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Abstract
Background and Objective Stroke ranks among the leading causes of disability and death worldwide. Timely 
detection can reduce its impact. Machine learning delivers powerful tools for image-based diagnosis. This study 
introduces StrokeNeXt, a lightweight convolutional neural network (CNN) for computed tomography (CT) and 
magnetic resonance (MR) scans, and couples it with deep feature engineering (DFE) to improve accuracy and 
facilitate clinical deployment.

Materials and Methods We assembled a multimodal dataset of CT and MR images, each labeled as stroke or 
control. StrokeNeXt employs a ConvNeXt-inspired block and a squeeze-and-excitation (SE) unit across four stages: 
stem, StrokeNeXt block, downsampling, and output. In the DFE pipeline, StrokeNeXt extracts features from fixed-size 
patches, iterative neighborhood component analysis (INCA) selects the top features, and a t algorithm-based 
k-nearest neighbors (tkNN) classifier has been utilized for classification.

Results StrokeNeXt achieved 93.67% test accuracy on the assembled dataset. Integrating DFE raised accuracy to 
97.06%. This combined approach outperformed StrokeNeXt alone and reduced classification time.

Conclusion StrokeNeXt paired with DFE offers an effective solution for stroke detection on CT and MR images. 
Its high accuracy and fewer learnable parameters make it lightweight and it is suitable for integration into clinical 
workflows. This research lays a foundation for real-time decision support in emergency and radiology settings.
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Introduction
Stroke is a major healthcare issue. It causes partial or 
complete loss of motor abilities in patients [1, 2]. The 
World Health Organization (WHO) reports that strokes 
affect 15 million people each year and cause 5 million 
deaths. Therefore, the mortality rate of stroke is very 
high. This condition (stroke) affects mainly people over 
age 40. Younger patients with high blood pressure also 
face this risk [3]. Major risk factors for stroke are tobacco 
use, alcohol intake, high blood pressure, and obesity [4, 
5]. Early detection is critical. Advances in CT and MR 
imaging have proved vital for early detection [6]. These 
tools produce large datasets and require many hours of 
work by medical specialists for accurate diagnosis and 
treatment planning [7–9].

Artificial intelligence (AI) has become an admirable 
tool for problem solving. Therefore, AI tools have been 
utilized for handling biomedical challenges [10]. AI mod‑
els can extract essential information from large datas‑
ets and ease the workload of healthcare professionals. 
Demand for more precise models remains, especially 
those able to detect stroke in CT and MR images with 
high accuracy [11]. This research presents StrokeNeXt 
and this convolutional neural network (CNN) model 
is an innovative fully convolutional lightweight model. 
StrokeNeXt is designed for precise stroke detection on 
computed tomography (CT) and magnetic resonance 
(MR) images in this research. This model builds on the 
ConvNeXt architecture and adds a squeeze‑and‑excita‑
tion (SE) block to improve feature representation. This 
study describes the design of StrokeNeXt and its novel 
layers and blocks.

We collected a dataset of CT and MR scans and divided 
the images into stroke and control classes. We tested 
StrokeNeXt on this dataset and measured its detec‑
tion accuracy. We also used a patch‑based deep feature 
method that uses ViT [12] elements for feature extrac‑
tion, followed by feature selection [13] and classification 
to refine the model’s predictive power.

To create the stroke datasets, MR and CT images have 
generally used and, the advantages and limitations of 
MR‑ and CT‑based stroke detection models are:

  • CT imaging costs less than MR imaging but contains 
less detail. CT scans are the first choice in emergency 
services and play a key role in early diagnosis.

  • MR imaging is expensive but provides detailed 
information about stroke.

Literature review
There are various machine learning‑based studies pro‑
posed for different disciplines in the literature [14–17]. 
Some recent studies on stroke detection include the fol‑
lowing. Subudhi et al. [18] proposed a feature‑engineering 

model for ischemic stroke detection and achieved 95.00% 
accuracy. This approach relies on predefined features and 
may not adapt well to new image data. Ozaltin et al. [19] 
introduced OzNet for CT image classification, selecting 
250 features from its fully connected layer and report‑
ing 98.42% accuracy. They collected a small dataset since 
their dataset has limited number of the images. More‑
over, their presented OzNet is a simple version of the 
VGG. Cetinoglu et al. [20] applied a CNN to diffusion‑
weighted MRI images in 421 cases (271 acute stroke, 150 
controls) and obtained 96.00% accuracy. The study did 
not include validation on other MRI modalities or exter‑
nal datasets. Aishvarya et al. [21] developed a system 
for early stroke detection in MRI images using machine 
learning and image processing, with accuracy above 
90%. The method lacks detailed comparison with exist‑
ing approaches and evaluation on diverse patient groups. 
Tang et al. [22] presented a computer‑aided detection 
scheme for small lesion identification in non‑enhanced 
CT images, testing on 101 scans and attaining an area 
under the ROC curve of 99.90%. The small test set limits 
assessment of its general performance and they only used 
CT images. Badriyah et al. [23] evaluated eight machine 
learning algorithms on CT scans from 102 patients (226 
ischemic, 7 hemorrhagic images) and reached 95.97% 
accuracy. The severe class imbalance may affect the reli‑
ability of hemorrhage classification. Krishna et al. [24] 
used a dataset of 5 110 instances for early stroke detec‑
tion with machine learning and reported 99.35% accu‑
racy. The study did not specify image types or address 
potential overfitting. Ayoub et al. [25] proposed an devel‑
oped Vision Transformer (ViT) architecture for multi‑
slice CT classification in 730 patients (normal, infarction, 
hemorrhage) and yielded 87.51% accuracy. The model 
shows lower performance in hemorrhage cases and offers 
limited lesion localization. Moreover, their utilized model 
is not original. Gautam et al. [26] applied a feature extrac‑
tor to 900 CT images for classification into normal, isch‑
emic, or hemorrhagic categories and obtained 82.65% 
accuracy. Their model has relatively low classification 
performance. Lee et al. [27] used a CNN on diffusion‑
weighted MRI slices and attained 86.30% accuracy. They 
only used diffusion‑weighted MRI slices and MRI is an 
expensive process. Patel et al. [28] employed Efficient‑
NetB0 on 100 CT images and reported 97% accuracy. The 
small sample size limits its generalizability and they used 
well‑known deep learning model (EfficientNetB0). Thus, 
they have no contribution to deep learning. Raj et al. [29] 
applied machine learning to CT scans from 233 patients 
and reached 92.00% accuracy. They only used CT images. 
Other modalities can be used to test their models.
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Literature gaps
According to the literature review, identified gaps 
include:

  • Stroke is a common disorder, but public image 
datasets for stroke, particularly those combining MR 
and CT scans, are scarce. Moreover, the most of the 
models have used small image datasets.

  • Most studies use deep learning models for stroke 
detection, typically relying on established CNN 
architectures to achieve high classification/detection 
accuracy.

  • Since 2020, transformers have gained prominence 
in computer vision, and proposals for new CNN 
models have declined; only a few next‑generation 
CNNs have been introduced.

  • Most studies use deep learning or feature 
engineering for stroke detection, and very few 
combine both methods.

Motivation
Our essential motivation is to introduce a new CNN, 
StrokeNeXt, that detects strokes with high accuracy and 
uses fewer learnable parameters. To support this aim, we 
created a dataset of stroke and control cases using CT 
and MR images. This multimodal dataset includes both 
CT and MR scans. We have used stroke dataset since we 
aimed to show that the recommended StrokeNeXt can 
solve real life problems. By collecting a multimodal data‑
set, we aimed to fill the first literature gap and the col‑
lected dataset contains more than 5000 medical images. 
Also, by proposing an innovative CNN model, the sec‑
ond gap has been filled since the most of the biomedical 
image classification/detection researches have used the 
well‑known CNN models to guarantee the high classifi‑
cation/detection performance. In this research, we took 
this risk.

Recent work in computer vision has focused on trans‑
formers such as ViT [12] and Swin Transformer [30] 
because of their strong classification performance. This 
focus has led to fewer new CNN proposals. A few new 
CNNs, such as ConvNeXt [31] and Hyenadna [32], still 
offer competitive alternatives. In this study, we enrich 
CNN methods by adding a novel block to StrokeNeXt. By 
presenting the StrokeNeXt CNN, we have filled the third 
literature gap.

Although several feature engineering models appear 
in the literature, they have lower classification accuracy 
than deep learning models [33–35]. Feature engineering 
does offer lower computational complexity and simplicity 
[36]. We therefore present a Deep Feature Engineering 
(DFE) model that uses transfer learning with StrokeNeXt 
to improve classification accuracy. Inspired by ViT, our 
DFE model uses patch‑based feature extraction and 

aims to combine deep learning and feature engineering 
strengths. By recommending the StrokeNeXt‑based DFE, 
fourth literature gap has been filled.

Innovations
The innovative aspects of the StrokeNeXt‑based stroke 
detection research include:

  • A new multimodal dataset of CT and MR images for 
stroke detection

  • StrokeNeXt, a lightweight CNN model in deep 
learning

  • A DFE model with patch‑based feature extraction, 
iterative feature selection, and classification 
techniques.

Contributions
Our contributions are:

  • Compiling a publicly available multimodal CT and 
MR image dataset for stroke detection to enable 
effective deep‑learning training and support future 
multimodal model development.

  • Developing StrokeNeXt, a novel lightweight CNN 
model, and a StrokeNeXt–based DFE model 
attained over 93% test classification accuracies. The 
recommended DFE increased test classification 
performances of the recommended StrokeNeXt. In 
this respect, this research contributes to both CNN 
and feature engineering.

The collected image dataset
Our dataset was collected retrospectively from a single 
medical center between 2021 and 2023 years. CT imag‑
ing was performed on a 128‑slice GE Revolution scan‑
ner in the axial plane with a 5 mm slice thickness. MRI 
was acquired on a GE Signa 1.5  T system using axial 
diffusion‑weighted imaging (DWI) sequences at b‑values 
of 0 and 1000 s/mm². All acquisitions followed the hos‑
pital’s standard stroke screening protocol. There are two 
distinct classes: (1) stroke and (2) control. These classes 
were clinically verified with neurologists and neurora‑
diologists. The dataset comprises data from 230 partici‑
pants, with a gender distribution of 113 females and 117 
males. Among these participants, 115 were diagnosed 
with stroke, while the remaining 115 were categorized 
under the control group. An average of 7–8 cross‑sec‑
tional images were used for each imaging type. The data‑
set includes a total of 5,336 CT and MRI (2226 CT + 3110 
MR) images, with 2,695 images representing stroke cases 
and 2,641 images corresponding to control cases. This 
dataset was collected retrospectively from a medical cen‑
ter. We obtained ethical approval from the Non‑Inva‑
sive Ethics Committee of the Ankara Provincial Health 
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Directorate at Yıldırım Beyazıt University Yenimahalle 
Training and Research Hospital on December 7, 2023 
(E‑2023‑76).

All patient imaging data were fully anonymized before 
analysis. Identifiers such as name, date of birth, patient 
ID, and acquisition timestamps were removed from all 
image headers. We reviewed the dataset for missing 
images or labels and excluded any cases with incomplete 
CT or MR series; no imputation was performed. Refer‑
ence labels were assigned by one neuroradiologist and 
two emergency medicine specialists, based on clinical 
reports and follow‑up data.

The distribution of the collected multimodal image 
dataset has been given in Table 1.

As shown in Table 1, the final dataset comprises 5,336 
images (2,226 CT and 3,110 MR) from 230 patients (115 
stroke, 115 control; 113 females, 117 males). Each patient 
contributed an average of 7–8 cross‑sectional images per 
modality. Patient ages ranged from 19 to 91 years (mean 
61.63).

We split the data at the patient level to avoid over‑
lap. Stratified sampling preserved the stroke/control 
ratio: ~75% of patients (173) and 4,009 images went to 
the training set; ~25% of patients (57) and 1,327 images 
formed the test set. The test set size was chosen to 
achieve over 80% power to detect a 3% difference in accu‑
racy (α = 0.05).

To create the validation set, we randomly selected 30% 
of the training images. This yields 2,806 training, 1,203 
validations, and 1,327 test images. The resulting split 
ratio for training, validation, and test sets is approxi‑
mately 52.5: 22.5: 25.

Moreover, this dataset was publicly published on the 
web and the users can download this dataset utilizing  h 
t t p  s : /  / w w w  . k  a g g  l e .  c o m /  d a  t a s  e t s  / t u r  k e  r t u  n c e  r / m u  l t  i m o  d 
a l  ‑ s t r  o k  e ‑ i m a g e ‑ d a t a s e t URL.

StrokeNeXt
This research introduces StrokeNeXt, an innovative CNN 
model for stroke image analysis. StrokeNeXt uses fewer 
than 10 million learnable parameters (about 7.3 million). 
Therefore, the presented version of the StrokeNeXt is 
lightweight. Its architecture consists of four phases: stem, 
StrokeNeXt block, downsampling, and output block. The 
StrokeNeXt block, a key innovation, appears in Fig. 1.

As illustrated in Fig. 1, the process begins with pixel‑
wise convolution, increasing the number of filters by 
six‑fold. Subsequently, batch normalization is applied to 
normalize the outputs. This block follows a sequence of 
operations similar to ConvNeXt, involving convolution, 
normalization, another convolution, activation, a further 
convolution, and then normalization again. For the sec‑
ond convolution operation, a 3 × 3 convolution is utilized 
with the same number of filters, accompanied by GELU 
activation. Following this, a squeeze‑and‑excitation 
(SE) block is incorporated to enhance the block’s focus 
on relevant features. The final convolution step again 
employs pixel‑wise convolution and batch normaliza‑
tion. Additionally, a shortcut connection, reminiscent of 
residual blocks, is used to mitigate the vanishing gradient 
problem. The mathematical formulation of this block is 
detailed below. 

 Xt = BN
(

C1×1
F

(
SE 1

6

(
GELU

(
C3×3

6F

(
BN

(
C1×1

6F (Xt−1)
))))))

+ Xt−1 (1)

where Cx
y (.): convolution operator and x define the filter 

size, and y represent the number of filters. Moreover, Xt: 
the output of the tth time. Also, we have defined SE (.) 
function below. 

 SE 1
6

(St−1) = St = Sigmoid
(
C1×1

6F

(
GELU

(
C1×1

F (GAP (St−1))
)))

× St−1  (2)

Herein, St−1: input of the SE block/function and St: out‑
put of the SE block.

Table 1 Distribution of the collected CT and MR image dataset
No Number of participants Demographic characteristics of patients Class Train Test Total
1 Female:59

Male:56
Total:115

Female:
Min:25, Average: 59.78, Max: 78
Male:
Min: 24, Average:61.14, Max:82
Overall:
Min:24, Average: 60.47, Max: 82

Stroke CT:
699,
MR: 1326,
Total: 2025

CT: 230,
MR: 440,
Total: 670

2695

2 Female:60
Male:55
Total:115

Female:
Min:21, Average: 63.04, Max: 88
Male:
Min:19, Average:59.78, Max: 91
Overall:
Min: 19, Average:62.28, Max:91

Control CT:
975,
MR: 1009,
Total: 1984

CT: 322,
MR: 335,
Total: 657

2641

Total Female:119
Male:111
Total:230

Min:19, Average: 61.63, Max:91 4009 1327 5336

https://www.kaggle.com/datasets/turkertuncer/multimodal-stroke-image-dataset
https://www.kaggle.com/datasets/turkertuncer/multimodal-stroke-image-dataset
https://www.kaggle.com/datasets/turkertuncer/multimodal-stroke-image-dataset
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By implementing the proposed block, we have intro‑
duced the StrokeNeXt CNN model and a graphical rep‑
resentation of StrokeNeXt is depicted in Fig. 2.

To develop this model (StrokeNeXt), we were inspired 
by the structure of MobileNet, which begins with a small 
number of filters that increase toward the output block. 
Consequently, we started with 48 filters for the stem 
block. We utilized the proposed StrokeNeXt block in a 
repetitive structure in the main block. For downsam‑
pling, patchify average pooling was employed to reduce 
the tensor size, while pixel‑wise convolution was used 
to increase the number of filters. In the output block, 
we applied two convolutions with 640 and 1024 filters, 
respectively, adhering to the ConvNeXt paradigm (con‑
volution + BN + convolution + GELU). By implementing 
Global Average Pooling (GAP), we obtained the final 
feature map and determined the number of classes in 
the fully connected layer. Finally, a Softmax function was 
used to generate classification results. The mathematical 
specifics of StrokeNeXt are detailed in Table 2.

As detailed in Table 2, our proposed StrokeNeXt model 
comprises approximately 7.3 million parameters, classify‑
ing it as a lightweight CNN model. The various phases of 
the model are explained as follows.

Stem Layer: The initial processing phase begins with 
images sized at 224 × 224 pixels across three color chan‑
nels (RGB). Therefore, the size of the input image is 
224 × 224 × 3. It undergoes two convolutional operations: 
the first with a 7 × 7 kernel featuring 24 filters, batch nor‑
malization (BN), GELU activation, and a stride of 2, fol‑
lowed by a second convolution using a 3 × 3 kernel with 
48 filters, also with BN and GELU activation, and a stride 
of 2. This results in a feature map sized at 56 × 56 pixels 
with 48 channels.

Main Block 1: Receiving the output from the stem 
layer, this block executes a sequence of operations twice. 
It starts with a 1 × 1 convolution to expand the channel 
depth to 288, followed by a 3 × 3 convolution with the 
same number of filters that incorporates a squeeze‑and‑
excitation (SE) block for improved feature selection, and 
concludes with another 1 × 1 convolution to revert the 
channel count back to 48. This process maintains the fea‑
ture map size at 56 × 56 pixels with 48 channels.

Downsampling 1: This stage takes the feature map from 
Main Block 1 and applies average pooling with a 2 × 2 
kernel and stride of 2, reducing the spatial dimensions. 
A subsequent 1 × 1 convolution increases the depth to 96 
channels, further processed by BN and GELU activation, 
resulting in a 28 × 28 pixels feature map with 96 channels.

Main Blocks 2 to 4 and Downsampling Phases: Follow‑
ing the pattern established in Main Block 1 and Downs‑
ampling 1, each successive block and downsampling 
phase refines the feature map’s size and depth as per their 
specific operations. Notably, the final downsampling 
phase (Downsampling 3) reduces the feature map to 7 × 7 
pixels with 384 channels.

Output Phase: The model’s final phase processes the 
7 × 7 × 384 feature map from Main Block 4, utilizing a 
1 × 1 convolution to increase the channel depth to 640, 
then to 1280 with BN and GELU activation. Global Aver‑
age Pooling (GAP) condenses each 7 × 7 channel to a 
singular feature, which feeds into a fully connected layer 
equipped with Softmax for classification. This yields the 
classification scores for the model’s designated classes, 
marking the culmination of the model’s intricate process‑
ing pathway to achieve its classification objectives.

StrokeNeXt-based deep feature engineering
We have introduced a novel DFE model leveraging the 
proposed StrokeNeXt. This DFE model encompasses 
three primary phases: (i) patch‑based feature extraction, 
(ii) feature selection based on INCA [37], and (iii) clas‑
sification using. A graphical overview of the StrokeNeXt‑
based DFE model is provided in Fig. 3.

Fig. 1 The proposed StrokeNeXt block. Herein, F: number of filters, BN: 
Batch Normalization, GELU: Gaussian Error Linear Unit, GAP: Global Aver-
age Pooling

 



Page 6 of 18Ekingen et al. BMC Medical Imaging          (2025) 25:205 

The steps of the proposed StrokeNeXt‑based DFE 
model are given below.

Step 1: Train the proposed StrokeNeXt by deploying 
training images.

Step 2: Create 49 patches deploying the following rule. 
The size of each patch is 56 × 56 × 3, and stride is 28.

Step 3: By deploying GAP layer of the pretrained Stro‑
keNeXt, we have generated features from the raw image 
and the generated feature patches. 

 f1 = StrokeNeXt (Im, GAP )  (3)

 ft+1 = StrokeNeXt (Pt, GAP ) , t ∈ {1, 2, . . . , 49}  (4)

Herein, f the generated individual feature vector with 
a length of 1280, P: fixed‑size patch with a size of 
56 × 56 × 3.

Step 4: Concatenate the generated feature vectors. 

 X (j + 1280 × (a − 1)) = ft (j) , a ∈ {1, 2, . . . , 50}  (5)

Fig. 2 Overview of the presented StrokeNeXt CNN model
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Herein, X : the merged feature vector with a length of 
64,000 (=1280 × 50).

Step 5: Apply the INCA feature selector to choose the 
best feature vector. The INCA is the developed version 
of the NCA feature selector. The parameters of the used 
INCA are given as follows. The range of iterations is from 
100 to 1000. Therefore, 901 (=1000 − 100 + 1) feature vec‑
tors have been generated. In the loss value calculation, we 
have used the kNN classifier. The mathematical definition 
of the INCA feature selector has been defined below. 

 ix = NCA (X, y)  (6)

 sr (d, j) = X (d, ix (j)) , d ∈ {1, 2, . . . , Dim} , r ∈ {1, 2, . . . , 901} , j ∈ {1, 2, . . . , r + 99}  (7)

 loss (r) = ρ (sr, y)  (8)

 [mini, id] = min (loss)  (9)

 fetsel = sid  (10)

Where ix: the qualified index, s: selected feature vec‑
tor, y: actual outcome, Dim: the number of images, 
ρ (., .): loss (loss) value calculation, mini: minimum 
value, id: index of the minimum loss and fetsel: selected 
final features.

Using the INCA selector, we eliminated redundant fea‑
tures and retained only the most informative ones. INCA 
self‑organizes by evaluating each feature subset with a 
classifier and selecting the subset that delivers the best 

classification performance. Reducing the feature space 
lowers model variance and the risk of overfitting. It also 
clarifies data geometry by removing irrelevant dimen‑
sions. This process sharpens class clusters and increases 
the decision‑boundary margin. A larger margin improves 
generalization to new data and ensures stable perfor‑
mance under varying conditions.

Step 6: Classify the selected features deploying tkNN 
classifier. The mathematical definition of the tkNN classi‑
fier is illustrated below.

In the first step of tkNN classifier, the outputs have 
been generated employing iterative consecutive para‑
maters changing using a parameter bag. The parameter‑
based outcome generation’s mathematical definition has 
been presented below.

 ptr = kNN (fetsel, y, PB) , r ∈ {1, 2, . . . , npar} (11)

Herein, pt: paramater‑based outcome, kNN (.): kNN 
classifier, PB: parameters bag and npar : number of 
parameters.

In the second step of the tkNN classifier, itera‑
tive majority voting has been applied to create voted 
outcomes.

 vth = IMV (pt) , h ∈ {1, 2, . . . , npar − 2} (12)

where vt: voted outcome, IMV (.): IMV function. The 
mathematical explaination of the IMV algorithm is illus‑
trated below. Firstly, the classification accuracies of the 

Table 2 The mathematical details of the presented StrokeNeXt
Layer Input Operation Output
Stem 224 × 224 × 3 7 × 7, 24, BN + GELU, stride: 2

3 × 3, 48, BN + GELU, stride: 2
56 × 56 × 48

Main 1 56 × 56 × 48



1 × 1, 288
3 × 3, 288

SE, 1
6

1 × 1, 48


 × 2

56 × 56 × 48

Downsampling 1 56 × 56 × 48 Average pooling with a filter size 2 × 2 and stride: 2, 1 × 1, 96, BN + GELU 28 × 28 × 96
Main 2 28 × 28 × 96




1 × 1, 576
3 × 3, 576

SE, 1
6

1 × 1, 96


 × 2

28 × 28 × 96

Downsampling 2 28 × 28 × 96 Average pooling with a filter size 2 × 2 and stride: 2, 1 × 1, 192, BN + GELU 14 × 14 × 192
Main 3 14 × 14 × 192




1 × 1, 1152
3 × 3, 1152

SE, 1
6

1 × 1, 192


 × 4

14 × 14 × 192

Downsampling 3 14 × 14 × 192 Average pooling with a filter size 2 × 2 and stride: 2, 1 × 1, 384, BN + GELU 7 × 7 × 384
Main 4 7 × 7 × 384




1 × 1, 2304
3 × 3, 2304

SE, 1
6

1 × 1, 384


 × 2

7 × 7 × 384

Output size 7 × 7 × 384 1 × 1, 640, BN, 1 × 1, 1280, GELU, GAP, fully connected layer, Softmax, classification Number of classes
Total learnable parameters for 1000 classes 7.3 Million
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Fig. 3 The schematic overview of the presented StrokeNeXt-based DFE model
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parameter‑based outcomes have been computed. Uti‑
lizing the computed classification accuracies, the out‑
puts have been ordered by descending. Subsequently, 
iterative mode operator has been applied to create voted 
outcomes.

 accr = θ (ptr, y) (13)

 in = arg sort (−acc) (14)

 vth = ϖ
(
ptin(1), ptin(2), . . . , ptin(w)

)
, w ∈ {3, 4, . . . , npar} (15)

Here, acc: classification accuracy,θ (.) : classification acu 
in: the qualified identities and ϖ (.): mode operator.

Deploying IMV voted outcomes have been created.
The last step of the tkNN classifier is selection the best 

outcome by deploying greedy algorithm.

 accnpar+h = θ (vth, y) (16)

 idmax = arg max (acc) (17)

 
fot =

{
ptidmax , idmax ≤ npar

vtidmax−npar
, idmax > npar

 (18)

Herein, idmax: identity of the output with maximum clas‑
sification accuracy and fot: final output.

The utilized parameters of the tkNN classifier has been 
given in Section 5.

Experimental results
In this section, we present the experimental results of the 
proposed StrokeNeXt and StrokeNeXt‑based DFE model 
using the collected dataset. The classification outcomes 

for these models were obtained within the MATLAB 
(2023a) programming environment. StrokeNeXt was 
developed with MATLAB’s Deep Network Designer, and 
the model was trained utilizing this tool. Subsequently, 
the trained StrokeNeXt model was saved as a.mat file, 
which served as the foundation for the StrokeNeXt‑
based DFE model. To facilitate feature extraction, an.m 
file was created. Additionally, the INCA feature selector 
was coded using an.m file, initially employing a k‑near‑
est neighbors (kNN) classifier to generate loss values. 
For classification purposes, the MATLAB Classification 
Learner Toolbox was utilized, offering access to over 30 
classifiers. According to the classification outcomes, the 
kNN classifier emerged as the most accurate. Therefore, 
we applied to t algorithm to kNN and tkNN classifier 
has been utilized as classifier of the recommended Stro‑
keNeXt‑based DFE framework. Also kNN classifier was 
utilized as loss value generation function of the INCA 
feature selection function.

The experimental settings for the proposed model are 
detailed as follows: The first model, StrokeNeXt, was 
trained using the following configurations: the solver 
was set to stochastic gradient descent with momentum 
(sgdm), the initial learning rate was 0.01, the maximum 
number of epochs was set to 30, L2 regularization was set 
at 0.0001, and the training and validation data were split 
in a 70:30 ratio. The training and validation curves of the 
proposed model are depicted in Fig. 4.

The proposed StrokeNeXt model achieved a final vali‑
dation accuracy of 95.92% and a final validation loss of 
0.1588. Additionally, the model reached 100% training 
accuracy and a training loss of 0. In Fig. 4, a vertical line 
at epoch 21 should highlight the optimal training dura‑
tion. The x‑axis label should read “Epoch Number” and 
the y‑axis label should read “Accuracy/Loss.” The legend 
should appear inside the plot area to improve readabil‑
ity. The region where training accuracy rises but valida‑
tion accuracy stalls should be shaded to mark the onset 
of overfitting and show where further training yields little 
benefit.

For the development of the proposed Deep Feature 
Engineering (DFE) model, the settings utilized are as 
follows:

Feature extraction:
Patch size: 56 × 56 × 3,
Stride: 28,
Number of patches: 49,
Feature extraction function: The GAP layer of the pre‑

trained StrokeNeXt generates 1024 features from each 
input.

Feature generation: Feature extraction from 49 patches 
and a raw image. Therefore, the length of final feature 
vector is 64,000

Feature selection with INCA:
Fig. 4 Training and validation accuracies and loss values of the presented 
StrokeNeXt on the collected stroke CT and MR image dataset
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Range of iteration: [100,1000],
Number of selected feature vector: 901,
Loss value generator: kNN classifier,
Final selected feature selection method: Selected fea‑

ture vector with minimum loss value.
Number of selected feature vectors: 512
Classification with tkNN:
Parameters:
k values = from 1 to 10,
Weightining = Squared Inverse and Equal,
Distance: Cosine, City Block, Euclidean,
Number of parameter‑based outcomes: 60,
Voted outcome generation function: IMV,
Number of voted outcomes: 58,
Number of total outcomes: 118,
Final outcome selection criteria: Maximum classifica‑

tion accuracy,
Validation: 10‑fold CV.
To evaluate the performance of the proposed model, 

test classification results were analyzed using various 
metrics, including classification accuracy, precision, sen‑
sitivity, specificity, geometric mean, F1‑score and Mat‑
thews Correlation Coefficient (MCC) [38]. The computed 
confusion matrices, demonstrating these results, are pre‑
sented in Fig. 5.

Figure  5 shows that StrokeNeXt correctly identified 
601 of 670 stroke cases and 642 of 657 control cases. It 
misclassified 69 strokes as controls and 15 controls as 
strokes. Figure  5b shows that the DFE model improved 
these results, correctly detecting 642 strokes and 646 
controls while reducing misclassifications to 28 strokes 

and 11 controls. The reduction in both false negatives 
and false positives showcases that the DFE model has 
higher sensitivity and specificity than StrokeNeXt alone. 
This result confirms its stronger performance on the 
test set. Moreover, we apply statistical tests to show the 
differences of these both models. The McNemar test 
checked 1,327 observations (test images) where both 
models made a prediction. They disagreed on 55 of them. 
The new DFE model fixed 50 mistakes that StrokeNeXt 
made, while StrokeNeXt fixed only 5 mistakes made by 
the DFE. This big gap (χ² = 35.20, p ≈ 2.1 × 10⁻¹⁰, herein, 
p ≪ 0.01) means the improvement is not due to chance. 
In plain numbers, the DFE lifts overall accuracy by about 
3.4% (95% confidence: 2.3%–4.5%). It cuts false‑negative 
cases from 69 to 28 and false‑positive cases from 15 to 
11. The DFE clearly performs better than the original 
StrokeNeXt model.

Utilizing the confusion matrices depicted in Fig. 5, we 
have calculated six performance metrics summarized in 
Table 3.

According to Table 3, the proposed StrokeNeXt‑based 
Deep Feature Engineering (DFE) model improved the test 

Table 3 The computed test results (%) of the presented models
Performance metric StrokeNeXt DFE model
Accuracy 93.67 97.06
Precision 97.56 98.32
Sensitivity 89.70 95.82
Specificity 97.72 98.33
Geometric mean 93.62 97.07
F1-score 93.47 97.05
MCC 87.64 94.15

Fig. 5 Test confusion matrices of the proposed models. Herein, 1: Stroke and 2: Control classes. a StrokeNeXt. b StrokeNeXt-based DFE
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classification accuracy by 3.39% (from 93.67% to 97.06%). 
Additionally, the DFE model outperformed the original 
StrokeNeXt across all performance metrics, indicating 
superior classification performance. Alsoi, Moreover, we 
have computed Receiver Operating Characteristic (ROC) 
for these results and the computed ROC curves have 
been illustrated in Fig. 6.

These ROC curves have been demonstrated that area 
under curve values (AUC) have been computed as 93.67% 
and 97.06% for StrokeNeXt and StrokeNeXt‑based DFE 
consecutively.

These findings unequivocally show that the models 
presented are effective for stroke detection. Furthermore, 
with approximately 7.3 million learnable parameters, the 
proposed StrokeNeXt model is considered a lightweight 
CNN, highlighting its efficiency.

We measured StrokeNeXt’s inference time on our sys‑
tem. Processing a 224 × 224 × 3 image took approximately 
10 ms. At this rate, StrokeNeXt can process about 100 
images per second by using a simple graphical processing 
unit.

Discussions
Overview
In this research, we compiled a novel dataset of CT and 
MR images for stroke detection. CT imaging, which is 
more cost‑effective than MRI, is frequently used in emer‑
gency services for stroke detection. We included CT 
images in our dataset to ensure our model’s applicability 
in real‑world scenarios. However, recognizing that some 
strokes are not visible in CT images, we also incorporated 
MR images to capture a wider range of stroke manifesta‑
tions, thus creating a multimodal stroke image dataset.

Our secondary goal was to detect stroke with high 
classification performance while utilizing fewer learn‑
able parameters. To achieve this, we introduced a new 
lightweight CNN model named StrokeNeXt. This model 
incorporates a modified ConvNeXt block with an SE 
block and leverages the MobileNetV2 architecture to 
achieve high classification performance with reduced 
parameter count. As a result, the total learnable param‑
eters of StrokeNeXt were approximately 7.3 million. 
StrokeNeXt achieved a validation accuracy of 95.92% 
and a test accuracy of 93.67%. To further increase test 
classification performance and demonstrate the transfer 
learning capability of StrokeNeXt, we introduced a DFE 
model. This model employs fixed‑size patches similar to 
the ViT and utilizes the INCA feature selector for optimal 
feature combination selection, selecting 512 out of 64,000 
generated features. INCA examines 901 feature subsets 
across 100–1000 iterations. It computes a loss score for 
each subset using kNN. It then selects the subset with the 
lowest loss and cuts the feature count from 64,000 to 512. 
This reduction lowers memory use and speeds classifica‑
tion. The resulting 512 features raised test accuracy from 
93.67% to 97.06%, improved generalization and showed 
less overfitting.

Comparisons
Consequently, our DFE model achieved a test classifica‑
tion accuracy of 97.06%. The DFE model employed an 
SVM classifier, which was identified as the most accu‑
rate shallow classifier within the MATLAB classifica‑
tion learner toolkit. To highlight the superiority of the 
tkNN classifier used, we compared it against other high‑
accuracy classifiers including Decision Tree (DT) [39], 

Fig. 6 The computed ROC curves. a StrokeNeXt. b StrokeNeXt-based DFE
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Linear Discriminant Analysis (LDA) [40], Quadratic 
Discriminant Analysis (QDA) [41], Binary Generalized 
Linear Model Logistic Regression (BGLMLR) [42], Naïve 
Bayes (NB) [43], SVM [44, 45], kNN [46], Bagged Tree 
(BT) [47], Multilayer Perceptron (MLP) [48], and Kernel 
Logistic Regression (KLR) [49], with results depicted in 
Fig. 7.

According to Fig. 7, the tkNN classifier attained the 
best classification accuracy among the utilized 11 classi‑
fiers. Figure 7 presents the test accuracies of 11 classifiers 
on the StrokeNeXt–INCA feature set. The DT reached 

91.03%, LDA 92.16%, QDA 92.01%, and BGLMR 91.41%. 
NB achieved 94.50%, SVM 95.63%, and kNN 96.16%. 
KLR scored 94.27%, Bagged Tree 93.97%, and MLP 
95.33%. The highest accuracy belongs to tkNN at 97.06%. 
kNN stands out as the best standard shallow model with 
96.16%, while SVM and MLP also exceed 95%. The lowest 
performance appears with DT at 91.03%. These results 
confirm the strength of the StrokeNeXt–INCA features 
and the added value of the tkNN ensemble. The best of 
the used shallow classifier (other classifiers) is the kNN 
algorithm. Thus, we applied to t algorithm to kNN and 
we have obtained tkNN classifier to increase the classifi‑
cation performance. kNN classifier attained 96.16% clas‑
sification accuracy while tkNN classifier reached 97.06% 
classification accuracy on the utilized dataset. In this 
aspect, tkNN classifier increased 0.90% point of the kNN 
classifier. These results unequivocally demonstrate the 
effectiveness of the feature vectors generated by the pro‑
posed StrokeNeXt and INCA.

We have included these results in Table 4 for a detailed 
analysis to present comparative outcomes.

Our model achieved satisfactory test performance 
based on the comparative results, underscoring our 
introduction of a new CNN designed for stroke detec‑
tion using a multimodal image dataset. These findings 
indicate that our model can detect strokes in CT and MR 
images. Moreover, the utilized architecture is a fully con‑
volutional lightweight architecture and we have increased 
the classification performance by deploying the recom‑
mended DFE model. Inthis aspect, we have contributed 
to:

Table 4 Comparative results
Study Method Data Data 

augmentation
The accu-
racy (%)

Chin et al. [50] CNN 256 (128 train, 128 test) Yes 92.97
Gahiwad et al. [51] CNN 2551 (60:40) No 90.00
Tursynova et al. [52] CNN 610 (80:20) Yes 81.00
Gautam and Raman [53] CNN 120 (80:20) No 93.33
Raghavendra et al. [54] Nonlinear feature extraction 1603 (10-fold CV) No 97.37
Korra et al. [55] U-Net 2501 (unspecified) Yes 94.57
UmaMaheswaran et al. [56] Feature engineering 2501 (unspecified) No 97.00
Saleem et al. [57] Genetic algorithm, bidirectional long short-term memory 1900 (10-fold CV) No 96.50
Acharya et al. [58] HOS features 267 No 97.60
Tursynova et al. [59] CNN 993 (80:20) Yes 72.28
UmaMaheswaran et al. [56] Local binary pattern, Gabor, Discrete wavelet transform 2501 (unspecified) No 97.00
Chen et al. [60] CNN 96 (unspecified) No 95.83
Boriesosdick et al. [61] DL-based LVO 443 (unspecified) No 87.6
Ahmed et al. [62] 3D CNN 2501 (70:30) Yes 92.5
Beevi M et al. [63] Bayesian CNN 10532 (8425:2107) Yes 92.88
Moldovanu et. al [38] Custom CNN 5336 (4009 train, 1327 

test)
No 80.03

Hybrid DFE model 93.14
Our study StrokeNeXt 5336 (4009 train, 1327 

test)
No 93.67

DFE model 97.06

Fig. 7 Comparisons of the classifiers
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  • New generation CNN architecture development,
  • Lightweight deep learning development research 

area,
  • Feature engineering with deep learning models 

(DFE),
  • By applying StrokeNeXt and StrokeNeXt‑based 

DFE on the curated multimodal stroke dataset, this 
research contributes to automatic stroke detection.

Test of additional dataset
To assess the general classification performance of Stro‑
keNeXt, we applied it to a publicly available blood cell 
image dataset [64, 65]. This dataset contains 17 092 
microscopic peripheral blood cell images across eight 
classes: (1) basophils, (2) eosinophils, (3) erythroblasts, 
(4) immature granulocytes, (5) lymphocytes, (6) mono‑
cytes, (7) neutrophils, and (8) platelets. eWe used 12,837 
images for training and 4,255 images for testing. We 
trained StrokeNeXt under the same settings as the stroke 
dataset. The resulting training and validation curves and 
the test confusion matrix appear in Fig. 8.

Per Fig. 8, the computed results have been tabulated in 
Table 5.

We then compared StrokeNeXt to five stan‑
dard CNNs—ResNet50, MobileNetV2, DarkNet53, 
DenseNet201, and InceptionV3—using the same data 
split and training protocol. The comparative test accura‑
cies are illustrated in Fig. 9.

Table 5 The results of the presented StrokeNeXt on the blood 
cell image dataset
Performance metric Value
Training accuracy 100%
Training loss 3.5835e-04
Validation accuracy 98.25%
Validation loss 0.0542
Test accuracy 97.63%

Fig. 9 Comparative test accuracies on the blood cell dataset

 

Fig. 8 Application of the presented StrokeNeXt to the blood cell image dataset. a Training and validation accuracy and loss over epochs. b Confusion 
matrix on the test set
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In Fig. 9, ResNet50 achieved 94.25% test accuracy, 
MobileNetV2 93.97%, DarkNet53 95.01%, DenseNet201 
96.13%, and InceptionV3 93.36%. StrokeNeXt outper‑
formed all five models with 97.63% accuracy. These 
results illustrate that the presented StrokeNeXt’s strong 
generalization ability and its effectiveness across diverse 
biomedical imaging tasks.

Feature analysis and interpretable results
We further analyzed the features selected by the INCA 
feature selector, which chose 512 features from the gener‑
ated pool of 64,000 features. The origins of these selected 
features are illustrated in Fig. 10, providing insights into 

the contributions of the entire image and the individual 
patches to the classification process.

According to Fig.  10, 164 selected 512 features were 
generated from the whole image, while the remaining 
348 were derived from patches. This demonstrates that 
the patch‑based feature extraction significantly contrib‑
utes to achieving a 97.06% test classification accuracy. 
Furthermore, these results are illustrated with a sample 
image in Fig. 11 to provide explainable insights.

According to Fig. 11, our model identifies and gener‑
ates features from regions of interest, effectively high‑
lighting its capability. This figure convincingly shows that 
the proposed StrokeNeXt operates as an interpretable 
model, intelligently focusing on relevant areas for feature 
extraction.

Also, by utilizing Gradient‑weighted Class Activation 
Mapping (Grad‑CAM) [66], heatmaps were generated. 
The computed heatmaps for sample images are illus‑
trated in Fig. 12.

Figure  12a and c display a CT slice and an MR slice, 
respectively. Figure 12c and d overlay Grad‑CAM activa‑
tions on the original images. In these heatmaps, red and 
yellow regions denote areas of highest model attention, 
while green and blue regions carry lower weight. In Fig. 
12b, the heatmap peaks over the hyper dense region in 
the left parietal lobe, matching the acute hemorrhage. In 
Fig. 12d, the activation concentrates on the periventricu‑
lar hyper intensity in the MR scan corresponding to the 
ischemic lesion. Cooler zones correspond/illustrate to 
healthy tissue. These overlays confirm that StrokeNeXt 
directs its decisions to clinically relevant regions and lend 
interpretability to its predictions.

Fig. 11 The distribution of the selected feature per the used input using a sample image

 

Fig. 10 Generation of the selected features
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Highlights
Highlights of this research are explained below.

Findings and advantages:

  • StrokeNeXt achieved 93.67% test accuracy and 
95.92% validation accuracy. These results show the 
model’s robustness and its ability to detect stroke 
features in the dataset.

  • The introduced DFE approach raised test accuracy 
to 97.06%. This result shows the value of advanced 
feature extraction and selection methods such as 
patch‑based extraction and the INCA selector to 
improve model predictions.

  • StrokeNeXt handles a multimodal dataset of CT 
and MR images. This ability illustrates the model’s 
versatility and its use in clinical settings with multiple 
imaging types.

  • INCA feature selector chose many features from 
patch‑based extractions that helped achieve high test 
accuracy (348 out of the 512 features were selected 
from patches). This result shows the value of focus 
on local image areas for feature creation.

  • StrokeNeXt generates features from regions of 
interest, as shown in Fig. 7. This design lets the 
model focus on important image areas and match 
human visual patterns.

  • StrokeNeXt has about 7.3 million parameters. This 
small size makes it a lightweight CNN that delivers 
high performance without heavy computation.

  • StrokeNeXt architecture and methods allow scale to 
new datasets and imaging types. This flexibility lets 
StrokeNeXt adapt to advances in medical imaging 
and stroke research.

  • Table 4 showcases comparative results that confirm 
StrokeNeXt’s effectiveness in stroke detection. These 
results place StrokeNeXt above other models and 
support its use in clinical practice.

  • StrokeNeXt achieved the highest accuracy on 
the public blood cell image dataset (see Fig. 11). 
It exceeded the performance of other CNNs and 

confirmed its strong generalization ability across 
biomedical imaging tasks.

  • StrokeNeXt’s accuracy, efficiency, and versatility 
showcase its use in clinical practice. StrokeNeXt can 
help doctors and medical professionals detect strokes 
quickly and accurately to speed decision‑making and 
improve patient outcomes.

Limitations:

  • The utilized dataset is a relatively bigger dataset. 
However, larger and more diverse datasets can be 
collected by collaborating more medical centers.

  • The dataset lacks sufficient variety to fully assess 
StrokeNeXt’s classification capabilities.

Future directions:

  • The researchers can gather data from multiple 
medical centers and regions to expand the dataset 
and include varied imaging characteristics and stroke 
types.

  • The dataset will cover different stroke subtypes, 
patient groups, and imaging modalities to improve 
classification accuracy across clinical scenarios.

  • Long‑term and prospective studies with StrokeNeXt 
can assess its performance in real‑world settings and 
its impact on patient outcomes.

  • Integration of StrokeNeXt into healthcare 
information systems and clinical workflows will 
address practical adoption challenges and support 
clinical use.

  • We plan to integrate multi‑head self‑attention 
(MHSA) and patch embedding to the recommended 
StrokeNeXt to present second version of this CNN.

  • In this research, we have presented a lightweight 
version of the recommended StrokeNeXt; lighter 
and bigger versions of this CNN can be presented 
by changing the number of filters and the number of 
repetitions.

Fig. 12 Heatmaps of the CT and MR image samples. (a) CT image, (b) CT heatmap, (c) MR image, (d) MR heatmap
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  • New CNN models based on StrokeNeXt will 
be developed and tested on large public image 
collections such as CIFAR and ImageNet.

Potential implications:

  • StrokeNeXt enables real‑time triage in emergency 
services. It flags suspected stroke cases on CT and 
MR scans and reduces door‑to‑needle time.

  • In neuroradiology, the model serves as a first‑read 
assistant. It can generate report by using XAI 
techniques to help doctors.

  • Deployment in tele‑stroke networks supports 
remote hospitals without on‑site neuroradiologists. 
It improves access to timely stroke diagnosis and the 
mortality rate can be decreased.

  • Integration with hospital PACS and electronic health 
records streamlines clinical workflows and embeds 
automated detection into routine imaging review.

  • In low‑resource settings, a lightweight version of 
StrokeNeXt runs on standard personal computers, 
workstations and expands diagnostic capacity where 
imaging expertise is limited.

  • Aggregation of outputs from multiple centers 
informs public health surveillance and provides data 
on stroke incidence, subtypes, and outcomes across 
regions.

  • As an educational tool, StrokeNeXt assists training 
for radiology and neurology residents by giving 
immediate feedback on image interpretation and 
common stroke patterns.

  • StrokeNeXt features with clinical and laboratory data 
can be combined to create personalized prognosis 
models that guide treatment decisions and predict 
recovery.

Conclusions
In this research, we introduce an innovative CNN archi‑
tecture termed StrokeNeXt. StrokeNeXt was tested on a 
multimodal stroke image dataset containing both CT and 
MR images. The model achieved 93.67% test accuracy. To 
increase this accuracy, we developed a StrokeNeXt‑based 
DFE model, which yielded 97.06% test accuracy. These 
results confirm the model’s strong ability to detect stroke 
patterns in complex image sets.

StrokeNeXt performs equally well on CT and MRI 
scans. This consistency provides reliable performance 
in hospitals with different imaging tools and supports 
stroke diagnosis across clinical settings.

The introduced StrokeNeXt has about 7.3 million 
learnable parameters. This compact design ensures fast 
execution and requires minimal hardware. Hospitals can 
run StrokeNeXt on standard workstations without extra 
investment.

This research reduces diagnosis time and lowers radiol‑
ogists’ workload, as StrokeNeXt’s test time is about 10 ms 
per image. Its high accuracy and speed may lead to faster 
treatment decisions and improved patient outcomes.

These findings establish a solid foundation for future 
work on CNN methods in stroke detection. StrokeNeXt 
offers a clear path for developing and adopting advanced, 
efficient diagnostic tools in clinical practice.
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