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Abstract 

Accurate monitoring of the depth of anesthesia (DoA) is essential for ensuring patient safety and effective anesthesia 
management. Existing methods, such as the Bispectral Index (BIS), are limited in real-time accuracy and robustness. 
Current methods have problems in generalizability across diverse patient datasets and are sensitive to artifacts, mak-
ing it difficult to provide reliable DoA assessments in real time. This study proposes a novel method for DoA monitor-
ing using EEG signals, focusing on accuracy, robustness, and real-time application. EEG signals were pre-processed 
using wavelet denoising and discrete wavelet transform (DWT). Features such as Permutation Lempel–Ziv Complexity 
(PLZC) and Power Spectral Density (PSD) were extracted. A random forest regression model was employed to esti-
mate anesthetic states, and an unsupervised learning method using the Hurst exponent algorithm and hierarchical 
clustering was introduced to detect transitions between anesthesia states. The method was tested on two independ-
ent datasets (UniSQ and VitalDB), achieving an average Pearson correlation coefficient of 0.86 and 0.82, respectively. 
For the combined dataset, the model demonstrated an R-squared value of 0.70, a RMSE of 6.31, a MAE of 8.38, 
and a Pearson correlation of 0.84, showcasing its robustness and generalizability. This approach offers a more accurate 
and reliable real-time DoA monitoring tool that could significantly improve patient safety and anesthesia manage-
ment, especially in diverse clinical environments.
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1  Introduction
The assessment of depth of anesthesia (DoA) is a criti-
cal aspect of patient care during surgical procedures and 
it is necessary to prevent intraoperative awareness and 
excessive anesthetic dosing [1]. While heart rate variabil-
ity, processed electroencephalogram (pEEG) indices, and 
auditory evoked potentials assist specialists in measuring 

DoA, they are subject to individual variations. As a direct 
reflection of the brain’s response to anesthetic agents, 
EEG signals offer valuable information for determining 
consciousness levels during anesthesia.

Despite the widespread use of tools like the Bispectral 
Index (BIS) for DoA assessment, limitations persist in 
real-time surgery monitoring. These tools are sensitive 
to individual variations, computationally complex, and 
often fail to generalize across diverse patient populations. 
Advances in machine learning and deep learning have 
proposed solutions, leveraging features such as wavelet 
coefficients, entropy measures, and frequency analysis 
techniques for enhanced decision-making. However, the 
real-time reliability and generalizability of these solutions 
remain significant challenges [2, 3].
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In parallel, Artificial Intelligence’s role in EEG analy-
sis for medical diagnostics has seen promising develop-
ments. For instance, the automatic classification of sleep 
stages has been refined through graph convolutional 
networks, achieving impressive accuracy and execu-
tion efficiency [4]. Schizophrenia identification now uti-
lizes dynamic functional connectivity analysis with deep 
learning, offering high accuracy and insight into neural 
network variations [5]. Real-time epilepsy seizure detec-
tion methods have harnessed discrete wavelet transform 
alongside machine learning for accurate classification 
and onset detection [6]. Moreover, the identification of 
Autism Spectrum Disorders in children has advanced 
through multimodal diagnostic frameworks, combining 
EEG with eye-tracking data for a comprehensive assess-
ment [7].

However, current DoA monitoring systems have yet to 
fully exploit the potential of machine learning and EEG 
analysis for real-time, reliable, and generalizable moni-
toring across diverse clinical environments. To address 
this gap, this study proposes an EEG-based method for 
DoA estimation, integrating Permutation Lempel–Ziv 
Complexity (PLZC) and Power Spectral Density (PSD) 
to capture the complexity and spectral features of EEG 
signals. The proposed approach is validated across two 
independent datasets, demonstrating robust and gener-
alizable performance. Moreover, the method is designed 
for real-time application in clinical settings, ensur-
ing computational efficiency while maintaining high 
accuracy.

This paper is organized to first introduce the study’s 
aims, followed by an exploration of diverse datasets 
and methodologies for DoA assessment, and concludes 

with empirical validation, analysis of DoA state transi-
tions, and discussions on the potential of this method to 
enhance patient care during surgery.

2 � Related work
Considerable progress has been made in easing the study 
and construction of highly accurate models for the analy-
sis of EEG signals in the assessment of DoA, thanks to 
recent advancements in machine learning (ML) algo-
rithms and statistical metrics. The majority of the time, 
training is based on the labels supplied by classification 
models, clinical assessment of the DoA state (CAD) for 
index design, and industrial models (like the BIS). Regres-
sion approaches, such as the Gaussian process, support 
vector machine (SVM) regression, artificial neural net-
work, and Random Forest classifier, are the traditional 
machine learning methods that have been used recently. 
The most recent approaches are categorised in Tables 1, 
2 with details on the feature extraction technique used, 
along with the model-building methodology used and 
evaluation criteria.

Recent literature also contains a variety of deep learn-
ing-based model-building techniques. Based on EEG sig-
nal analysis, these techniques have been used to describe 
the intricate and nonlinear interactions between EEG 
signals and the DoA. A combination of a 1 × 1 convolu-
tion network and a deep residual shrinkage network 
(DRSN) demonstrated a high positive connection, as 
evidenced by the Spearman’s rank correlation coefficient 
of 0.9344 (PSI) on a wide variety of data extracted after 
wavelet treatment [15]. Utilising a CNN model that ana-
lysed 60-channel EEG signals utilising network and graph 
features, a correlation of 0.872 with the perturbational 

Table 1  Latest DoA assessment algorithms for index design/regression since 2022

Author Feature extraction method Model building Method Outcome

Huang et al. [8] Range of entropy features including fuzzy 
entropy

Gaussian process regression Correlation = 0.9491 (BIS)

Schmierer et al. [9] Empirical wavelet transformation (EWT) 
with Second Order Differential Plot (SODP) 
and Spectral Entropy (SE)

SVM regression Correlation = 0.834, Choen’s Kappa of 0.809 
(BIS)

Alsafy and Diykh [10] Hierarchical dispersion entropy (HDE) 
with wavelet transforms (WT)

Artificial neural network Average coefficient of determination = 0.965 
(BIS)

Chen et al. [11] EEG variability and EEG analysis 
with a range of spectral-domain 
and entropy-domain features

Long short-term memory Correlation = 0.70, AUC = 0.93 (BIS). Correla-
tion = 0.80, AUC = 0.93 (CAD)

Lee et al. [12] 60-channel EEG with spatiotemporal 
dynamics

Convolutional neural network (CNN) Correlation = 0.872 (perturbational complex-
ity index)

Shi et al. [13] WT with 14 features extracted includ-
ing SEF and Sample Entropy

Deep residual shrinkage network 
(DRSN) & 1 × 1 CNN

Spearman’s rank correlation coeffi-
cient = 0.9344 (PSI)

Shahbakhti et al. [14] Parameter-free features based on entropy, 
power and frequency, fractal, and variation

Random forest regressor Correlation = 0.80 and 0.79 (BIS) for Data-
bases I and II, Mean absolute error (MAE) 
of 7.1 and 9.0 for Databases I and II
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complexity index (PCI) was discovered [12] that 
employed network and graph properties to analyse 
60-channel EEG signals. However, when working with 
data that has a grid-like structure, like image data, convo-
lutional neural networks (CNN) are excellent in extract-
ing hierarchical features in an automatic and adaptive 
manner. But their computation intensity is high, which 
makes them difficult to use in some situations.

Permutation Lempel–Ziv Complexity (PLZC) is a sig-
nal complexity analysis technique that is a variant of 
Lempel–Ziv Complexity (LZC). It utilizes permutation 
vectors to quantify the neighboring values of the time 
series and employs them to assess the Depth of Anaesthe-
sia (DoA) [22]. As a more accurate representation of the 
mutual relationship between neighboring signal points 
compared to classical LZC, PLZC exhibits high sensitiv-
ity in assessing low-amplitude (high-frequency) EEG sig-
nals during changes in brain state. Due to its foundation 
in the relative loudness of the signal, PLZC is more robust 
to noise than the conventional Lempel–Ziv Complexity. 
Because of this property, PLZC is especially helpful in 
differentiating between different states of consciousness 
in EEG readings [23, 24]. A common tool in EEG analysis 
for DoA assessment is Power Spectrum Density (PSD). It 
offers a detailed view of the power distribution across the 
whole frequency range. In comparison to awake patients, 
anaesthetized patients’ EEG signals often exhibit more 
power in the lower frequency bands (delta and theta) 
and less power in the higher frequency bands (alpha and 
beta). The decomposition of the electroencephalogram 
signal into its frequency components’ power reveals that 
under general anesthesia, the electroencephalogram is 
organized into distinct oscillations at specific frequencies 
[25]. The information derived from EEG power spectrum 
analysis can be enhanced by incorporating newer EEG 
indices, such as the bispectral index and approximate 
entropy. Additionally, other neurophysiological monitors, 

including auditory evoked potentials or somatosensory 
evoked potentials, can further supplement the gathered 
data [26]. These approaches have shown potential in the 
DoA assessment, but there are still issues to be resolved, 
like the sensitivity to individual differences, the computa-
tional cost of feature extraction, and the generalizability 
of methods across different patient populations because 
most anaesthesia datasets are private [27–29]. Thus, cre-
ating a reliable and effective EEG-based DoA estimation 
technique is essential.

3 � Methods
The study introduces an advanced methodology for the 
real-time monitoring of the depth of anesthesia via EEG 
signals. This approach integrates signal processing tech-
niques with machine learning algorithms to facilitate 
precise DoA estimation. Initially, EEG signal acquisition 
is undertaken, followed by preprocessing, which includes 
wavelet-based denoising and discrete wavelet transform 
for frequency filtering. Subsequently, significant statis-
tical features are extracted utilizing Permutation Lem-
pel–Ziv Complexity and Power Spectral Density analysis. 
These features are then employed to train a Random For-
est regression model that classifies the DoA levels. The 
culmination of this methodology is the generation of a 
new index for DoA monitoring, indicative of transitions 
in anesthetic states. Figure  1 delineates the comprehen-
sive workflow, illustrating the process from the initial 
EEG data preprocessing to the final prediction of DoA 
states and transitions.

3.1 � Pre‑processing
Accurate discrimination of anesthetic response from 
raw EEG data can be challenging due to the presence of 
noise. These include, but are not limited to, muscle activ-
ity, eye movement, and various other artifacts which are 
especially prevalent in the awake state. As a result, it 

Table 2  Latest DoA assessment algorithms for classification Since 2022

Author Feature extraction method Model building Method Outcome

Casey et al. [15] 256-channel EEG with occipital delta 
power and power spectrum density (PSD)

SVM AUC = 0.622 (CAD)

Xiao et al. [16] 19-channel EEG with phasal relationship Random Forrest classifier Accuracy = 93.88% (based on 2 states, 
CAD)

Anand et al. [17] Range of time series features (63) 
extracted

Accuracy = 83% (based on 2 states BIS)

Wang et al. [18] No Feature extraction Long short-term memory (LSTM) Accuracy = 81.8% (CAD)

Dutt and Saadeh [19] Stationary wavelet transform (SWT) 
with fractal, non-linear and spectral 
features

Multilayer perceptron regressor network Accuracy = 96.8% (CAD)

Dutt and Saadeh [20] Accuracy = 97.1%,
R2 = 0.9, MAE = 1.5

Zhang et al. [21] Frequency components sampling 
and Frequency domain self-attention

Frequency Enhanced Hybrid Attention 
Network

Accuracy = 89.63% (CAD)
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was necessary to put all raw EEG signals through a pre-
processing phase to filter those noise. A wavelet thresh-
old method grounded in entropy was applied to remove 
low-amplitude noise and spike noise, and the details of 
de-noising EEG signals are in [8, 30–32].

One of the most challenging aspects in depth of anes-
thesia assessment using EEG signals is the accurate iden-
tification and extraction of relevant features amidst the 
varying frequency components. However, not all features 
across all frequency bands show significant differences 
among different anesthesia states. Thus, discrete wave-
let transform (DWT) is proposed to decompose the EEG 
signals into various frequency sub-bands, allowing for 
the examination of frequency components with higher 
relevance to the aesthetic depth [33]. The formula for 
DWT is as follows [34, 35]:

where ψ is the analyzing wavelet method, ‘a’ and ‘b’ are 
the parameters of time dilation and time translation, 
respectively.

After DWT decomposition, two style coefficients the 
detail coefficients and approximation coefficients of each 
sub-bands are calculated in Eqs. 2 and 3.

where Aj(n) and Dj(n) are the approximation coefficients 
and detail coefficients at level j respectively.

A 5-level DWT employing the ’db12’ wavelet technique 
is utilized to decompose the data from UniSQ database, 
which has a sample rate of 128 Hz, and ’db16’ was applied 
to the data from VitalDB database. The resulting cD1, 
cD2, cD3, cD4, cD5 and cA5 detail coefficients corre-
spond to the EEG sub-bands outlined in Table 3.

(1)C(a, b) =
1
√
a

∫

ψ̄

(

t − b

a

)

x (t)dt

(2)Aj(n) =
+∞
∑

l=−∞

g(l − 2n)A(j−1)(l), j = 1, 2, ..., J

(3)Dj(n) =
+∞
∑

l=−∞

h(l − 2n)A(j−1)(l), j = 1, 2, ..., J

3.2 � Feature extraction
In this study, two distinct algorithms were employed for 
feature extraction from the processed EEG signals: a mul-
tiple signal classification (MUSIC) method and a permu-
tation Lempel–Ziv complexity algorithm. The MUSIC 
method was chosen for its high resolution in frequency 
domain analysis, while the PLZC algorithm was selected 
for its robustness against noise and ability to capture 
dynamic changes in brain activity. These complementary 
methods allow for a comprehensive assessment of the 
depth of anesthesia based on the extracted features from 
EEG data.

In the PLZC algorithm, the time series of EEG data 
is first transformed into a sequence of ordinal pat-
terns or permutations using the permutation entropy 
(PE) method. Each ordinal pattern represents a specific 
arrangement of the elements in a sliding window of a cer-
tain length along the data sequence.

where p(π) represents the probability of a given permu-
tation π occurring in the time series data and embedding 
dimension m and time delay τ are set empirically at 4 and 
1, respectively.

Then, the Lempel–Ziv complexity is applied to the ordi-
nal input data pattern sequence to compute the complex-
ity of the sequence. The complexity of the ordinal pattern 
sequence is calculated using the following equation:

(4)PE = −
∑

p(π) ∗ log(p(π))

Fig. 1  The framework of the new DoA index development and the states prediction

Table 3  Decomposed levels and corresponding frequency 
bands

Sub-band j Decomposed level signal Frequency 
Bands (Hz)

1 cD1 64–128

2 cD2 32–64

3 cD3 16–32

4 cD4 8–16

5 cD5 4–8

5 cA5 0–4
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where c(n) denotes the total length of the symbol 
sequence.

In applications of the MUSIC method for extract-
ing features from the power spectral density (PSD) of 
wavelet coefficients, the procedures are referred to as 
outlined in previous research [36, 37] and are also sum-
marised as below:

1.	 The coefficients Aj and Dj are utilized as input signals 
for the eigenvector method:

where j represents a six-level wavelet decomposition, and 
the principal eigenvector corresponds to 6.

2.	 The average values of EAj and EDj are computed as 
follows:

3.	 Standard deviation (STD) of EAj and EDj are deter-
mined as follows:

4.	 Derived from steps 2 and 3:

5.	 Deriving the feature:

(5)PLZC =
c(n)[logm!c(n)+ 1]

n

(6)D :
{

Dj → P
(

Dj

)

= EDj

Aj → P
(

Aj

)

= EAj

(7)Mean :
{

Dj → M(EDj) = mean (EDj)

Aj → M(ADj) = mean (ADj)

(8)STD :
{

Dj → S(EDj) = std(EDj)

Aj → S(ADj) = std(ADj)

(9)D :















Mj → 1
2

�

log
�

mean
�

M
�

EDj

���

+
log

�

mean
�

M
�

ADj

����

Sj → 1
2

�

log
�

mean
�

S
�

EDj

���

+
log

�

mean
�

S
�

ADj

����

The constant parameters k1, k2, and k3 are chosen 
empirically as 28, 90, and 3, respectively.

3.3 � Development and assessment of the regression model
In this study, a bagged tree regression (BTR) algorithm 
was employed to estimate the depth of DoA based on 
the features extracted from EEG data. The BTR algo-
rithm, an ensemble learning approach that merges pre-
dictions from multiple decision trees to boost model 
accuracy and robustness, was utilized in our investiga-
tion for DoA estimation using EEG-derived features.

The dataset was divided into training and testing sub-
sets to facilitate the training and evaluation of the BTR 
model. The training set constituted 80% of the data, 
while the remaining 20% was designated as the test-
ing set. This partitioning ensured a reliable evaluation 
of the model’s performance on previously unseen data, 
thus providing an accurate representation of its real-
world applicability.

The hyperparameters of the BTR model, such as max-
imum tree depth, minimum samples for split, and mini-
mum samples per leaf, were optimized to maximize 
prediction accuracy. A grid search, coupled with cross-
validation, was conducted to systematically explore the 
hyperparameter search space and evaluate each com-
bination’s performance, ensuring that the model was 
well-tuned for the dataset characteristics.

Upon determining the optimal hyperparameters, the 
BTR model was trained using the training dataset and 
the selected hyperparameters. The trained model was 
subsequently utilized to estimate the depth of anes-
thesia on the testing dataset, and its performance was 
subsequently evaluated on the testing dataset using 
R-squared (R2), Root Mean Square Error (RMSE), 
and Bland–Altman analysis. The R2 value quantified 
the proportion of variance in the observed BIS values 
explained by the proposed DoA index, with higher 
values indicating a better model fit. The RMSE meas-
ured the average prediction error, with lower values 
reflecting greater predictive accuracy. In addition, the 
Bland–Altman method was employed to assess agree-
ment between the proposed index and the BIS index 
by plotting the differences against their means, offer-
ing insights into consistency. To further evaluate the 
relationship between the estimated DoA and BIS val-
ues, the Pearson correlation coefficient was calculated, 
providing a measure of the linear correlation between 
the two indices. Values closer to one suggest a stronger 
positive relationship.

(10)PSD =
k1×Mj + k2× Sj

k3
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3.4 � Prediction of the DoA states and transition
In addition to regression analysis, the overall effective-
ness of the new index in predicting the DoA states was 
evaluated by a novel method that combines the Hurst 
exponent algorithm, unsupervised learning, and the 
anesthesia agent usage information [38, 39].

First, the Hurst exponent algorithm was used to extract 
features from the EEG signals, which provide a represen-
tation of the underlying DoA states. For each EEG sig-
nal, we calculate the Hurst exponent values (H) using a 
rescaled range method. The rescaled range is calculated 
as:

The Hurst exponent is then obtained by finding the 
slope of the log–log plot of the rescaled range as a func-
tion of the time scale:

These features (H values) are then utilized in the sub-
sequent unsupervised learning process using hierarchi-
cal clustering. Next, an unsupervised learning method, 
hierarchical clustering, was employed to classify the 
extracted features into distinct DoA states. The resulting 
clusters indicated state transition changes, allowing for 
the identification of the transitions between different lev-
els of anesthesia.

To further validate the effectiveness of the proposed 
method, the information of anesthesia agent usage pro-
vided by anesthetists was analyzed. The loss of con-
sciousness (LOC) and recovery of consciousness (ROC) 
transition points, as observed by anesthetists, and were 
compared with the state change points detected by the 
proposed method. Additionally, these transition points 
were compared with the BIS values to investigate the 
agreement between the new index and the BIS index.

4 � Results
4.1 � Subjects and data collection
The first datasets utilized in this study were gathered 
from 28 adult participants, and we called the UniSQ 
database. The approvals for the data collection and con-
ducting the research were obtained from the Human 
Research Ethics Committee of the University of Southern 
Queensland (Approval No: H09REA029) and the Human 
Research Ethics Committee of the Toowoomba and 
Darling Downs Health Service District (Approval No: 
TDDHSD HREC 2009/016).

(11)(R/S)n =
1

(

N

m

)

∑

[

N

m

]

n=1
(Rn/Sn)

(12)Rr = min
n=1,2,...

{mean(Rn)}

The EEG and BIS datasets were initially collected from 
37 patients at Toowoomba St Vincent’s Hospital using 
a BIS VISTA™ monitoring system, version 3.22. From 
the original data pool, only 28 cases were included in 
this study to ensure a high quality of EEG data. Cases 
with low signal quality index (SQI), as well as those with 
incomplete recordings, were excluded. This selection 
ensured that the study was based on comprehensive and 
accurate data, thereby increasing the reliability of the 
results. Anesthesiologists on site documented all events 
occurring intraoperatively as well as intravenous dos-
ing in dedicated data log fields. The compiled data logs 
incorporated a multitude of elements, including but not 
limited to, the BIS index, raw EEG data, the SQI, imped-
ance, electromyography (EMG) data, along with a log of 
monitor errors. Demographic information for all partici-
pants is presented in Table 4. Typical drug administration 
for the subjects involved the use of preoperative medica-
tions, intravenous midazolam at 0.05 mg/kg, fentanyl at 
1.5–3 µg/kg, or alfentanil at 15–30 µg/kg.

The second database employed in this study, designated 
as the VitalDB database, was acquired from the Depart-
ment of Anesthesiology and Pain Medicine at Seoul 
National University Hospital, South Korea [40]. This 
publicly available database encompasses a broad spec-
trum of physiological signals collected from patients who 
underwent surgical procedures under general anesthesia. 
Despite the VitalDB database containing 6,388 cases, 28 
cases with satisfactory SQI from the EEG signals were 
selected at random. The selection ensured that the num-
ber of cases was consistent with that of the UniSQ data-
base, thereby maintaining a balance in the influence of 
each database on the final model design. This approach 
ensures the comparability and coherence of the two data-
sets. Therefore, only the EEG signals from these selected 
cases were utilized in the analysis and subsequently com-
pared with the UniSQ database. The incorporation of 
the VitalDB database facilitated a comprehensive assess-
ment of the proposed methodology across varied patient 
demographics and clinical settings. In-depth demo-
graphic information and anesthetic administration data 
were provided in Table 4, and can be accessed via the Vit-
alDB website (https://​vital​db.​net/​datas​et/).

4.2 � Pre‑processing
The wavelet-based preprocessing method successfully 
removed low-amplitude noise and spike interference 
from the raw EEG signals, improving signal quality and 
facilitating feature extraction. Table  5 and Table  6 sum-
marize the selected features from the UniSQ and VitalDB 
databases after the preprocessing stage.

The EEG signals were decomposed using discrete 
wavelet transform (DWT) into five levels, corresponding 

https://vitaldb.net/dataset/


Page 7 of 20Li et al. Brain Informatics           (2024) 11:28 	

to specific EEG frequency sub-bands. From these sub-
bands, key features—Permutation Lempel–Ziv Com-
plexity (PLZC) and Power Spectral Density (PSD)—were 
extracted for further analysis. As shown in Tables 5 and 
6, different feature combinations were selected from 
each sub-band, with no features extracted from CD1 
and CA5 for either database. The preprocessing tech-
niques improved the clarity of the signals, ensuring that 
relevant features for DoA estimation could be efficiently 
extracted. This enhancement laid a strong foundation for 

the accurate and reliable estimation of depth of anesthe-
sia using the proposed index.

Tables 5 and 6 illustrate the selected features from dif-
ferent decomposed levels for the UniSQ and VitalDB 
datasets. The discrepancy in the selected features is a 
result of our dataset-specific feature selection process. 
Each dataset underwent independent feature selection 
to determine the most informative features for its unique 
characteristics, ensuring that the model for each dataset 
was optimized for performance. This approach allowed 
for a meaningful comparison between models trained on 
individual datasets and a generalized model trained on 
both datasets, highlighting the trade-offs between data-
set-specific optimization and generalizability.

4.3 � Feature selection
In the UniSQ database, the application of a 5-level dis-
crete wavelet transform (DWT) using the ’db12’ wavelet 
resulted in significant improvements in feature discrimi-
nation. PLZC values extracted from decomposition levels 
D2 and D3 demonstrated the highest sensitivity to tran-
sitions between anesthesia states, including the loss of 
consciousness (LOC), the maintenance of anesthesia, and 
the recovery of consciousness (ROC). This distinction is 
clearly illustrated in Fig.  2, which depicts PLZC values 
for a representative case across three key time intervals: 
LOC (0–500 s), stable anesthesia (1100–1800s), and ROC 
(3800–4150 s).

For the VitalDB database, optimal performance 
was achieved using a 6-level decomposition with the 
’db16’ wavelet. Feature extraction from levels D3 and 
D4 provided the most reliable discrimination between 
anesthetic states, with PLZC values showing strong 

Table 4  Patient demographics and intraoperative drug usage

Variable/Description UniSQ Database Details VitalDB Database Details

Age (year) 2–83 16–78

Weight (kg) 55–130 45.1–88

Height (cm) 154–194 147.9–180.5

Gender (F/M) 15/22 10/18

Midazolam (mg) 2–5 30–190

Alfentanil (µg) 500, 750, 1000 500, 750, 1000

Propofol (mg) 90–200 80–150

Parecoxib (mg) 40 5–30

Fentanyl (ug) 100, 150 50, 100

EEG Channels 2 (Channel 2 used for analysis) 2 (Channel 2 used for analysis)

Sampling Rate 128 Hz 128 Hz

BIS Recording 1 value/sec 1 value/sec

Window Size 56 s 56 s

Overlap 55 s 55 s

Preprocessing None (signal not denoised prior to analysis) None (signal not denoised prior to analysis)

Table 5  Selected features from UniSQ database

Decomposed level signal Features

CD1 N/A

CD2 PLZC

CD3 PLZC, PSD

CD4 PSD

CD5 PSD

CA5 N/A

Table 6  Selected features from VitalDB database

Decomposed level signal Features

CD1 N/A

CD2 PSD

CD3 PLZC, PSD

CD4 PLZC

CD5 PLZC, PSD

CA5 N/A
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correlations with the transitions between these states. 
The decomposition levels D3 and D4 were particularly 
effective in capturing variations in brain activity associ-
ated with changes in anesthetic depth.

The differences in the selected features between the 
UniSQ and VitalDB datasets (as shown in Tables  5 
and 6) can be attributed to several factors. Firstly, the 
UniSQ and VitalDB databases differ in terms of patient 
demographics, clinical environments, and the types of 
anesthetic agents used, which likely influenced the EEG 
signals. In addition, the use of different wavelet tech-
niques (’db12’ for UniSQ and ’db16’ for VitalDB), due to 
variations in sampling rates, also contributed to distinct 
spectral characteristics. These factors necessitated the 
selection of different features from different decompo-
sition levels for each dataset to optimize performance. 
Adapting the feature selection to the specific character-
istics of each dataset resulted in improved DoA estima-
tion accuracy, as reflected in the evaluation metrics.

Through these analysis, we found the optimal level 
of decompositions and the mother wavelet for each 
database.

A Mann–Whitney U test was conducted to determine 
whether there were significant differences between the 
PLZC and PSD feature distributions for the UniSQ and 
VitalDB datasets ( Fig.  3). The results indicated no sig-
nificant difference between the PLZC distributions 
(p = 0.6760) and no significant difference between the 
PSD distributions (p = 0.5718). This suggests that both 
features exhibit similar behavior across the two datasets, 
reflecting comparable EEG signal properties in terms of 
complexity (PLZC) and spectral characteristics (PSD).

4.4 � Ablation studies
An ablation study was undertaken on combined data-
sets to assess the relative impact of model features and 
parameter settings on the performance of the DoA 
estimation model. This study extends beyond feature 
contribution to include the examination of the sliding 

Fig. 2  PLZC with the different levels of decompositions for UniSQ database in case 16, and the comparison in three different anaesthetic states, 
including LOC state (0–500 s), anaesthetic state (1100–1800s), and ROC state (3800–4150 s)

Fig. 3  Boxplots Comparing PLZC and PSD Feature Distributions Between UniSQ and VitalDB Datasets
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window length, a key parameter influencing feature 
extraction and real-time monitoring capabilities.

The ‘Baseline’ model in Table 7 represents the full fea-
ture set optimized for a 56-s sliding window, serving as 
the standard for comparison. The removal of PLZC and 
PSD features from the model underscores their indi-
vidual significance, as evidenced by the decrease in R2 
and increase in RMSE and MAE values. The ablation 
of the regression method further clarifies the superior 
performance of the Random Forest algorithm over Lin-
ear Regression and SVM. These findings are pivotal for 
understanding the robustness of the predictive model 
and guiding future refinements for DoA monitoring.

In this study, we tested several different sliding win-
dow sizes, including 10 s, 30 s, and 56 s, and evaluated 
their performance in terms of feature extraction (using 
the PSD-D3 feature) and anesthetic state discrimina-
tion. Figure  4 illustrates the comparison of feature 
extraction results using these sliding window sizes. 
Also, we tested the performance of the model on com-
bined databases in terms of various metrics such as R2, 
RMSE, MAE, and Pearson Coefficient and the results 
are summarized in Table  8. Based on our analysis, a 
fixed-length sliding window of 56 s was selected as it 
provided a good balance between real-time perfor-
mance and accurate feature extraction.

4.5 � Results and evaluations
The performance of the proposed DoA index estimation 
method was evaluated using a random forest regression 
model. In this study, the Random Forest model was con-
figured with the following hyperparameters: 100 trees to 
balance computational efficiency and predictive accu-
racy, a maximum tree depth of 25 to prevent overfitting, 
a minimum of 2 samples per split, a minimum of 1 sam-
ple per leaf, and the use of sqrt as the maximum number 
of features considered for each split. Bootstrap sampling 
was enabled to ensure ensemble diversity. Several key 
metrics were used to assess the model’s accuracy and reli-
ability, including R-squared (R2), root mean square error 
(RMSE), mean absolute error (MAE), and Pearson corre-
lation coefficient. Together, these metrics provide a com-
prehensive understanding of how well the model predicts 
the depth of anesthesia in comparison to the BIS index. 

Table 7  Ablation Study Outcomes including Sliding Window Analysis

Variation Description Regression 
Method

R2 RMSE MAE Pearson 
Coefficient

Baseline Full model with all features and original 
parameters

BTR 0.70 6.49 8.36 0.84

Without PLZC Model without PLZC feature BTR 0.67 6.93 9.05 0.81

Without PSD Model without PSD feature BTR 0.65 7.12 8.96 0.79

Linear Model Full model using Linear Regression Linear 0.50 8.68 9.16 0.62

SVM Model Full model using SVM SVM 0.63 7.31 9.08 0.67

Fig. 4  PSD-D3 in three different sliding window sizes for case 16 VitalDB database and the comparison in three different anaesthetic states, 
including LOC state (0–500 s), anaesthesia state (2500–2900 s), and ROC state (5500–5800 s)

Table 8  Performance metrics of estimation model for different 
sliding window sizes

10 s 30 s 56 s

R2 0.57 0.63 0.70

RSME 8.62 8.01 6.31

MAE 11.67 8.89 8.38

Pearson Coefficient 0.76 0.81 0.84
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R2 reflects how much of the variance in the BIS index is 
explained by the proposed DoA index, with higher values 
indicating a better fit. The RMSE and MAE represent the 
average prediction errors, with lower values indicating 
more accurate predictions. Lastly, the Pearson correla-
tion coefficient measures the linear relationship between 
the predicted DoA index and the BIS index, where values 
closer to 1 indicate stronger agreement.

As shown in Table  9, the model performed well for 
the UniSQ database, achieving an average R2 of 0.75, an 
RMSE of 7.03, an MAE of 6.79, and a Pearson correla-
tion coefficient of 0.86. These values suggest that the pro-
posed DoA index closely matches the BIS index, with the 
model explaining 75% of the variation in the BIS values 
and showing a relatively low prediction error. Similarly, 
for the VitalDB database, the model yielded an average R2 
of 0.68, an RMSE of 5.83, an MAE of 8.32, and a Pearson 
correlation coefficient of 0.82, further demonstrating the 
method’s effectiveness across different patient datasets.

When combining the UniSQ and VitalDB datasets 
(Table  10), the model maintained strong performance, 
with an average R2 of 0.70, an RMSE of 6.31, an MAE 
of 8.38, and a Pearson correlation coefficient of 0.84, A 
Pearson correlation coefficient of 0.84 for the combined 
dataset indicates that there is a high level of agreement 
between the predicted DoA values and the actual BIS 
values, which suggests that the model generalizes effec-
tively across different clinical conditions and patient 
populations.

To further assess the agreement between the proposed 
DoA index and the BIS index, a Bland–Altman analysis 
was conducted (Fig.  5). The Bland–Altman plot shows 
that 94.51% of the differences between the two indices 
lie within the limits of agreement (diff ± 2sd), confirm-
ing a high level of agreement. The mean bias was − 0.50, 
with limits of agreement at 19.95 and -20.94, supporting 
the robustness of the proposed method in estimating the 
depth of anesthesia.

Finally, scatter plots with 95% confidence intervals 
(Fig.  6) illustrate the relationship between the proposed 
DoA index and the BIS index across the UniSQ, VitalDB, 
and combined datasets. The R2 values for the datasets 
ranged from 0.65 to 0.66, indicating that the proposed 

DoA index accounts for a substantial portion of the vari-
ance in the BIS index, particularly within the 30–60 range 
(anesthetic states), where precision was highest.

4.6 � DoA states and transition prediction
For each database (UniSQ and VitalDB), the classification 
results revealed clear patterns corresponding to different 
anesthesia states. The transitions between these states 
were further validated by comparing the identified states 
with anesthesia agent usage information and BIS index 
values, as demonstrated in Figs. 7, 8 and 9.

In Figs. 7, 8 and 9, the vertical lines indicate the admin-
istration times of anesthetic agents such as alfentanil and 
propofol, marking the onset and offset of sevoflurane. 
These markers provide a temporal reference, showing 
the correlation between the administration of anesthet-
ics and the observed DoA state transitions. Notably, the 
transition from awake to anesthetic states aligns with the 
timing of propofol and sevoflurane administration, as 
indicated in the figures.

Figure 9 highlights a specific transition from deep anes-
thesia to moderate anesthesia around the 500-s mark. 
This change shows a stronger correlation between the 
detected states and the proposed DoA index compared to 
the BIS index, suggesting that the proposed method may 
provide a more accurate reflection of anesthesia state 
transitions.

Overall, these results demonstrate the effectiveness 
of the proposed DoA index in identifying distinct anes-
thesia states and capturing state transitions in real-time, 
with high correspondence to clinical anesthesia events.

4.7 � Comparison with state‑of‑the‑art
The Table 11 below compares the proposed method with 
several state-of-the-art approaches for Depth of Anes-
thesia (DoA) estimation based on EEG data primarily 
from the frontal cortex, using two accessible databases. 
The three state-of-the-art approaches were applied to 
the same training data and testing data as the proposed 
method.

Compared to Shi et  al. [13], our proposed method 
achieves a comparable correlation coefficient (CC) using 
a random sampling strategy, but with only one EEG 

Table 9  Results of the testing cases evaluation from UniSQ database and VitalDB database individually

UniSQ database Patient number VitalDB 
database

Patient number

Evaluation methods 01 09 10 16 26 34 Average 03 45 46 48 74 106 Average

R2 0.70 0.89 0.76 0.76 0.83 0.57 0.75 0.55 0.64 0.63 0.65 0.81 0.82 0.68

RSME 6.91 6.76 8.84 6.02 6.87 6.75 7.03 8.50 6.62 4.01 4.36 4.85 6.62 5.83

MAE 5.73 7.38 9.65 4.69 6.47 6.80 6.79 10.13 11.37 8.89 6.65 6.09 6.81 8.32

Pearson coefficient 0.84 0.94 0.87 0.87 0.91 0.75 0.86 0.74 0.80 0.80 0.80 0.90 0.90 0.82
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Fig. 5  Bland–Altman plot between the proposed DoA index against the BIS index with 95% limits of agreement

Fig. 6  The scatter plot with 95% confidence interval demonstrated the proposed DoA index against the BIS index
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channel instead of four. This significantly reduces wear-
able complexity while maintaining accuracy. Although 
Chen et  al. [11] achieved a slightly lower CC, they 
employed a more complex LSTM model on a single-
channel dataset. Our simpler Random Forest model 
demonstrates competitive performance with fewer com-
putational demands.

Our method also yields a higher mean CC compared 
to Shahbakhti et  al. [14], despite both using random 
sampling as the evaluation strategy. Additionally, our 

approach leverages Wavelet decomposition, which is 
computationally simpler compared to techniques like 
SWT and shows improved accuracy with a lower MAE.

While some approaches, such as Shi et  al. [13], 
employed more complex EEG decomposition tech-
niques like WT-CEEMDAN-ICA, our method 
maintains a balance between performance and compu-
tational simplicity by using DWT with PLZC and PSD 
features, achieving competitive accuracy across multi-
ple datasets.

Fig. 7  a Comparison between the BIS index and the proposed DoA index for the patient case number 9. b Anaesthetic states classification using 
a hierarchical clustering method for patient case number 9
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Furthermore, our approach has been evaluated using 
two independent databases, which enhances the gener-
alizability of our findings. Unlike several other studies 
that were limited to a single dataset, our broader evalu-
ation framework demonstrates consistent performance 
across varying conditions. This robustness underscores 
the applicability of our method to real-world scenarios, 
making it a reliable choice for practical deployment in 
diverse environments.

5 � Discussion
In addressing the critical challenge of DoA estimation, 
this study delineates several key findings that collec-
tively underscore its novelty and contribute substantively 
to the field. First, the dual-database strategy employed 
here, which utilizes both the UniSQ and VitalDB data-
sets, provides a model that has demonstrated robustness 
and generalizability across diverse patient demographics 
and anesthetic protocols—a notable advancement over 
studies limited to single, proprietary datasets [41–43]. 
The model’s performance metrics, with an R2 value of 
0.70 and a Pearson correlation coefficient of 0.84, signify 

Fig. 8  a Comparison between the BIS index and the proposed DoA index for the patient case number 26. b Anaesthetic states classification using 
the hierarchical clustering method for patient case number 26
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Fig. 9  a Comparison between the BIS index and the proposed DoA index for the patient case number 34. b Anaesthetic states classification using 
the hierarchical clustering method for patient case number 34

Table 11  Comparison between the proposed and state-of-the-art algorithms

Study EEG Decomposition Feature Model Training–testing 
strategy

Correlation (CC) MAE RMAE

Shi et al. [13] [Deep 
Residual Shrinkage 
Network]

WT-CEEMDAN-ICA SampEn, SEF, PSI Deep Residual 
Shrinkage

Cross-Subject Valida-
tion

0.84 10.51 6.15

Chen et al. [11] [Non-
linear EEGV Analysis]

None SampEn, PeEn, DFA, 
PoP

LSTM Train-Test Split 0.78 8.78 9.76

Shahbakhti et al. 
[14] [Nonparametric 
Feature Set]

SWT Entropy, Band Power Random Forest Random Sampling 0.83 11.32 8.45

This study Wavelet (DWT) PLZC, PSD Random Forest Random Sampling 0.84 8.38 6.31
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a substantial improvement over the long short-term 
memory (LSTM) networks that traditionally rely on BIS, 
which is frequently cited as the gold standard for DoA 
assessment [11]. Moreover, the integration of the Hurst 
exponent as a predictive variable into the DoA estimation 
model offers a novel perspective that enriches the multi-
dimensional analysis of anesthesia dynamics [44]. These 
innovations not only bridge gaps in the current research 
landscape but also pave the way for future investigations 
geared toward enhancing patient safety and the manage-
ment of anesthesia.

The substantial correlation with BIS scores validates 
the hypothesis that machine learning models when 
equipped with appropriate feature sets and trained on 
diverse datasets, can effectively estimate the depth of 
anesthesia. Acknowledging the inherent limitations of 
the BIS system, including its susceptibility to artifacts 
and inter-individual variability, the present study uti-
lizes BIS as a comparative standard due to its widespread 
clinical adoption. The findings demonstrate that the pro-
posed model maintains a high degree of correlation with 
BIS scores, bolstering its potential as a reliable DoA esti-
mation tool within clinical settings. The robustness of the 
model’s performance, coupled with its validation against 
a widely accepted benchmark, underscores its promise 
for future clinical deployment. To fortify these results, 
subsequent research will focus on corroborating the 
model’s efficacy with clinician-labeled data, thereby rein-
forcing the model’s practical relevance.

5.1 � Significance of DWT levels, pre‑processing, feature 
determination, and mother wavelet selection

The decision to examine various levels of the DWT in 
this investigation was driven by the necessity to ascertain 
the most appropriate level of decompositions for extract-
ing features from the EEG signals. The DWT decomposes 
a signal into distinct frequency sub-bands, with each 
level of the decomposition focusing on specific frequency 
ranges. Identifying the optimal level of a decomposition 
ensures that the features extracted are relevant to the 
anesthesia depth, thereby contributing to the develop-
ment of a novel and accurate DoA index.

A comprehensive analysis in this study determined 
the optimal level of decompositions and the most suit-
able mother wavelet for each dataset, which significantly 
impacted the accuracy and reliability of the DoA esti-
mation model. This process ensured that the selected 
features, PLZC and PSD, were accurately differentiated 
between various anesthesia states. Such meticulous con-
sideration provided a strong foundation for the develop-
ment of a dependable and precise DoA estimation model 
using the proposed index.

Pre-processing and feature determination play a pivotal 
role in enhancing the quality of the raw EEG signals and 
selecting the most relevant features for the DoA estima-
tion. The wavelet threshold method and DWT were uti-
lized to eliminate noise and facilitate feature extraction. 
The pre-processing techniques improved the clarity and 
quality of the EEG signals, enabling more an accurate fea-
ture extraction, which is essential for a reliable DoA esti-
mation model.

5.2 � The size of the sliding window
The sliding window technique was implemented to 
ensure an optimal real-time response during the depth of 
anesthesia monitoring. After experimented with various 
window sizes, a window size of 56 s and an overlap of 55 s 
between two adjacent windows were selected. With this 
approach, the DoA index could be updated every second, 
significantly reducing the time delay for monitoring the 
DoA.

Smaller window sizes, such as 10 s and 30 s, may pro-
vide faster updates but may also compromise the quality 
of the feature extraction, particularly during transitions 
between anesthesia states. This is due to the limited 
amount of data available for smaller windows, which 
might not capture the dynamics of the EEG signals suf-
ficiently. The chosen sliding window size of 56 s achieved 
an optimal balance between the real-time performance 
and accurate feature extraction. It allows for continuous 
updates of the DoA index while maintaining a high level 
of accuracy in differentiating between various anesthesia 
states. This choice contributes to the overall effectiveness 
and reliability of the proposed DoA estimation method.

5.3 � Significance of using UniSQ and VitalDB databases 
and the combined datasets

The employment of two independent databases, UniSQ 
and VitalDB, allowed for a comprehensive evaluation 
of the proposed method. The results obtained from the 
datasets provided insights into the robustness and gen-
eralizability of the method across diverse patient popu-
lations and anesthesia protocols. By evaluating the 
performance of the proposed method on individual data-
sets and then on a combined dataset, the study could 
demonstrate its effectiveness in a broader context.

The experimental results indicated that the proposed 
method performed well on both individual databases and 
the combined datasets. When comparing the evaluation 
metrics between the individual databases, the UniSQ 
database had slightly higher R2 and Pearson correlation 
coefficient values, while the VitalDB database showed a 
lower RMSE value. These differences could be attributed 
to variations in patient populations and anesthesia proto-
cols. The combined datasets can be considered a valuable 
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approach to further validate the method’s performance 
and ensure its applicability across different patient pop-
ulations and clinical scenarios. The overall performance 
remains strong, supporting the robustness and generaliz-
ability of the proposed method.

5.4 � Insights on anaesthesia states transitions
The examination of anaesthesia state transitions offered 
valuable insights into the behaviour of the proposed 
method in response to changing DoA conditions, as illus-
trated in Figs. 7, 8 and 9. The Hurst exponent values cal-
culated for each database served as the input features for 
the hierarchical clustering algorithm, with the resultant 
clusters representing different anesthesia states such as 
awake, light anesthesia, moderate anesthesia, and deep 
anesthesia.

The vertical lines in Figs.  7, 8 and 9, representing the 
administration times of anesthetic agents, provided a vis-
ual guide linking the administration of specific anesthet-
ics with the observed DoA state transitions. Notably, the 
start time of the anesthetic agents aligned with the anaes-
thesia states transition time from awake to anaesthesia 
state, indicating the capability of the proposed method to 
accurately track these transitions in real time.

Furthermore, in Fig. 9, the transition from deep anaes-
thesia to middle anaesthesia around the 500th-second 
mark demonstrated a stronger correlation with the 
detected states and the proposed DoA index than the BIS 
index recorded during the surgery. This finding supports 
the effectiveness of the proposed method in accurately 
identifying different anesthesia states and responding to 
transition events, lending further credence to the robust-
ness and utility of the proposed DoA estimation method 
in real-world clinical scenarios.

Although the ground truth data from attending anaes-
thetists was not available for direct comparison, the 
agreement between the identified states, anesthesia agent 
usage information, and BIS index values indicate the 
reliability of the proposed method. The observed pat-
terns in the classification results contribute to a better 
understanding of the depth of anesthesia and the transi-
tions between different states during surgical procedures. 
These findings demonstrate the potential of the proposed 
method in providing a more comprehensive assessment 
of the depth of anesthesia using EEG signals.

5.5 � Methodological efficacy
This research has examined the efficacy of the chosen 
analytical methods through a comprehensive ablation 
analysis. Such an examination is critical for affirming the 
methodological underpinnings of the proposed DoA esti-
mation model.

Permutation Entropy (PE) and Power Spectral Density 
(PSD) were selected for feature extraction after a care-
ful evaluation of their capacity to encapsulate the intri-
cate attributes of EEG signals under anesthetic influence. 
These methods demonstrated superior capability in dis-
tilling pertinent characteristics from the EEG signals, 
which are inherently non-linear and exhibit non-sta-
tionary behavior. While Fourier-based approaches were 
considered, their performance in capturing the transient 
dynamics of EEG during anesthesia was less compelling 
when contrasted with the nuanced fidelity afforded by PE 
and PSD.

The robustness of the random forest regression model 
was underscored by its performance amidst the multifac-
eted challenges posed by EEG data analysis, notably its 
inherent noise and dimensionality. The results from the 
ablation study have illuminated the robust performance 
of the random forest approach, particularly in contrast to 
linear regression and SVM, which were found to be less 
adept in this context.

The model’s parameters were optimized through a grid 
search strategy, complemented by cross-validation to 
mitigate overfitting. This approach was pivotal in navigat-
ing the intricate balance between model complexity and 
generalizability, culminating in a model finely attuned to 
the complexities embedded within the EEG data.

The insights gleaned from the ablation study, alongside 
the methodical optimization of model parameters, have 
collectively validated the chosen features and regression 
methodology. The corroboration of these methodological 
choices bolsters the proposed model’s potential for clini-
cal deployment. It also acts as a harbinger for subsequent 
research endeavors aimed at enhancing the precision and 
reliability of DoA monitoring tools.

In this investigation, the validation of machine learning 
models was rigorously addressed, with an 80:20 train-test 
partitioning ratio chosen to ensure robust training and 
meaningful validation, a standard practice for datasets 
of this scale and complexity. To ascertain model stability 
and generalizability, a k-fold cross-validation approach, 
ranging from 5 to 10 folds, was adopted in Table 12. The 
resulting R2 and RMSE metrics across varying folds dem-
onstrated the model’s consistent performance, affirming 
its resilience against data partitioning discrepancies and 
aligning with validation methodologies documented in 
the existing scientific literature.

The clinical relevance of our study is highlighted by 
the ability to offer a more adaptive and precise tool for 
DoA monitoring. By leveraging a novel combination 
of PLZC and PSD for feature extraction, our method 
demonstrates a high correlation with standard clinical 
assessments, addressing individual patient variability 
with notable accuracy. The validation against two diverse 
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datasets—UniSQ and VitalDB—not only solidifies the 
method’s reliability but also its applicability to various 
clinical environments. These results represent a critical 
advancement toward personalized anesthetic manage-
ment, potentially reducing the risk of anesthesia-related 
adverse events and aligning with the evolving paradigm 
of precision medicine.

5.6 � Limitation of study
While the proposed approach for DoA estimation using 
PLZC and PSD along with random forest regression has 
shown promise, it is important to acknowledge certain 
limitations. The sensitivity of these methods to individual 
patient differences, such as age and gender, may affect 
the accuracy of the DoA estimation. Computational 
complexity is another concern, especially when process-
ing large EEG datasets, which may pose challenges for 
real-time applications. Additionally, the generalizability 
of the proposed method across diverse patient popula-
tions remains to be rigorously tested, particularly given 
the proprietary nature of most anesthesia datasets which 
limits access to a broader range of data for validation. 
Moreover, the exploration of advanced deep learning 
techniques and the integration of clinician-labeled data 
are identified as future research directions to enhance 
model validation and address current limitations. Future 
research should focus on addressing these limitations by 
refining the computational efficiency of feature extrac-
tion techniques and enhancing the method’s adaptability 
to different patient demographics.

6 � Conclusion
The present study introduces a methodological frame-
work for estimating the Depth of Anesthesia via elec-
troencephalographic signals, thereby addressing existing 
gaps in literature. Utilizing a series of computational 
stages—including data pre-processing, Discrete Wave-
let Transform decomposition, feature extraction, and 
Random Forest Regression—the research delineates 
a comprehensive methodology substantiated through 

rigorous empirical validation across two divergent data-
bases: UniSQ and VitalDB. Such an amalgamation of data 
sources enhances the robustness and generalizability of 
the model across disparate patient populations and anes-
thetic protocols.

In the conclusion of the study, the results indicate that 
the developed model demonstrates strong performance, 
marked by a high degree of correlation with BIS and 
robustness across varied datasets. The model achieves 
an R2 value of 0.70 and a Pearson correlation coefficient 
of 0.84, indicating substantial improvements in depth of 
anesthesia assessment compared to established LSTM 
networks [18]. In reference to Tables  1 and 2, although 
the correlation figures do not surpass all previously 
reported results [12], the model’s lower computational 
intensity presents a practical advantage, particularly in 
clinical applications where efficiency and accuracy are 
both critical.

In line with advanced developments in deep learn-
ing, our future research will pivot towards employ-
ing methodologies such as transformers and attention 
mechanisms in EEG anesthesia monitoring. Transform-
ers, which have revolutionized sequence modeling due 
to their unique self-attention capabilities [45], present a 
promising avenue for enhancing DoA estimation. Their 
application in interpreting EEG patterns can provide 
unparalleled precision, as evidenced in recent studies 
[46]. Similarly, attention learning, known for isolating 
pivotal features within complex data sequences [47], can 
significantly refine EEG signal interpretation. Incorporat-
ing these advanced models aligns with the evolving land-
scape of AI in medical diagnostics [48], particularly for 
personalized anesthetic care where patient-specific fac-
tors are paramount.
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