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A B S T R A C T   

Evapotranspiration is one of agricultural water management’s most significant and impactful hydrologic pro
cesses. A new multi-decomposition deep learning-based technique is proposed in this study to forecast weekly 
reference evapotranspiration (ETo) in western coastal regions of Australia (Redcliffe and Gold Coast). The time- 
varying filter-based empirical mode decomposition (TVF-EMD) technique was used to first break down the 
original meteorological variables/signals into intrinsic mode decomposition functions (IMFs), which included 
maximum and minimum temperature, relative humidity, wind speed, and solar radiation. Using a partial 
autocorrelation function (PACF), the significant lagged values were then calculated from the decomposed sub- 
sequences (i.e., IMFs). A novel Extra Tree- Boruta feature selection algorithm was used to extract important 
features from the decomposed IMFs. Four machine learning approaches, including bidirectional recurrent neural 
network (Bi-RNN), multi-layer perceptron neural network (MLP), random forest (RF), and extreme gradient 
boosting (XGBoost), were used to forecast weekly evapotranspiration using the TVF-EMD-based decomposed 
meteorological data. Different statistical metrics were applied to evaluate the model performances. The results 
showed that the decomposition of the input data by TVF-EMD significantly improved the accuracy compared 
with the non-decomposed inputs (single models without decomposition). The findings indicate that the TVF- 
BiRNN model, as presented, achieved the highest level of accuracy in simulating weekly ET0 at both the Red
cliffe and Gold Coast stations (Redcliffe: R=0.9281, RMSE=3.8793 mm/week, MAPE = 9.2010%; Gold Coast: 
R=0.8717, RMSE=4.1169 mm/week, MAPE = 11.5408%). The novel hybrid modeling technique can potentially 
improve agricultural water management through its ability to generate more accurate ETo estimates weekly. The 
proposed methodology exhibits potential applicability to various other environmental and hydrological 
modeling issues.   

1. Introduction 

Evaporation is defined physically as the transport of liquid water 
from surfaces like soil and plants into the atmosphere in a gaseous form 

(Monteith, 1965). Several hydro-climatological factors influence the 
evaporation simulation; for example, solar radiation and air tempera
ture provide the energy required for the water transformation into a 
gaseous state. Additionally, the biological transpiration process involves 
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the movement of water from the plant’s stomata into the atmosphere. 
The process of transpiration is often fueled by radiation, air humidity, 
air temperature, and wind (Brutsaert, 2013). Conversely, evapotrans
piration (ET) is a complicated, non-linear process in which both evap
oration and transpiration occur simultaneously. The amount of water 
lost from a cropped surface, measured in units of water depth over a 
predetermined time period, is known as the evapotranspiration rate 
(Keshtegar et al., 2022). In several domains, such as irrigation designing 
and planning, hydrology, crop water needs, drainage design, and water 
resource distribution (Torres et al., 2011), there is a need for accurate 
prediction of evapotranspiration (ET). Accurate prediction of evapo
transpiration (ET) is crucial to agricultural water management. Refer
ence evapotranspiration (ETo) is often needed for this purpose. The FAO 
Penman-Monteith (PM) (Allen et al., 1998), Priestley-Taylor (PT) 
(Priestley and Taylor, 1972), and Hargreaves-Samani (HS) (Hargreaves 
and Samani, 1985) methods have been widely used to estimate ETo 
(Lang et al., 2017). However, the main drawbacks of these methods are 
their variation of performance from one location to another and local 
calibration that limits the adequacy of the empirical method (Goyal 
et al., 2023). Machine learning (ML) models have been used as a 
dependable approach for resolving the problem of data unavailability in 
such areas (Yaseen, 2021). Potential ML models for simulating ETo 
include evolutionary methods (Martí et al., 2015), fuzzy logic (Kisi, 
2010), neural network (Nawandar et al., 2021), kernel method (Chen 
et al., 2022), decision tree (Ayaz et al., 2021), ensemble models (Mehr 
et al., 2019), random forest (Hameed et al., 2021), and hybrid ML 
models (Roy et al., 2021). 

Deep learning (DL) models have been proven more feasible in hy
drological and climatological applications in comparison with other ML 
models (Bhattarai et al., 2023; Fayer et al., 2023; Granata et al., 2022; 
Granata and Di Nunno, 2023; Kurth et al., 2018; Rasp et al., 2018; Sit 
et al., 2020). The excellent performance of DL models can be attributed 
to the superiority and reliability of their learning processes in simulating 
the intricate interactions between predictors and predictors (Danandeh 

Mehr et al., 2022; Fu et al., 2020). DL models can provide data output in 
a hierarchical arrangement, increasing the complexity of traditional 
neural network models (Bouguettaya et al., 2022). Convolutional neural 
networks, long short-term memory, deep neural networks, and recurrent 
neural networks are some of the different types of deep learning models 
(Sharifani and Amini, 2023). For ETo process modeling, in particular, 
some research was adopted over the literature using the potential of DL 
models. An innovative strategy based on the hybridization of the 
multivariate variational mode decomposition with recurrent neural 
network for forecasting the daily scale of ETo (Zheng et al., 2023). In 
another work, the integration of the classical Hargreaves-Samani 
method with long short-term memory was developed for daily records 
of ETo (Yan et al., 2023). Other research on a similar concept was 
established for ETo modeling using the capacity of DL models (Babaeian 
et al., 2022; Dong et al., 2021; Granata and Di Nunno, 2021; Wang et al., 
2022; Yin et al., 2020). The existing literature reveals a few key issues 
that need to be resolved before the next generation of computer-aided 
modeling. The development of a DL model depends strongly on the 
time horizon (e.g., hourly, daily, weekly, monthly, or seasonally), which 
further affects its accuracy. The selection of appropriate input parame
ters to yield a better learning process using some advanced feature se
lection methods is yet to be tested. Hence, the identification of the 
appropriate optimization for the feature to be supplied for the prediction 
matrix is important. The current study aims to fill these gaps. 

This study uses a special deep learning method, a bi-directional 
recurrent neural network (Bi-RNN), to predict weekly ETo in combina
tion with time-variable filter-based empirical mode decomposition 
(TVF-EMD). Redcliffe and Gold Coast stations in Australia were desig
nated as test locations for the new modeling technique. The performance 
of the new model will be evaluated through the use of three ML algo
rithms, namely multi-layer perceptron neural network (MLP), random 
forest (RF), and extreme gradient boosting (XGBoost). Therefore, the 
primary goals of this study are: 1) use the Bi-RNN model to forecast the 
weekly ETo, 2) generate a weekly ETo forecast using a combination of 

Fig. 1. Locations of Redcliffe and Gold Coast stations.  
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TVF-EMD and ML models, 3) use a unique Extra Tree-Boruta feature 
selection process to identify relevant intrinsic mode decomposition 
functions (IMFs) created from TVF-EMD in the forecasting procedure, 4) 
analyze the effectiveness of the models and 5) examine the differences 
between single and TVF-EMD-based models. 

2. Materials and methods 

2.1. Study area and data description 

Fig. 1 shows the locations of Redcliffe and Gold Coast stations. 
Redcliffe is a town and suburb located in the Moreton Bay Region, 
Queensland, Australia. Its climate is warm and temperate in Redcliffe. It 
experiences heavy rains, even in the driest month. This climate falls 
under the Köppen and Geiger classification of Cfa (Humid subtropical 
climate). The average temperature in this area is 20.4 ◦C, and the annual 
precipitation is 1001 mm. Gold Coast is a city situated on the coast of 
Queensland, Australia, located to the north of the New South Wales 
border. Its climate is similar to that in Redcliffe. Its average temperature 
is 20.4 ◦C, and the annual precipitation is 1138 mm. The daily meteo
rological data, including minimum temperature (Tmin), maximum tem
perature (Tmax), wind speed, relative humidity (RH%), solar radiation, 
and reference evapotranspiration (ETo), were obtained from the 
Australia Bureau of Meteorology (http://www.bom.gov.au/). These 
daily data were then transformed into a weekly scale. Table 1 shows the 
descriptive statistics of these basic weekly meteorological variables and 
ETo for Redcliffe and Gold Coast stations. According to Table 1, the mean 
weekly ETo values are 32.39 and 30.52 mm for Redcliffe and Gold Coast 
stations, respectively. 

2.2. Data quality and integrity assessment 

Typically, the evaluation of data quality and integrity is conducted 
through the use of the double-mass curve technique. This technique 
necessitates the availability of a record spanning over 30 years from 
numerous locations. However, in our specific scenario, we possess a 

dataset encompassing a duration of ten years (2012–2021) from two 
locations. Consequently, a straightforward examination can be per
formed by employing basic statistical analysis measures, such as mini
mum, maximum, mean, standard deviation, skewness, and kurtosis. 
Table 1 presents an overview of the statistical features of the weekly 
climatological data. We do the following analysis to ensure the data 
quality and validity:  

1. Examining time series plots visually can help identify anomalies and 
incorrect spikes or declines in the data. Values that seemed suspect 
were compared to the original data sources.  

2. Range checks are used to find values that go above predicted physical 
extremes and bounds. Erroneous data was confirmed or eliminated 
as needed.  

3. Use composite estimates from nearby stations or interpolation to fill 
in the gaps left by missing data.  

4. Consistency checks between related variables (e.g., temperature and 
humidity) to flag illogical relationships. Suspect data points were 
investigated. 

2.3. PM equation 

The FAO Penman-Monteith (PM) equation (Allen et al., 1998) has 
been widely used for the computation of reference evapotranspiration. 
The FAO PM equation was utilized in the present study to estimate 
weekly ETo (Allen et al., 1998): 

ETo =
0.408Δ(Rn − G) + γ 900

T+273U2(es − ea)

Δ + γ(1 + 0.34U2)
(1)  

where ETo = reference evapotranspiration, mm week− 1; Rn = net ra
diation, MJ m-2 week− 1; G = soil heat flux density, MJ m-2 week− 1; Δ 
= slope of saturation vapor pressure, kPa ◦C− 1, T = mean air tempera
ture, ◦C; U2 = wind speed at 2-m height above the ground surface, m 
s− 1; γ = psychrometric constant, kPa ◦C− 1; and es − ea = saturation and 
actual vapor pressures, kPa. Weekly ETo values are obtained by sum
ming seven days of ETo, and time series are built using weekly ETo. 

2.4. Boruta-extra tree for feature selection 

In modeling complex hydrological and environmental processes, 
nominating optimal inputs is crucial to better understand their impacts 
on the model output. A variety of methods are available for handling this 
issue. This study utilized the Boruta – Extra Tree (BET) algorithm for 
significant feature selection (Kursa et al., 2010) in weekly ETo fore
casting at the study sites. The working principles of the Boruta algorithm 
are optimized using the extra tree (Geurts et al., 2006) model for 
selecting the significant inputs and omitting the non-significant features. 
The extra tree is an ensemble machine learning model based on many 
united decision trees to perform regression or classification tasks (Geurts 
et al., 2006). The two central elements of the extra tree are the number 
of features randomly chosen for each node and the least sample size for 
partitioning a node, which enhances the model’s forecast accuracy 
(Asadollah et al., 2020). The Boruta algorithm is applied to determine 
the Z-scores of each input predictor in reference to the shadow property. 
Finally, the Z-score metrics for each iteration are computed and 
repeatedly eliminate the features supposed to be very irrelevant based 
on the corresponding shadow attributes (when Z-scores < maximum 
Z-score among shadow attributes = unimportant inputs, and Z-scores >
maximum Z-score among shadow attributes = important or effective 
inputs). The process ends when all features are confirmed or when the 
required iteration threshold is reached (Ahmed et al., 2021). 

2.5. TVF-EMD 

In 2017, Li et al. suggested a time-varying filter-based empirical 

Table 1 
Descriptive statistics of weekly meteorological variables for Redcliffe and Gold 
Coast stations.     

Redcliffe    

Variable Tmax 
(Cº) 

Tmin 
(Cº) 

RH (%) Wind 
Speed 
(m/s) 

Solar 
Radiation 
(MJ/sq m) 

ETo 

(mm/ 
week) 

Mean 25.52 17.18 67.88 5.39 19.16 32.39 
StD 3.09 4.22 6.71 1.36 5.47 10.36 
Max 32.59 24.61 87.86 9.66 34.35 59.00 
Min 18.07 7.14 40.14 2.16 8.08 14.10 
Q1 22.96 13.46 63.86 4.23 14.55 23.30 
Q2 25.84 17.46 67.71 5.46 18.53 32.00 
Q3 28.07 21.04 72.14 6.40 23.51 40.40 
Skewness -0.14 -0.17 -0.22 0.17 0.30 0.22 
Kurtosis -0.95 -1.18 0.56 -0.48 -0.85 -0.94   

Gold Coast   
Variable Tmax 

(Cº) 
Tmin 
(Cº) 

RH (%) Wind 
Speed 
(m/s) 

Solar 
Radiation 
(MJ/sq m) 

ETo 

(mm/ 
week) 

Mean 25.77 17.37 72.19 5.27 19.09 30.52 
StD 2.92 3.75 8.08 1.25 5.53 8.70 
Max 30.87 24.14 94.29 10.02 34.58 54.60 
Min 18.11 8.41 47.93 1.52 8.14 8.90 
Q1 23.19 14.17 67.21 4.30 14.33 23.10 
Q2 26.04 17.60 72.43 5.12 18.44 29.80 
Q3 28.26 20.77 77.71 6.05 23.65 37.10 
Skewness -0.18 -0.21 -0.13 0.65 0.29 0.17 
Kurtosis -1.13 -1.10 -0.09 0.56 -0.89 -0.73 

StD: Standard Deviation; Q1: Quartile 1(25%), Q2: Quartile 2 (50%), Q3: 
Quartile 3 (75%); Skewness and Kurtosis values between − 1,+ 1, show variable 
distribution is near Normal 
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mode decomposition (TVF-EMD) model to control the consequences of 
the end effect and mode blending inside EMD and finish the shifting 
process using a time-varying filter. The performance of the TVF-EMD 
model is contingent on the correct selection of the bandwidth 
threshold (which has a direct influence on the separation and inter
mittence performance) and the B-spline order (which affects the filtering 
performance of the TVF) (Li et al., 2017). The TVF-EMD model fails to 
optimize the mode mixing problem. Similarly, accomplishing TVF needs 
to know the local cut-off frequency (LCOF) (Zhang et al., 2018). The 
TVF-EMD model has been observed to yield more practical outcomes 
when compared to other methods such as EWT (Empirical Wavelet 
Transforms), MEMD (Multivariate Empirical Mode Decomposition), 
EEMD (Ensemble Empirical Mode Decomposition), and VMD (Varia
tional Mode Decomposition) (Wang et al., 2020; Zhang et al., 2018). The 
implementation of the TVF-EMD involves the following steps (Li et al., 
2017; Song et al., 2021): 

Step-1: Compute the LCOF by employing a B-spline approximation, 
which can be expressed as: 

gn
m(t) =

∑∞

k=− ∞
c(k)βn(t/m − k) (2)  

where, βn(t) represents the B-spline function and c(k) is the B-spline 
coefficient. Eq. (2) indicates that the B-spline function is enlarged by the 
factor of m. The approximation is determined by n, m, and c(k). Given B- 
spline order n and knots m, the B-spline approximation is governed by 
c(k), which reduces the approximation error 

(
ε2

m
)

as follows: 

ε2
m =

∑+∞

t=− ∞

(
x(t) − [c]↑m ∗ bn

m(t)
)2 (3) 

in which, bn
m(t) signifies βn(t/m), [ • ]↑m denotes up-sampling opera

tion by m, and ∗ designates convolution operator. c(k) is given by: 

c(k) =
[
pn

m ∗ x
]

↓m(k) (4)  

where, [ • ]↓m indicates down-sampling operation by m and pn
m charac

terizes pre-filter. Thus, Eq. (2) can be rewritten as: 

gn
m(t) =

[
pn

m ∗ x
]

↓m ∗ bn
m(t) (5) 

Eq. (5) shows that the B-spline approximation is a type of low pass 
filtering. As a result, the LCOF is obtained from the input signal and used 
to construct the TVF. This process is carried out to obtain the LCOF, 

Fig. 2. Architecture of the Random Forest (upper left), BRNN model showing unfolded in time for three time steps (IL: input layer, HS: hidden state, and OL: output 
layer) (upper right), and XGBoost (Lower). 
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φ′
bis(t) = φ′

1(t) + φ′
2(t)/2. Here, φ′

1(t), and φ′
2(t) are slow varying com

ponents. Realign φ′
bis(t) to solve the issue of intermittence (i.e., noise) 

and obtain the final LCOF by interpolating among the peaks (or 
remainders). 

Step-2: Achieve the local mean by filtering the input signal using a 
time-varying filter (i.e., B-spline approximation filter). 

Step-3: Improve the stopping criterion by checking the residual 
signal as follows (Wang et al., 2020): 

θ(t) =
BLoughlin(t)

φavg(t)
(6)  

in which, BLoughlin(t) and φavg(t) are the Loughlin instantaneous band
width and the weighted average instantaneous frequency of separate 
components, respectively. For more information on the TVF-EMD 
model, readers can refer to Li et al. (2017). 

Fig. 3. Cross-correlation analysis for Gold Coast and Redcliffe stations.  

Table 2 
TVF EMD decomposition setting for input time series.  

Station Time 
Series 

Number of 
Decomposed 
IMFs 

B-spline 
Order 

End_flag Stopping 
criterion 

Redcliffe Tmax  11  26  0  0.1 
Tmin  14  26  0  0.1 
Wind 
Speed  

13  26  0  0.1 

Solar 
Radiation  

16  26  0  0.1 

Gold 
Coast 

Tmax  11  26  0  0.1 
Tmin  12  26  0  0.1 
Wind 
Speed  

16  26  0  0.1 

Solar 
Radiation  

12  26  0  0.1  

Fig. 4. Feature selecting process using the Boruta-Extra Tree method for Redcliffe station.  
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2.6. Bidirectional recurrent neural networks 

Deep-learning-based algorithms play an important role in handling 
multi-dimensional problems. Similarly, for analyzing the sequential 

data, the bidirectional recurrent neural networks (BRNN) can be a good 
choice (Schuster and Paliwal, 1997). A BRNN model can be trained 
using the entire available input sequences (information) in the past to 
predict the output. Moreover, BRNN can be effective in climatic and 
environmental forecasting (Jaihuni et al., 2022). The state of neurons in 
BRNN is divided into two directions: forward (positive direction) and 
backward (negative direction) states. The inputs of the backward state 
are not connected to the outputs from the forward state, and vice versa 
(Schuster and Paliwal, 1997). Fig. 2 shows the general structure of the 
BRNN model. In hidden neurons, BRNN has repetitive loops, which 
allow storing the previous input information for a moment so that future 
outputs can be predicted. The output of the hidden layer is retransmitted 
t times to the hidden layer. Once the number of epochs is finished, the 
output of the recursive neuron is sent to the next layer. In such a way, the 
output becomes more inclusive, and the preceding data are reserved for 
longer. Finally, the errors are reimbursed backward to update the 
weights (Apaydin et al., 2020). 

2.7. Multi-layer perception neural network (MLP NN) 

ANNs are effective machine learning tools to identify complicated 
non-linear correlations between inputs and outputs (Zhang et al., 1998). 
Multi-layer perceptron (MLP) is one of the widely used forms of neural 
networks. It can approximate any input/output map. MLPs are 
feed-forward multi-layer networks with one or more hidden layers that 
are trained by static back-propagation (Pashazadeh and Javan, 2020). 
The neural network utilized in this study has three layers: an input layer, 
a hidden layer, and an output layer. Each neuron in a particular layer is 
completely or partly interconnected with a large number of other neu
rons via weighted connections. The scalar weights dictate the strength of 
the connections between neurons that are linked. A weight of zero in
dicates that there is no link between two neurons, whereas a negative 
weight indicates a prohibitive association. MLP can be mathematically 
expressed as: 

y = f

(
∑n

i=1
wipi + b

)

(7)  

where y is the target value, f denotes the activation function, pi is the 
input vector, wi is the weight vector, and b is the bias. A tangent sigmoid 

Fig. 5. Feature selecting process using the Boruta-Extra Tree method for Gold Coast station.  

Table 3 
Optimized model adjustment for the forecasting of ETo.  

Study site Models Best parameters 

Redcliffe single 
models 

Random 
Forest 

N_Estimators: 20, Max-Depth:5 

XGBoost Learn rate:0.07, Max-Depth:4, N_Estimators: 70 
Bi-RNN Layers: 2, Number of Neurons: 180, Training 

Algorithm: Adam, Dropout: 0, Learning Rate: 
0.000101, Epochs: 55, Batch Size: 64 

MLP Training Algorithm: Levenberg Marquadt, 
Layers: 1, Number of Neuron: 2 

Redcliffe TVF 
based models 

Random 
Forest 

N_Estimators: 300, Max-Depth:20 

XGBoost Learn rate:0.17, Max-Depth:20, N_Estimators: 
40 

Bi-RNN Layers: 2, Number of Neurons: 200, Training 
Algorithm: Adam, Dropout: 0; Learning Rate: 
0.0011, Epochs: 70, Batch Size: 64 

MLP Training Algorithm: Levenberg Marquadt, 
Layers: 1, Number of Neuron: 5 

Study site Models Best parameters 
Gold Coast single 

models 
Random 
Forest 

N_Estimators: 20, Max-Depth: 3 

XGBoost Learn rate:0.05, Max-Depth:4, N_Estimators: 
100 

Bi-RNN Layers: 2, Number of Neurons: 110, Training 
Algorithm: Adam, Dropout: 0, Training 
Algorithm: Adam; Learning Rate: 0.017, 
Epochs: 58, Batch Size: 92 

MLP Training Algorithm: Levenberg Marquadt, 
Layers: 1, Number of Neuron: 3 

Gold Coast TVF 
based models 

Random 
Forest 

N_Estimators: 200, Max-Depth:15 

XGBoost Learn rate:0.07, Max-Depth:4, N_Estimators: 
100 

Bi-RNN Layers: 2, Number of Neurons: 130, Training 
Algorithm: Adam, Dropout: 0; Learning Rate: 
0.0141, Epochs: 44, Batch Size: 64 

MLP Training Algorithm: Levenberg Marquadt, 
Layers: 1, Number of Neuron: 4  
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activation function is employed in this study. For any variable s, it is 
defined as: 

f (s) =
2

(1 + e− 2s)
− 1 (8) 

All datasets were normalized and split into testing and training data 
categories in this investigation. Previous research (Kişi, 2007; 
Rezaeianzadeh et al., 2014) has demonstrated that the Lev
enberg–Marquardt method yielded acceptable results for the majority of 
ANN applications. Hence, it was chosen for this investigation. 

2.8. Random forest 

An ensemble of regression (or classification) tree models is used in 
the RF algorithm (Breiman, 1999). Specifically, random subsamples of 
the original data are used to construct a succession of individual trees. 

Each subsample yields a decision tree, which is then used to predict the 
target variable. Ultimately, an ensemble average of all different trees is 
calculated (Merufinia et al., 2023). The procedure executes random 
binary trees that utilize a subset of the data over the bootstrapping 
method. A random selection of the training data is chosen and used to 
generate the model. The data that are not included are referred to as "out 
of bag" (OOB) (Naghibi et al., 2017). Each tree in the RF algorithm 
generates a prediction result. The final prediction value is determined by 
averaging the results from all individual trees. The prediction error is 
given by (Genuer et al., 2010): 

MSEOOB =

∑ntree

i=1

(
zi − ẑOOB

i

)2

ntree
(9)  

where MSEOOB is the mean squared error of the OOB data predictions, 

Fig. 6. Modeling flowchart.  

Table 4 
Modeling results for Redcliffe station (the best model is highlighted in bold blue).  

Model Data R RMSE MAPE NSE IA U95% 

TVF-BiRNN Train  0.9776  2.4700  6.3620  0.9435  0.9854  6.4702 
Test  0.9281  3.8793  9.2010  0.8588  0.9621  10.7304 

TVF-MLP Train  0.9591  2.9520  7.4098  0.9191  0.9783  8.1719 
Test  0.9120  4.5957  12.1399  0.8018  0.9442  12.2654 

TVF-RF Train  0.9915  1.4048  3.4193  0.9817  0.9952  3.8961 
Test  0.8908  4.7927  11.7583  0.7845  0.9365  13.1700 

TVF-XGBoost Train  0.9967  0.8586  1.7748  0.9932  0.9983  2.3770 
Test  0.9055  4.5654  11.5553  0.8044  0.9437  12.4234 

BiRNN Train  0.9594  3.1649  7.9804  0.9072  0.9728  8.6916 
Test  0.8458  5.5086  12.8283  0.7153  0.9109  15.2910 

MLP Train  0.9057  4.4078  10.9044  0.8196  0.9490  12.2157 
Test  0.8342  5.7504  14.0130  0.6897  0.9053  15.8916 

RF Train  0.9439  3.4658  8.7338  0.8887  0.9684  9.6125 
Test  0.8300  5.8277  14.3701  0.6813  0.9029  16.0976 

XGBoost Train  0.9425  3.5158  8.7398  0.8855  0.9676  9.7307 
Test  0.8303  5.7806  13.7432  0.6864  0.9042  16.0208  
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ntree denotes the number of trees, and zi and ̂zOOB
i are the mean of all OOB 

predictions and the actual OOB value, respectively. The primary benefits 
of the random forest include: (1) RF can assess continuous and cate
gorical variables with missing values for the original data. It is resilient 
to noise, and hence preprocessing of the data is unnecessary. (2) RF 
reduces computing time for training operations since each tree may be 
constructed in parallel, and pruning is not required. (3) For model 
performance, RF always converges. Thus, overfitting is never an issue, 
and errors are unbiased estimates of the unused bootstrap subset 
(Breiman, 1999). RF needs tuning of two parameters: the number of 
trees (ntree) and the maximum depth of the trees (max_depth) (Genuer 
et al., 2010). The structure of the RF model is depicted in Fig. 2. 

2.9. Extreme gradient boosting (XGBoost) 

XGBoost (Chen and Guestrin, 2016) is one of the emerging ensemble 
machine learning approaches. It is an improved version of the gradient 
boosting decision obtained by boosting the gradient boosting decision 
tree (GBDT). The most important advantages are its flexibility, effi
ciency, and accuracy in solving non-linear regression and classification 
problems. This method is less exposed to overfitting due to the appli
cation of a regulator in the loss function (Bhagat et al., 2020). The main 
strategy in this method is to use all the samples in the training phase so 
that the weight changes of each sample are applied at each stage of 
training (Sharafati et al., 2020). Specifically, the error of the previous 

Fig. 7. Scatter plots of weekly ETo simulated by single and TVF-EMD-based models for Redcliffe station.  
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round is fitted by considering the criterion of a small threshold error 
value or a predetermined number of iterations for each stage of training. 
Afterward, the final prediction is obtained by using the weighted 
average of the prediction results (Jamei et al., 2022c). For this purpose, 
if D =

{(
xi, yi

) }

i=1:N is being the training sample including n samples 
and m features, the prediction after the tth iteration can be defined as 
(Singh et al., 2022): 

f t(x) = f t− 1(x)+ ft(x) =
∑K

k=1
fk, fk ∈ F (10)  

where x is a multi-dimensional vector, ft(x) denotes the tth increment, F 
is the regression trees space, k is the base model related to the additional 
model, and K denotes the tree number implemented to ensemble out
comes. A heuristic approach is always used in the non-deterministic 
polynomial process of model learning to identify the best answer. The 
objection function of XGBoost composed of the traditional loss function 
(L) and regularization function (Ψ) can be defined as (Li et al., 2019): 

Objective =
∑m

i=1
L(yi, ŷi)+

∑t

k=1
Ψ(gk) (11)  

Ψ(f ) = γT +
1
2

λ ‖ ψ‖2 (12)  

where m denotes the total data; i is the sample number of datasets; m 
denotes the overall volume of data fed into the kth tree; and yi and ŷi 
denote the observed and forecasted values, respectively. In Eq. (12) for 
the function of Ψ(f), T represents the number of leaf nodes; γ is the 
minimum loss to split the leaf nodes, ψ represents the fraction of leaf 
nodes, and λ is the tuning parameter (Li et al., 2019). The structure of 
XGBoost is depicted in Fig. 2. 

2.10. Model development 

This research focused on developing a new expert framework 
comprised of an advanced preprocessing stage coupled with the Bi-RNN 
deep learning scheme to forecast weekly evapotranspiration for Red
cliffe and Gold Coast in Australia over a period of ten years (from 
January 2012 to December 2021). The Boruta-extra tree combined with 
the TVF-EMD decomposition technique determines the significant 
predator’s lags (antecedent information) and decomposes the non- 
stationary signals into sub-sequences of intrinsic mode functions 

Fig. 8. Swarm plots of weekly ETo – Comparison of the measured data and simulations from eight different models for Redcliffe station.  

Table 5 
Modeling results for Gold Coast station.  

Model Data R RMSE MAPE NSE IA U95% 

TVF-BiRNN Train  0.8978  4.0361  11.0330  0.7912  0.9357  11.0438 
Test  0.8717  4.1169  11.5408  0.7580  0.9243  11.4256 

TVF-MLP Train  0.9054  3.7571  10.5862  0.8186  0.9466  10.4125 
Test  0.8645  4.3557  12.3673  0.7291  0.9201  11.8898 

TVF-RF Train  0.9851  1.6065  4.3743  0.9669  0.9910  4.4563 
Test  0.8594  4.4085  12.6664  0.7225  0.9116  12.0863 

TVF-XGBoost Train  0.9601  2.4861  6.7604  0.9208  0.9784  6.8939 
Test  0.8565  4.3209  11.8024  0.7334  0.9187  11.9924 

BiRNN Train  0.8535  4.7289  12.5443  0.7134  0.9107  12.9476 
Test  0.7951  5.1113  13.6822  0.6270  0.8847  14.1815 

MLP Train  0.8355  4.8911  13.8681  0.6925  0.8961  13.5559 
Test  0.7930  5.3358  14.8995  0.5935  0.8778  14.5446 

RF Train  0.8588  4.5386  12.5865  0.7360  0.9160  12.5892 
Test  0.7699  5.4686  14.8003  0.5730  0.8659  15.0623 

XGBoost Train  0.9663  2.5243  6.5829  0.9183  0.9761  6.9047 
Test  0.7620  5.4263  14.3437  0.5796  0.8592  15.0621  
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(IMFs). The predictor signals are Tmax (Cº), Tmin (Cº), RH (%), wind 
speed (m/s), and solar radiation (MJ/m2). In addition, XGBoost, RF, and 
MLP are employed to validate the main model in both hybrid and 
standalone frameworks. TVF-BiRNN, TVF-MLP, TVF-RF, and TVF- 
XGBoost, along with their standalone counterparts, are applied to 
assess the potential of forecasting ETo at the two stations. The TVF-EMD 
decomposition technique and MLP are performed in MATLAB R2019b 
environment, whereas the Boruta-extra tree, BiRNN, XGBoost, and RF 
are executed based on Scikit-learn, Tensorflow, and XGBoost libraries in 
the Python platform. The modeling steps are detailed as follows: 

Step 1: determination of significant lag time of predictors. 
In the model development, the significant time-lags associated with 

the predictors (i.e., Tmax, Tmin, RH, wind speed, and solar radiation) 
need to be determined. In this regard, the correlation between the 
antecedent time-lagged predictors and ETo is computed for the first five 
lags using the cross-correlation function as depicted in Fig. 3. As shown 
in Fig. 3, the most influential antecedent components are the first two 
time lags (Lags 1 and 2). 

Step 2: decomposition of the predictor’s signal by applying TVF- 
EMD. 

The performance of the multi-predictor time series-based models is 
totally dependent on the information extracted from the signals. Thus, 
data preprocessing is another stage that is extremely significant in 
enhancing the model’s accuracy. Since the predictor signals are non- 

Fig. 9. Scatter plots of weekly ETo simulated by single and TVF-EMD based models for Gold Coast station.  
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stationary and highly noisy, feeding the ML model using them without 
decomposition will yield a loss of accuracy and efficiency. TVD-EMD is 
one of the most efficient advanced extensions of the EMD algorithm. A 
time-varying filter decomposition technique inside the sifting procedure 
solves the defect of mode mixing in the classical EMD (Li et al., 2017). 
Therefore, it is resistant to noise interference, has higher stability even 
when sampling rates are low, and can increase frequency separation 
performance (Zhou et al., 2021). In this study, the TVF-EMD decom
position was carried out to decompose the IMFs and a residual compo
nent in an individual fashion for each forecasting horizon and sum up all 
the forecasting results for the two stations. The trial and error procedure 
was employed to gain the optimal setting of TVD-EMD and the results for 
Redcliffe and Gold Coast stations are listed in Table 2. It should be noted 
that the number of IMFs in each of the predictors varies between 10 and 
15 in order to achieve the best accuracy. Thus, the total number of 
sub-sequences attained using the TVD-EMD for Redcliffe and Gold Coast 
stations are 108 and 102, respectively. 

Step 3: significant sub-sequences filtering and feeding 
preparation. 

The selection of features is a crucial stage for the ML-based models 
due to their capabilities in reducing the computational complexity and 
input dimensionality and improving accuracy (Bennasar et al., 2015). 
For these reasons, the Boruta extra tree feature selection was adopted to 
filter the redundant sub-sequences based on the max shadow bench
mark. Fig. 4 illustrates the outcomes of the filtering procedure for 
Redcliffe and Gold Coast stations. In the box plot, the green color rep
resents the components passed through the feature selection criteria. It is 
clear that Boruta-extra-tree efficiently removed 73% and 88% of the 
total sub-sequences pool and reduced the computational costs. The next 
step is feeding the machine learning models. In general, there is no 
specific standard for dividing all available datasets into training and 
testing subsets. In hydrological applications, 60–80% of the data are 
generally allocated for training and the remaining 20–40% of the data 
for testing (Jamei et al., 2022a). In the current research, to develop the 
AI-based models for ETo forecasting, 70% and 30% of the entire dataset 
are respectively used for training and testing phases. Essentially, the 
difference in the input data scale leads variables with a greater size to 
inhibit the influence of the data with a smaller scale. To overcome this 
problem, normalization of the data between 0 and 1 is performed for the 
training period (Jamei et al., 2022b). One of the goals of this research is 
to express the robustness of the hybrid models compared to the 

corresponding individual models in ETo forecasting. For this purpose, 
single ML models (i.e., BiRNN, MLP, RF, and XGBoost) without 
decomposition preprocessing are also employed to forecast ETo for both 
stations.. 

Step 4: Optimal tuning of the hyperparameters of machine 
learning approaches. 

Even with the best approaches for non-linear modeling situations, 
promising outcomes may not be attained if the hyperparameters are not 
effectively set. Choosing these factors optimally is crucial. Recently, 
trial-and-error (Rehamnia et al., 2021), grid search (Shahsavar et al., 
2021), random search (Seyedzadeh et al., 2019), and Bayesian ap
proaches (Zhang et al., 2020) have been employed to accomplish this. In 
this research, four machine learning approaches (i.e., BiRNN, MLP, RF, 
and XGBoost) are used in both hybrid and standalone frameworks, 
which are tuned using a grid search strategy. The BiRNN model, as the 
main ML approach, has five important regularization factors: the num
ber of hidden layers, the number of neurons, the learning rate, the 
Epochs number, and the training algorithm. For the MLP model, the 
number of hidden layers, number of neurons, and training algorithm are 
the crucial factors. RF and XGBoost, as the tree-based ML approaches, 
are strongly influenced by the N_Estimatiors and Max-Depth parameters 
(Singh et al., 2022). In order to optimize the BiRNN model, it has defined 
a space interval for each significant hyperparameter (i.e., number of 
neurons, learning rate, number of neurons, and epoch number) to gain 
the best accuracy to forecast the ET0 weekly. As can be seen, the optimal 
values of learning rate, neuron numbers, epoch values, and number of 
layers fall into the intervals of (0.000101–0.0141), (110− 200), 
(44− 70), and (fixed two layers), respectively. Table 3 summarizes the 
optimal settings of the ML approaches implemented for forecasting 
weekly ETo. The modeling flowchart is depicted in Fig. 6. 

2.11. Evaluation metrics 

The performances of the developed machine learning models for 
forecasting weekly ETo were evaluated by six statistical indicators, 
including RMSE (root mean square error), MAPE (mean absolute percent 
error), NSE (Nash-Sutcliffe efficiency), R (coefficient of correlation), IA 
(index of agreement), and U95% (uncertainty coefficient with 95% con
fidence level). Mathematically, RMSE (Ebtehaj et al., 2021), MAPE 
(Singh et al., 2022), NSE (Nash and Sutcliffe, 1970), R (Malik et al., 
2021; Moriasi et al., 2015), IA (Willmott, 1982), and U95% (Patino and 

Fig. 10. Swarm plots of weekly ETo – Comparison of the measured data and simulations from eight different models for Gold Coast station.  
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Ferreira, 2015) are respectively expressed as: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
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∑N

i=1
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o

)
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U95% = 1.96
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
Error Standard deviation2 + RMSE2

√
(18)  

where, ETmeas,i
o and ETforc,i

o are the measured and forecasted weekly ETo 

values; ETmeas
o , and ETforc

o are the averages of the measured and fore
casted weekly ETo values; and N is the total number of observations. 

3. Results and discussion 

The proposed hybrid TVF-BiRNN model was designed to forecast 
weekly ETo for Redcliffe and Gold Coast stations in Queensland, 
Australia. The performance of the TVF-BiRNN was compared against 
those of TVF-MLP, TVF-RF, TVF-XGBoost, BiRNN, MLP, RF, and 
XGBoost models based on the metrics of R, RMSE, MAPE, NSE, IA, and 
U95% during the training and testing periods. 

Table 4 revealed that the proposed hybrid TVF-BiRNN model 
attained better accuracy in the forecast of weekly ETo for Redcliffe sta
tion (R = 0.9281, RMSE = 3.8793, MAPE = 9.2010, NSE = 0.8588, IA =

0.9621, U95% = 10.7304), followed by TVF-MLP [R = 0.9120, RMSE 
= 4.5957, MAPE = 12.1399, NSE = 0.8018, IA = 0.9442, U95% 
= 12.2654], TVF-XGBoost [R = 0.9055, RMSE = 4.5654, MAPE 
= 11.5553, NSE = 0.8044, IA = 0.9437, U95% = 12.4234], and TVF-RF 
[R = 0.8908, RMSE = 4.7927, MAPE = 11.7583, NSE = 0.7845, IA 

Fig. 11. Uncertainty variations of different models for Redcliffe and Gold Coast stations.  
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= 0.9365, U95% = 13.1700]. The performances of the standalone models 
(i.e., BiRNN, MLP, RF, and XGBoost) are lower than those of the TVF- 
BiRNN model (Table 4). 

Fig. 7. shows the scatter (LHS) and violin (RHS) plots of the weekly 
ETo simulated by the TVF-BiRNN, TVF-MLP, TVF-RF, TVF-XGBoost, 
BiRNN, MLP, RF, and XGBoost models for Redcliffe station. The results 

confirm that the TVF-BiRNN model (R = 0.9281 and RMSE = 3.8793) 
outperformed BiRNN (R = 0.8458; RMSE = 5.5086), as well as TVF-MLP 
and MLP; TVF-XGBoost and XGBoost, and TVF-RF and RF. The distri
butions of the violin plots also confirm the superiority of the TVF-BiRNN 
model over other benchmark comparing models. Overall, the TVF- 
BiRNN model is better than TVF-MLP, TVF-RF, TVF-XGBoost, BiRNN, 

Fig. 12. Rain cloud graphs of relative deviations for Redcliffe and Gold Coast stations.  

Fig. 13. Taylor diagrams for Redcliffe and Gold Coast stations.  

M. Karbasi et al.                                                                                                                                                                                                                                



Agricultural Water Management 290 (2023) 108604

14

MLP, RF, and XGBoost. 
Fig. 8 shows the swarm plot of the measured weekly ETo and those 

simulated by TVF-BiRNN, TVF-MLP, TVF-RF, TVF-XGBoost, BiRNN, 
MLP, RF, and XGBoost for Redcliffe station. The proposed TVF-BiRNN 
model exhibited a swarm pattern very close to that of the measured 
data, followed by TVF-MLP, TVF-XGBoost, and TVF-RF. In contrast, the 
swarm plots from the standalone BiRNN, MLP, RF, and XGBoost indicate 
relatively poor performances in the forecast of weekly ETo for this 
station. 

Table 5 shows the modeling results for the Gold Coast station. The 
proposed hybrid TVF-BiRNN model again outperformed all other models 
in the forecast of weekly ETo [R = 0.8717, RMSE = 4.1169, MAPE 
= 11.5408, NSE = 0.7580, IA = 0.9243, U95% = 11.4256]. The perfor
mance ranking of other models follows TVF-MLP, TVF-RF, and TVF- 
XGBoost. The performances of the BiRNN, MLP, RF, and XGBoost 
models are poor for the Gold Coast station. The modeling results again 
demonstrated the superior performance of the TVF-BiRNN model in the 
ETo forecasting. 

Fig. 9 displays the scatter (LHS) and violin (RHS) plots of the weekly 
ETo simulated by the TVF-BiRNN, TVF-MLP, TVF-RF, TVF-XGBoost, 
BiRNN, MLP, RF, XGBoost models for Gold Coast station. The TVF- 
BiRNN model {R = 0.8717; RMSE = 4.1169} acquired a better degree 
of accuracy in terms of the violin distribution than BiRNN {R = 0.7951; 
RMSE = 5.1113}, followed by TVF-MLP, TVF-XGBoost, TVF-RF MLP, 
RF, and XGBoost. 

Fig. 10 shows the swarm plot of the measured weekly ETo and those 
simulated by TVF-BiRNN, TVF-MLP, TVF-RF, TVF-XGBoost, BiRNN, 
MLP, RF, and XGBoost. The TVF-BiRNN model displays a swarm dis
tribution similar to that of the measured data, followed by TVF-MLP. 
The TVF-XGBoost, TVF-RF, and all standalone models (i.e., BiRNN, 
MLP, RF, and XGBoost) depict comparatively lower accuracy in the 
forecast of weekly ETo for Gold Coast station. 

Fig. 11 depicts the performances of the TVF-BiRNN, TVF-MLP, TVF- 
RF, TVF-XGBoost, BiRNN, MLP, RF, and XGBoost models in terms of 
uncertainty variation (U95%) in their forecasting of weekly ETo for both 
Redcliffe and Gold Coast stations. The lower the U95% value, the better 
the model’s performance. It can be observed from the magnitudes of 
U95% that TVF-BiRNN is the most accurate model for both stations 
(10.73 for Redcliffe station; 11.43 for Gold Coast station), followed by 
TVF-MLP, TVF-XGBoost, and TVF-RF. The hybrid models have fairly low 
values of U95%, compared to the standalone BiRNN, MLP, RF, and 
XGBoost models for both stations. Generally, the TVF-BiRNN model 
displays good efficiency with lower U95% values. 

The relative deviation is described in the form of rain cloud graphs 
(Fig. 12) for the TVF-BiRNN, TVF-MLP, TVF-RF, TVF-XGBoost, BiRNN, 
MLP, RF, and XGBoost models for both Redcliffe and Gold Coast stations. 
The TVF-BiRNN model apparently provided a better forecast with a 
range from − 100–100 for Redcliffe station, compared to TVF-RF and 
TVF-XGBoost [from − 250–100] and TVF-MLP [from − 350–100]. The 
MLP model had the worst performance according to the rain cloud 
distribution plots compared to other models. Similarly, the TVF-BiRNN 
with a range from − 440–100 is reasonably accurate against other 
benchmarking models for Gold Coast station. 

Fig. 13 shows the Taylor diagrams of the measured weekly ETo and 
simulations from TVF-BiRNN, TVF-MLP, TVF-RF, TVF-XGBoost, BiRNN, 
MLP, RF, and XGBoost for Redcliffe and Gold Coast stations. Taylor di
agram (Taylor, 2001) provides a more conclusive evaluation among the 
models with reference ETo based on standard deviation and correlation 
coefficient in a polar coordinate system. A model is precise by lying 
closely with the reference values. Fig. 13 verifies that TVF-BiRNN (green 
dot) is sitting close to the reference ETo within the arc of 0.90–0.95 for 
Redcliffe station, and 0.8–0.9 for Gold Coast station, followed by 
TVF-MLP, TVF-RF, and TVF-XGBoost. Thus, TVF-BiRNN is the most 
accurate model for weekly ETo forecasting for both stations. 

The framework designed in this work was innovative in terms of 
TVF-BiRNN to weekly ETo, but some limitations exist that can be 

considered to broaden the scope of future studies. The satellite-derived 
inputs can be another substitute instead of ground data to considerably 
enhance the TVF-BiRNN precision accuracy to forecast weekly ETo. 
Additionally, synoptic mode indices are greatly influenced the ETo and 
thus the utilization of southern oscillation index (SOI), sea surface 
temperatures (Nino3SST, Nino3.4SST, Nino4SST), pacific decadal 
oscillation (PDO), Indian Ocean dipole (IOD), El-Nino southern oscilla
tion Modoki index (EMI), southern annular mode (SAM) can augment 
the forecasting ability of TVF-BiRNN model (Nicholls, 2004). 

The black-box characteristics of the deep learning models have some 
limitations, which are difficult and challenging to understand and verify 
the complex relationship between the predictors and target for the 
learning process. Therefore, integration of deep learning with numerical 
weather prediction models can provide a new direction to overcome. 
Furthermore, the TVF-BiRNN model can be more diversified and 
improved by Bayesian Model Averaging (Sloughter et al., 2010) and 
ensemble techniques (Tiwari and Chatterjee, 2011) to handle 
uncertainties. 

The data decomposition of TVF in the construction of the TVF-BiRNN 
model is helpful to upsurge the accuracy of the BiRNN by simultaneously 
handling the non-stationary and non-linearity issues mode (Rehman and 
Mandic, 2010). The better forecasting of the TVF-BiRNN against other 
comparing models is undoubtedly attributable to data transformation in 
a deterministic way and decomposed into several signals, which results 
in a lower error. The results affirmed that the TVF-BiRNN models 
perform well in forecasting weekly ETo for both stations. 

Additionally, by integrating the TVF with the BiRNN model, further 
enhancement in model accuracy was accomplished with the help of the 
Boruta-Extra Tree feature selection method to identify the highest- 
ranking input signals. The deep learning models are fully dependent 
on historical data, which can considerably impact the learning process. 
The outcomes of this research work ensure that an appropriate feature 
selection is compulsory (Badr and Fahmy, 2004; Singh et al., 2012; 
Sweetlin et al., 2017). 

4. Conclusion 

This research developed a new model, TVF-BiRNN, that combined 
the bidirectional recurrent neural network with TVF-EMD to forecast 
weekly ETo for Redcliffe and Gold Coast stations in Australia. Further, 
the Boruta-Extra Tree method was also introduced to determine and 
select the best IMF signals. The main scheme of this research entailed the 
utilization of the TVF-EMD algorithm to demarcate the input predictors 
into IMFs and residuals. The Boruta-Extra Tree method was employed to 
select the IMF features, improving the models’ accuracy. The selected 
IMFs were then used as inputs in BiRNN to develop the new TVF-BiRNN 
model. The MLP, RF, and XGBoost models were also adopted for com
parison purposes to construct the TVF-MLP, TVF-RF, and TVF-XGBoost 
models. Moreover, the standalone models were also benchmarked 
against those hybrid counterpart models. The performances of the 
models were evaluated by using a set of statistical metrics (including R, 
RMSE, MAPE, NSE, IA, and U95%), which demonstrated that TVF-BiRNN 
was the most precise model to forecast weekly ETo for both stations. 
Specifically, these metrics for TVF-BiRNN were: R = 0.9281, RMSE 
= 3.8793, MAPE = 9.2010, NSE = 0.8588, IA = 0.9621, U95% 
= 10.7304 for Redcliffe station; R = 0.8717, RMSE = 4.1169, MAPE 
= 11.5408, NSE = 0.7580, IA = 0.9243, U95% = 11.4256 for Gold Coast 
station. 

In addition to ETo forecasting, the TVF-BiRNN modeling approach 
can also potentially be applied to other problems in the areas of hy
drology, agriculture, climate change adaptation, and renewable and 
sustainable energy. The ETo forecasting indicates the evaporated and 
transpired amount of water and is a crucial parameter in hydrology and 
agriculture that serves as a reference to gauge the water requirements of 
crops and plants. This assists farmers in determining crop water re
quirements to improve irrigation scheduling and guaranteeing effective 
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water usage to handle overwatering or under-watering issues. Moreover, 
forecasting ETo is very useful for calculating the water demand in 
agriculture, urban water supply, and environmental conservation and 
helps in water resource management. This work will also help farmers 
determine crop planning and selection according to the specific region 
and season. 
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