721 0.093 7.319 0.520 0.816 1.067 0.257

Test 0.655 0.105 7.489 0.387 0.763 0.963 0.285

LASSO
Train 0.709 0.095 7.259 0.502 0.804 1.096 0.262

Test 0.653 0.105 7.220 0.382 0.754 1.021 0.286

KRidge
Train 0.779 0.084 5.850 0.606 0.857 1.074 0.233

Test 0.713 0.096 5.852 0.481 0.799 1.080 0.263

CFNN
Train 0.785 0.083 6.098 0.615 0.872 1.027 0.230

Test 0.678 0.100 6.612 0.434 0.798 1.094 0.277

Table 6. Performance of the standalone L-SKRidge, dRVFL, LASSO, KRidge, and CFNN models based on 
assessment metrics in Dunk River.

 

Scientific Reports |         (2025) 15:7596 23| https://doi.org/10.1038/s41598-025-90628-6

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


MaxAE = 0.238, and testing scores of R = 0.958, RMSE = 0.039, MAPE = 3.371, NSE = 0.914, and MaxAE = 0.275, 
for forecasting WL at (t + 1).

The other MVMD-based hybrid versions of the models were also reasonably good in accuracy but could 
not surpass the MVMD-based L-SKRidge model, while the performance of standalone models was very lower. 
Similarly, the MVMD-based L-SKRidge model had the best level of accuracy in predicting WL for Dunk River 
at (t + 3) compared to other models (Tables 6 and 7). The MVMD-based hybrid models demonstrate superior 
performance relative to the solo models in predicting the WL at both forecast horizons. Overall, the MVMD-
based L-SKRidge model demonstrated superior accuracy in forecasting WL compared to other models. A 
significant increase in accuracy has been seen by integrating the MVMD with the L-SKRidge model.

The present study uses the MARCOS approach as an MCDM method to choose the best appropriate model 
using a set of criteria. The MARCOS used seven statistical metrics (R, RMSE, MAPE, NSE, IA, MaxAE, and 
U95%) to select the best model. The MARCOS technique guarantees a comprehensive and equitable evaluation 
of model performance. It facilitates the discovery of the model that most effectively satisfies the specified 
requirements for accuracy and dependability.

Figure 12 indicates the MARCOS Score attained by the hybrid MVMD-based and standalone L-SKRidge, 
dRVFL, LASSO, KRidge, and CFNN models during training and testing periods to predict WL at two time 
horizons ((t + 1) and (t + 3)) for Brooke and Dunk Rivers. The MVMD-based L-SKRidge method achieved an 
outstanding MARCOS score for Brooke River at both (t + 1) and (t + 3) in comparison to other ML methods.

Similarly, the top values of TOPSIS score were seen in Dunk River, which is evidence that the MVMD-based 
L-SKRidge model demonstrates a superior level of precision especially to forecasting WL at (t + 1) and (t + 3) 
compared with the other models. As a result, the MARCOS score suggests that the MVMD-based L-SKRidge 
model is superior to accurately estimate WL for Brooke and Dunk River.

Figure 13 is based on a scatter diagram to inspect the comparison between the measured and forecasted WL 
generated by the standalone ML-based L-SKRidge, dRVFL, LASSO, KRidge, and CFNN models in the testing 
period for Brook and Dunk River at (t + 1) and (t + 3). Moreover, the values of R metrics and fitted lines with 
equations is also incorporated along with lower and upper bounds. This research established upper and lower 
boundaries around the regression line to illustrate possible diversity in predictions. A best-fit line was produced 
by linear regression, illustrating the primary trend in the correlation between the measured and predicted values. 
The methodology determined the boundaries by examining the distance of individual data points from the 
line, which represents the unexplained variability not accounted for by the trend. The minimum and maximum 
deviations from the line were used to determine the limits, forming a lower and upper boundary around the 
best-fit line over the whole data range. These boundaries effectively provide a “buffer zone” around the projected 
values, signifying the range in which the actual data points are expected to reside. The interval width, shown as 
dashed lines on the graph, graphically represents the possible mistake in the predictions. Incorporating these 
limitations enhances the model’s prediction reliability and aids users in comprehending the variability margin 
in the projected values.

The standalone version of the models was relatively poor based on scatter plots in Fig.  13 compared to 
the MVMD-based methods (Fig. 14). From Fig. 13, the proposed L-SKRidge yields the best results with the 
smallest values of U–L (i.e., the difference between their lower and upper limits (U–L)) for two-time horizons 
(U–L(t + 1) ) = 0.91 and U–L(t + 3) = 0.86) compared with the other standalone models. Figure  14 presents a 
scatter map that examines the contrast between the observed and predicted water levels (WL) provided by 
several models, including the hybrid MVMD-based L-SKRidge, dRVFL, LASSO, KRidge, and CFNN models. 
This analysis is conducted throughout the testing period for the Brook and Dunk River at time points (t + 1) and 
(t + 3). The comparative analysis of prediction outcomes for two-time horizons reveals that the L-SKRidge model 
has superior performance compared to the dRVFL, LASSO, KRidge, and CFNN approaches in relation to the 
U–L. In the scenario involving WL for t + 1, it is seen that L-SKRidge demonstrates the narrowest discrepancy 
between the upper and lower bounds (U–L), with a value of 0.47. This value is comparatively less than those 
obtained for dRVFL (0.83), LASSO (0.79), KRidge (0.81), and CFNN (0.9), indicating L-SKRidge’s superior 
performance in minimizing the U–L gap. The model that has been suggested also exhibits the smallest difference 
between U and L for WL at t + 3, as seen in Fig. 13, with a numerical value of 0.64. The hybrid MVMD based 
L-SKRidge model at (t + 1) and (t + 3) outperformed to forecast WL in terms of R = 0.97, and 0.932 followed by 
MVMD based KRidge, LASSO, dRVFL, and CFNN models for Brook River. For Dunk River, the MVMD-based 
L-SKRidge model once again obtained better precision against other MVMD-based hybrid and standalone 
counterparts to forecast WL at both forecasting horizons (refer to Appendix C). Consequently, the scatter plots 
demonstrated that MVMD-based methods outperform solo variants in forecasting WL for both stations. The 
L-SKRidge model, based on MVMD, outperforms all other models in terms of accuracy. This performance is 
highly promising.

The violin plots in Fig. 15 provide a diagnostic assessment calculating the relative error of the forecasted WL 
for the MVMD-based models as well as standalone L-SKRidge, dRVFL, LASSO, KRidge, and CFNN models at 
(t + 1) and (t + 3). From the figure, the hybrid MVMD-based L-SKRidge clearly showed a smaller relative error 
and more accurate and consistent violin distribution (i.e., ranging between − 0.4 and + 0.4) at (t + 1) and (− 0.5 
and + 0.5 at (t + 3) to forecast WL in Brook River compared with all other MVMD-based models. Similarly, the 
hybrid MVMD based L-SKRidge method appeared to be accurate for Dunk River using violin plot distributions 
based on relative error against other comparing models at both forecast horizons (see Fig. 16). Thus, MVMD 
based L-SKRidge model achieves better WL forecasting accuracy for both rivers at (t + 1) and (t + 3).

The forecasted WL of Brooke and Dunk Rivers are given in Figs. 17 and 18 using the empirical cumulative 
distribution function (ECDF) within the lower and upper confidence intervals to evaluate the precision of the 
MVMD-based L-SKRidge model to other models for a clearer representation of the results. The ECDF plot 
provides a cumulative view of relative errors, showing the proportion of data points below each error value. 
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It helps assess overall model performance, reliability, and robustness by illustrating error accumulation. This 
visualization makes it easier to compare models and communicate performance effectively. By using the ECDF 
plot, you emphasize cumulative accuracy and provide a comprehensive analysis.

The ECDF of the MVMD-based L-SKRidge model for both Brooke and Dunk Rivers had a remarkably similar 
pattern at both (t + 1) and (t + 3) forecasting horizons compared to other MVMD-based dRVFL, LASSO, KRidge, 
and CFNN models. The analysis also depicts that the forecasts based on MVMD based L-SKRidge model are 
within the lower and upper confidence bounds to confirm the validity against other comparing models. Hence, 
these figures further authenticate the suitability of the MVMD-based L-SKRidge method to predict WL at the 
time horizons.

The Taylor plots in Fig. 19 referred to the referenced and forecasted WL using MVMD-based L-SKRidge 
(red), dRVFL (green), LASSO (purple), KRidge (Cyan), and CFNN (pink) models at (t + 1) and (t + 3) to evaluate 

Fig. 12. MARCOS scores achieved by five ML models over two-time horizons for simple and hybrid modes 
and in (A) Brooke and (B) Dunk River.
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the precision for both Rivers. A comprehensive evaluation of the models’ comparability with respect to standard 
deviation and correlation coefficient is facilitated by these graphic design. For Brooke River, clearly the MVMD-
based L-SKRidge positioned very closely to the reference WL with a correlation coefficient between 0.95 and 0.99 
(t + 1) and 0.90–0.95 (t + 3) with a standard deviation (0.20– 0.25). The hybrid MVMD-based dRVFL, LASSO, 
KRidge, and CFNN comparing models are reasonably satisfactory but could not go ahead than the MVMD-
based WKRidge model. Additionally, the MVMD-based L-SKRidge model achieved a superior rank in terms of 
accuracy for Dunk River in comparison to other models that were used to estimate WL at (t + 1) and (t + 3). The 
Taylor diagram thus supports the suitability for better WL forecasting of the MVMD-based L-SKRidge model.

Conclusion
A new hybrid model called SKRidge has been created by combining the effective characteristics of SVD and 
KRidge. Additionally, the model incorporates MVMD and employs LGBM as an astute feature selection method, 
supplemented by the application of the RUN algorithm for parameter tuning. Furthermore, the SKRidge, 

Fig. 13. Scatter plots of all standalone ML models over two time horizons for Brook river.
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combined with ridge regression and incorporating a linear relationship, has made a significant contribution to 
the formulation of the proposed model, known as L-SKRidge, with the specific objective of enhancing forecasting 
accuracy. The main objective of this research is to forecast water levels in Canada’s Brook and Dunk Rivers for 
two timeframes.

The proposed framework exhibits the following critical features:

• Hybridization of SKRidge and Ridge regression: L-SKRidge uses the capabilities of SKRidge and ridge regres-
sion. This combination considerably increases the overall model performance. It is especially focused on 
improving predicting accuracy.

• MVMD method: The model leverages MVMD for the decomposition of input variables into IMFs, and utilizes 
PACF to identify influential lags at both (t + 1) and (t + 3).

Fig. 14. Scatter plots of all hybrid ML models over two time horizons for Brook river.
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• Feature selection with importance value factor: The proposed framework employs an efficient feature selec-
tion (LGBM) to identify the most influential input datasets. The selected features are incorporated into the 
L-SKRidge model to improve its predictive abilities.

• Comparative analysis with other models: To assess the forecasting accuracy and identify MVMD-L-SKRidge’s 
ability, the MVMD is combined with other models (dRVFL, LASSO, KRidge, and CFNN).

Summary of research results:
The study findings provide a comprehensive evaluation of several forecasting models for predicting water 

levels in the Canadian rivers Dunk and Brook. Here are the key findings and numerical outcomes:

 i.  Brook river forecasting results at (t + 1):

• L-SKRidge exhibited superior precision with an R value of 0.97, RMSE of 0.054, MAPE of 7.371, NSE of 
0.940, IA of 0.984, MaxAE of 0.484, and U95% of 0.148 in training.

• For testing, L-SKRidge achieved an R value of 0.970, RMSE of 0.051, MAPE of 6.309, NSE of 0.937, IA of 
0.982, MaxAE of 0.411, and U95% of 0.142.

 ii.  Brook river forecasting results at (t + 3):

• L-SKRidge continued to outperform other models with high accuracy, surpassing both standalone and 
hybrid versions.

 iii.  Dunk river forecasting results:

• L-SKRidge maintained its superiority, exhibiting higher accuracy for forecasting at (t + 1) and (t + 3) com-
pared to other models, including the standalone versions.

 iv.   Forecasting improvement:

Fig. 15. Violin plot of relative error for all ML models at two-time horizons in Brook River.
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• The integration of MVMD with WKRidge resulted in a notable increase in forecasting accuracy, with NSE 
improvements of up to 12% at (t + 1) and 33% at (t + 3).

 v.   Comparative performance:

• The hybrid models consistently outperformed their standalone counterparts, underlining their improved 
forecasting abilities.

 vi.   Taylor plots and ECDF analysis:

• Taylor plots revealed the high precision of L-SKRidge, with correlation coefficients ranging from 0.90 to 
0.99 and standard deviations of 0.20 to 0.25 for Brook River.

• ECDF analysis confirmed the consistency of MVMD-based L-SKRidge forecasts within the lower and up-
per confidence bounds.

In summary, the research showcases the exceptional forecasting capacity of the proposed MVMD-based 
L-SKRidge model, which consistently outperforms other models across various evaluation metrics, and offers a 
substantial advancement in water level prediction accuracy for the Brook and Dunk Rivers.

The proposed MVMD-based L-SKRidge model exhibits enhanced forecasting precision, particularly for 
water level predictions in the Brook and Dunk Rivers. The main advantages of this method are the development 
of an efficient model, the decomposition of inputs into effective signals provided by MVMD, and the selection of 
specific features through LGBM, all of which increase the prediction accuracy. The suggested approach exhibits 
great forecasting accuracy for water level predictions; nonetheless, practical obstacles persist. The main concerns 
are the computational complexity of the model, which requires significant resources, and the over-sensitivity of 
the fit resulting from fine-tuning of the parameters. Scalability is an important issue, as the model may require a 
more powerful optimization for use on larger datasets or diverse contexts.

Further studies should focus on broadening the model’s application to forecast in other domains, such as 
climate change impacts, renewable energy trends, and agricultural forecasts, which might significantly enhance 

Fig. 16. Violin plot of relative error for all ML models at two-time horizons in Brook River.
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its relevance and utility. Validation in these new areas may improve the model and uncover any specific 
requirements or modifications needed. Moreover, integrating the L-SKRidge model into a comprehensive 
decision-support framework might enhance its practical use. Real-time forecasts and integration with geographic 
information systems (GIS) might improve decision-making tools for policymakers and stakeholders in water 
resource management and other domains.

Fig. 17. ECDF calculated using five ML methods at two-time horizons in Brook River.
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Fig. 18. ECDF calculated using five ML methods at two-time horizons in Dunk River.
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Data availability
Data availability The data that support the findings of this study are available from the corresponding author 
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