; Designing a user interface for relational documents

David Carrington, Tim Jones;
Anthony MacDonald, Mark Toleman! and
Jim Welsh

Software Verification Research Centre
Department of Computer Science and Electrical Engineering
The University of Queensland
Queensland 4072, Australia

Abstract

Relations of all kinds play a vital role in the user’s
comprehension of and navigaiion within and be-
tween, software documents. User-creaied relations
have the additional role of enabling the user to cre-
ate and mainiain relational documentation that can-
not be generated by tools or derived from other re-
lations. In this paper we consider the design of
UQ’s user interface for both these purposes, i.e.
the presentalion, query and navigation of relafions
in general, and the creation and ediling of user-
created relations in particular.

1 Introduction

Computer-aided software engineering (CASE) tools
kave a vital role to play in software development
and maintenance. In practice, however, the uptake
of innovative CASE tools by software engineers is
typically slower than their designers expect, and
the benefits are consequently limited. This slow
uptake of CASE tools is often attributed to usabil-
ity concerns, and improved usability of CASE tools
is therefore of vital importance.

A software product is captured as a set of soft-
ware “documents” which represent the software at
its various stages of development, typicaliy the re-
quirements specification, architectural design, de-
tailed module designs and compiiable code mod-
ules. Early CASE tools focussed on suppoert for
production of these individual representations. It is
now widely recognised, however, that manipulation
of relational structures or links between {compo-
nents of) this set of documents is a vital part of
effective software engineering.

Work at The University of Queensland has pro-
duced an experimental generic, language-based soft-
ware development environment, UQx [Welsh et al.
1994], which is distinguished by its facilities for
capturing and manipulating relational structures
within and between software documents, and for

*Ubilab, UBS AG, Postfach 8098 Zurich. Switzerland
‘University of Southern Queensland, Toowoomba,
Queensland 4350, Australia

67

displaying these structures in textual or diagram-
matic form. A ‘generic language-based environ-
ment’, when provided with appropriate descriptions
of the languages and representations involved in a
development method, provides its users with language-
specific support for the method.

The overall architecture of UQw is shown in
Figure 1. The central document server manages
the syntaciic and relational structures and ensures
their persistent storage as appropriate. Syntac-
tic structures are represented as abstract syntax
trees while relational structures are arbitrary non-
hierarchical connections within and between soft-
ware documents. The document server makes these
structures accessible to a collection of tools. These
tools can be categorised depending on whether they
interact with the user of the UQx system or not,
and whether they construct syntactic structures or
not. A text editor is an example of an interactive
and constructive tool while a static semantic anal-
yser is an analytic tool that generates relational
information linking syntactic constructs of its input
document with error messages.

There are three sources of relational information’:

User-determined: Users can define a relation be-
tween document segments. An example is a
relation between a section of code and its de-
scription in a corresponding specification doc-
ument.

Tool-determined: Analytic tools can calculate re-
lations. An example 1s a declaraiion-use re-
lation between declarations of identifiers in a
software document and all uses of that iden-
tifier, as calculated by a semantic analyser for
the language.

Derived: A relation can be defined in terms of
other relations. Derived relations are calcu-
lated dynamically by a Prolog engine in the
document server.

1Relations are also used in UQ+ to represent the edpes
to be drawn between nodes in diagrammatic documents
[Jones et al. 1997} but user interaction with these relations
is beyond the scope of this paper.

Text
Editor

Diagrammatic /

Tool

Analytical
/ Tool
\ Constructive
Toot

Figure 1: UQx architecture

2 The design challenge

In their simplest form, UQx relations often act as
hypertext links between document compoenents. Us-
Ing the presentation and navigation facilities com-
monly used in web browsers is therefore a natu-
ral user interface option. Hypertext links are a
particularly simple form of binary relations, which
is basically a one-to-one or many-to-one one-way
mapping. While UQ#’s binary relations between
document components are more general than this,
achieving the simplicity and efficiency of the click-
to-follow paradigm wherever possible is a logical
user interface design goal.

However, UQx relations are not necessarily bi-
nary, and do not necessarily involve only viewable
document locations. N-ary relations can be cre-
ated, and the elements in relation tuples can be
strings or other attributes rather than references
to document components. The underlying model of
UQx relations is thus more akin to that used in re-
lational databases. The presentation of relations in
a tabular format, with labels or ‘handles’ represent-
ing references to document components, is a logical
candidate for consideration. Tabular presentation
is a powerful user interface option, in that it readily
accommodates the full range of user interaction
requirements on relations: inspection, query, navi-
gation, creation and editing. The Doors document
management system [Stevens et al. 1996], which
supports the construction and maintenance of re-
lations over document sets for applications such as
requirements traceability, uses tabular presentation
as the primary means of user interaction with these
relations. With this tabular approach, however,
simple commonly oceurring operations such as Ly-
pertext navigation can appear clumsy since they
involve the introduction of an intermediate tabular
display.

Achieving a seamless integration of the efficiency
of hypertext behaviour with the generality of tabu-
lar manipulation when required is the challenge in
designing an effective interface for relational docu-
ment manipulation.

68

3 Requirements and design

In this section we review the requirements and de-
sign choices for an effective interface for relational
document manipulation in UQx, under the head-
ings:

e static presentation of relations,
¢ dynamic presentation of relations,
* navigation of refations, and

* editing of relations.

In this extended abstract we focus on the prob-
lems posed. The corresponding presentation will
include illustratior of the solution chosen for im-
plementation in UQx.

In our discussion, we use the following code
segment to highlight several presentation issues.

1 BEGIN

2 X 1%y

3 zZ 1=y * 10 ;
4 END

Static presentation of relations. Static pre-
sentation of relations is the physical display of re-
lations within documents in UQx. There are two
aspects to static presentation of refations in UQx:

¢ which relations are viewable, and
* how these viewable reiations are made visible.

The aspects of a document type and any asso-
ciated relations that are viewable by the editor are
determined by the view description for that doc-
ument type in the overall EDL (Environment De-
scription Language) [Allison et al. 19981, Whether
and how the relations are made visible at any mo-
ment Is determined by a user-controllable presen-
tation description, whose default settings are again
determined in the EDL. The user can, however,
change these presentation settings to suit their pur-
pose at any time,

‘The visual presentation of relations needs to
minimise sensory overload. Visual presentation of

reiations focuses on the presentation of the attach-
ment point(s) of a relation in a document. Rela-
tions can be marked with highlights (or underlin-
ing) of various colours or symbols. However, indi-
vidually marking every relation attachment point
can lead to overloading in several ways:

¢ too many different colours/symbolsfor the user
to remember, and

e physical crowding of the frame.

However, UQx relations can be attached to more
than arbitrary pieces of text and an attachment
point can be refated to several lines in a document.
This attachment problem is farther complicated by
the possibility of nested attachment points. Using
our example to illustrate this point, consider a situ-
ation where a relation exists that has astatement as
one attachment point. In the example, line 2, line
3, and lines 1-4 are all statements. While attaching
to either line 2 or 3 is straight forward, attaching to
lines 1-4 is not so easy as a highlight (or continuous
underline} would hide the attachments to lines 2
and 3. We require that not only does the visual
presentation minimise sensory overload, but that
the presentation shouid be able to present relations
attached to document structures (such as a state-
ment) rather than arbitrary pieces of text and be
able to present nested relations. The overloading
can be minimised by:

e controlling the number of visibie relations via
the visibility mechanism, and

+ using a single marker for all relation attach-
ments, rather than a different colour or symbaol
for each relation instance and type.

Neither of these solutions solves the nested rela-
tions/large attachment point problem and this will
have to be solved by our choice of marker. This
marker could have the form of a delimiting cutline
as shown in Fig. 2.

| BEGIN :
CORTETEDO
T T 1
I :_Z =y * 104 :
Rt -
| END :
L ovv e e o o e o e me wa hem
Figure 2:

Dynamic presentation of relations. Naviga-
tion of relations can be separated into queries that
identify possible navigations and the actual deci-
sion to navigate the relation. Dynamic presenta-
tion {or querying) of relations prepares for naviga-
tion by presenting the relations that are available
for navigation from a point within a document.

69

Recognising what the user has selected is the
largest problem associated with the dynamic pre-
sentation of relations. The UQx user views the
document as a formatted textual document and
the document is internally represented as (and the
relations are attached to) an abstract syntax tree
(AST). While the user has a general awareness of
the document’s syntactic structure, they do not
necessarily appreciate the precise syntax adopted
by the system. This dichotomy between the user’s
perception of the document and that of the system
may lead to selection problems. There are several
manifestations of the selection problem, but they
all come under the covering of the fuzzy selection
problem, i.e., the user has selected a section of the
document that does not exactly match an AST
node or is not the AST node the user requires. For
instance, in our example if the user has highlighted
half a line, as shown in Fig. 3, does the selection
apply to the y or the complete line? The solution

| SnE R |
x = y ;|1

o
Figure 3.

must both provide a sensible method of choosing
which node the user has selected and yet provide
the user with a method of viewing the relations
attached to nearby nodes (note: by nearby nodes,
we mean as the user sees the document, and is not
necessarily based on closeness within a tree).

Navigation of relations. An important goal for
the navigation of relations is to balance the goals
of simplicity and usefulness. In trivial cases, i.e.,
when there is only one possible destination, the
user should have trivial interaction to navigate, i.e.,
the separation of query and navigation should not
exist. The more general case where there are multi-
ple possible navigation destinations, the user should
be presented with a useful method of selecting the
required destination.

When a navigation operation is performed, the
impact on the user must be considered. The effect
of the navigation is dependent on the context and
the relation being navigated. For example, navi-
gations within the same document may change the
contents of the current window, but if the naviga-
tion is to a different document, a new window may
be opened.

Once the selection problems associated with dy-
namic presentation of relations have been solved,
navigation becomes a straight-forward problem and
does not differ significantly from other hypertexi-
based environments. This will include the provi-
sion of a back method. While UQ relations allow
navigation in either direction it is not sufficient to
allow the user to navigate a relation and expect

them to be able to navigate back using relational
navigation.

Editing of relations. Editing of relations is to
follow the same paradigm as the editing of docu-
ments, i.e., the user should be able to treat rela-
tions as first class objects and be provided similar
operations on relations as provided for documnents.
Relation editing can be viewed at two levels:

o the creation/removal of a relation instance, and

e the creation/removal/modification of tuples
within a relation instance,

The view defined in the EDL restricts not only
the relation types that can be viewed but also the
viewable types that can be edited.

The creation of documents requires both the
type of document (Modula2, EBNF, etc.) and the
name of the document. Similarly, the creation of
relation instances requires the type of the relation
and a name for that instance. Creation of a re-
lation creates an empty instance. Removal of a
relation instance removes all tuples in that relation
instance. Removal of a relation instance can have
siznificant and possibly catastrophic consequences
for the user and should be handled carefully.

Creation, removal and modification of a tuple
each require the selection of a tuple as part of their
operation. In the paragraph on dynamic presenta-
tion of relations, we discussed the fuzzy selection
problem. That problem also has to be soived for
tuple editing, e.g., we don’t want to delete every
tuple attached to a node when it is selected for
tuple removal, but rather allow the user to select
the tuple of interest. This multi-step selection for
editing will be similar to navigation.

4 Conclusions

In this extended abstract we have identified some
of the probiems arising in designing a user inter-
face for relation manipulation in UQ«. Solution of
these problems is now in progress, and will also be
covered in the workshop presentation of the paper.

References

Allison, W., Carrington, D., Jones, T., MacDonald,
A., Toleman, M. and Welsh, J. (1998), Envi-
ronment description language for UQx, Work-
ing Document, Software Verification Research
Centre, University of Queensland.

Jones, T. S. and Welsh, J. (1997), Requirements
for a generic, language-based diagram edi-
tor, Australian Compuler Science Communt-
cations 19(1), 316-325.

70

Stevens, R. and McCaskill, G. A. (1996), Methods
and tools for the interactions between systems
and software, Technical report, QSS Ltd,
Magdalen centre, Oxford, UK. :

Welsh, J. and Han, J. (1994), Software documents:
Concepts and tools, Software-Concepis and
Tools 15, 12-25.

