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Local Moving Least Square - One-Dimensional IRBFN
Technique for Incompressible Viscous Flows
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Abstract: This paper presents a local moving least square - one-dimensional in-
tegrated radial basis function networks (LMLS-1D-IRBFN) method for solving in-
compressible viscous flow problems using stream function-vorticity formulation.
In this method, the partition of unity method is employed as aframework to incor-
porate the moving least square (MLS) and one-dimensional integrated radial basis
function networks (1D-IRBFN) techniques. The major advantages of the proposed
method include: (i) a banded sparse system matrix which helps reduce the com-
putational cost; (ii) the Kronecker-δ property of the constructed shape function
which helps impose the essential boundary condition in an exact manner; and (iii)
high accuracy and fast convergence rate owing to the use of integration instead of
conventional differentiation to construct the local RBF approximations. Several
examples including two-dimensional Poisson problems, lid-driven cavity flow and
flow past a circular cylinder are considered and the present results are compared
with the exact solutions and numerical results from other methods in the literature
to demonstrate the attractiveness of the proposed method.

Keywords: Incompressible viscous flow; Stream function-vorticity formulation;
Integrated radial basis functions; Moving least square; Partition of unity; Cartesian
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1 Introduction

Nowadays, numerical simulation has become an essential tool for the analysis of
practical problems of engineering and physical sciences. Finite element method
(FEM), finite difference method (FDM) and finite volume method (FVM) are meth-
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ods commonly employed to analyse those problems.In FEM, when solving struc-
tural problems with large deformation, element distortions happen, causing a de-
terioration of accuracy, thus requiring re-generation of the computational mesh to
maintain accuracy. The FEM, FDM and FVMhave difficulties in handling fluid-
flow problems with free surface and moving boundary conditions. In the past
decade, meshfree methods have become a very interesting research topics in com-
putational mechanics because they possess a number of attractive properties. One
of their most popular characteristics is that they require aset of nodes rather than a
topological mesh to discretise the computational domain, thus computational cost
associated with discretisation is highly reduced.

Two-dimensional (2D) incompressible Navier-Stokes flows have been extensively
studied to verify new numerical methods. The main issues fora successful numer-
ical solver for this kind of problems are the proper treatments of the nonlinear con-
vection term and incompressibility. For the first issue, thepresence of the convec-
tion term causes serious numerical difficulties in the form of oscillatory solutionsor
numerical divergencewhen Reynolds (Re) number or Peclet (Pe) number is high.
To deal with this, schemes related to upwinding have been developed to stabilize
the FDM, FEM, and FVM [1, 2, 3]. Brooks and Hughes [3] developed a Streamline
Upwind/Petrov-Galerkin (SUPG) method for convection-dominated flows, which
has the robustness of an upwind method and the accuracy associated with the
wiggle-free Galerkin solutions. In their method, an additional stability term was
added in the upwind direction and several different treatments of incompressibil-
ity are incorporated into the formulation. The upwind concept is also needed in
the meshfree methods in order to obtain a good accuracy for convection-dominated
flows. Lin and Atluri [4] proposed the meshless local Petrov-Galerkin (MLPG)
method with two upwinding schemes for solving convection-diffusion problems.
They skewed the weight function opposite to the streamline direction in the first
scheme and shifted the local subdomain opposite to the streamline direction in the
second scheme. Their numerical results indicated that the MLPG with the second
scheme yielded better solutions than SUPG. This method was extended to solve the
incompressible Navier-Stokes equations in [5].

For the second issue, i.e. treatment for incompressibility, incompressible flows can
be solved through the stream function and vorticity formulation. This approach
can satisfy the incompressibility condition automatically, and the pressure term is
eliminated. However, this formulation experiences other type of difficulty aris-
ing from the computation of the vorticity boundary condition on the wall, espe-
cially the curved ones. For three-dimensional problems, the incompressible Navier-
Stokes equations are usually based on primitive variables (pressure and velocity)
as the stream function and vorticity formulation are not applicable. In order to
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impose the incompressibility constraint, mixed formulations are considered by in-
troducing another variable, the Lagrange multiplier. There are so-called inf-sup
(or Ladyzenskaya-Babuŝka-Brezzi) stability conditions for this kind of formula-
tions [6]. If these conditions are not satisfied, spurious pressure solutions may be
obtained.

In 1990, Kansa proposed a collocation scheme based on multiquadric (MQ) radial
basis functions for the numerical solution of partial differential equations (PDEs) [7].
Their numerical results showed that MQ scheme yielded an excellent interpolation
and partial derivative estimates for a variety of two-dimensional functions over both
gridded and scattered data. Since this original work, a number of meshfree methods
have been developed and used to solve fluid-flow problems. Park and Youn [8] pro-
posed the first-order least-squares method (LSMFM) to solveLaplace equations.
Unlike the Galerkin method, the least-square formulation did not make use of the
divergence theorem to convert the domain integral into a boundary integral. There-
fore, the solution accuracy is less sensitive to the integration accuracy. However,
the first-order least squares formulation requires more unknowns than the Galerkin
formulation since the dual variables are employed as unknowns in addition to the
primary variables, thereby increasing the computational cost. Zhang et al. [9] em-
ployed the LSMFM based on the first-order velocity-pressure-vorticity formulation
to investigate the 2D steady incompressible viscous flow problems. Their numeri-
cal results showed that the least-squares method based on the minimization of the
squared residuals can reduce oscillations and instabilityof the solutions in com-
parison with the behaviour of methods based on Galerkin formulation. In their
approach, the penalty method was used to enforce the essential boundary condi-
tions. It is well-known that the larger the penalty parameter, the more accurate the
numerical solution will be, but large penalty parameters can affect the conditioning
of the system matrix adversely [10]. Arzani and Afshar [11] developed discrete
least-squares meshless (DLSM) method for the solution of convection-dominated
problems. A fractional step method in conjunction with DLSMmethod was pro-
posed to solve the steady-state incompressible Navier-Stokes equations in primitive
form using large time steps without having to satisfy the inf-sup condition [12].

In contrast to the advantages of no mesh generation, most of the meshfree meth-
ods have difficulty in simulating large scale problems, because they produce very
dense system matrices. Lee et al. [13] proposed the local multiquadric (LMQ) and
the local inverse multiquadric (LIMQ) approximations for solving partial differ-
ential equations (PDEs). Their constructed shape functions strictly satisfied the
Kronecker-δ condition which allows an imposition of the essential boundary con-
dition in the same manner as in the standard FEM. Their numerical results showed
that the LMQ and LIMQ often outperform their global counterparts, particularly
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with regard to viability and stability. Šarler and Vertnik [14] presented an explicit
local radial basis function (RBF) collocation method for diffusion problems. The
method appeared efficient, because it does not require a solution of a large sys-
tem of equations like the original RBF collocation method [7]. Babûska and Me-
lenk [15] presented the partition of unity method (PUM) withattractive features.
In the PUM, if analytic knowledge about the local behaviour of the problem solu-
tion is known, local approximation can be done with functions better suited than
polynomials as in the classical FEM. The PU framework also provides a power-
ful approach to model mechanical problems with discontinuities and singularities.
Krysl and Belytschko [16] proposed an approach to constructlinear approximation
basis functions for meshless method based on the concept of PU. In their work,
the Shepard basis [17] is used as a PU function. The PUM was also employed
by Chen et al. [18] to combine the reproducing kernel and RBF approximations in
an approach that enjoys the exponential convergence of RBF and yields a banded
and better-conditioned discrete system matrix. Le et al. [19] proposed a locally
supported moving IRBFN-based meshless method for solving various problems in-
cluding heat transfer, elasticity of both compressible andincompressible materials,
and linear static crack problems.

In the past, lid-driven cavity flow and flow past a circular cylinder have been studied
as benchmark problems by many researchers to verify their new numerical meth-
ods. In the first problem, the presence of singularities at two of the corners of the
cavity, where the velocity is discontinuous, makes it difficult to predict the numer-
ical results accurately. Ghia et al. [1] presented a FDM witha coupled strongly
implicit multigrid method to obtain high-Refine-mesh flow solutions. Botella and
Peyret [20] introduced a third-order time-accurate Chebyshev projection method
with an analytical treatment of the singularities for the lid-driven cavity flow. Their
numerical results are widely considered as benchmark solutions in the literature.
In the second problem, it is well-known that the flow has a stable pattern with a
fixed pair of symmetric vortices behind the cylinder atReup to 40. Ding et al. [21]
presented a hybrid approach, which combines the conventional FDM and the mesh-
free least square-based finite difference (MLSFD) method for simulating the 2D
steady and unsteady incompressible flows. In their works, the MLSFD method was
adopted to deal with the spatial discretisation in the region with complex geome-
try and the conventional FDM was applied in the rest of the flowdomain to take
advantage of its high computational efficiency. Kim et al. [22] developed a mesh-
free point collocation method for the stream function-vorticity formulation of 2D
incompressible Navier-Stokes equations. The MLS approximation was employed
to construct shape functions in conjunction with a point collocation technique.

A one-dimensional integrated radial basis function networks (1D-IRBFN) colloca-
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tion method for the solution of second- and fourth-order PDEs was presented by
Mai-Duy and Tanner [23]. In this method, Cartesian grids were used to discretise
both rectangular and non-rectangular problem domains. Thecomputational cost
associated with the Cartesian grid generation is negligible in comparison with that
required for the body-fitted mesh. Along a grid line, IRBFNs are employed to
represent the field variable and its relevant derivatives. Such networks are called
1D-IRBFNs. Through integration constants, one can impose derivative boundary
conditions and the governing equations at the two end pointsof a grid line in an
exact manner. The 1D-IRBFN method is much more efficient thanthe original
IRBFN method reported in [24]. Ngo-Cong et al. [25] extendedthis method to
investigate free vibration of composite laminated plates based on first-order shear
deformation theory. The present work is concerned with the development of a new
numerical method to handle 2D incompressible viscous flows at a highRenumber
and in large scale problems. The proposed method is based on the PU concept
acting as a framework to incorporate MLS and 1D-IRBFN techniques, and from
here on is named LMLS-1D-IRBFN, which is a local MLS-1D-IRBFN method.
The approximation is locally supported, which leads to sparse system matrices and
requires less computational effort than the case of using 1D-IRBFN method alone,
while the order of accuracy remains high as in the case of 1D-IRBFN. Unlike con-
ventional MLS-based methods, the LMLS-1D-IRBFN shape functions satisfy the
Kronecker-δ property and thus the essential boundary conditions can be imposed
in an exact manner.

The paper is organised as follows. Section 2 describes the notations. Section
3 briefly reproduces the MLS approximation technique. The LMLS-1D-IRBFN
method is presented in Section 4. The governing equations for incompressible
viscous flows are given in Section 5. The LMLS-1D-IRBFN discretisation of the
governing equations is described in Section 6. Several numerical examples are in-
vestigated using the proposed method in Section 7. Section 8concludes the paper.

2 Notations

In the remainder of the article, we use

• the notation[̄ ] for a vector/matrix[ ] that is associated with a segment of a
grid line;

• the notation[̂ ] for a vector/matrix[ ] that is associated with a grid line;

• the notation[̃ ] for a vector/matrix[ ] that is associated with the whole set of
grid lines;
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• the notation[ ](η ,θ ) to denote selected rowsη and columnsθ of the matrix
[ ];

• the notation[ ](η) to denote selected componentsη of the vector[ ];

• the notation[ ](:,θ ) to denote all rows and selected columnsθ of the matrix
[ ]; and

• the notation[ ](η ,:) to denote all columns and selected rowsη of the matrix
[ ].

3 Moving least square approximation

The moving least square procedure [26] is briefly described in this section. The
domain of interest is discretised using a Cartesian grid as shown in Fig 1. On an
x-grid line, e.g. [l ], consider a nodal pointxi with its associated support domain,
e.g.[xi−1,xi+1] for the case of 3-node local support. Letuh(x) be the approximation
of the field variableu along this support domain and given by

uh(x) =
m

∑
j=0

p j(x)a j(x) = p̄T(x)ā(x), (1)

wherem is the number of terms of monomials, ¯a(x) a vector of coefficients and
p̄T(x) a complete polynomial basis, given by

ā(x) =
(

a0(x) a1(x) ... am(x)
)T

, (2)

p̄(x) =
(

p0(x) p1(x) ... pm(x)
)T

=
(

1 x x2 ... xm
)T

. (3)

The expression for ¯a(x) can be obtained at each pointx by minimizing the following
weighted residual

J =
n

∑
I=1

W(x−xI )
[

p̄T(xI )ā(x)−u(I)
]2
, (4)

whereu(I) is the nodal value of the field variableu at x = xI , andn the number
of nodes in the support domain ofx where the weight functionW(x− xI ) 6= 0. In
the present paper, the cubic spline weight function is used to construct MLS shape
functions.

W(d) =





2
3 −4d2+4d3, d ≤ 1

2
4
3 −4d+4d2− 4

3d, 1
2 < d ≤ 1

0, d > 1
(5)
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whered = |x−xI |/dw anddw defines the size of the support domain. The mini-
mization of the weighted residualJ results in the following linear equation system

A(x)ā(x) = B(x)ū, (6)

or

ā(x) = A(x)−1B(x)ū, (7)

where

ū=
(

u(1) u(2) ... u(n)
)T

, (8)

A(x) =
n

∑
I=1

W(x−xI)p̄(xI ) p̄T(xI ), (9)

B(x) =
[

B1 B2 ... Bn
]
, (10)

in which

BI =W(x−xI)p̄(xI ). (11)

Substituting (7) into (1),uh can be expressed as

uh(x) = φ̄T(x)ū, (12)

whereφ̄ is the vector of MLS shape functions and given by

φ̄ (x) =
(

p̄TA−1B1 p̄TA−1B2 ... p̄TA−1Bn
)T

. (13)

It should be noted that the MLS shape functions do not satisfythe Kronecker-δ
criterion, but possess a so-called partition of unity properties as follows.

n

∑
I=1

φ̄I (x) = 1. (14)

A new shape function possessing the Kronecker-δ function properties is created
through a technique as described in the following section.

4 Moving least square - one dimensional integrated radial basis function net-
works technique

A schematic outline of the LMLS-1D-IRBFN method is depictedin Figure 2. The
proposed method with 3-node support domains (n= 3) and 5-node local 1D-IRBF
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networks (ns = 5) is presented here. On anx-grid line [l ], a global interpolant for
the field variable at a grid pointxi is sought in the form

u(xi) =
n

∑
j=1

φ̄ j(xi)u
[ j](xi), (15)

where
{

φ̄ j
}n

j=1 is a set of the partition of unity functions constructed using MLS

approximants,u[ j](xi) is the nodal function value obtained from a local interpolant
represented by a 1D-IRBF network[ j], n is the number of nodes in the support do-
main ofxi . In (15), MLS approximants are presently based on linear polynomials,
which are defined in terms of 1 andx. Relevant derivatives ofu atxi can be obtained
by differentiating (15)

∂u(xi)

∂x
=

n

∑
j=1

(
∂ φ̄ j(xi)

∂x
u[ j](xi)+ φ̄ j(xi)

∂u[ j](xi)

∂x

)
, (16)

∂ 2u(xi)

∂x2 =
n

∑
j=1

(
∂ 2φ̄ j(xi)

∂x2 u[ j](xi)+2
∂ φ̄ j(xi)

∂x
∂u[ j](xi)

∂x
+ φ̄ j(xi)

∂ 2u[ j](xi)

∂x2

)
, (17)

where the valuesu[ j](xi),∂u[ j](xi)/∂x and∂ 2u[ j](xi)/∂x2 are calculated from 1D-
IRBFN networks withns nodes.

4.1 One-dimensional IRBFN

Consider a segment [j] with ns nodes on anx-grid line [l ] as shown in Figure 2. The
variation of the nodal functionu[ j] along this segment is sought in the IRBF form.
The second-order derivative ofu[ j] is decomposed into RBFs; the RBF network is
then integrated once and twice to obtain the expressions forthe first-order derivative
of u[ j] and the functionu[ j] itself as follows.

∂ 2u[ j](x)
∂x2 =

ns

∑
k=1

w(k)G(k)(x) =
ns

∑
k=1

w(k)H(k)
[2] (x), (18)

∂u[ j](x)
∂x

=
ns

∑
k=1

w(k)H(k)
[1] (x)+c1, (19)

u[ j](x) =
ns

∑
k=1

w(k)H(k)
[0] (x)+c1x+c2, (20)

where
{

w(k)
}ns

k=1 are RBF weights to be determined;
{

G(k)(x)
}ns

k=1 =
{

H(k)
[2] (x)

}ns

k=1

known RBFs;H(k)
[1] (x) =

∫
H(k)
[2] (x)dx; H(k)

[0] (x) =
∫

H(k)
[1] (x)dx; andc1 andc2 integra-

tion constants which are also unknown. An example of RBF, used in this work, is
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the multiquadricsG(k)(x) =
√

(x−x(k))2+a(k)2, a(k) - the RBF width determined
asa(k) = βd(k), β a positive factor, andd(k) the distance from thekth center to its
nearest neighbour.

It is more convenient to work in the physical space than in thenetwork-weight
space. The RBF coefficients including two integration constants can be transformed
into the physically meaningful nodal variable values through the following relation

ū[ j] = H̄
(

w̄
c̄

)
, (21)

whereH̄ is anns× (ns+2) matrix and given by

H =




H(1)
[0] (x1) H(2)

[0] (x1) ... H(ns)
[0] (x1) x1 1

H(1)
[0] (x2) H(2)

[0] (x2) ... H(ns)
[0] (x2) x2 1

... ... ... ... ... ...

H(1)
[0] (xns) H(2)

[0] (xns) ... H(ns)
[0] (xns) xns 1




; (22)

ū[ j] = (u(1),u(2), ...,u(ns))T ; w̄= (w(1),w(2), ...,w(ns))T andc̄= (c1,c2)
T . There are

two possible transformation cases.

For a segment[ j] with only interior points: The direct use of (21) leads to an
underdetermined system of equations

ū[ j] = H̄
(

w̄
c̄

)
= C̄

(
w̄
c̄

)
, (23)

or
(

w̄
c̄

)
= C̄−1ū[ j], (24)

whereC̄ = H̄ is the conversion matrix whose inverse can be found using thesingu-
lar value decomposition (SVD) technique.

For a segment[ j] with interior and boundary points:Owing to the presence ofc1

andc2, one can add an additional equation of the form

f = K
(

w̄
c̄

)
(25)

to equation system (21). In the case of Neumann boundary conditions, this subsys-
tem can be used to impose a derivative boundary value atx= xb

f =
∂u(xb)

∂x
, (26)

K =
[

H(1)
[1] (xb) H(2)

[1] (xb) ... H(ns)
[1] (xb) 1 0

]
. (27)
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The conversion system can be written as
(

ū[ j]

f

)
=

[
H̄
K

](
w̄
c̄

)
= C̄

(
w̄
c̄

)
, (28)

or
(

w̄
c̄

)
= C̄−1

(
ū[ j]

f

)
. (29)

It can be seen that (24) is a special case of (29), wheref is simply set to null.
By substituting Equation (29) into Equations (18)-(20), the second- and first-order
derivatives and the function of the variableu[ j] are expressed in terms of nodal
variable values as

∂ 2u[ j](x)
∂x2 =

(
H(1)
[2] (x),H

(2)
[2] (x), ...,H

(ns)
[2] (x),0,0

)
C̄−1

(
ū[ j]

f

)
, (30)

∂u[ j](x)
∂x

=
(

H(1)
[1] (x),H

(2)
[1] (x), ...,H

(ns)
[1] (x),1,0

)
C̄−1

(
ū[ j]

f

)
, (31)

u[ j](x) =
(

H(1)
[0] (x),H

(2)
[0] (x), ...,H

(ns)
[0] (x),x,1

)
C̄−1

(
ū[ j]

f

)
, (32)

or

∂ 2u[ j](x)
∂x2 = d̄T

2xū
[ j]+k2x(x), (33)

∂u[ j](x)
∂x

= d̄T
1xū

[ j]+k1x(x), (34)

u[ j](x) = d̄T
0xū

[ j]+k0x(x), (35)

wherek0x,k1x andk2x are scalars whose values depend onx and a boundary value
f ; andd̄0x, d̄1x andd̄2x are known vectors of lengthns.

By application of Equations (33) and (34) tons nodes on the segment [j], the
second- and first-order derivatives ofu[ j] at nodexi are determined as

∂ 2u[ j](xi)

∂x2 = D̄2x(idk,:)ū
[ j]+ k̄2x(idk), (36)

∂u[ j](xi)

∂x
= D̄1x(idk,:)ū

[ j]+ k̄1x(idk), (37)

u[ j](xi) = D̄0x(idk,:)ū
[ j]+ k̄0x(idk) = Ī (idk,:)ū

[ j], (38)

whereD̄1x andD̄2x are known matrices of dimensionns×ns; k̄1x andk̄2x are known
vectors of lengthns; andidk is the index number indicating the location of nodexi
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in the local network[ j]. It is noted thatD̄0x = Ī , whereĪ is an identity matrix of
dimensionns×ns andk̄0x = 0̄. Therefore, the 1D-IRBFN shape function possesses
the Kronecker-δ function properties.

4.2 Incorporation of MLS and 1D-IRBFN into the partition of unity framework

By substituting Equations (36)-(38) into Equations (15)-(17), the functionu(xi) and
its derivatives are expressed as

u(xi) =
n

∑
j=1

m̄[ j]
0xū[ j], (39)

∂u(xi)

∂x
=

n

∑
j=1

(
m̄[ j]

1xū[ j]+k[ j]1x

)
, (40)

∂ 2u(xi)

∂x2 =
n

∑
j=1

(
m̄[ j]

2xū[ j]+k[ j]2x

)
, (41)

where

m̄[ j]
0x = φ̄ j(xi)Ī (idk,:), (42)

m̄[ j]
1x =

∂ φ̄ j(xi)

∂x
Ī (idk,:)+ φ̄ j(xi)D̄1x(idk,:), (43)

m̄[ j]
2x =

∂ 2φ̄ j(xi)

∂x2 Ī (idk,:) +2
∂ φ̄ j(xi)

∂x
D̄1x(idk,:)+ φ̄ j(xi)D̄2x(idk,:), (44)

k[ j]1x = φ̄ j(xi)k̄1x(idk), (45)

k[ j]2x = 2
∂ φ̄ j(xi)

∂x
k̄1x(idk)+ φ̄ j(xi)k̄2x(idk). (46)

From Equations (14), (39) and (42), one can see that the LMLS-1D-IRBFN shape
function possesses the Kronecker-δ function properties.

Equations (40) and (41) can be expressed as

∂u(xi)

∂x
= m̄[i]

1xū
[i]+k[i]1x, (47)

∂ 2u(xi)

∂x2 = m̄[i]
2xū

[i]+k[i]2x, (48)

whereū[i] =
(
u(1),u(2), ...,u(nr )

)T
, nr the number of nodes in the network[i], k[i]1x and

k[i]2x are known scalars, and ¯m[i]
1x andm̄[i]

2x are known vectors of lengthnr , defined by

m̄[i]
1x(id j) = m̄[i]

1x(id j)+ m̄[ j]
1x, j = 1,2, ...,n (49)

m̄[i]
2x(id j) = m̄[i]

2x(id j)+ m̄[ j]
2x, j = 1,2, ...,n (50)
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in which id j is the index vector mapping the location of nodes of the localnetwork
[ j] to that in the LMLS-1D-IRBF network[i].

The values of first- and second-order derivatives ofu with respect tox at the nodal
points on the grid line[l ] are given by

∂ û
∂x

= M̂ [l ]
1xû

[l ]+ k̂[l ]1x, (51)

∂ 2û
∂x2 = M̂ [l ]

2xû
[l ]+ k̂[l ]2x, (52)

where

û=
(

u(1),u(2), ...,u(nl )
)T

, (53)

M̂ [l ]
1x(i,idi) = m̄[i]

1x, (54)

M̂ [l ]
2x(i,idi) = m̄[i]

2x, (55)

k̂[l ]1x(i) = k[i]1x, (56)

k̂[l ]2x(i) = k[i]2x, (57)

in which nl is the number of nodes on the grid line[l ], and idi the index vector
mapping the location of nodes of the local network[i] to that in the grid line[l ].

The values of first- and second-order derivatives ofu with respect tox at the nodal
points over the problem domain are given by

∂ ũ
∂x

= M̃1xũ+ k̃1x, (58)

∂ 2ũ
∂x2 = M̃2xũ+ k̃2x, (59)

where

ũ=
(

u(1),u(2), ...,u(Nip)
)T

, (60)

∂ ũ
∂x

=

(
∂u(1)

∂x
,
∂u(2)

∂x
, ...,

∂u(Nip)

∂x

)T

, (61)

∂ 2ũ
∂x2 =

(
∂ 2u(1)

∂x2 ,
∂ 2u(2)

∂x2 , ...,
∂ 2u(Nip)

∂x2

)T

, (62)

andM̃1x andM̃2x are known matrices of dimensionNip×Nip; k̃1x andk̃2x are known
vectors of lengthNip; and Nip is the total number of interior nodal points. The
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matricesM̃1x andM̃2x and the vectors̃k1x andk̃2x are formed as follows.

M̃1x(idl ,idl) = M̂ [l ]
1x, (63)

M̃2x(idl ,idl) = M̂ [l ]
2x, (64)

k̃1x(idl) = k̂[l ]1x, (65)

k̃2x(idl) = k̂[l ]2x, (66)

in which idl is the index vector mapping the location of nodes on the grid line [l ] to
that in the whole grid.

Similarly, the values of the second- and first-order derivatives ofu with respect to
y at the nodal points over the problem domain are given by

∂ ũ
∂y

= M̃1yũ+ k̃1y, (67)

∂ 2ũ
∂y2 = M̃2yũ+ k̃2y. (68)

5 Governing equations for two-dimensional incompressibleviscous flows

In this work we limit the analysis to two-dimensional problems andthe governing
equations for incompressible viscous flowscan therefore bewritten in terms of
stream functionψ and vorticityω as [27]

∂ 2ψ
∂x2 +

∂ 2ψ
∂y2 =−ω , (69)

1
Re

(
∂ 2ω
∂x2 +

∂ 2ω
∂y2

)
=

∂ω
∂ t

+

(
∂ψ
∂y

∂ω
∂x

−
∂ψ
∂x

∂ω
∂y

)
, (70)

whereRe is the Reynolds number,t the time, and(x,y)T the position vector. The
x andy components of the velocity vector can be defined in terms of the stream
function as

u=
∂ψ
∂y

, (71)

v=−
∂ψ
∂x

. (72)
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6 LMLS-1D-IRBFN discretisation of governing equations forincompressible
viscous flows

The domain of interest is discretised using uniform Cartesian grids. With the
backward Euler scheme for time discretisation, Equations (69) and (70) can be
expressed as

∂ 2ψ(n+1)

∂x2 +
∂ 2ψ(n+1)

∂y2 =−ω(n), (73)

∆t
Re

(
∂ 2ω(n+1)

∂x2 +
∂ 2ω(n+1)

∂y2

)
−ω(n+1) =−ω(n)+∆t

(
∂ψ(n)

∂y
∂ω(n)

∂x
−

∂ψ(n)

∂x
∂ω(n)

∂y

)
,

(74)

where the superscripts(n) and(n+1) denote the time levels and∆t the time dis-
cretisation step.

Making use of (58), (59), (67) and (68) and collocating the governing equations (73)
and (74) at the interior points result in

Ẽ1ψ̃(n+1) = RHS1, (75)

Ẽ2ω̃(n+1) = RHS2, (76)

where

Ẽ1 = M̃2x+ M̃2y, (77)

RHS1 =−ω(n)−
(
k̃2xψ + k̃2yψ

)
, (78)

Ẽ2 =
∆t
Re

(
M̃2x+ M̃2y− Ĩ

)
, (79)

RHS2 =−ω(n)− ∆t
Re

(
k̃2xω + k̃2yω

)

+∆t
[(

M̃1yψ̃(n)+ k̃(n)1yψ

)
.
(

M̃1xω̃(n)+ k̃(n)1xω

)
−
(

M̃1xψ̃(n)+ k̃(n)1xψ

)
.
(

M̃1yω̃(n)+ k̃(n)1yω

)] ,

(80)

in which k̃1xψ , k̃2xψ , k̃1yψ , k̃2yψ , k̃1xω , k̃2xω , k̃1yω andk̃2yω are known vectors of length
Nip.

The nonlinear system of equations (75) and (76) is solved using the pseudo-time
stepping procedure as follows:

• Step 1: Guess the initial solution of vorticityω .

• Step 2: Solve (75) forψ .
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• Step 3: Compute the vorticity boundary conditions and the convection terms
explicitly.

• Step 4: Solve (76) forω .

• Step 5: Check convergence criterion forω
√

Nip

∑
i=1

(
ω(t+1)

i −ω(t)
i

)2

√
Nip

∑
i=1

(
ω(t+1)

i

)2
< TOL, (81)

whereTOL is a given tolerance and presently set to be 10−12. If not con-
verged, return to step 2. Otherwise, stop.

7 Numerical results and discussion

Several examples are investigated here to study the performance of the present
method. The domains of interest are discretised using Cartesian grids. By using the
LMLS-1D-IRBFN method to discretise governing equations and the LU decompo-
sition technique to solve the resultant sparse system of simultaneous equations, the
computational cost and data storage requirements are reduced. For the purpose of
CPU times comparisons, all related computations are carried out on a single 2.4
GHzprocessor machine with 4GBRAM.

7.1 Example 1: Two-dimensional Poisson equation in a squaredomain

The present method is first verified through the solution of the following 2D Poisson
equation

∂ 2u
∂x2 +

∂ 2u
∂y2 = 0, (82)

defined on a square domain 0≤ x,y≤ 1 and subject to Dirichlet boundary condi-
tions. The problem has the following exact solution

uE =
1

sinh(π)
sin(πx)sinh(πy). (83)

A uniform grid ofNx×Ny is employed to discretise the problem domain. Two cases
of boundary conditions are considered as follows.

• Case 1: Dirichlet boundary conditions are imposed along all four edges.
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• Case 2: Dirichlet boundary conditions are imposed along two horizonal
edges and Neumann boundary conditions are imposed along twovertical
edges.

These boundary conditions can be derived from the exact solution. The proposed
LMLS-1D-IRBFN method with the following two approaches is considered.

• Approach 1:n= 3 andns = 3, called LMLS-1D-IRBFN-3-node.

• Approach 2:n= 3 andns = 5, called LMLS-1D-IRBFN-5-node.

Figure 3 presents the grid convergence study for Case 1 for the two approaches in
comparison with those ofFDM with central-difference scheme andthe 1D-IRBFN
method. The convergence study for Case 2 for the two approaches in comparison
with those of the 1D-IRBFN method is shown in Figure 4. The convergence be-
haviours ofFDM, 1D-IRBFN, Approach 1 and Approach 2 for Case 1 areO(h2.05),
O(h3.16), O(h1.78) and O(h2.69), respectively. The convergence behaviour of 1D-
IRBFN, Approach 1 and Approach 2 for Case 2 areO(h1.98), O(h1.84) and O(h1.89),
respectively. The numerical results showthat the LMLS-1D-IRBFN-5-node is
much more accurate thanFDM and LMLS-1D-IRBFN-3-node, and slightly bet-
ter than those of its global counterpart, i.e. 1D-IRBFN method.

Table 1 presents the comparison of the number of nonzero elements per row of the
system matrix (Nnzpr) and condition number (cond) among the FDM, two present
approaches and the 1D-IRBFN for Case 1, whileTable 2 shows the compari-
son of CPU time and percentage of nonzero elements of the system matrixε =
(Nnz/Ntotal)× 100 (Nnz and Ntotal: the number of nonzero elements and the to-
tal number of elements of the system matrix, respectively)among these methods.
The comparison of condition number for Case 2 is given in Table 3. The condi-
tion numbers of 1D-IRBFN, Approach 1 and Approach 2 are of thesame order
of magnitude and at most one order of magnitude larger than those of FDM. The
number of nonzero elements per row of the system matrixNnzpr of the FDM with
central-difference scheme, LMLS-1D-IRBF-3-node and LMLS-1D-IRBF-5-node
methods are 5, 9, and 13, respectively and less than that of the 1D-IRBFN method.
Therefore, for a given grid size, the CPU time and memory requirements of Ap-
proach 2 are larger than those of Approach 1 and FDM, and significantly less than
those of the 1D-IRBFN method. For example, for a grid of 121× 121, the CPU
time and theε of Approach 2 are 38.7 times and 2.6 times larger than those ofthe
FDM, respectively, and 89.6 times and 18.5 times less than those of the 1D-IRBFN
method, respectively. It is noted that for a given grid size the present Approach 2
is slower than the FDM. However, the present Approach 2 achieves a given level
of accuracy with a coarser grid and hence more efficient. For example, as shown
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in Figure 3 and Table 2, the present Approach 2 with grid=21× 21 yields better
accuracy (Ne= 6.88e− 6) in 0.88 seconds than the FDM with grid=121× 121
(Ne= 3.49e−5) in 1.74 seconds.

Approach 2 yields much more accurate results than Approach 1and FDM with
central-difference schemeand is significantly more efficient than 1D-IRBFN in
terms of computational cost, as grid density increases. Therefore, the remaining
examples will be investigated using Approach 2, i.e. LMLS-1D-IRBFN-5-node.

7.2 Example 2: Two-dimensional Poisson equation in a squaredomain with a
circular hole

This example is concerned with the following 2D Poisson equation

∂ 2u
∂x2 +

∂ 2u
∂y2 =−8π2 sin(2πx)sin(2πy), (84)

defined on a square domain with a circular hole as shown in Figure 5 and subject
to Dirichlet boundary conditions. The problem has the following exact solution

uE = sin(2πx)sin(2πy), (85)

from which the boundary values ofu can be derived.

The grid convergence study for LMLS-1D-IRBFN and 1D-IRBFN methods is pre-
sented in Figure 6. Table 4 describes the relative error norms (Ne) and condi-
tion number (cond) of the present method in comparison with those of 1D-IRBFN
method. The numerical results showed that the present method is not as accurate as
the 1D-IRBFN method, but has a higher convergence rate (error norm of O(h3.70))
than the 1D-IRBFN method (error norm of O(h3.00)). Table 5 presents the com-
parison of CPU time and percentage of nonzero elements of thesystem matrix (ε)
between the 1D-IRBFN and LMLS-1D-IRBFN methods. The present method is
much more efficient than the 1D-IRBFN method in terms of CPU time (e.g. 101.3
times for a grid of 129×129) and memory requirements (e.g. 17.2 times for a grid
of 129×129), thus the grid size can be refined to obtain more accuratesolutions as
shown in Figure 6.

In comparing the convergence behaviours in Example 1 (homogeneous Poisson
equation on simply-connected domain) and Example 2 (non-homogeneous Poisson
equation on multiply-connected domain), it is observed that the overall conver-
gence rate of Approach 2 for the former is 2.69 and that for the latter is 3.70. At
first glance, the results might seem strange. However, it is observed that to achieve
similar accuracy (Neof O(10−5)), the convergence rates are very similar, i.e. 3.72
for Example 1 and 3.70 for Example 2. In Example 1, the shape of solution is rel-
atively simple and the method can achieve even higher accuracy (Neof O(10−7)).
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However, at this higher level of accuracy, the local convergence rate decreases,
causing a lower overall convergence rate as described above.

7.3 Example 3: Lid-driven cavity flow

The cavity is taken to be a unit square with the lid sliding from left to right at a unit
velocity as shown in Figure 7. The boundary conditions for stream functionψ are
defined by

ψ = 0, on x= 0,x= 1,y= 0,y= 1, (86)

∂ψ
∂x

= 0, on x= 0,x= 1, (87)

∂ψ
∂y

= 0, on y= 0, (88)

∂ψ
∂y

= 1, on y= 1. (89)

It is noted that only the Dirichlet boundary conditions (86)are used for solving (69),
while the Neumann boundary conditions (87)-(89) are used toderive computational
vorticity boundary conditions for solving (70).

It is well-known that the major difficulties of lid-driven cavity flow simulation are:
(i) the presence of singularities at two of the corners, which makes it difficult to pre-
dict the solution accurately; and (ii) the dominant convection terms, when dealing
with high Re, which can cause oscillatory solutions if an improper scheme is used
or computational grids are not sufficiently refined. The gridconvergence study is
first conducted for the lid-driven cavity flow problem withReof 1000 using fol-
lowing two approaches.

• Approach 1: The convection terms are calculated using LMLS-1D-IRBFN
technique.

• Approach 2: The convection terms are calculated using global 1D-IRBFN
technique.

Table 6 shows the grid convergence study of the extrema of thehorizontal and
vertical velocity profiles along the center lines of the cavity for Approach 1 in
comparison withFDMs [1, 28] and 1D-IRBFN [29]. The second-order accurate
central finite-difference approximation was employed to approximate the linear
terms in both FDMs mentioned above [1, 28], while the nonlinear convection terms
were discretised by using a first-order accurate upwind difference scheme includ-
ing its second-order accurate term as a deferred correctionin FDM [1] and un-
centered second-order differences in FDM [28]. In Table 6, the percentage errors
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(ε = (Vm−Vs)×100/Vs) of the extremal velocities (Vm) based on the corresponding
spectral benchmark solutions (Vs) [20] are given. It can be seen that these errors
reduce with increasing grid densities.The orders of convergence are 2.42, 2.61
and 2.92 for the minimum horizontal velocityumin, the maximum vertical velocity
vmax and the minimum vertical velocityvmin along the center lines, respectively.
The present results for a grid of 101×101 are more accurate than those of FDMs
with more refined grids [1, 28], but less than those of 1D-IRBFN [29]. Table 7
describes comparisons of the number of nonzero elements perrow of the system
matrix (Nnzpr), number of iterations (Niteration) and total CPU time (Ttotal) required
to obtain the converged solution withTOL= 10−12. The time step∆t is set to be
5×10−3 for all cases. Note that for a given grid size the present approach is slower
than the FDM. However, the present approach achieves a givenlevel of accuracy
with a coarser grid and hence more efficient. For example, as shown in Tables 6
and 7, the present approach with grid=81× 81 yields better accuracy in 1559.77
seconds than the FDM with grid=129×129 in 1733.02 seconds.

The corresponding grid convergence study for Approach 2 is given in Table 8.The
orders of convergence are 3.80, 3.26 and 4.26 forumin, vmax andvmin, respectively.
It is interesting to see that Approach 2 yields more accurateresults than Approach
1 and the 1D-IRBFN method,and the convergence orders of Approach 2 are higher
than those of Approach 1. Approach 2 is employed to study the cases with high
Reynolds numbers(Re= 3200 and 7500). The contours of stream function and
vorticity of the flow field inside the cavity atRe= 1000,3200 and 7500 are shown
in Figure 8. The vertical and horizontal velocities along the horizontal and vertical
center lines atRe= 1000,3200 and 7500 are given in Figure 9. These figures show
that the current results are in good agreement with benchmark solutions of Ghia et
al. [1] and Botella and Peyret [20].

7.4 Example 4: Flow past a circular cylinder

The steady flow past a circular cylinder at lowRenumbers are considered in this
section, whereRe=U0D/ν , U0 is the far-field inlet velocity taken to be 1,D the
diameter of the cylinder taken to be 1,ν the kinematic viscosity. The top, bottom,
inlet and outlet boundaries are positioned at a distance of 20D,20D,10D and 30D
away from the cylinder, respectively, as shown in Figure 10.These distances are
large enough to assume that the far-field flow behaves as a potential flow [22] and
the far-field stream functionψ f ar can be defined by

ψ f ar =U0y

(
1−

D2

4(x2+y2)

)
. (90)
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The boundary conditions for stream function and vorticity are given by

ψ = ψ f ar, ω = 0, onΓ1,Γ2,Γ3, (91)

∂ψ
∂x

= 0,
∂ω
∂x

= 0, onΓ4, (92)

ψ = 0,
∂ψ
∂n

= 0, onΓw. (93)

wheren is the direction normal to the cylinder surface as shown in Figure 11. The
values of the vorticity on the circular boundaryΓw can be computed as

ωw =−

(
∂ 2ψw

∂x2 +
∂ 2ψw

∂y2

)
(94)

where the subscriptw is used to denote quantities on the circular boundary. A
formula of Le-Cao et al. [30] is employed here to derive the vorticity boundary
conditions at boundary points onx- andy-grid lines as follows.

ω(x)
w =−

[
1+

(
tx
ty

)2
]

∂ 2ψw

∂x2 −qy, (95)

ω(y)
w =−

[
1+

(
ty
tx

)2
]

∂ 2ψw

∂y2 −qx, (96)

whereqx andqy are known quantities defined by

qx =−
ty
t2
x

∂ 2ψw

∂y∂s
+

1
tx

∂ 2ψw

∂x∂s
, (97)

qy =−
tx
t2
y

∂ 2ψw

∂x∂s
+

1
ty

∂ 2ψw

∂y∂s
, (98)

in which tx = ∂x/∂s, ty = ∂y/∂s ands is the direction tangential to the cylinder
surface (Figure 11).

Calculation of drag and pressure coefficients

For viscous flow, the forces acting on the body come from two sources including
pressure and friction. For the case of flow past a circular cylinder, the dragFD and
its coefficientCD can be defined by

FD = R

2π∫

0

(
µR

∂ω
∂n

−µω
)

sinθdθ , (99)

CD =
FD

ρU2
0R

, (100)
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whereR is the radius of the cylinder,ρ fluid density andµ the dynamic viscosity.
The dimensionless pressure coefficient is given by

Cp(θ) =
p(θ)− p0

1/2ρU2
0

, (101)

where p0 is the far-field inlet pressure, andp(θ) is the pressure on the cylinder
surface at angleθ , evaluated as [31]

p(θ) = (p0+1/2ρU2
0 )−

d0∫

R

(
µ
r

∂ω
∂θ

)∣∣∣∣ θ=0
dr−R

θ∫

0

µ
∂ω
∂n

∣∣∣∣
r=R

dθ , (102)

in which d0 is the distance from the cylinder center to the inlet boundary.

Non-overlapping domain decomposition technique

As described in Section 5, the relevant governing equationsare of Poisson type.
Thus, consider the following Poisson problem in a domainΩ with Dirichlet bound-
ary condition on the boundary∂Ω

∆u= f (x,y) in Ω (103)

u= b on∂Ω (104)

It is noted that the Neumann boundary conditions (92) can be imposed directly
through the conversion process (26-29). Therefore, we justneed to consider the
Poisson problem with Dirichlet boundary condition here.

Without loss of generality, the domain of interestΩ is partitioned into just two non-
overlapping subdomainsΩ1 andΩ2 as shown in Figure 12. The Poisson problem
can be reformulated in the equivalent multi-domain form as follows [33].

∆u[1] = f [1] in Ω1 (105)

u= b[1] on∂Ω1∩∂Ω (106)

∆u[2] = f [2] in Ω2 (107)

u= b[2] on∂Ω2∩∂Ω (108)

u[1] = u[2] onΓ (109)

∂u[1]

∂n
=

∂u[2]

∂n
onΓ (110)
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whereΓ is the interface betweenΩ1 andΩ2, ∂Ω1 and∂Ω1 are the boundaries of the
subdomainsΩ1 andΩ2, respectively, and the superscript[·] denotes a subdomain.
Equations (109) and (110) are the transmission conditions for u[1] andu[2] on the
interfaceΓ. By solving the system of Equations (105-110), one can obtain the
interface valuesuΓ, and the subdomain solutionsu[1] andu[2].

We now describe an algorithm for solving the system of Equations (105-110) as
follows. Let the subscriptsip,bp and f b represent the location indices of interior
points, known boundary points and interface points over a subdomain, respectively;
N, Nip, Nbp andNf p are the total number of points, the number of interior points,
known boundary points and interface points of a subdomain, respectively.

System of Equations (105-110) are written in matrix form as follows.

Ẽ[1]ũ[1] = RHS[1], (111)

ũ[1](bp) = u[1]b , (112)

Ẽ[2]ũ[2] = RHS[2], (113)

ũ[2]
(bp) = u[2]b , (114)

ũ[1]( f p) = ũ[2]( f p) = uΓ, (115)

D[1]ũ[1] = D[2]ũ[2], (116)

whereẼ[1] andẼ[2] are the known matrices of dimension(N[1]
ip ×N[1]) and(N[2]

ip ×

N[2]), respectively; ˜u[1] and ũ[2] are field variable vectors of lengthN[1] andN[2],

respectively;RHS[1], RHS[2], u[1]b andu[2]b are the known vectors of lengthN[1]
ip , N[2]

ip ,

N[1]
bp andN[2]

bp, respectively;uΓ unknown vector of lengthNf p; andD[1] andD[2] the

known matrices of dimension(Nf p×N[1]) and(Nf p×N[2]), respectively.

From (111), (112) and (115), one is able to obtain the following expression

[
Ẽ[1]
(:,ip) Ẽ[1]

(:,bp) Ẽ[1]
(:, f p)

]



ũ[1](ip)

u[1]b
uΓ


= RHS[1] (117)

or

ũ[1](ip) = A[1]+B[1]uΓ (118)

where

A[1] =
(

Ẽ[1]
(:,ip)

)−1(
RHS[1]− Ẽ[1]

(:,bp)u
[1]
b

)
, (119)

B[1] =−
(

Ẽ[1]
(:,ip)

)−1
Ẽ[1]
(:, f p). (120)
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Similarly, from (113), (114) and (115), the interior valuesof the subdomainΩ2 is
given by

ũ[2]
(ip) = A[2]+B[2]uΓ (121)

where

A[2] =
(

Ẽ[2]
(:,ip)

)−1(
RHS[2]− Ẽ[2]

(:,bp)u
[2]
b

)
, (122)

B[2] =−
(

Ẽ[2]
(:,ip)

)−1
Ẽ[2]
(:, f p). (123)

Equation (116) can be expressed as

[
D[1]
(:,ip) D[1]

(:,bp) D[1]
(:, f p)

]



ũ[1](ip)

u[1]b
uΓ


=

[
D[2]
(:,ip) D[2]

(:,bp) D[2]
(:, f p)

]



ũ[2](ip)

u[2]b
uΓ


 .

(124)

By substituting Equations (118) and (121) into (124), the interface valuesuΓ are
determined as

uΓ =
−D[1]

(:,ip)A
[1]−D[1]

(:,bp)u
[1]
b +D[2]

(:,ip)A
[2]+D[2]

(:,bp)u
[2]
b

D[1]
(:,ip)B

[1]+D[1]
(:, f p)−D[2]

(:,ip)B
[2]−D[2]

(:, f p)

. (125)

By substituting (125) into (118) and (121), one can obtain the subdomain solutions
ũ[1](ip) andũ[2](ip).

The combination of LMLS-1D-IRBFN and domain decompositiontechnique is de-
veloped to handle this large scale problem using a PC with 2.99 GHz CPU and
3.25GB of RAM. The computational domain is discretised using Cartesian grids
as shown in Figure 13. The grid convergence study of vorticity distribution on the
cylinder surface forRenumber of 40 is presented in Figure 14. It can be seen that
the current simulations converge with increasing grid densities. The results ob-
tained for the grids of 151×151 and 167×167 are in good agreement with those
of Kim et al. [22] and Dennis and Chang [32]. Therefore, the grid of 151× 151
is then used to investigate the flow field with the other valuesof Renumbers (i.e.
5, 10 and 20). It is noted that when the flow reaches the steady state, a pair of
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vortices and the separated region behind the cylinder are formed. The length of the
wake is measured from the rear of the cylinder to the end of theseparated region,
while the angle of separation is defined at the point where thevorticity vanishes.
Table 9 presents the length of the wake behind the cylinder (Lsep), the separation
angle (θsep) and the drag coefficient (CD) for Renumbers of 5, 10, 20 and 40. The
comparison of vorticity and pressure coefficient distribution on the cylinder surface
in the case ofRenumbers of 5, 10, 20 and 40 are given in Figure 15 and 16, respec-
tively. It can be seen that the present numerical results arein good agreement with
other published results. The contours of stream function and vorticity of the flow
field around the cylinder are shown in Figure 17.

8 Conclusions

A local MLS-1D-IRBFN method is proposed for solving incompressible viscous
flow problems in terms of stream function and vorticity. The present approach is
based on the PU concept and incorporates the MLS and 1D-IRBFNmethods. The
LMLS-1D-IRBFN approach offers the same order of accuracy asthe 1D-IRBFN
method, while the system matrix is more sparse than that of the 1D-IRBFN, which
helps reduce the computational cost significantly as discussed earlier. The LMLS-
1D-IRBFN shape function possesses the Kronecker-δ property which allows an
exact imposition of the essential boundary condition. Cartesian grids are used to
discretise both rectangular and irregular problem domains. The numerical results
for the lid-driven cavity flows at highRenumbers showed that the calculation of
convection terms using the global 1D-IRBFN technique are more accurate than the
one using the LMLS-1D-IRBFN technique. The combination of the LMLS-1D-
IRBFN method and a domain decomposition technique is successfully developed
for solving a larger problem. The obtained numerical results for both cases of
lid-driven cavity flow and flow past a circular cylinder are ingood agreement with
other published results available in the literature.The present method can be used to
handle problems with irregular domains, while the standardfinite different method
cannot be applied directly at the grid points near the boundary of irregular domains.
Owing to the use of integrated RBFN for local approximation,the present method
appears to be more accurate than the FDM with central-difference scheme. Owing
to the use of a fixed Cartesian grid, the present method is expected to be more
efficient than the conventional FDM, FVM and FEM when solvingproblems with
moving boundary.
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Table 1: Poisson equation in a square domain subject to Dirichlet boundary conditions: comparisons(with FDM and 1D-
IRBFN) of the number of nonzero elements per row of the systemmatrix (Nnzpr) and condition number (cond). The system
matrix is stored in a sparse matrix format.

Grid System matrix Nnzpr cond
FDM 1D-IRBFN App. 1 App. 2 FDM 1D-IRBFN App. 1 App. 2

11×11 81×81 5 21 9 13 5.85E+01 1.59E+02 1.66E+02 1.55E+02
21×21 361×361 5 41 9 13 2.35E+02 5.85E+02 6.93E+02 6.24E+02
31×31 841×841 5 61 9 13 5.30E+02 1.32E+03 1.57E+03 1.41E+03
41×41 1521×1521 5 81 9 13 9.43E+02 2.35E+03 2.80E+03 2.50E+03
51×51 2401×2401 5 101 9 13 1.47E+03 3.67E+03 4.37E+03 3.91E+03
61×61 3481×3481 5 121 9 13 2.12E+03 5.28E+03 6.30E+03 5.63E+03
71×71 4761×4761 5 141 9 13 2.89E+03 7.19E+03 8.58E+03 7.66E+03
81×81 6241×6241 5 161 9 13 3.77E+03 9.39E+03 1.12E+04 1.00E+04
91×91 7921×7921 5 181 9 13 4.77E+03 1.19E+04 1.42E+04 1.27E+04
101×101 9801×9801 5 201 9 13 5.89E+03 1.47E+04 1.75E+04 1.56E+04
111×111 11881×11881 5 221 9 13 7.13E+03 1.78E+04 2.12E+04 1.89E+04
121×121 14161×14161 5 241 9 13 8.49E+03 2.11E+04 2.52E+04 2.25E+04
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Table 2: Poisson equation in a square domain subject to Dirichlet boundary conditions: comparison(with FDM and 1D-
IRBFN) of CPU time and percentage of nonzero elements of the system matrix (ε). Note that for a given grid size the
present Approach 2 is slower than the FDM. However, the present Approach 2 achieves a given level of accuracy with a
coarser grid and hence more efficient. For example, as shown in Figure 3, the present Approach 2 with grid=21×21 yields
better accuracy (Ne= 6.88e−6) in 0.88 seconds than the FDM with grid=121×121 (Ne= 3.49e−5) in 1.74 seconds.

Grid CPU time(seconds) for all shape functions Total CPU time(seconds) ε(%)
FDM 1D-IRBFN App. 1 App. 2 FDM 1D-IRBFN App. 1 App. 2 FDM 1D-IRBFN App. 1 App. 2

11×11 0.00 0.03 0.12 0.22 0.00 0.05 0.18 0.23 5.624 20.988 9.465 12.757
21×21 0.00 0.06 0.53 0.86 0.01 0.10 0.54 0.88 1.327 10.249 2.318 3.251
31×31 0.01 0.39 1.31 2.05 0.02 0.58 1.33 2.08 0.578 6.778 1.021 1.447
41×41 0.03 2.12 2.54 3.83 0.05 2.85 2.62 3.97 0.322 5.062 0.571 0.814
51×51 0.05 8.58 4.35 6.34 0.09 10.71 4.46 6.58 0.205 4.040 0.365 0.521
61×61 0.10 25.98 6.82 9.71 0.16 30.86 6.99 10.00 0.142 3.361 0.253 0.362
71×71 0.18 66.68 10.01 14.02 0.25 77.73 10.24 14.49 0.104 2.878 0.185 0.266
81×81 0.30 169.14 14.08 19.44 0.40 190.49 14.40 20.14 0.079 2.516 0.142 0.203
91×91 0.46 462.68 19.15 26.11 0.62 502.23 19.67 26.90 0.063 2.235 0.112 0.161
101×101 0.69 1073.42 25.36 34.27 0.88 1139.92 26.04 35.58 0.051 2.010 0.091 0.130
111×111 1.00 2202.37 32.84 43.85 1.25 2308.72 33.61 45.60 0.042 1.826 0.075 0.108
121×121 1.43 4959.75 41.74 55.33 1.74 5123.18 42.58 57.37 0.035 1.674 0.063 0.090
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Table 3: Poisson equation in a square domain subject to Dirichlet and Neumann
boundary conditions: comparison condition number (cond).

Grid cond
1D-IRBFN App. 1 App. 2

11×11 3.87E+02 3.70E+02 4.55E+02
21×21 1.41E+03 1.36E+03 1.63E+03
31×31 3.10E+03 2.94E+03 3.53E+03
41×41 5.45E+03 5.12E+03 6.14E+03
51×51 8.45E+03 7.89E+03 9.47E+03
61×61 1.21E+04 1.13E+04 1.35E+04
71×71 1.64E+04 1.52E+04 1.83E+04
81×81 2.14E+04 1.98E+04 2.37E+04
91×91 2.70E+04 2.49E+04 2.99E+04
101×101 3.33E+04 3.07E+04 3.68E+04
111×111 4.02E+04 3.70E+04 4.45E+04
121×121 4.78E+04 4.40E+04 5.28E+04

Table 4: Poisson equation in a square domain with a circular hole subject to Dirich-
let boundary conditions: comparison of relative error norm(Ne) and condition
number (cond).

Grid Ne cond
1D-IRBFN Present 1D-IRBFN Present

25×25 8.62E-03 4.86E-02 4.15E+02 4.28E+02
33×33 3.43E-03 2.01E-02 6.20E+02 6.17E+02
41×41 1.72E-03 9.12E-03 9.60E+02 8.75E+02
49×49 9.95E-04 4.61E-03 1.35E+03 1.21E+03
57×57 6.29E-04 2.57E-03 2.19E+03 2.21E+03
65×65 4.27E-04 1.54E-03 2.15E+03 2.20E+03
73×73 2.98E-04 9.80E-04 3.55E+03 3.58E+03
81×81 2.19E-04 6.55E-04 3.58E+03 3.72E+03
89×89 1.65E-04 4.55E-04 6.15E+03 6.29E+03
97×97 1.28E-04 3.27E-04 6.65E+03 6.74E+03
105×105 1.00E-04 2.41E-04 7.83E+03 8.28E+03
113×113 8.02E-05 1.83E-04 1.35E+04 1.41E+04
121×121 6.53E-05 1.41E-04 1.20E+04 1.28E+04
129×129 5.39E-05 1.11E-04 1.47E+04 1.52E+04
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Table 5: Poisson equation in a square domain with a circular hole subject to Dirich-
let boundary conditions: comparison of CPU time and percentage of nonzero ele-
ments of the system matrix (ε).

Grid CPU time(seconds) ε(%)
1D-IRBFN Present 1D-IRBFN Present

25×25 0.39 1.71 7.579 2.323
33×33 0.89 2.71 5.739 1.325
41×41 3.18 4.41 4.600 0.851
49×49 9.68 6.65 3.824 0.591
57×57 24.72 9.49 3.276 0.434
65×65 55.88 13.02 2.871 0.333
73×73 115.22 17.27 2.548 0.263
81×81 222.04 22.56 2.295 0.213
89×89 464.42 28.76 2.085 0.176
97×97 946.15 35.96 1.913 0.148
105×105 1793.67 44.39 1.766 0.126
113×113 3153.54 54.16 1.639 0.109
121×121 5140.94 65.55 1.530 0.095
129×129 7937.85 78.39 1.435 0.083
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Table 6: Lid-driven cavity flow,Re= 1000: the grid convergence study and comparison of extrema of velocity profiles along
the center lines. The convection terms are calculated usingLMLS-1D-IRBFN technique. Note that “Error" is relative to a
Benchmark solution.

Grid umin Error (%) y vmax Error (%) x vmin Error (%) x
Present 21×21 -0.33342 14.193 0.333 0.27403 27.301 0.220 -0.34690 34.184 0.827

31×31 -0.33043 14.962 0.202 0.32097 14.848 0.172 -0.43390 17.678 0.888
41×41 -0.35408 8.876 0.183 0.34304 8.993 0.165 -0.47541 9.804 0.901
51×51 -0.36903 5.029 0.177 0.35730 5.211 0.162 -0.49891 5.345 0.906
61×61 -0.37750 2.848 0.174 0.36561 3.006 0.160 -0.51164 2.930 0.907
71×71 -0.38218 1.644 0.173 0.37027 1.769 0.159 -0.51846 1.635 0.908
81×81 -0.38478 0.976 0.172 0.37290 1.072 0.159 -0.52215 0.935 0.909
91×91 -0.38626 0.595 0.172 0.37441 0.670 0.158 -0.52420 0.547 0.909
101×101 -0.38712 0.373 0.172 0.37531 0.432 0.158 -0.52536 0.3260.909

1D-IRBFN [29] 101×101 -0.38772 0.218 0.172 0.37601 0.247 0.158 -0.52598 0.2080.909
FDM (ψ −ω) [1] 129×129 -0.38289 1.462 0.172 0.37095 1.589 0.156 -0.51550 2.1970.906
FDM (u− p) [28] 256×256 -0.37640 3.132 0.160 0.36650 2.770 0.152 -0.52080 1.1920.910
Benchmark [20] -0.38857 0.172 0.37694 0.158 -0.52708 0.909
Present Order of convergence 2.42 2.61 2.92
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Table 7:Lid-driven cavity flow,Re= 1000: comparisons of the number of nonzero
elements per row of the system matrix (Nnzpr), number of iterations (Niteration) and
total CPU time (Ttotal) required to obtain the converged solution withTOL= 10−12.
The time step∆t is set to be 5×10−3 for all cases. Note that for a given grid size the
present approach is slower than the FDM. However, the present approach achieves
a given level of accuracy with a coarser grid and hence more efficient. For example,
as shown in Table 6, the present approach with grid=81×81 yields better accuracy
in 1559.77 seconds than the FDM with grid=129×129 in 1733.02 seconds.

FDM Present
Grid System matrix Nnzpr Niteration Ttotal(seconds) Nnzpr Niteration Ttotal(seconds)
21×21 361×361 5 52207 36.46 13 51088 43.66
31×31 841×841 5 44914 45.67 13 40590 63.48
41×41 1521×1521 5 41703 68.59 13 43047 220.69
51×51 2401×2401 5 36467 148.10 13 44513 452.89
61×61 3481×3481 5 39591 250.27 13 45239 781.17
71×71 4761×4761 5 41803 354.93 13 45569 884.19
81×81 6241×6241 5 42893 482.21 13 45714 1559.77
91×91 7921×7921 5 43568 679.77 13 45779 2356.15
101×101 9801×9801 5 44028 898.53 13 45807 2964.84
111×111 9801×9801 5 44360 1207.33 13 - -
121×121 9801×9801 5 44608 1433.07 13 - -
129×129 9801×9801 5 44764 1733.02 13 - -
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Table 8: Lid-driven cavity flow,Re= 1000: the grid convergence study and comparison of extrema of horizontal and vertical
velocity profiles along the center lines. The convection terms are calculated using global 1D-IRBFN technique. Note that
“Error" is relative to a Benchmark solution.

Grid umin Error (%) y vmax Error (%) x vmin Error (%) x
Present 21×21 -0.30543 21.397 0.223 0.29460 21.844 0.181 -0.39550 24.963 0.866

31×31 -0.35522 8.583 0.179 0.34326 8.936 0.166 -0.47452 9.971 0.900
41×41 -0.37207 4.245 0.173 0.35938 4.660 0.162 -0.50276 4.615 0.906
51×51 -0.38005 2.193 0.172 0.36744 2.519 0.160 -0.51576 2.147 0.908
61×61 -0.38423 1.117 0.171 0.37183 1.356 0.159 -0.52208 0.949 0.909
71×71 -0.38642 0.552 0.171 0.37421 0.725 0.158 -0.52512 0.371 0.909
81×81 -0.38756 0.259 0.171 0.37549 0.385 0.158 -0.52655 0.100 0.909
91×91 -0.38815 0.108 0.171 0.37618 0.203 0.158 -0.52720 0.022 0.909
101×101 -0.38845 0.032 0.171 0.37655 0.104 0.158 -0.52746 0.0730.909

1D-IRBFN [29] 101×101 -0.38772 0.218 0.172 0.37601 0.247 0.158 -0.52598 0.2080.909
FDM (ψ −ω) [1] 129×129 -0.38289 1.462 0.172 0.37095 1.589 0.156 -0.51550 2.1970.906
FDM (u− p) [28] 256×256 -0.37640 3.132 0.160 0.36650 2.770 0.152 -0.52080 1.1920.910
Benchmark [20] -0.38857 0.172 0.37694 0.158 -0.52708 0.909
Present Order of convergence 3.80 3.26 4.26
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Table 9: Flow past a circular cylinder: comparison of the wake length (Lsep), the
separation angle (θsep) and the drag coefficient (CD) for Re= 5,10,20 and 40, using
a grid of 151×151.

Re Source Lsep θsep CD

5 Dennis and Chang [32] - - 4.116
Kim et al. [22] - - 4.282
Present - - 4.108

10 Dennis and Chang [32] 0.265 29.6 2.846
Ding et al. [21] 0.252 30.0 3.070
Kim et al. [22] 0.281 29.5 2.920
Present 0.27 30.1 2.829

20 Dennis and Chang [32] 0.94 43.7 2.045
Ding et al. [21] 0.93 44.1 2.180
Kim et al. [22] 0.91 43.7 2.017
Present 0.92 43.6 2.010

40 Dennis and Chang [32] 2.345 53.8 1.522
Ding et al. [21] 2.20 53.5 1.713
Kim et al. [22] 2.187 55.1 1.640
Present 2.31 53.7 1.542
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Figure 1: Cartesian grid discretisation.
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Figure 2: LMLS-1D-IRBFN-3-node scheme.
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Figure 3: Poisson equation in a square domain subject to Dirichlet boundary con-
ditions: convergence study for 1D-IRBFN, Approach 1 withβ = 10 and Approach
2 with β = 15. FDM (central difference) results are included for comparison.
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Figure 4: Poisson equation in a square domain subject to Dirichlet and Neumann
boundary conditions: convergence study for 1D-IRBFN, Approach 1 withβ = 10
and Approach 2 withβ = 5.
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Figure 5: A square domain with a circular hole.
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Figure 6: Poisson equation in a square domain with a circularhole subject to
Dirichlet boundary conditions: convergence study for 1D-IRBFN and the present
method (LMLS-1D-IRBFN-5-node) withβ = 15.

Figure 7: Lid-driven cavity flow: problem geometry and boundary conditions.
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Figure 8: Lid-driven cavity flow: contours of stream function (left) and vorticity
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Figure 9: Lid-driven cavity flow: comparison of profiles of vertical and horizontal



Manuscript submitted to Int. J. Numer. Meth. Fluids

43

Figure 10: Flow past a circular cylinder: problem geometry and boundary condi-
tions.
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Figure 11: Circular cylinder and associated coordinate systems.

Figure 12: Non-overlapping partition of the domainΩ into two subdomainsΩ1 and
Ω2.
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Figure 13: Flow past a circular cylinder: grid configuration.
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Figure 14: Flow past a circular cylinder: grid convergence study, Re = 40.
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Figure 15: Flow past a circular cylinder: comparison of vorticity on the circular
cylinder in the cases ofRe= 5,10,20 and 40, using a grid of 151×151.
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Figure 16: Flow past a circular cylinder: comparison of pressure coefficient on the
circular cylinder in the cases ofRe= 5,10,20 and 40, using a grid of 151×151.
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Figure 17: Flow past a circular cylinder: contours of streamfunction (left) and
vorticity (right) for the cases ofRe= 5,10,20 and 40, from top to bottom, using a
grid of 151×151.


