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ABSTRACT

The increasing commercial availability of hyperspectral image data promotes growing interests in the
development of application-specific narrow-band spectral vegetation indices (SVIs). However, the selection of
the optimum SVIs for a particular purpose is not straightforward, due to the wide choice of band combinations
and transformations, combined with specific application purposes and conditions. Thus, the aim of this study
was to develop an approach for formulating and assessing narrow-band vegetation indices, particularly those
from EO-1 Hyperion imagery. The focus of SVI development was for discriminating sugarcane areas affected by
‘orange rust’ (Puccinia kuehnii) disease in Mackay, Queensland, Australia. After a series of pre-processing and
post-atmospheric correction techniques, an empirical-statistical approach to SVI development was designed
and implemented. This included the following components: a) selection of sample pixels of diseased and non-
diseased areas, b) visual examination of spectral plots to identify bands of maximum spectral separability, c)
generation of SVIs, d) use of multiple discriminant function analysis, and e) result interpretation and validation.
From the forty existing and newly developed vegetation indices, the output discriminant function (i.e. a linear
combination of three indices) attained a classification accuracy of 96.9% for the hold-out sample pixels. The
statistical analyses also produced a list of function coefficients and correlation rankings that indicate the
predictive potential of each SVI. The newly formulated ‘Disease-Water Stress Indices’ (DSWI) produced the
highest correlations. The approach designed for this study provided a systematic framework in the formulation
and assessment of SVIs for sugarcane disease detection.
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Introduction

Spectral indices are always the result of a compromise, and different indices must be defined for different

purposes. Govaertz, et al. (1999: 1856)

Hyperspectral remote sensing increases our ability to accurately map vegetation attributes (Curran, 2001;
Kumar, et al., 2001). Images acquired simultaneously in narrow spectral bands may allow the capture of
specific plant attributes (e.g. foliar biochemical contents) previously not viable with broadband sensors. For
example, the use of narrow spectral bands allowed the development of photochemical reflectance index (PRI)
that was found correlated with carotenoid/chlorophyll ratios in green leaves (Sims and Gamon, 2002). Moreover,
in mapping forests in Canada, hyperspectral data produced better classification accuracy than multispectral
data (Goodenough, et al., 2002).
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One of the approaches used for extracting and mapping vegetation biophysical variables from remotely sensed
data is based on spectral vegetation indices (SVIs). SVIs are dimensionless, radiometric measures that function
as indicators of relative abundance and activity of green vegetation (Jensen, 2000). They have long been used
in remote sensing (e.g. the Normalised Difference Vegetation Index (NDVI) developed by Rouse et al., 1973),
and there are now more than 20 indices developed from broadband multispectral imagery. As the availability
and use of hyperspectral data is growing, the development and application of vegetation indices is expected to
increase further.

Vegetation indices can be formulated using various techniques. At the higher end of complexity, one approach
used rigorous procedures called Facility for the Automatic Creation of Optimal Spectral Indices (FACOSI), which
involved radiative transfer models and optimisation technique (Govaertz, et al., 1999). The complexity and data-
intensive models involved in this approach have so far limited its adoption. On the relatively less complicated
side, the use of empirical–statistical approach is common: spectral data from field or laboratory samples are
collected and analysed using statistical techniques (e.g. Carter, 1994).

The aim of this study was to develop an empirical–statistical approach on how to formulate and assess narrow-
band vegetation indices, particularly those from EO-1 Hyperion imagery. The focus of SVI development was on
discriminating sugarcane areas affected by ‘orange rust’ (Puccinia kuehnii) disease in Mackay, Queensland,
Australia. While we have already reported some aspects of this study elsewhere (Apan, et al., submitted), this
current paper focused more on the SVI derivation methodology.

Spectral vegetation indices

Vegetation indices are often used in mapping vegetation attributes and conditions. Studies have shown that
vegetation indices, e.g. NDVI, are related to plant biophysical properties, such as leaf area index, percent green
cover, green biomass, and amount of photosynthetically active radiation absorbed by the canopy (e.g. Tucker,
1979; Tucker, et al., 1985; Daughtry, et al., 1992). However, the use of VIs has a key limitation: its values are
affected by perturbing factors related to soil background, atmosphere, and nonphotosynthetic components of
vegetation (Richardson and Wiegand, 1977; Huete, 1988; Kaufman and Tanre, 1992).

The selection of the optimum SVIs for a particular purpose is not straightforward, due to the wide choice of band
combinations and transformations, combined with specific application purposes and conditions. While several
vegetation indices are functionally redundant in information content (Perry and Lautenschlager, 1984), some of
them perform better for specific vegetation attributes. These improved SVIs focused on reducing the impacts of
extraneous factors, such as soil brightness changes (e.g. Soil Adjusted Vegetation Index (SAVI)) and
atmospheric effects (Atmospherically Resistant Vegetation Index (ARVI)) (e.g. Huete, 1988; Kaufman and Tanre,
1992). Others focused on the issue of linearity and saturation problems, e.g. Transformed Difference Vegetation
Index (TDVI) (Bannari, et al., 2002).

Research methods

Study area
The study area is located near Mackay (149° 4′ E and 21° 15′ S), Queensland (figure 1). The region is the
largest sugar-producing area in Australia. It is dominated by subtropical weather patterns: heavy rainfall in
summer and typically dry weather during winter. The area’s topography varies from flat alluvial plains where
sugarcane crops predominate, to gently undulating topography in the southern part dominated by native woody
vegetation.
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Figure 1 Hyperion image subset (1660, 860, 680nm in RGB) captured over a section of
the Mackay sugarcane region on 2 April 2002

A Hyperion image was acquired over the study area on 2 April 2002. It covers 242 bands spanning the
wavelength range from 356 nm to 2577 nm, with nominal bandwidths of 10 nm (Pearlman, et al., 2001).
Hyperion has two spectrometers: one for the visible and near-infrared (VNIR: 356 nm to 1058nm) region, the
other for short-wave infrared (SWIR: 852nm to 2577nm). The sensor, on board the NASA’s EO-1 satellite, covers
a swath width of 7.6 km with a 30-m ground pixel size.

Hyperion data and preprocessing
The image was delivered as Level 1B_1 data in scaled radiance units (Barry, 2001). To facilitate the
development of indices and measurements, these values were converted to apparent surface reflectance using
ACORN 4.10 atmospheric correction software (Analytical Imaging and Geophysics LLC, 2002). Prior to this
conversion, however, the following preprocessing steps were implemented: re-calibration, band selection, de-
streaking and removal of bad pixels (figure 2) (Datt, et al., submitted; Apan and Held, 2002).

Re-calibration of the Level 1B_1 data was performed to bring a uniform calibration gain for each band, as well
as for better interpretation of radiance spectra. The original 242 bands were then reduced to 176 bands, by
excluding the zero data bands, VNIR/SWIR overlap, and the strong water vapour absorption bands. De-
streaking, or the removal of non-periodic along-track striping, was implemented using the ‘local’ destreaking
method (Datt, et al., submitted). The removal of bad pixels involved interpolation or complete removal of a line
or column (e.g. the first line and the 256th column which contain no data).

A minimum noise fraction (MNF) transformation smoothing was applied to the post-atmospheric correction
reflectance image to minimise uncorrelated spatial noise. The technique was applied to the VNIR and SWIR
bands separately: only the first 12 VNIR and the first 8 SWIR MNF good bands (i.e. minimum noise) were
utilised. This was followed by applying the Empirical Flat Field Optimal Reflectance Transformation (EFFORT)
polishing technique (Boardman, 1998). The final corrected image was in apparent surface reflectance
(multiplied by 10000).
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Figure 2 Processing steps in the formulation and assessment of spectral vegetation
indices from EO-1 Hyperion for discriminating sugarcane disease

The sugarcane disease
The sugarcane ‘orange rust’ disease is a fungal disease. It produces leaf lesions (pustules) that are orange in
colour and tend to be grouped in patches. The ruptured leaves allow water to escape from the plant, leading to
moisture stress (Croft, et al., 2000). Orange rust occurs in summer/autumn and is favoured by humid warm
conditions (spore germination optimum at 17–24°C and 97% and above relative humidity). In 1999–2000, the
disease caused severe damage to the widely grown variety Q124. For the sample pixels in this study, the
infection was rated as ‘4’, based on a 1–5 scale (1 has lowest severity to 5 with highest severity).
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Figure 3 Leaf symptoms of orange rust (Source: Croft et al., 2000)

Generation of hyperspectral indices
The symptoms of orange rust can be related to changes in leaf pigments, internal leaf structure, and moisture.
Thus, spectral vegetation indices (SVIs) that focus on one or more attributes associated with these symptoms
were selected (table 1). The majority of which was sourced from the literature, while five new indices were
formulated in this study based from the following steps:

• Collection of sample pixels. Three sugarcane paddocks affected with the orange rust disease (‘disease’
class) were digitised from the displayed colour composite, producing a total of 142 sample pixels. Similarly,
no-rust areas (‘no disease’ class), corresponding to the same variety (Q124) and age group as those in the
affected plots, were digitised to produce 159 pixels.

• Visual examination of spectral plots. Basic statistics (minimum, maximum, mean, and standard deviation)
were computed for each class, and then interactively displayed in plots. The difference of the means (i.e.
the reflectance values of ‘disease’ class was subtracted from the ‘no disease’ class). This step was aimed
to determine the spectral bands and/or region with the highest potential for discrimination. Two aspects of
spectral plots were considered:

– magnitude of difference—the greater the difference, the greater the potential of band(s) for
discrimination;

– direction of relationship—bands or regions that showed inverse relationship was particularly
considered, as they were candidates for spectral ratioing technique. For instance, in theory, the red
and NIR reflectance have inverse relationship for green vegetation, i.e. red bands have low reflectance
values while NIR bands have higher values.

– combination of magnitude and direction—mathematically, two bands with the greatest difference in
magnitude and at the same time opposite in direction (i.e. low value in one band vs. high value in
another band) will be the best candidate for band ratioing.

• Formulation of vegetation indices. Based from graphical plots and statistics, equations were formulated
using simple ratios and normalised ratios. In this study, we developed several variants of ‘Disease-Water
Stress Indices’ (DSWI) (formula in Table 1).
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Table 1 Vegetation indices used in this study

Name Formula References

1. Simple Ratio (SR) 750/705 R750/R705 Gitelson & Merzlyak, 1994

2. Simple Ratio (SR) 800/550 R800/R550

3. Normalised Difference (ND) 750/660 (R750–660)/(R750+R660)

4. Normalised Difference (ND) 800/680 (R800–R680)/(R800+R680) Sims & Gamon, 2002

5. Normalised Difference (ND) 750/705 (R750–R705)/(R750+R705) Gitelson & Merzlyak, 1994

6. Modified Simple Ratio (MSR) 705/445 (R750–R445)/(R705–R445) Sims & Gamon, 2002

7. Modified Normalised Difference (MND)
750/705

(R750–R445)/(R750+R705–2R445) Sims & Gamon, 2002

8. Simple Ratio (SR) 750/550 R750/R550 Gitelson & Merzlyak, 1994

9. Chlorophyll Well (Chloro-well) CSIRO VegSpectra (unpublished)

10. Green Peak Well (Green-well) CSIRO VegSpectra (unpublished)

11. Average reflectance (750 to 850) Average reflectance between 750
and 850 nm

Strachan, et al., 2002

12. Modified Chlorophyll Absorption in
Reflectance Index (MCARI)

[(R700–R670)–0.2(R700–
R550)](R700/R670)

Daughtry et al., 2000

13. Transformed Chlorophyll Absorption in
Reflectance Index (TCARI)

3[(R700–R670)–0.2(R700–
R550)(R700/R670)]

Haboudane, et al., 2002

14. Optimised Soil-Adjusted Vegetation
Index (OSAVI)

(1+0.16)(R800–
R670)/(R800+R670+0.16)

Rondeaux, et al., 1996

15. Ratio TCARI/OSAVI TCARI/OSAVI Haboudane, et al., 2002

16. Plant Senescence Reflectance Index
(PSRI)

(R680–R500)/R750 Merzlyak, et al., 1999

17. Structure-Insensitive Pigment Index
(SIPI)

(R800–R445)/(R800–R680) Penuelas, et al.,1995

18. Photochemical Reflectance Index (PRI) (R531–R570)/(R531+R570) Gamon, et al., 1992

19. Pigment Specific Simple Ratio
(Cholophyll a) (PSSRa)

R800/R680 Blackburn, 1998

20. Pigment Specific Simple Ratio
(Cholophyll b) (PSSRb)

R800/R635 Blackburn, 1998

21. Simple Ratio (SR) 695/420 R695/R420 Carter, 1994

22. Simple Ratio (SR) 695/760 R695/R760 Carter, 1994

23. Red Edge Inflection Point (Lagrangian
model) (REIP-Lagr)

(see author) Dawson & Curran, 1998

24. Red Edge Inflection Point (polynomial
model) (REIP-poly)

(see author) Broge & Leblanc, 2001

25. Principal component 1 (PC1) principal component transformation

26. Principal component 2 (PC2) principal component transformation

27. Disease-Water Stress Index 1 (DSWI-1) R800/R1660 this study

28. Disease-Water Stress Index 2 (DSWI-2) R1660/R550 this study

29. Disease-Water Stress Index 3 (DSWI-3) R1660/R680 this study

30. Disease-Water Stress Index 4 (DSWI-4) R550/R680 this study

31. Disease-Water Stress Index 5 (DSWI-5) (R800+R550)/(R1660+R680) this study

32. NDWI-Hyperion (NDWI-Hyp) (1070–1200)/(1070+1200) Ustin, et al., 2002

33. Normalised Difference Water Index
(NDWI)

(R860–R1240)/(R860+R1240) Gao, 1996

34. Water Index (WI) R900 / R970 Penuelas, et al., 1997

35. Ratio of WI and Normalised Difference
750/660

WI / ND750

36. Moisture Stress Index (MSI) R1600 / R820 Hunt & Rock, 1989

37. Water Well 3PT (983) (WW 983) CSIRO VegSpectra (unpublished)

38. Water Well 3PT (983) (WW 1205) CSIRO VegSpectra (unpublished)

39. Ratio of WW 983 and PSSRa WW 983/PSSRa

40. Ratio of WW 1205 and PSSRa WW 1205/PSSRa
a R = reflectance
Source: Apan, et al., submitted.
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Statistical analyses
We assessed the performance of vegetation indices using a multiple discriminant function analysis (also called
canonical discriminant analysis) with a stepwise variable selection method (SPSS, 2001). The procedure
generates one or more discriminant functions based on linear combinations of the predictor variables that
provide the best discrimination between groups. It has been used successfully in spectral discrimination studies
(e.g. Strachan, et al., 2002, Peñeulas, et al., 1994).

The standardised canonical discriminant function coefficients provide information on the contribution or
‘discriminating ability’ of each variable (i.e. SVIs) to the model (SPSS, 2001). On the other hand, the structure
matrix shows the correlation of each predictor variable with discriminant function. Moreover, to derive and
interpret the canonical correlation statistic (Rc) in a way similar with the more common Pearson correlation
coefficient (R), a series of single-variable run (i.e. the predictor variable was entered one-at-a-time) was also
made to produce Rc for each independent variable. The validation of the model was performed by classifying a
‘hold-out sample’ (i.e. those pixels not included in model generation) corresponding to 30% of the total sample
pixels.

Results and discussion

Visual examination of spectral plots revealed the regions where diseased and non-diseased sample areas can
be differentiated (figures 4 to 7). The highest separability based on magnitude is located in the NIR region
(approx. between 750 to 880nm and in 1070nm). This was followed by selected ranges in the SWIR region
(separability peaked at 1660nm and 2200nm), green (550nm) and red (680nm). Disease-affected areas have
relatively lower reflectance values than unaffected sites in the green and NIR regions. However, the reverse is
true for the red and the SWIR domains—areas with orange rust have higher reflectance values than no-rust
sugarcane.
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Figure 4 Mean reflectance spectra (447–2365nm) of Hyperion sample pixels containing
sugarcane orange rust disease and without orange rust disease
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Figure 5 Mean reflectance spectra (528–701nm) of Hyperion sample pixels containing
sugarcane orange rust disease and without orange rust disease
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Figure 6 Mean reflectance spectra (721–1336nm) of Hyperion sample pixels containing
sugarcane orange rust disease and without orange rust disease
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Figure 7 Mean reflectance spectra (1500–1800nm) of Hyperion sample pixels containing
sugarcane orange rust disease and without orange rust disease

As anticipated, the red (680nm) and NIR (800nm) bands exhibited inverse relationship. However, spectral plots
showed that there are other bands (i.e. those that can be paired with NIR) with inverse relationship with NIR, but
have greater difference in magnitude than red band:

• green band (550nm) (figure 5)

• SWIR band (1660nm) (figure).

Thus, in theory, it may be better for band ratioing to use green-NIR or SWIR-NIR band combinations, rather than
the red-NIR bands.

The results of the discriminant function analysis (tables 2 and 3) confirmed that this is the case. The 1600nm
(SWIR) band, if combined (by ratioing) with either NIR band (800nm) or green band (550nm), will produce the
best (highest correlation and classification accuracy) among the indices. The indices include DWSI-1, DSWI-2,
DSWI-5 and MSI. The top three indices were formulated using the procedures employed in this study.

The discriminant function attained a classification accuracy of 96.9% for the unselected ‘hold out’ sample (Table
4). This result is considered very high, and can be attributed to the following reasons:

• there is inherent high spectral separability between healthy sugarcane crops and diseased crops at
moderate to advanced stage

• the Hyperion sensor’s ability to capture images at contiguous narrow bands enabled spectral differences to
become more statistically separable

• the number of categories used in the classification is minimum, i.e. only two classes.

In a forest classification study in Canada, Hyperion obtained 92.9% classification accuracy while Landsat ETM+
has 75.0% (Goodenough, et al., 2002).
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Table 2 Structure matrix from the discriminant functionc

Indexa Correlationb Indexa Correlationb

1. DWSI-1 -.839 21. ND750/705 -.439

2. DWSI-2 .835 22. SR750/705 -.433

3. DWSI-5 -.811 23. MCARI -.405

4. MSI .803 24. SR695/420 .404

5. NDWI_Hyp -.796 25. PSSRb -.403

6. NDWI -.749 26. WW983 -.361

7. Ave (750 to 850) -.703 27. WW1205/PSSRa -.358

8. SIPI .629 28. TCARI/OSAVI -.326

9. WW1205 -.627 29. WI/ND750/660 .309

10. PC1 .610 30. SR750/550 -.282

11. PC2 -.603 31. PSRI .229

12. DWSI-4 -.563 32. SR800/550 -.227

13. ND800/680 -.508 33. DSWI-3 .166

14. SR695/760 .507 34. WI -.150

15. OSAVI -.496 35. Green-well .126

16. TCARI -.493 36. PRI .094

17. PSSRa -.493 37. REIP-Lagr -.079

18. ND750/660 -.490 38. Chloro-well -.077

19. MND750/705 -.477 39. WW983/PSSRa .077

20. MSR705/445 -.474 40. REIP-poly -.029
a 

Variables ordered by absolute size of correlation within function.
b 

Pooled within-groups correlations between discriminating variables and standardised canonical discriminant function.
c
 The discriminant function (linear combination of DSWI-2, SR695/420, and NDWI-Hyp) results to 96.9% classification accuracy.

Table 3 Canonical correlation and classification accuracy for the single-variable run (predictor
variable entered one at a time)

Index a
Correlation b &
Accuracy c Index a

Correlation b &
Accuracy c

1. DWSI-2 .785 (92.9%) 21. ND750/705 .578 (75.5%)

2. DWSI-1 .781 (94.9%) 22. SR750/705 .569 (75.5%)

3. DWSI-5 .781 (93.9%) 23. MCARI .534 (77.6%)

4. NDWI .780 (93.9%) 24. SR695/420 .523 (83.7%)

5. NDWI_Hyp .770 (94.9%) 25. PSSRb .518 (73.5%)

6. MSI .765 (92.9%) 26. WW983 .493 (72.6%)

7. Ave (750 to 850) .739 (87.8%) 27. TCARI/OSAVI .459 (69.4%)

8. DWSI-4 .709 (88.8%) 28. WW1205/PSSRa .379 (66.3%)

9. SIPI .698 (85.7%) 29. WI/ND750/660 .355 (66.3%)

10. WW1205 .649 (84.7%) 30. PSRI .364 (65.3%)

11. PC2 .635 (82.7%) 31. WI .350 (70.4%)

12. ND800/680 .632 (86.7%) 32. SR750/550 .296 (65.3%)

13. PSSRa .632 (85.7%) 33. SR800/550 .238 (64.3%)

14. SR695/760 .630 (84.7%) 34. WW983/PSSRa .234 (56.1%)

15. PC1 .623 (90.8%) 35. DSWI-3 .121 (62.2%)

16. TCARI .620 (79.6%) 36. Green-well .116 (52.0%)

17. OSAVI .617 (85.7%) 37. REIP-Lagr .112 (59.2%)

18. ND750/660 .605 (83.7%) 38. PRI .041 (65.3%)

19. MND750/705 .603 (79.6%) 39. Chloro-well .025 (56.1%)

20. MSR705 .590 (76.5%) 40. REIP-Poly .004 (48.0%)
a 

Variables ordered by size of correlation.
b
 interpretation is equivalent to Pearson correlation coefficient.

c
 accuracy is based from unselected (‘hold-out sample’) original grouped cases
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Table 4 Classification results for discriminant function analysis (stepwise variable selection
method)b,c,d

Predicted Group
Membership Total

DISEASE 0 1

Cases Selected Original Count 0 105 6 111

1 11 81 92

% 0 94.6 5.4 100.0

1 12.0 88.0 100.0

Cross-validated a Count 0 105 6 111

1 11 81 92

% 0 94.6 5.4 100.0

1 12.0 88.0 100.0

Cases Not Selected Original Count 0 47 1 48

1 2 48 50

% 0 97.9 2.1 100.0

1 4.0 96.0 100.0
a Cross validation is done only for those cases in the analysis. In cross validation, each case is classified by the functions derived from all cases
other than that case.
b 91.6% of selected original grouped cases correctly classified.
c 96.9% of unselected original grouped cases correctly classified.
d 91.6% of selected cross-validated grouped cases correctly classified.

This study shows that spectral discrimination of sugarcane orange rust disease (with moderate to high severity
of infection) can be significantly improved by incorporating selected band in the SWIR region. The indices that
only used selected bands in the VNIR (e.g. Ave(750 to 850, SIPI, DSWI-4, ND800/600, OSAVI, TCARI, PSSRa,
etc.) performed moderately. The indices developed from the reflectance red-edge (690–720nm) (e.g. REIP-Lagr
and REIP-poly) performed very poorly in discriminating diseased from non-diseased sugarcane crops.

Conclusions

The empirical-statistical approach we used in this study allowed us to systematically formulate and assess new
and existing vegetation indices for sugarcane disease detection. Interactive visual interpretation of spectral
plots, focusing on the magnitude of difference and the direction of relationship of sample pixel values, allowed
the identification of candidate bands for index formulation. The discriminant function analysis facilitated the
assessment of each index (and its relative utility) based on their correlations with the output model and
classification accuracy statistics. The incorporation of 1660nm SWIR band led to the formulation of several
variations of ‘Disease-Water Stress Indices’ (DSWI) that yielded better discrimination of sugarcane orange rust
disease. While these new indices were based from local and empirical evidences, and hence may lack
portability, they are still important in generating cumulative knowledge for SVI development. They need to be
tested for other crops and/or different local areas, including the implications of crop growth stages and the
severity levels of infection.
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