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Abstract: As a critical indicator for assessing the survivability and condition of transformers in a
fleet, the transformer health index has attracted attention from both asset owners and international
organizations like CIGRE and IEEE DEIS/PES. To provide a systematic and comprehensive review for
further study or to guide transformer asset management, this paper summarizes the state-of-the-art
of the transformer health index, from the early proposed weighted-score-sum approaches to the
more recently proposed artificial intelligence algorithm-based methods. Firstly, different methods
for determining the transformer health index are reviewed. Each of these is specified as belonging
to a certain type on the basis of its formulation and composition schematic. Subsequently, the steps
to determine each type of health index are summarized, and examples derived from literature are
provided for further illustration. Comparisons are finally carried out in order to better understand
the pros and cons of different types of transformer health index, and the future development trends
for transformer health indexes are also discussed. This work can serve as a valuable reference for the
survivability and condition assessment of transformers in the power industry.

Keywords: weighted-score-sum; artificial intelligence; condition assessment; health index; information
fusion; power transformer

1. Introduction

Transformer failures and outages can result in significant economic losses and have
a considerable social impact. Accurate condition assessment of in-service transformers is
essential for ensuring their reliable operation. Concerns regarding transformer health condi-
tion assessment have been raised for a long time in both industry and academia. In practice,
a variety of online and offline monitoring techniques have been developed and applied to
perform condition assessment and asset management of transformers. These techniques
include diagnostic oil testing (e.g., dissipation factor, breakdown voltage, etc.), dissolved
gas analysis (DGA) [1,2], frequency domain spectroscopy (FDS) testing [3,4], recovery
voltage measurement (RVM) [5,6], polarization and depolarization current measurement
(PDC) [7], frequency response analysis (FRA) [8,9], partial discharge (PD) detection [10],
by-product analysis (e.g., water in oil, furan content, etc.) [11,12], and other testing and
measurement methods [13,14].

However, each of the above techniques generally focuses on evaluating the health
condition of a transformer in terms of a single aspect. Given the complicated construction
of a transformer and the measurement errors of each diagnostic technique, it is becoming
apparent that it is impossible to perform a reliable health condition assessment using only
a single type of measurement. A practical and reliable condition assessment should be
performed based on a fusion of data and information, integrating all available pieces of evi-
dence from online and offline measurements regarding operation and maintenance, failure
statistics, on-site inspection, and past experiences of human experts. In combination with

Electronics 2023, 12, 2407. https://doi.org/10.3390/electronics12112407 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics12112407
https://doi.org/10.3390/electronics12112407
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-0680-5796
https://doi.org/10.3390/electronics12112407
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics12112407?type=check_update&version=2


Electronics 2023, 12, 2407 2 of 24

such condition data, an assessment of the overall health condition of a power transformer,
named the health index, has been developed.

The merit of a health index is its ability to provide a quantitative evaluation of the
overall condition of a transformer or even a whole transformer fleet, and thus to provide
asset managers with an intuitive understanding on the basis of a single index [15,16]. In
both utilities and academia, investigations into the transformer health index have been
carried out for years. Current methods for health index calculation can be classified into two
main categories: the weighted-score sum (WSS)-based methods and artificial intelligence
(AI) algorithm-based methods. Schematic diagrams of these two types of approach are
given in Figure 1.
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Figure 1. Schematic diagram for transformer health index calculation. (a) Transformer health index
based on weighted-score sum, (b) artificial intelligence (AI)-based transformer health index.

For WSS-based approaches [15–52], transformer health index is determined as a
weighted scoring of different types of condition data, namely:

HI =
n

∑
i=1

SiWi, (1)

Monitoring data are determined using relevant standards [53–60]. Si represents the
evaluation score for the monitoring data, and Wi is the corresponding weight indicating the
significance of these condition monitoring data to the overall state of the transformer. In
comparison, the AI-based transformer health index uses intelligent algorithms, e.g., artificial
neural networks (ANN), support vector machine (SVM), fuzzy logic, or expert criteria-
based methods to approximate the underlying relationship between different types of
condition data and the transformer health index [61–93]. This kind of relationship can be
described as follows:

HI = f (v1, v2, · · · , vi, · · · , vn), (2)

where vi represents the i-th type of condition monitoring data, and n is the total number of
pieces condition monitoring data.

The rest of this paper is organized as follows. In Sections 2 and 3, the WSS-based
and AI-based transformer health index approaches are reviewed. Then, typical examples
derived from published papers are adopted to illustrate the steps required for the realization
of each type of health index. Section 4 presents the ongoing research on the realization of a
probabilistic health index for transformers using Bayesian fusion, from its orientation to its
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implementation, as well as relevant case studies, and discussions on the advantages and
disadvantages of the existing methods for calculating the health index are also summarized
in this section.

2. Weighted-Score-Sum-Based Methods

In weighted-score-based methods, the calculation of the transformer health index is
performed as a summation of the weighted scores of different types of condition data. In
this process, relevant standards are adopted to help determine the score of every type
of condition data. The health index can be determined by multiplying it by a weighting,
indicating the relative important of each item to the overall transformer (or part of the
transformer). More generally, weighted-score sum approaches can be categorized into
three groups:

• The transformer health index is calculated as a weighted-score summation of different
test items. Each test item (also known as condition data) is essential to transformer
condition monitoring. In this paper, this kind of health index is classified as Type-I.

• The transformer health index is calculated as a weighted-score summation of all of the
transformer’s components. This kind of health index is classified as Type-II.

• The transformer health index is calculated as a mathematical score adding different
causes of stress degradation (e.g., electrical, mechanical, chemical, etc.). The score of
each type of degradation is calculated as a weighted-score summation of several types
of condition data that contribute to it. This kind of health index is classified as Type-III.

The above three scenarios will be detailed in the following sections. In addition,
examples derived from the literature will be provided for each method for the purpose of
illustration. Apart from these three categories, other forms of weighted-score-sum-based
health index are also reviewed at the end of this section.

2.1. Type-I Health Index

In terms of the transformer health index, a straightforward approach is to judge dif-
ferent types of condition data (e.g., online measurements, offline test data, maintenance
records, etc.) and combine them into one index. In this kind of approach, each type of con-
dition data is firstly converted to a score according to the relevant standards (e.g., IEEE/IEC
or CIGRE). Then, a weight indicating its significance to the health condition of the entire
transformer is assigned on the basis of experts’ experience or the relevance to standard
codes, or a combination of both [16–30]. Finally, a summation of all of these weighted
scores is performed, which provides the health index of the transformer of interest.

Recent efforts by Kinectrics [16–18], US and Thai utilities [19], Hydro-Québec [20,21],
Wuhan University [22], University of Cambria [23], Ann University [24], as well as other
utilities and research institutes can be classified as belonging to this type of health in-
dex [25–29]. A schematic for realizing the so-called Type-I health index is presented in
Figure 2.
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As shown in Figure 2, three critical components constitute the Type-I health index,
e.g., the indicator, the weighting, and the final health index. The indicator represents
different kinds of condition data that partially indicate the condition of the transformer
(e.g., trace water in oil, indicating the condition of the transformer oil). According to the
IEEE/IEC standards and the CIGRE recommendations, each indicator is then converted
into a numerical score (e.g., an integer value between 1 and 4, if the standard defines four
levels for the state of the condition data). The weight of each indicator in this kind of
health index is often determined by the experience of human experts. After determining
the indicators and associated weights, a summation of the weighted score of different
indicators is then taken as the final health index of the transformer. Note that the indicators
may vary among implementations employed by different utilities. Table 1 provides a
summary of the indicators used by different utilities to calculate this type of health index.

Table 1. Availability of indicators of different HI methods.

Indicator Kinectrics Hydro Québec US &Thai Utilities Ann University

Family failure rate • • •
Solid insulation aging •

Age of transformer • •
Load history • •

DGA 1 • • • •
Oil condition • • • •

Oil leaks • • • •
Oil tank •
Oil level •

Bushing condition • • • •
Bushing power factor •

OLTC 2 condition • • • •
OLTC oil quality •

DGA of OLTC •
Moisture content • •

Power factor • • •
Infra-red •

Main tank •
Main tank cabinets & controls • •

Accessory condition • •
Cooling equipment • •

Foundation • •
Grounding •

SFRA 3 • •
1 DGA refers to analysis of seven gases dissolved in transformer oil, including H2, CH4, C2H6, C2H4, C2H2, CO,
and CO2; 2 OLTC—on-load tap changer; 3 SFRA—sweep frequency response analysis.

A typical example of a Type-I health index is represented by Kinectrics’s experience
with transformer fleet assessment. In Kinectrics’s health index model, statistical data and
diagnostic results are adopted. Its implementation is shown in Figure 3. From the left
side to the right side, the main elements in this health index model are: (1) the inputs or
indicators; (2) the weights; (3) the partial summation of the weighted score; and (4) the
adding rules for finalizing the health index. Details of each part in this model will be
introduced in the next section.

2.1.1. Inputs and Weights

This model utilizes 19 types of condition data to calculate the health index. Note that
items like the DGA factor, the oil quality factor (OQF), the DGA of OLTC, and the OLTC oil
quality in Figure 3 are already a mixture of several different types of condition data. For
example, the DGA factor (DGAF) is calculated using [25,30,31]:
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DGAF =
∑7

i=1 SiWi

∑7
i=1 Wi

, (3)

where Si is the condition score of the i-th gas, and Wi represents the corresponding
weight. The condition score for each gas, in this case, is determined by the IEC/IEEE
standards [53,54] and is given in Table 2. The score of the DGAF calculated by (3) is also
divided into five levels, which are provided in Table 3. This criterion is applied to all inputs
shown in Table 3.
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Table 2. Scoring rules and weights of gasses dissolved in oil.

Gas
Score

Wi
1 2 3 4 5 6

H2 ≤100 100–200 200–300 300–500 500–700 ≥700 2
CH4 ≤75 75–125 125–200 200–400 400–600 ≥600 3

C2H6 ≤65 65–80 80–100 100–120 120–150 ≥150 3
C2H4 ≤50 50–80 80–100 100–150 150–200 ≥200 3
C2H2 ≤3 3–7 7–35 35-50 50–80 ≥80 5

CO ≤350 350–700 700–900 900–1100 1100–1400 ≥1400 1
CO2 ≤2500 ≤3000 ≤4000 ≤5000 ≤7000 ≥7000 1

Table 3. DGA factor ranking.

Ranking Condition Description HIFj

A Good DGAF ≤ 1.2 4
B Acceptable 1.2 ≤ DGAF ≤ 1.5 3
C Need caution 1.5 ≤ DGAF ≤ 2 2
D Poor 2 ≤ DGAF ≤ 3 1
E Very poor DGAF ≥ 3 0

The total score of the OQF is calculated in a similar manner. The score of different oil
parameters, including the dielectric strength, IFT (Interfacial Tension), acid number, water
content, color, and dissipation factor, are determined with reference to IEEE C57.106-2006
and IEC 60505 [55,56]. The calculation of OQF is similar to that of DGAF in (3), and is given
by (4). The scoring rules and weights of different oil parameters and the OQF ranking are
given in Ref. [60].

OQF =
∑6

i=1 SiWi

∑6
i=1 Wi

, (4)

where Si is the i-th oil parameter score, Wi represents the corresponding weight.

2.1.2. Calculation of Health Index

In this model, a total of 19 types of condition data are utilized to calculate the health
index. From (5), the health index of a transformer ranging from 0 to 100% can be determined.

HI = 60%HITrans. + 40%HIOLTC = 60%
∑21

j=1 Ki HIFj

∑21
j=1 4Ki

+ 40%
∑24

j=22 Ki HIFj

∑24
j=22 4Ki

, (5)

where Kj is the weight factor, which indicates the significance of each input to the final
health index (the second column in Figure 3), and HIFj is the health index factor of each
input, as shown in Table 4.

Table 4. Health condition level divisions for Kinectrics’ health index.

HI [%] Condition Description Expected Lifetime [Year]

85~100 Very good Some aging or minor deterioration of a
limited number of components ≥15 years

70~85 Good Significant deterioration of some components ≥10 years

50~70 Fair Widespread significant deterioration or
severe deterioration of specific components ≤10 years

30~50 Poor Widespread serious deterioration ≤3 years
0~30 Very poor Extensive serious deterioration At the end-of-life
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The calculation results of the health index are helpful for dividing the operation status
of the transformer into different levels, as shown in Table 4. This is convenient for providing
practical operators with an understanding of the actual status of the transformer.

2.2. Type-II Health Index

Since a transformer is constituted of different components (e.g., winding, iron core,
oil tank, bushing, oil, OLTC and other accessories), its health index can be calculated as
the composite result of the different components. Finally, a weighting is assigned to each
component that identifies its significance to the entire transformer. Unlike in the case of the
method introduced in Section 2.1, this weight is determined on the basis of a combination of
the results of both transformer failure statistics and the experience of human experts [32,33].
Figure 4 provides a typical survey of the statistics of transformer failures from CIGRE.

Electronics 2023, 12, x FOR PEER REVIEW 7 of 26 
 

 

21 24

1 22

. 21 24

1 22

60% 40% 60% 40%
4 4

 

 

   
 

 

i j i jj j

Trans OLTC

i ij j

K HIF K HIF
HI HI HI

K K
, (5) 

where Kj is the weight factor, which indicates the significance of each input to the final 

health index (the second column in Figure 3), and HIFj is the health index factor of each 

input, as shown in Table 4. 

Table 4. Health condition level divisions for Kinectrics’ health index. 

HI [%] Condition Description Expected Lifetime [Year] 

85~100 Very good 
Some aging or minor deterioration of a limited number of 

components 
≥15 years 

70~85 Good Significant deterioration of some components ≥10 years 

50~70 Fair 
Widespread significant deterioration or severe deteriora-

tion of specific components 
≤10 years 

30~50 Poor Widespread serious deterioration ≤3 years 

0~30 Very poor Extensive serious deterioration At the end-of-life 

The calculation results of the health index are helpful for dividing the operation sta-

tus of the transformer into different levels, as shown in Table 4. This is convenient for 

providing practical operators with an understanding of the actual status of the trans-

former. 

2.2. Type-II Health Index 

Since a transformer is constituted of different components (e.g., winding, iron core, 

oil tank, bushing, oil, OLTC and other accessories), its health index can be calculated as 

the composite result of the different components. Finally, a weighting is assigned to each 

component that identifies its significance to the entire transformer. Unlike in the case of 

the method introduced in Section 2.1, this weight is determined on the basis of a combi-

nation of the results of both transformer failure statistics and the experience of human 

experts [32,33]. Figure 4 provides a typical survey of the statistics of transformer failures 

from CIGRE. 

  

(a) (b) 

Figure 4. Statistics of transformer failures and defective components. (a) Causes of transformer fail-

ure; (b) defective transformer components. 

A typical way of realizing the Type-II health index is shown in Figure 5a, and this 

has been adopted by several utilities [32,34–36]. For such a health index, the score of each 

component is taken as a sub-index. The final health index is the sum of the weighted val-

ues of each sub-index. Usually, the score of each component is determined by several 

“items”, and the condition of each item is determined on the basis of at least one type of 
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failure; (b) defective transformer components.

A typical way of realizing the Type-II health index is shown in Figure 5a, and this
has been adopted by several utilities [32,34–36]. For such a health index, the score of each
component is taken as a sub-index. The final health index is the sum of the weighted values
of each sub-index. Usually, the score of each component is determined by several “items”,
and the condition of each item is determined on the basis of at least one type of condition
data. For example, in the Norwegian health index model [32], the transformer oil is one
of the components constituting the transformer. Its condition is determined by two items:
the OQF and the oil maintenance effect. In addition, the state of OQF is decided by six oil
characteristics (condition data).

The procedure for realizing the Type-II health index is illustrated in Figure 5b, and
consists of four steps: (1) scoring of each type of condition data; (2) calculation of the
condition score for each item; (3) sub-index calculation; and (4) health index synthesis from
sub-index. Details of each step will be demonstrated after that. Note that the first step is
similar to realizing the Type-I health index, which will be neglected here.

2.2.1. Item Score and Sub-Index Score Calculation

For each sub-index in Figure 5b, its condition score S2j can be calculated by:

S2j =
n

∑
i=1

S1iW1i, (6)

where S1j is the condition score for each item that belongs to a sub-index.
There are two scenarios when calculating the score of S1i: (1) one item is determined

by one type of condition data only; and (2) one item is determined by k (k ≥ 1) types of
condition data vi. For the first scenario, the score can be directly determined by converting
the condition data according to relevant standards, while for the second scenario (e.g., the
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DGA factor, which is determined by seven gases, H2, CH4, C2H6, C2H4, C2H2, CO, and
CO2), S1i is calculated in the same way as S2j, where the score of each gas, denoted as S0i, is
assigned a weight W0i. The score S1i is the sum of the weighted scores for each gas:

S1i =
k

∑
i=1

S0iW0i, (7)
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2.2.2. Final Health Index Calculation

Once the condition score S2j and its associated weight W2j for each sub-index has been
determined, the transformer health index can be readily obtained as a summation of the
weighted scores of the sub-indexes:

HI =
m

∑
j=1

S2jW2j, (8)

The NTU’s method for determining the transformer health index is a typical
example [32]. The NTU’s health index is calculated as the sum of the weighted scores
of the different components, including the winding, core, oil, tank, bushing, and tap
changer. Apart from these components, external stress is also considered as a component
in the example, as shown in Figure 6.

In this example, the health index is calculated using a four-layer model (Figure 6).
From left to right, these layers are: input data, scoring data of items belonging to different
components, the components of the transformer, and the final health index. Firstly, each
type of condition data is taken as an input in this model, and is then converted to a
specific score according to the relevant scoring criteria. After that, the condition score for
each component is calculated by summing the weighted score of different condition data
relating to its health condition. Finally, the health index of the transformer is calculated
as the summation of the weighted scores of various components. Since the number of
subcomponents of a transformer is countable, the weights of these components can be
easily determined, either using failure statistics or on the basis of experts’ experience, or a
combination of both. In this example, all weight factors are determined by human experts.
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2.3. Subsection

Usually, the deterioration in a transformer’s health condition can be attributed to
different types of stresses, like electrical, mechanical, or thermal stress, or a synergistic
combination of several of them, as well as some chemical reactions. Therefore, in some
situations, the transformer health index can be calculated as a synthesis of such causes,
which can be realized using:

HI =
m

∑
j=1

S2jW2j, (9)

where N is the number of different types of condition data [37,38], or a maximum score [39].
Unlike the Type-I and Type-II health indexes, the final form of the health index no

longer needs the weightings to indicate the importance of various causes of degradation,
but rather a mean of their values. In industry, such methods have been adopted by utilities
like ABB and TERNA [37,40]. In TERNA’s transformer health index [37], transformer
condition data are classified into four degradation categories:

• Those related to dielectric and thermal degradation are derived from DGA. They
include electrical faults (i.e., PD, low energy discharges, arcing) and thermal faults.

• Those related to the purely thermal condition of solid insulation are derived from CO2,
CO, and Furans.

• Those related to the mechanical condition of the transformer are derived from on-site
electrical tests (i.e., inductance, SFRA, PDC/FDS).

• Those related to the health of the insulating oil are derived from water, acidity, BDV
and DDF.

With this method, the final health index is the average of the weighted ranking of N
types of condition data, similar to (9). Here, it is calculated according to the following equation.

HI =
HIDiec + HITherm + HIMech + HIOil

4
, (10)

where HIOil is the health sub-index of transformer oil, which can be calculated by:

HIOil =
n

∑
i=1

WR(i) =
n

∑
i=1

m

∑
j=1

Wj f (j), (11)

where WR (i) represents the weighted rank of each type of condition data, Wj is the condition
weight factor, f (i) is the active function, n is the number of different types of condition data,
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and m is the number of different condition states. The process of calculating the WR (3) of
the water content is given in Table 5.

Table 5. Example of weighted ranking.

Test Item IEC 60422, for >170 kV Weight Active Function Rank

Water
Good < 15 0 (0) No 0
Fair 1~20 0.15 (1) Yes 0.15
Poor > 20 0.3 (0) No 0

Weighted rank for water content = 0.15

2.4. Other Types of Health Index Based on Weighted Scores

Some methods use weighting in the calculation of the health index [15,40–44]. For
example, in Ref. [40], the final health index is called the status indicator factor (xSIF), which
is an average of the weighted rankings of N types of condition data and is similar to the
Type-I health index in (5).

HIOil =
n

∑
i=1

WR(i) =
n

∑
i=1

m

∑
j=1

Wj f (j), (12)

where Ki is the weight of the xSI (status indicator), and xSICi represents the status indicator
code of the i-th type of condition monitoring test.

For example, xSIC2 stands for the status indicator of the oil characteristic test,
which is:

χSIC2 =

6
∑

i=1
Si ×Wi

6
∑

i=1
Wi

, (13)

where Si and Wi represent the classification value (or condition score) and corresponding
weight of a specific test item (e.g., breakdown voltage, dissipation factor, etc.).

Unlike the calculation of Type-I, Type-II and Type-III health indexes, the condition
score Si in this health index is converted from a physical value using a segmentation
function. Figure 7 from [40] is redrawn here to illustrate how the condition score of the
service age is determined in this kind of health index.
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3. Artificial-Intelligence-Algorithm-Based Transformer Health Index

In addition to the approaches for realizing the transformer health index mentioned
above, artificial intelligence (AI) algorithms have also been applied in transformer health
index calculation, including artificial neural works (ANNs) [61–65], back-propagation
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neural networks (BP-NNs) [66], general regression neural networks (GRNNs) [67], fuzzy
support vector machine (FSVM) [68,69], fuzzy logic [70,71], wavelet networks [72], binary
logistics, and Bayesian networks [73–75]. A common characteristic of all of these methods
is all of them ordinarily use historical condition data as their input variables, while a
particular health state is taken as the output. The hidden relationship between the input
and the outcome can be approximated using available condition data through the training
process. After training, this algorithm can process new condition data and evaluate the
health condition of the corresponding transformer according to the learned relationship.

Generally, AI algorithm-based approaches can be classified into three categories:
classification-algorithm-based approachs, fuzzy logic approaches, and inference-based
approaches. These three types of method will be detailed in the following subsections.

3.1. Classification-Algorithm-Based Health Index

The representative algorithms for the application of classification algorithms in health
index calculation are ANN, back-propagation neural networks (BP-NNs), general regres-
sion neural networks (GRNN), SVM, and some improved algorithms [61–69,76–80]. As
depicted in Figure 1b and mentioned in the introduction, the merits of this kind of method
are the approximation of the underlying relationship described in (2) between the inputs
(the condition data v1~vn) and the output (the health index). There are two steps in real-
izing the health index in this manner: (1) network training, and (2) testing with several
labeled datasets with known health indexes. During the network training, the input–output
relationship can be “learned” from the labeled data and then applied to determine the
health index of new unlabeled datasets.

Figure 8 presents a schematic of the ANN-based health index calculation model [63,64].
This model applies a four-layer feed-forward ANN to calculate the transformer health
index, including one input layer, one output layer, and two hidden layers. The inputs of
this network are eleven types of condition data, collected from 59 transformers, while the
output is a single specific health condition (e.g., Good, Fair, or Poor). Here, the health
condition of the condition datasets used for network training is decided by human experts.
After training the network, condition data from 29 transformers are used for testing.

Similar to ANN, GRNN can also be applied to calculate the transformer health index. It
allows multi-dimensional condition data to be combined through an optimal weighting and
score mechanism [68]. In this method, a smoothly interpolated continuous function is used
for the weighting assignment of each type of condition data. Since GRNN is a probability-
based neural network, the main task in health index calculation is to approximate the joint
probability distribution function (PDF) f (X,Y) of a random variable vector X and a scalar
random variable Y using nonparametric Parzen window estimation from a finite set of
datasets. Given X is an M-dimensional condition dataset of transformer X = [xn], xn∈Rm

and Y = [yn] is the corresponding health index, the conditional expectation of health index
can thus be expressed as:

E[Y|X] =

+∞∫
−∞

Y f (X, Y)dy

+∞∫
−∞

f (X, Y)dy
, (14)

Once different kernel functions have been adopted, e.g., the Gaussian kernel function,
the basic equation for the GRNN can finally be calculated as follows:

g(x) =

N
∑

n=1
Y exp(−D2

n
2 )

N
∑

n=1
exp(−D2

n
2 )

, (15)

where D2n = (x − Xn)T∑−1(x − Xn) is the squared Mahalanobis distance between the
training datasets and the output.
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Figure 8. ANN-based transformer health index calculation model [63].

In (12) and (13), the inputs X include the total dissolved combustible gases of five dis-
solved gases (e.g., H2, CH4, C2H6, C2H4, C2H2, and CO) and six characteristic parameters
of oil (dielectric strength, acidity, water content dissipation factor, furan). Output Y is one
of the five-level condition states: excellent, good, moderate, bad and very bad.

Another classification approach that has been applied in health index calculation, as
proposed in Ref. [69], is the FSVM. This method uses the condition data from 181 transform-
ers with specific oil test results (health index level) for network modeling. The test results
are interpreted by utility experts on the basis of industry standards, Duval’s triangle, and
other methods. The input of this approach mainly consists of three main factors: the DGAF,
the OQF, and the paper insulation factor. Denoting these inputs as X = [x1, x2, . . . , xl],
each sample belongs to one of the k health index levels [y1, y2, . . . , yk]. FSVM works to
help separate the samples into different categories by constructing a hyperplane. This
hyperplane is then used to classify new samples into certain health index levels. Details on
how FSVM works are not provided here.

3.2. Fuzzy-Logic-Based Health Index

For conventional HI approaches, the HI level is determined by the score interval to
which the calculated score belongs, usually consisting of four or five intervals. However, as
mentioned before, these approaches have several limitations; in particular, the determina-
tions of the weights of the condition data are in most cases more or less subjective (decided
by utility experts). In addition, the thresholds between different health levels are too rigid
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(and are always determined by industry standards and the experience of utility experts.
These thresholds vary from utility to another.

To overcome the above limitations, applications of the fuzzy logic method for trans-
former HI estimation were implemented in Refs. [69,70,81–91]. These papers utilized the
membership function to divide the condition data into different health levels. Different
health levels were described using other membership functions. Once the fuzzy logic (FL)
rules had been defined, a fuzzy synthesis operation was able to deduce the final member-
ship function for transformer HI. Expert knowledge is fully integrated with the inference
process in such approaches.

In calculating the FL-based health index, there are four essential steps:

• Determination of fuzzy rules and membership functions. The fuzzy rules are a set of
“If–Then” sentences that integrate the experience of human experts.

• Fuzzification. For each type of condition data, a membership function is assigned
based on relative industry standards (e.g., IEEE, IEC, or CIGRE). These membership
functions (varying in the range of 0~1) indicate the transformer’s partial condition
(e.g., good, moderate, bad, or more states).

• Fuzzy inference. Membership functions were synthesized using the fuzzy rules while
employing the Mamdani maximum–minimum inference method to derive the output
membership function.

• Defuzzification. Different methods (e.g., the centroid method) of the output member-
ship function were used to find a crisp value for the output that indicates the health
index of the transformer.

However, one deficiency of this kind of method is that fuzzy-logic rules are entirely
dependent on expert experience.

3.3. Regression-Method-Based Health Index

In addition to the neural-network- and SVM-based methods for calculating the trans-
former health index, regression methods have also been applied in transformer health
condition assessment, especially in health index calculation, such as binary logistic re-
gression, multivariate analysis, and general regression neural networks, or a combination
thereof [67,73,74,93,94]. For regression methods, health index calculation is a type of task
that explores the best-fitting model in order to describe the relationship between a set of
condition data {xi} and the health index HI (x) = f (xi). During this process, correlation
analysis can be utilized to reduce the number of input condition data that make little
contribution to the health index of the transformer.

In Ref. [73], binary logistic regression was applied to calculate the health index of
the transformer by considering the oil breakdown voltage, the total acidity of the oil, the
2-furfuraldehyde content, the water content and the dissolved combustible gases. The
logistic regression model used in that paper is reproduced in Figure 9a. The health index is
taken as the probability that the transformer belongs to a specific condition (i.e., healthy or
unhealthy, in this paper), and the input condition data are taken as the variable xi. Thus,
the transformer health index can be expressed as follows:

HI(x) =
1

1 + e−(β0+
∫ n

i=1 βixi)
, (16)

where β0 is a constant and βi is a coefficient reflecting the contribution of each type of
condition data xi to the health index, which can be estimated using the maximum likelihood
criterion to avoid subjective assignment in weighted-score-based health index methods.

In Ref. [74], typical factor analysis was first implemented on seven dissolved gases and
five oil characteristics in order to identify the interdependency between the condition data
from the correlation patterns. After that, the effect of each common factor on the health
index was analyzed using structural equation models, a method that combines regression
and factor analysis. The model for health index calculation using multivariate analysis is
provided in Figure 9b.
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However, for binary logistic regression or multivariate analysis, determining the
significance or weighting of each type of condition data with respect to the health index or
the common factor requires many datasets: the greater the number of datasets, the more
credible the weightings.

3.4. Probabilistic Method-Based Health Index

In cases when condition data are not complete, or even when some are unavailable,
neither weighted-score-based methods nor those based on ANN, fuzzy logic or regression
methods are capable of adequately calculating the health index of the transformer (fleet)
of interest. Under such circumstances, probabilistic-based techniques like Monte Carlo
simulation and Bayesian belief networks are superior for handling the missing information
and uncertainties in transformer health index calculation [49,95–100].

The method used by DNV GL Energy to calculate health index is to use the remaining
lifetime to derive the health index, which is taken to be a single indicator representing the
condition of an asset with respect to its specified performance and lifetime. Therefore, the
core of DNV GL Energy’s model consists of the assessment using functions to estimate the
asset’s remaining lifetime from the available data. This estimation is based on whatever in-
formation is available, including asset type, failure data, age, utilization data, maintenance
and condition data, etc. [96].

Three different assessment functions have been developed, including the statistical
assessment function, the utilization assessment function, and the condition assessment
function. Using these three functions, three different remaining lifetimes can be calculated
for the transformer of interest by using different data types. Finally, a folding function is
applied to select the most critical value derived by the three functions. A schematic for the
calculation of this type of health index is reproduced in Figure 10.
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In this model, all input condition data are given by means of input distributions, which
are set independently depending on the type of condition data. Thus, the inputs contain a
certain level of uncertainty, and Monte Carlo simulation is used to estimate the distribution
of the final health index. The details of this method, unfortunately, are not provided in the
publications related to it.

In Ref. [99], by utilizing the method proposed in Refs. [16,17], the variations in the
initial health index of specific transformers at different ages were determined. These were
then used to determine the transition probability of the Markov chain. The constructed
Markov chain was then used to predict the transformer health index in the future.

Recently, Bayesian belief networks (BBNs) were also applied in transformer asset
health condition evaluation and management [75,76,95,98]. Since BBNs can provide the
probability distribution function of the transformer’s final health results, it is more intuitive
and easier to understand. In Ref. [95], the health condition of the transformer was evaluated
using the PoF, where the failure rate of each subcomponent was inferred using a BBN. More
generally, the PoF is a health index that functions in coordination with those described in
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the foregoing text. The implementation of this health index model is illustrated in Figure 11.
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In this model, the transformer health index is determined on the basis of five com-
ponents, i.e., the bushing, the insulating oil, the kraft paper, the winding, and the tank.
Similarly, the health condition of each component is determined by two or more types of
condition data. Thus, this model has three layers: the input layer, the middle layer, and the
output layer (from left to right). In Figure 11, each node Xi of the outer layer, representing
one type of condition data, is characterized by several health states indicating its possible
condition (in Refs. [95,98], only two conditions were employed). These nodes are connected
using a unidirectional arrow. Here, the arrow direction reflects the probabilistic cause–effect
relationships between two nodes. There are two types of node in the network: one has a
parent node (nodes in the middle and output layer), and the other does not (input layer
nodes). Those nodes with no parent usually have a probability distribution over all possible
states, referred to as the prior probability.

Regarding those nodes with parents, the uncertainty of the effect of their parent node
can be quantified through a conditional probability distribution table (CPT). Usually, these
probabilities are evaluated using historical data, expert experience, or both. During the
inference process, the joint probability distribution (JPD) of a set of connected variables
[Xi, i = 1, 2, . . . , n] is inferred from observation. Once the CPTs of the variable group have
been determined, the JPD can be calculated as a product of these CPTs using:
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P(X1, X2, . . . , Xn) = ∏
i

P(Xi|Xi−1, . . . , X1), (17)

When all of the probability distributions of each node have been assigned, the PoF can
be calculated when specific values of Xi are available.

Since ref. [97] mainly focuses on identifying the failure condition of a transformer
by calculating its PoF, it only provides a good scheme for realizing a probabilistic health
index. Its method for calculating PoF, however, can serve as a reference. With this idea
in mind, a probabilistic transformer health index based on Bayesian information fusion
was proposed in Ref. [75]. In that study, an inference model was constructed using BBN,
which integrates various data and information obtained from transformer measurements,
maintenance records and failure statistics. As the hierarchical BBN was established with
reference to the even tree of the transformer given by the IEEE standard [59] and the BBN
structural parameters were determined based on both experts’ experience and the statistical
data, the results obtained from such a probabilistic framework are more objective and
more persuasive. Similarly, in Ref. [75], a simplified Bayesian network was proposed to
determine the transformer health index while accounting for possible classification error.

Using this method, the health index of the transformer is expressed in the form of
probability, which can conveniently provide staff with an understanding of the state of the
transformer in practical use. Before calculating the health index, it is necessary to obtain
statistics for the fault location of the transformer and the factors influencing this location
according to factors such as the use of the transformer and the cause of the fault and to
establish a directed acyclic diagram. Compared with the previous health index calculation
method, the probability-based health index calculation method is better able to consider
the fault mechanism of the transformer, and the selection of the quantits of states is more in
line with the actual use of the transformer.

3.5. Other AI Algorithm-Based Types of Health Index

Apart from the AI algorithms described above, attempts have been made to apply the
hybrid use of the classification algorithm, feature selection, and optimization methods to
the determination of the transformer health index [101–103]. In Ref. [101], three feature
selection methods—info-gain, relief, and correlation-based feature selection—were applied
to identify the principal features that are able to represent the actual health condition of a
transformer. First, algorithms like RForest SVM and kNN are used as classifiers to verify
the validity of the selected features in estimating the transformer’s health. Similar work is
also provided in Ref. [102]. Then, the cat swarm algorithm is used to build an optimization
model based on SVM to help select the most representative data from the among the various
transformer tests to determine the health index. In comparison, G. C. Jaiswal et al. [103]
proposed using the genetic algorithm to optimize the weighting formulation for the data
from each sensor online. This would then improve the reliability of the calculated health
index from an improved weighted-score sum method.

Unlike conventional methods, the above references emphasize the reliability of the
condition data or features extracted from various tests to derive a health index, rather
than numerical formulation or the extraordinary realization of the health index itself.
Therefore, the calculation of the health index using such methods can be more reliable and
accurate than conventional methods with implementing the sum of a weighted-score only.
Furthermore, the optimization of the input data for a health index is extendable to all of the
methods reviewed in Sections 2 and 3.

4. Summary and Outlook
4.1. Summary

The transformer health index provides an intuitive understanding of the overall
condition of a single transformer or even a fleet of transformers. Compared with PoF, RUL
(Remaining Useful Life) and other metrics for indicating the condition of a transformer, the
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health index is more comprehensive and practical for the purposes of asset management and
maintenance. In addition, it integrates a variety of different types of condition monitoring
data in order to reflect each subcomponent’s condition in a single global index for assisting
management decisions.

Table 6 summarizes all of the health index calculation methods. Among all of the
methods for calculating the transformer health index, weighted-score-sum-based methods
are widely accepted by utilities due to their practicability and the fact that they can be
performed quickly. In contrast, scholars find AI algorithm-based methods preferable.
Type-I and Type- II health indexes frequently use weighted-score-sum-based approaches.
The key to obtaining a reliable health index using such methods relies on the reasonable
determination of the weights. Therefore, the experience of human experts plays a decisive
role in this process.

Table 6. Summary of different types of transformer health index.

Type Input Variables Output Style Advantages Disadvantages

W
SS

-b
as

ed
H

I

Type-I

Transformer routine
test items, including

DGA, infrared test, oil
test, etc.

In percentage form,
from 0 to 100%.

• Simple for calculation,
the data needed are
easy to collect and the
weights are easy
to determine.

• Widely used in
practice and has rich
experience in
field application.

• The collected data are
not filtered to identify
errors and
missing data.

• The amount of data
selected is large, and
does not take into
account the
measurement cost
while ensuring
the accuracy.

• The weight is only
determined by experts.

Type-II

Composed of
structural transformer
components, such as

winding, core, oil tank,
bushing, oil, and
other accessories.

In percentage form,
from 0 to 100%.

• Strong operation logic
and high operability,
and has been used by
many utilities.

• The weight
determination is
considerably objective,
as it combines the
actual data and the
expert’s experience.

• The large amount of
data collected is not
screened, and wrong
and missing data
cannot be identified.

• The calculation
accuracy is
considerably low.

Type-III

Mathematical scores of
different degradation

causes or stresses
(e.g., electrical,

mechanical,
chemical, etc.).

In percentage form,
from 0 to 100%.

• Selection of input
variables is reasonable,
as it is referenced to
the transformer
fault mechanism.

• Instead of relying
solely on the weight to
determine the health
index, both weighted
and average values
are combined.

The final transformer health
index adopts the average
value of the weighted rank,
which is not
accurate enough.

Other
WSS-based

Transformer routine
test items, including

DGA, infrared test, oil
test, etc.

In percentage form,
from 0 to 100%.

• The operation is simple
and convenient, and
the types of test values
are more concise.

• According to the state
indication factor, the
service life can be
obtained directly.

If there are wrong data
present, they will directly
affect the accuracy of the
calculation results.
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Table 6. Cont.

Type Input Variables Output Style Advantages Disadvantages

A
Ia

lg
or

it
hm

-b
as

ed
H

I

CA-based 1 DGA and oil
testing results.

Condition status,
e.g., Good,

Average, Poor, etc.

• With self-learning
function, strong
robustness and fault
tolerance ability.

• It is able to perform a
large number of
operations quickly.

• The accuracy greatly
relies on the data
amount and the
calculation is complex.

• The calculation process
is a black box, so the
accuracy of the
calculation is in doubt.

FL-based

Mainly focuses on the
relevant testing results

of fault-prone parts
or DGA.

Membership
degree, for

determining
failure probability.

• It is easy to operate
and does not need
an accurate
mathematical model.

• Strong robustness and
fault tolerance ability.

Fuzzy logic is a black box,
which cannot be established
by a mathematical model for
its internal structure
and mechanism.

RA-based 2

Transformer routine
test items, including

DGA, infrared test, oil
test, etc.

In probability
form, from 0 to 1.

The mathematical models or
formulations are simple and
easy to understand.

• Unable to filter
input data.

• The accuracy is not
satisfactory.

PA-based 3

Selecting test items
related to failed

components based on
fault mechanism

In percentage form,
from 0 to 100%.

The calculation results are
accurate, and a directed
acyclic diagram deeply
analyzes the fault types of
the transformer.
Strong tolerance capability
for data error or lack of
certain information.

Needs a large number
of calculations.

Other
AI-based

Transformer routine
test items, including

DGA, infrared test, oil
test, etc.

In percentage form,
from 0 to 100%.

• It is convenient and
economical to simplify
the traditional test data
and extract the data
for calculation.

• High calculation
accuracy and
reliability.

The calculations are
complex, and a large
number of calculations is
also needed.

1 CA-based refers to the classification-algorithm-based health index; 2 RA-based refers to the regression-algorithm-
based health index; 3 PA-based refers to the probabilistic-algorithm-based health index.

Comparatively speaking, AI algorithm-based methods rely more on data, whereas
experts’ experience is also non-negligible. For classification-algorithm- and regression-
method-based health indexes, labeled data or a certain amount of transformer condition
data with a known health index is indispensable. With a certain amount of data available,
one should first decide the health condition of the corresponding transformer, and then
use this for training and the determination of the algorithm parameters to be used for
subsequent classification (or testing). In this regard, the experts’ experience can significantly
impact the classification performance, as Type-I and Type-II health index results are the
basis for implementing the classification algorithm-based health index. Comparatively, the
fuzzy-logic-based health index depends more on expert experience, since the expert rules
directly decide the final health index. In contrast, the probability method-based techniques
for realizing a health index rely less on specialist expertise, and focus more on the amount
of data, e.g., large amounts of transformer condition data are needed to determine the
algorithm parameters or the network. Such methods can be more objective, as they avoid
the subjectivity of human experts’ experience to the greatest extent.

The primary purpose of calculating the health index is to provide an assessment of
the transformer’s overall condition using a single indicator, which can also be considered
a multi-attribute decision-making (MADM) problem [104–106]. Therefore, some conven-
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tional methods utilized for transformer condition assessment, like fuzzy logic, evidence
theory, and analytical hierarchical process (AHP), or a combination of these, are also ap-
plicable for determining the health index of a transformer. To determine the final health
condition of a transformer, MADM methods can be used to construct a multi-layer struc-
ture considering different types of condition data. They can also include ambiguous and
uncertain information, similar to the BBN method. Both types of method have the ability to
integrate different factors with varying or even conflicting evaluation results.

4.2. Future Trend of the Transformer Health Index

In the future, it is probably that new types of health index will be developed utilizing
different methods and algorithms. However, the biggest challenge in realizing the health
index may manifest in optimizing the available data and the objectiveness and practicality of
the method. The primary issue can be solved by applying feature selection and optimization
methods to eliminate data dimensions and improve data reliability. In terms of objectiveness
and practicality, optimal weighting is an issue that can never be neglected, and is the final
goal of the weighted-score sum methods. In contrast, the probability-algorithm-based
health index will be a good choice in the future, since the rapid development and wide
application of big data and machine learning technology will not only ensure the availability
of the data itself, but will also render the realization of these algorithms no longer an
obstacle in terms of engineers’ understanding and use.

With changes in transformer service life, the weight of state quantity will change in
accordance with the evolution of the internal mechanism. In the future, attention should
be paid to the calculation of the variable-weight health index to improve the practicability
and accuracy of health index calculation. Moreover, most of the calculation methods for
calculating the health index have been realized in combination with various algorithms in
recent years. They make up for each other’s shortcomings, but their practicability needs
further improvement.
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