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Local Moving Least Square - One-Dimensional IRBFN
Technique for Incompressible Viscous Flows

D. Ngo-Congd-?, N. Mai-Duy?!, W. Karunasena and T. Tran-Cong':3

Abstract: This paper presents a local moving least square - one-dioreisn-
tegrated radial basis function networks (LMLS-1D-IRBFNgtimod for solving in-
compressible viscous flow problems using stream functimtieity formulation.
In this method, the partition of unity method is employed &samework to incor-
porate the moving least square (MLS) and one-dimensiotedjiated radial basis
function networks (1D-IRBFN) techniques. The major adages of the proposed
method include: (i) a banded sparse system matrix whichshelguce the com-
putational cost; (ii) the Kroneckea¥-property of the constructed shape function
which helps impose the essential boundary condition in actexanner; and (iii)
high accuracy and fast convergence rate owing to the useegfration instead of
conventional differentiation to construct the local RBFpaximations. Several
examples including two-dimensional Poisson problemsdiiden cavity flow and
flow past a circular cylinder are considered and the pressuilts are compared
with the exact solutions and numerical results from othethds in the literature
to demonstrate the attractiveness of the proposed method.

Keywords: Incompressible viscous flow; Stream function-vorticityrfulation;
Integrated radial basis functions; Moving least squareiti?en of unity; Cartesian
grids; Numerical methods.

1 Introduction

Nowadays, numerical simulation has become an essentialaiothe analysis of
practical problems of engineering and physical sciencesiteFelement method
(FEM), finite difference method (FDM) and finite volume meal{&VM) are meth-
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ods commonly employed to analyse those probldm$&EM, when solving struc-
tural problems with large deformation, element distosgidvappen, causing a de-
terioration of accuracy, thus requiring re-generationhef tomputational mesh to
maintain accuracy. The FEM, FDM and FVNave difficulties in handling fluid-
flow problems with free surface and moving boundary cond#io In the past
decade, meshfree methods have become a very interesteayaigopics in com-
putational mechanics because they possess a number ofiadtiaroperties. One
of their most popular characteristics is that they requisetaof nodes rather than a
topological mesh to discretise the computational domaims tomputational cost
associated with discretisation is highly reduced.

Two-dimensional (2D) incompressible Navier-Stokes flowsehbeen extensively
studied to verify new numerical methods. The main issuesa f&rccessful numer-
ical solver for this kind of problems are the proper treatta@f the nonlinear con-
vection term and incompressibility. For the first issue, ghesence of the convec-
tion term causes serious numerical difficulties in the fofroszillatory solutionsor
numerical divergencevhen ReynoldsRe number or PecletRge) number is high.
To deal with this, schemes related to upwinding have beerldeed to stabilize
the FDM, FEM, and FVM [1, 2, 3]. Brooks and Hughes [3] develbpeStreamline
Upwind/Petrov-Galerkin (SUPG) method for convection-dwated flows, which
has the robustness of an upwind method and the accuracyiassowith the
wiggle-free Galerkin solutions. In their method, an adufitil stability term was
added in the upwind direction and several different treatsief incompressibil-
ity are incorporated into the formulation. The upwind cagotcis also needed in
the meshfree methods in order to obtain a good accuracy fwection-dominated
flows. Lin and Atluri [4] proposed the meshless local Pet@alerkin (MLPG)
method with two upwinding schemes for solving convectid@fudion problems.
They skewed the weight function opposite to the streamlinection in the first
scheme and shifted the local subdomain opposite to thewlireadirection in the
second scheme. Their numerical results indicated that the®Awith the second
scheme yielded better solutions than SUPG. This method xtesded to solve the
incompressible Navier-Stokes equations in [5].

For the second issue, i.e. treatment for incompressipitistompressible flows can
be solved through the stream function and vorticity forrtiata This approach
can satisfy the incompressibility condition automatigadind the pressure term is
eliminated. However, this formulation experiences otlygetof difficulty aris-
ing from the computation of the vorticity boundary condition the wall, espe-
cially the curved ones. For three-dimensional problenesirtbompressible Navier-
Stokes equations are usually based on primitive varialpless¢ure and velocity)
as the stream function and vorticity formulation are notliagple. In order to
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impose the incompressibility constraint, mixed formuas are considered by in-
troducing another variable, the Lagrange multiplier. Ehare so-called inf-sup
(or Ladyzenskaya-BaBka-Brezzi) stability conditions for this kind of formula-
tions [6]. If these conditions are not satisfied, spuriowsspure solutions may be
obtained.

In 1990, Kansa proposed a collocation scheme based on oadtig (MQ) radial
basis functions for the numerical solution of partial diffietial equations (PDEs) [7].
Their numerical results showed that MQ scheme yielded aallext interpolation
and partial derivative estimates for a variety of two-disienal functions over both
gridded and scattered data. Since this original work, a murmbmeshfree methods
have been developed and used to solve fluid-flow problemg.aParYoun [8] pro-
posed the first-order least-squares method (LSMFM) to sohace equations.
Unlike the Galerkin method, the least-square formulatimhrebt make use of the
divergence theorem to convert the domain integral into atlary integral. There-
fore, the solution accuracy is less sensitive to the integraaccuracy. However,
the first-order least squares formulation requires mor@owks than the Galerkin
formulation since the dual variables are employed as unksdw addition to the
primary variables, thereby increasing the computationat.cZhang et al. [9] em-
ployed the LSMFM based on the first-order velocity-pressamicity formulation
to investigate the 2D steady incompressible viscous flowlpros. Their numeri-
cal results showed that the least-squares method base@ omrthmization of the
squared residuals can reduce oscillations and instalofitye solutions in com-
parison with the behaviour of methods based on Galerkin ditation. In their
approach, the penalty method was used to enforce the eddemtindary condi-
tions. Itis well-known that the larger the penalty parametee more accurate the
numerical solution will be, but large penalty parametersaffect the conditioning
of the system matrix adversely [10]. Arzani and Afshar [1&}eloped discrete
least-squares meshless (DLSM) method for the solution w¥extion-dominated
problems. A fractional step method in conjunction with DL$Mthod was pro-
posed to solve the steady-state incompressible Navi&keStquations in primitive
form using large time steps without having to satisfy thesap condition [12].

In contrast to the advantages of no mesh generation, mobeaheshfree meth-
ods have difficulty in simulating large scale problems, liseathey produce very
dense system matrices. Lee et al. [13] proposed the locaiquadiric (LMQ) and
the local inverse multiquadric (LIMQ) approximations farh&ng partial differ-
ential equations (PDEs). Their constructed shape furstiirictly satisfied the
Kroneckeréd condition which allows an imposition of the essential baanydcon-
dition in the same manner as in the standard FEM. Their noalaesults showed
that the LMQ and LIMQ often outperform their global countans, particularly
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with regard to viability and stability. Sarler and Vertnik4] presented an explicit
local radial basis function (RBF) collocation method foifidion problems. The
method appeared efficient, because it does not require tosolf a large sys-
tem of equations like the original RBF collocation methoyl [Babiwska and Me-
lenk [15] presented the partition of unity method (PUM) wéttractive features.
In the PUM, if analytic knowledge about the local behaviofithe problem solu-
tion is known, local approximation can be done with functidretter suited than
polynomials as in the classical FEM. The PU framework alsuwviges a power-
ful approach to model mechanical problems with discontiesiiand singularities.
Krysl and Belytschko [16] proposed an approach to constimear approximation
basis functions for meshless method based on the concepi.oinRheir work,
the Shepard basis [17] is used as a PU function. The PUM waseatployed
by Chen et al. [18] to combine the reproducing kernel and Rs@&imations in
an approach that enjoys the exponential convergence of RBFyialds a banded
and better-conditioned discrete system matrix. Le et &] fitoposed a locally
supported moving IRBFN-based meshless method for sohanigws problems in-
cluding heat transfer, elasticity of both compressible iasdmpressible materials,
and linear static crack problems.

In the past, lid-driven cavity flow and flow past a circulariogler have been studied
as benchmark problems by many researchers to verify theimuenerical meth-
ods. In the first problem, the presence of singularities atdfthe corners of the
cavity, where the velocity is discontinuous, makes it diffico predict the numer-
ical results accurately. Ghia et al. [1] presented a FDM wittoupled strongly
implicit multigrid method to obtain higliRefine-mesh flow solutions. Botella and
Peyret [20] introduced a third-order time-accurate Chebysrojection method
with an analytical treatment of the singularities for thoediriven cavity flow. Their
numerical results are widely considered as benchmarkigptuin the literature.
In the second problem, it is well-known that the flow has alstalattern with a
fixed pair of symmetric vortices behind the cylindeiRagup to 40. Ding et al. [21]
presented a hybrid approach, which combines the conventi»M and the mesh-
free least square-based finite difference (MLSFD) methodsifmulating the 2D
steady and unsteady incompressible flows. In their worksMhSFD method was
adopted to deal with the spatial discretisation in the negiith complex geome-
try and the conventional FDM was applied in the rest of the ftlmmnain to take
advantage of its high computational efficiency. Kim et aR][@eveloped a mesh-
free point collocation method for the stream function-ity formulation of 2D
incompressible Navier-Stokes equations. The MLS appration was employed
to construct shape functions in conjunction with a pointazm@tion technique.

A one-dimensional integrated radial basis function neke@iD-IRBFN) colloca-
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tion method for the solution of second- and fourth-order BDE&s presented by
Mai-Duy and Tanner [23]. In this method, Cartesian gridsemesed to discretise
both rectangular and non-rectangular problem domains. cbhgputational cost
associated with the Cartesian grid generation is negédibcomparison with that
required for the body-fitted mesh. Along a grid line, IRBFNg& amployed to
represent the field variable and its relevant derivativaschShetworks are called
1D-IRBFNs. Through integration constants, one can imp&seative boundary
conditions and the governing equations at the two end poinésgrid line in an
exact manner. The 1D-IRBFN method is much more efficient thanoriginal
IRBFN method reported in [24]. Ngo-Cong et al. [25] extendleid method to
investigate free vibration of composite laminated plataseldl on first-order shear
deformation theory. The present work is concerned with theebpment of a new
numerical method to handle 2D incompressible viscous flavasreghRenumber
and in large scale problems. The proposed method is basedeoRU concept
acting as a framework to incorporate MLS and 1D-IRBFN teghas, and from
here on is named LMLS-1D-IRBFN, which is a local MLS-1D-IRBFnethod.
The approximation is locally supported, which leads to spaystem matrices and
requires less computational effort than the case of usingRIEFN method alone,
while the order of accuracy remains high as in the case ofRBFN. Unlike con-
ventional MLS-based methods, the LMLS-1D-IRBFN shape fions satisfy the
Kroneckeré property and thus the essential boundary conditions campesed
in an exact manner.

The paper is organised as follows. Section 2 describes ttaioms. Section
3 briefly reproduces the MLS approximation technique. ThelLSVLD-IRBFN
method is presented in Section 4. The governing equationgnéompressible
viscous flows are given in Section 5. The LMLS-1D-IRBFN ditigation of the
governing equations is described in Section 6. Several rinate@xamples are in-
vestigated using the proposed method in Section 7. Sectbom@udes the paper.

2 Notations

In the remainder of the article, we use
* the notation[_] for a vector/matrix | that is associated with a segment of a
grid line;

~

* the notation | for a vector/matrix ] that is associated with a grid line;

« the notation] ] for a vector/matrix | that is associated with the whole set of
grid lines;
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» the notation[ |, ¢y to denote selected rows and columns9 of the matrix

BE
* the notation ], to denote selected componentsf the vector |;

« the notation[ | ¢y to denote all rows and selected colunthef the matrix
[]; and

« the notation[ ], - to denote all columns and selected roywef the matrix

[]-

3 Moving least square approximation

The moving least square procedure [26] is briefly descrilbethis section. The
domain of interest is discretised using a Cartesian grichaws in Fig 1. On an
x-grid line, e.g. [], consider a nodal point; with its associated support domain,
e.g.[x_1,X 1] for the case of 3-node local support. LE{x) be the approximation
of the field variableu along this support domain and given by

() = ipj (0 (x) = BT (X)), M
2

wherem is the number of terms of monomiala(x) a vector of coefficients and
p' (x) a complete polynomial basis, given by

ax) =(a( a®) .. anx )", )
P =( P Pr¥) .. P ) =(1 x 2 .. x")". 3)

The expression faa(x) can be obtained at each poitthy minimizing the following
weighted residual

n 2

3= 3 Wex—x) [T (x)a) ~ ] (4)

whereu(!) is the nodal value of the field variableat x = x;, andn the number
of nodes in the support domain efwhere the weight functiollV(x—x;) # 0. In
the present paper, the cubic spline weight function is usednstruct MLS shape
functions.

<1 (5)
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whered = |x— x| /dw andd,, defines the size of the support domain. The mini-
mization of the weighted residudlresults in the following linear equation system

A(x)a(x) = B(X)0, (6)
or

alx) = A(X) B, (7)
where

T=(u® u? . oum)T 8)
A = 5 WO ) BB (). ©
B(X)=[B1 By .. Bn], (10)
in which

B =W(X—x)p(x). (12)

Substituting (7) into (1)u" can be expressed as

u"(x) = @'

()0, (12)
whereais the vector of MLS shape functions and given by
o) =( pAB, pTAIB, .. pTAIB, ) . (13)

It should be noted that the MLS shape functions do not satisyKronecked
criterion, but possess a so-called partition of unity prope as follows.

Ii@wzl (14)

A new shape function possessing the Kroneekdunction properties is created
through a technique as described in the following section.

4 Moving least square - one dimensional integrated radial bsis function net-
works technique

A schematic outline of the LMLS-1D-IRBFN method is depictadrigure 2. The
proposed method with 3-node support domams-@3) and 5-node local 1D-IRBF
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networks (s = 5) is presented here. On argrid line [I], a global interpolant for
the field variable at a grid poing is sought in the form

i U[J] (15)

where{(pj} is a set of the partition of unity functions constructed gsiiLS

approxmantsu[ ]( i) is the nodal function value obtained from a local interpblan
represented by a 1D-IRBF netwofK, n is the number of nodes in the support do-
main ofx;. In (15), MLS approximants are presently based on lineaynmohials,
which are defined in terms of 1 arndRelevant derivatives afatx; can be obtained
by differentiating (15)

dux) & (dg(x) — . oull(x)

ox :le< éx U[J](Xi)+%(xi) X )’ (16)
2ux) & (2 (%) . dp(x)aull(x) — a2uil(x)

e le< di@ ulx) +2 éx x TeWTEe— ) AN

where the valuesli!(x;),dull! (x) /dx and 82ulll (x) /@x? are calculated from 1D-
IRBFN networks withng nodes.

4.1 One-dimensional IRBFN

Consider a segmenj][with ng nodes on an-grid line [I] as shown in Figure 2. The
variation of the nodal functionll! along this segment is sought in the IRBF form.
The second-order derivative of! is decomposed into RBFs; the RBF network is
then integrated once and twice to obtain the expressiortkddirst-order derivative
of ulll and the functionul! itself as follows.

o) o L
pranialDy whHGH () = 5 w! )H[z] (x), (18)
k=1 K=1
oulll(x)
7\ (k) (k)
X _kle H[l] (X) +c1, (29)
. Ns
ull(x) = Z W(k)H[(c;)(X) + C1X+Cp, (20)
K=1
(K) sy 1™
where{w(k }k ,are RBFwelghts to be determln@ k 1= {H[Z] (x)}k_1

known RBFSH[ ]( )= fH ( )dx; H ( X) = fH ( )dX' andc; andc; integra-
tion constants which are aIso unknown An example of RBRJ urs¢his work, is
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the multiquadricsG® (x) = v/(x—x®)2 + a®2 al - the RBF width determined
asa® = pd®™, B a positive factor, and¥ the distance from th&™ center to its
nearest neighbour.

It is more convenient to work in the physical space than innbgvork-weight
space. The RBF coefficients including two integration camntst can be transformed
into the physically meaningful nodal variable values tlglothe following relation

G“]:H_(Vg>, (21)
whereH is anns x (ns-+ 2) matrix and given by
Ho'0w) HZ'0w) o HgP(a) xa 1
ho | Ho'0) HGle) o HgTee) x 1. 22)
HYO) HO () o A 0) % 1

all = (u®,u@ . um) T w= (WD W@ w)T andc= (c1,c2)". There are
two possible transformation cases.

For a segmentj] with only interior points: The direct use of (21) leads to an
underdetermined system of equations

or

( ‘g) = Ctl, (24)
whereC = H is the conversion matrix whose inverse can be found usingitigei-
lar value decomposition (SVD) technique.

For a segmentj] with interior and boundary pointsOwing to the presence @f
andc,, one can add an additional equation of the form

w
f=K ( c ) (25)
to equation system (21). In the case of Neumann boundaryitaors] this subsys-
tem can be used to impose a derivative boundary value-at,

~ 0u(xp)
f=— (26)

K:[H[(ll])(xb) HY06) - HiP(6) 1 0. @7
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The conversion system can be written as

(%) -[K](E)-e(%) =

or

W — il
()-e1(%7)

It can be seen that (24) is a special case of (29), wtieisesimply set to null.
By substituting Equation (29) into Equations (18)-(20k #econd- and first-order
derivatives and the function of the variahlé! are expressed in terms of nodal
variable values as

a2ulil(x . ~_1( ull
s = (M3 00 HE 00 HE w00 €2 (), .
du[j] X s ~_ ljm
dx( ) :(H[g?(x),H[(f])(x),...,Hfl”]>(x),1,o)c 1< . ) (31)
| s _ /gl
u“l(x):(Hfol])(x),H[gz])(x),...,H[g]‘)(X),x,l)C 1( ¢ > (32)
or
2,/ -
‘9;7)(2()‘) — L 4 kpe(¥), (33)
i o
s D0 G40, (34)
Ul (x) = dBall + koe(x), (35)

wherekoy, kix andkyy are scalars whose values dependk@md a boundary value
f; anddoy, d1x anddyy are known vectors of length.

By application of Equations (33) and (34) g nodes on the segmenj]| the
second- and first-order derivativeswf at nodex; are determined as

azu[”(xi) — _

F Daxiidk:) U7+ Koxgik) (36)
du[j] Xi _ ) —

d)i ) D axidk 2y U + Kk » (37)
ull(x) = 60x(idk7:)am + E0x(io||<) = |_(idk7:)l]“]7 (38)

wherel51X and 52X are known matrices of dimensiag x ng; Elx andEzX are known
vectors of lengting; andidk is the index number indicating the location of nogle
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in the local networkj]. It is noted thaDox = I, wherel is an identity matrix of
dimensionns x ns andkgx = 0. Therefore, the 1D-IRBFN shape function possesses
the Kroneckerd function properties.

4.2 Incorporation of MLS and 1D-IRBFN into the partition of unity framework

By substituting Equations (36)-(38) into Equations (15§)( the functioru(x;) and
its derivatives are expressed as

n L
u(x) =y ma, (39)
=1
Ou(X) _ o« (il Ll
ox ;(mlx” +hiy). (40)
O%UX) _ o (il 4yl
= ms, U+ ko ), (41)
ox2 le< ZX)
where
”_‘gi = (Ej(_xi)_(idk,:)v (42)
. @i (%) —
), = (gg( ) (iok:) + @ (%) Daxak) (43)
) 02 (x)— @ (%) = _
My = ai((z )'<idk,:>+2 (gi )Dlxadk,:)+<pj(><a)sz(idk,;), (44)
k[lji = (EJ( )klx(ldk) (45)
) 0 _
I =2 q;( )klx ko + B 06) Kax(ialg - (46)

From Equations (14), (39) and (42), one can see that the LMDIRBFN shape
function possesses the Kroneckeftinction properties.

Equations (40) and (41) can be expressed as

du(x;) il ) 4 il

= 47
dzu(xi) T .
oo =Ml kg, (48)

whered™ = (u®,u®@ ..., u(”r>)T, n, the number of nodes in the netwdik kﬂ( and
kgl are known scalars, arrd[l'L_andnﬂL are known vectors of length, defined by

M) = Mhap + Mo 1 =121 (49)
=l i

mZXIdj mZXIdJ +rﬁ[21)](7 j=12..n (50)
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in whichid j is the index vector mapping the location of nodes of the loealvork
[j] to that in the LMLS-1D-IRBF networki].

The values of first- and second-order derivatives wfith respect toc at the nodal
points on the grid lingl] are given by

% = Milall + &l (51)
2’\ ~

% — mllal + k) (52)
where

0= (u¥.u®,...u™)" (53)
Mg)]((i,idi) = My, (54)
o 1] _ Al

M 2x(i,idi) = mzlx’ (55)
Rﬂ(i) = Kiy (56)
@(i) = kgi, (57)

in which n; is the number of nodes on the grid lifié, andidi the index vector
mapping the location of nodes of the local netwéiko that in the grid lindl].

The values of first- and second-order derivatives wfith respect tox at the nodal
points over the problem domain are given by

b - -

& = MU+ k1x7 (58)
20 -~ -

e~ Mad+ke, (59)
where

0= (u®.u®, ... (60)
o [ou® au®  aue )" o
ax \ ax ' ax 7 ox ’ (61)

(62)

o2a (o2 o%u@ g’
2 ox2 7 gx2 7 gx2 ’

andM 1, andM ,, are known matrices of dimensidi, x Nip; Rlx andRzx are known
vectors of lengthN;,; and Njp is the total number of interior nodal points. The
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matricesM 1, andM o, and the vectork;, andkoy are formed as follows.
~ ~
M 1xidliary = M n (63)
~ ~
M 2xidl idly = M o, (64)
> ol
Kix(idly = ki), (65)
> ol
Kox(idly = Kby, (66)

in whichidl is the index vector mapping the location of nodes on the gml[l] to
that in the whole grid.

Similarly, the values of the second- and first-order deirrest of u with respect to
y at the nodal points over the problem domain are given by

i - -
— =Myl 7
ay U+ Kiy, (67)
%0 ~ . -
ay2 Myl -+ kay. (68)

5 Governing equations for two-dimensional incompressibleiscous flows

In this work we limit the analysis to two-dimensional prahble andthe governing
equations for incompressible viscous floasan therefore bevritten in terms of
stream functiony and vorticity w as [27]

0%y 9%y

W+d—)/2__w’ (69)
1 (%P0 ) dw (dpio opiw (70)
Re\ dox2 = 09y2 ) ot dy dx dx dy )’

whereReis the Reynolds numbet.the time, andx,y)T the position vector. The
x andy components of the velocity vector can be defined in terms efstream
function as

_ 9y
u= d_y7 (71)
L (72)

S ox’
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6 LMLS-1D-IRBFN discretisation of governing equations forincompressible
viscous flows

The domain of interest is discretised using uniform Caatesjrids. With the
backward Euler scheme for time discretisation, Equati@® énd (70) can be
expressed as

P2y g2yt
ox2 * ay?
Ot (0% QMU oy 9w gy g
Re( I oy? ) @ - +At< dy 0x X dy)’

(74)

=", (73)

where the superscripis) and (n+ 1) denote the time levels anfit the time dis-
cretisation step.

Making use of (58), (59), (67) and (68) and collocating theegning equations (73)
and (74) at the interior points result in

E. g™ =RHS, (75)
E,0™Y = RHS, (76)
where

E1 =My + My, (77)
RHS = — @™ — (ko +koyy) , (78)
~ At |~ ~ -

Eo= — (Mo +Mo, —1 79
2 Re( 2x+ Moy ), (79)

RHS = -0 — & (ko + Kay)
HMKMWWW+Q%>(MU®@+QQJ—(Muwm+ﬂ%>(mw6m+@%ﬂ’
(80)
in which Kuxy , Kaxy, Kayy , Koy , Kixaos Koxeo, Kiye @ndkayg, are known vectors of length
The nonlinear system of equations (75) and (76) is solvedguie pseudo-time
stepping procedure as follows:

» Step 1: Guess the initial solution of vorticity.

» Step 2: Solve (75) foy.
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» Step 3: Compute the vorticity boundary conditions and thavection terms
explicitly.
» Step 4: Solve (76) fow.

» Step 5: Check convergence criterion tor

\/Ei(afua>_(¢n)2

Nzip ( cq(ul)) 2

i=1

<TOL (81)

whereTOL is a given tolerance and presently set to be'0 If not con-
verged, return to step. Dtherwise, stop.

7 Numerical results and discussion

Several examples are investigated here to study the pefaenof the present
method. The domains of interest are discretised using §lantgrids. By using the
LMLS-1D-IRBFN method to discretise governing equationd #re LU decompo-
sition technique to solve the resultant sparse system aflgineous equations, the
computational cost and data storage requirements areaedtor the purpose of
CPU times comparisons, all related computations are caoig on a single 2.4
GHzprocessor machine with@B RAM.

7.1 Example 1: Two-dimensional Poisson equation in a squal@amain

The present method is first verified through the solution eftiowing 2D Poisson

equation
d0%u 94
o Ty =0 (82)

defined on a square domain<0x,y < 1 and subject to Dirichlet boundary condi-
tions. The problem has the following exact solution

Ug = Sinh(7D sin(1x) sinh(ty). (83)

A uniform grid of Ny x Ny is employed to discretise the problem domain. Two cases
of boundary conditions are considered as follows.

» Case 1: Dirichlet boundary conditions are imposed alohfpat edges.
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» Case 2: Dirichlet boundary conditions are imposed along haerizonal
edges and Neumann boundary conditions are imposed alongertioal
edges.

These boundary conditions can be derived from the exacti@oluThe proposed
LMLS-1D-IRBFN method with the following two approaches mnsidered.

» Approach 1:.n= 3 andns = 3, called LMLS-1D-IRBFN-3-node.
* Approach 2:n= 3 andns = 5, called LMLS-1D-IRBFN-5-node.

Figure 3 presents the grid convergence study for Case 1ddmth approaches in
comparison with those ¢fDM with central-difference scheme atite 1D-IRBFN
method. The convergence study for Case 2 for the two appesachcomparison
with those of the 1D-IRBFN method is shown in Figure 4. Theveogence be-
haviours ofFDM, 1D-IRBFN, Approach 1 and Approach 2 for Case 1@(a>%%),
O(h316), O "8 and Op%%9), respectively. The convergence behaviour of 1D-
IRBFN, Approach 1 and Approach 2 for Case 2 @@*%), O(h'®4) and Op*9),
respectively. The numerical results shotihat the LMLS-1D-IRBFN-5-node is
much more accurate tha&fDM and LMLS-1D-IRBFN-3-node, and slightly bet-
ter than those of its global counterpart, i.e. 1D-IRBFN moédth

Table 1 presents the comparison of the number of nonzerceeksrper row of the
system matrix lnzpr) and condition numbercond) among the FDM, two present
approaches and the 1D-IRBFN for Case 1, whikble 2 shows the compari-
son of CPU time and percentage of nonzero elements of thersystatrixe =
(Nnz/Ntotal) x 100 (Nnz @and Niotai: the number of nonzero elements and the to-
tal number of elements of the system matrix, respectivaigpng these methods.
The comparison of condition number for Case 2 is given in &&bl The condi-
tion numbers of 1D-IRBFN, Approach 1 and Approach 2 are ofgame order
of magnitude and at most one order of magnitude larger thagsetbf FDM. The
number of nonzero elements per row of the system matgps, of the FDM with
central-difference scheme, LMLS-1D-IRBF-3-node and LMLI3-IRBF-5-node
methods are 5, 9, and 13, respectively and less than tha¢ &DHRBFN method.
Therefore, for a given grid size, the CPU time and memoryiremqents of Ap-
proach 2 are larger than those of Approach 1 and FDM, andfiignily less than
those of the 1D-IRBFN method. For example, for a grid of ¥2121, the CPU
time and thee of Approach 2 are 38.7 times and 2.6 times larger than thotieeof
FDM, respectively, and 89.6 times and 18.5 times less thasetbf the 1D-IRBFN
method, respectively. It is noted that for a given grid stze present Approach 2
is slower than the FDM. However, the present Approach 2 sekia given level
of accuracy with a coarser grid and hence more efficient. kamgle, as shown
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in Figure 3 and Table 2, the present Approach 2 with grid=z21l yields better
accuracy Ne = 6.88e — 6) in 0.88 seconds than the FDM with grid=121121
(Ne=3.4%—5) in 1.74 seconds.

Approach 2 yields much more accurate results than ApproaahdlFDM with
central-difference schemand is significantly more efficient than 1D-IRBFN in
terms of computational cost, as grid density increases.reftie, the remaining
examples will be investigated using Approach 2, i.e. LMUSHRBFN-5-node.

7.2 Example 2: Two-dimensional Poisson equation in a squa@main with a
circular hole

This example is concerned with the following 2D Poisson &qoa

u o _

ox2  oy?

defined on a square domain with a circular hole as shown inr&i§uand subject
to Dirichlet boundary conditions. The problem has the fellay exact solution

—877 sin(2mx) sin(2my), (84)

Ug = Sin(2mx) sin(2mny), (85)

from which the boundary values afcan be derived.

The grid convergence study for LMLS-1D-IRBFN and 1D-IRBFNtmods is pre-
sented in Figure 6. Table 4 describes the relative error aqihe and condi-
tion number ¢ond) of the present method in comparison with those of 1D-IRBFN
method. The numerical results showed that the present ohétmot as accurate as
the 1D-IRBFN method, but has a higher convergence rater(earmn of Of3 %)
than the 1D-IRBFN method (error norm of I(%)). Table 5 presents the com-
parison of CPU time and percentage of honzero elements afydtem matrix £)
between the 1D-IRBFN and LMLS-1D-IRBFN methods. The preseethod is
much more efficient than the 1D-IRBFN method in terms of CPhkt{e.g. 101.3
times for a grid of 12% 129) and memory requirements (e.g. 17.2 times for a grid
of 129x 129), thus the grid size can be refined to obtain more accschitions as
shown in Figure 6.

In comparing the convergence behaviours in Example 1 (hemmgus Poisson
equation on simply-connected domain) and Example 2 (honelgeneous Poisson
equation on multiply-connected domain), it is observed tha overall conver-
gence rate of Approach 2 for the former i$2 and that for the latter is.B0. At
first glance, the results might seem strange. However, hs$eved that to achieve
similar accuracyeof O(10°)), the convergence rates are very similar, i.§.23
for Example 1 and 30 for Example 2. In Example 1, the shape of solution is rel-
atively simple and the method can achieve even higher acg(ie of O(10~7)).
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However, at this higher level of accuracy, the local coneaog rate decreases,
causing a lower overall convergence rate as described above

7.3 Example 3: Lid-driven cavity flow

The cavity is taken to be a unit square with the lid slidingrreft to right at a unit
velocity as shown in Figure 7. The boundary conditions fogeah functiony are
defined by

=0, on x=0x=1y=0y=1, (86)
3—‘5:0, on x=0,x=1, (87)
aa—iljzo, on y=0, (88)
i—;‘/]:l, on y=1 (89)

Itis noted that only the Dirichlet boundary conditions (&6¢ used for solving (69),
while the Neumann boundary conditions (87)-(89) are uselétive computational
vorticity boundary conditions for solving (70).

It is well-known that the major difficulties of lid-driven e#y flow simulation are:
() the presence of singularities at two of the corners, Wihiakes it difficult to pre-
dict the solution accurately; and (ii) the dominant conietterms, when dealing
with high Re which can cause oscillatory solutions if an improper sohérused
or computational grids are not sufficiently refined. The gridivergence study is
first conducted for the lid-driven cavity flow problem wike of 1000 using fol-
lowing two approaches.

e Approach 1: The convection terms are calculated using LMDEIRBFN
technique.

e Approach 2: The convection terms are calculated usingagl@bD-IRBFN
technique.

Table 6 shows the grid convergence study of the extrema ohanigontal and
vertical velocity profiles along the center lines of the tafor Approach 1 in
comparison withFDMs [1, 28] and 1D-IRBFN [29]. The second-order accurate
central finite-difference approximation was employed tpragimate the linear
terms in both FDMs mentioned above [1, 28], while the nom@ir@nvection terms
were discretised by using a first-order accurate upwinegifice scheme includ-
ing its second-order accurate term as a deferred correitti6ibM [1] and un-
centered second-order differences in FDM [28]. In Tahléhé percentage errors
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(e = (Vm—Vs) x 100/Vs) of the extremal velocitied,) based on the corresponding
spectral benchmark solutiongs) [20] are given. It can be seen that these errors
reduce with increasing grid densitieThe orders of convergence are 2.42, 2.61
and 2.92 for the minimum horizontal velocity,,, the maximum vertical velocity
Vmax and the minimum vertical velocitymi, along the center lines, respectively
The present results for a grid of 181101 are more accurate than those of FDMs
with more refined grids [1, 28], but less than those of 1D-IRBR9]. Table 7
describes comparisons of the number of nonzero elementoywenf the system
matrix (Nnzpr), number of iterationsNjeration) @and total CPU timeTqta)) required

to obtain the converged solution wilhOL = 10~12. The time stept is set to be
5x 102 for all cases. Note that for a given grid size the presentagmr is slower
than the FDM. However, the present approach achieves a gvehof accuracy
with a coarser grid and hence more efficient. For examplehawrsin Tables 6
and 7, the present approach with grid=881 yields better accuracy in 1559
seconds than the FDM with grid=129129 in 173302 seconds.

The corresponding grid convergence study for Approach Rengn Table 8.The
orders of convergence are 3.80, 3.26 and 4.261f@{, Vmax andvmin, respectively

It is interesting to see that Approach 2 yields more accuegalts than Approach

1 and the 1D-IRBFN metho@nd the convergence orders of Approach 2 are higher
than those of Approach. 1Approach 2 is employed to study the cases with high
Reynolds numbergRe= 3200 and 7500) The contours of stream function and
vorticity of the flow field inside the cavity @&e= 100Q 3200 and 7500 are shown
in Figure 8 The vertical and horizontal velocities along the horizb@ind vertical
center lines aRe= 100Q 3200 and 7500 are given in Figure Bhese figures show
that the current results are in good agreement with bendhswdutions of Ghia et
al. [1] and Botella and Peyret [20].

7.4 Example 4: Flow past a circular cylinder

The steady flow past a circular cylinder at |&®®numbers are considered in this
section, wherdRe=UgD/v, Uy is the far-field inlet velocity taken to be D the
diameter of the cylinder taken to be the kinematic viscosity. The top, bottom,
inlet and outlet boundaries are positioned at a distanc®Df20D, 10D and 3@
away from the cylinder, respectively, as shown in Figure These distances are
large enough to assume that the far-field flow behaves as atbtow [22] and
the far-field stream functiogy '@ can be defined by

D2
o=y (1 g ) 0
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The boundary conditions for stream function and vorticity given by

Y=y¢™ w=0, onry,la,Ms, (91)

oy Jw

" 0, - 0, onrlyg, (92)
7]

w=0, d—trlll —0, onTy. (93)

wheren is the direction normal to the cylinder surface as shown gufg 11. The
values of the vorticity on the circular bounddry, can be computed as
PPy %Py
=— 94
@, < e+ > (94)
where the subscriptv is used to denote quantities on the circular boundary. A

formula of Le-Cao et al. [30] is employed here to derive thetieily boundary
conditions at boundary points onandy-grid lines as follows.

2| 32
0= 1y ()| S 95
af =1+ () ] g, (95)
2] 52
W _ b\ 9w
o =~ |1+ () ] - (96)
whereqy andgy are known quantities defined by
ty 0% 1 0%y
Y + 7
%= "2 ayas "t axds’ ©7)
ty 02 197
Q= X W\N_i_ Y (98)

Y17 0xds ' t, dyds’

in which ty = dx/ds,ty = dy/ds ands is the direction tangential to the cylinder
surface (Figure 11).

Calculation of drag and pressure coefficients
For viscous flow, the forces acting on the body come from twoees including

pressure and friction. For the case of flow past a circulandgl, the dradp and
its coefficientCp can be defined by

21

o = R/ (uR‘;—‘: - uw) sin6do, (99)
0

Cp— 10 (100)

~ pUZR’
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whereRis the radius of the cylindep fluid density andu the dynamic viscosity.
The dimensionless pressure coefficient is given by

Co(0) = P(6) — Po

v 101

where pg is the far-field inlet pressure, ang(6) is the pressure on the cylinder
surface at anglé, evaluated as [31]
2 Jw
dr—R | p—
6=0 O/“ on

in which dy is the distance from the cylinder center to the inlet boupdar

do
p(6) = (po+1/20U8) - [ (%Z—‘;’) do,  (102)
R

r=

Non-overlapping domain decomposition technique

As described in Section 5, the relevant governing equatiwasof Poisson type.
Thus, consider the following Poisson problem in a don§inith Dirichlet bound-
ary condition on the boundagQ

Au= f(x,y) inQ (103)
u=b ondQ (104)

It is noted that the Neumann boundary conditions (92) camimosed directly
through the conversion process (26-29). Therefore, werjastl to consider the
Poisson problem with Dirichlet boundary condition here.

Without loss of generality, the domain of inter€xts partitioned into just two non-
overlapping subdomainQ; andQ, as shown in Figure 12. The Poisson problem
can be reformulated in the equivalent multi-domain formaeds [33].

Aull = in Q, (105)
u=bl¥ ondQ;NIQ (106)
Aul? = £2 in Q, (107)
u=bh? ondQ,NIQ (108)
ultl =y onl (109)
oul  auld

a0 = on onl (110)
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whererl is the interface betweeR; andQ,, 0Q; anddQ; are the boundaries of the
subdomaing; andQ,, respectively, and the superscrigtdenotes a subdomain.
Equations (109) and (110) are the transmission conditionsl¥ andu® on the
interfacel’. By solving the system of Equations (105-110), one can ol
interface valuesir, and the subdomain solution&! andu?.

We now describe an algorithm for solving the system of Equiati(105-110) as
follows. Let the subscriptip,bp and fb represent the location indices of interior
points, known boundary points and interface points ovebaasmnain, respectively;
N, Nip, Nop andNgp, are the total number of points, the number of interior pgints
known boundary points and interface points of a subdomagpectively.

System of Equations (105-110) are written in matrix forma®ivs.

EMGY = rHSY, (111)
~[1 1

uEljp) =, (112)
E@g2 — RHS?, (113)
~[2 2

O = Ut (114)
A A2

Oitp) = Uisp = Ur, (115)
DU = plg?, (116)

whereE!Y andE® are the known matrices of dimensi()Ni%] x NI and(Ni[s] X
NZ), respectively;uft) andu? are field variable vectors of lengti) andN?,

respectivelyRHSY, RHS?, Ul andu? are the known vectors of Iengt{i]%], Ni[s],

Nt[)lg and thzg respectivelyur unknown vector of lengtiN¢p; andD! andD2 the
known matrices of dimensiofN¢, x N¥) and(N¢p x N[?)), respectively.
From (111), (112) and (115), one is able to obtain the foltm\éxpression

1

u
o - o (ip)
1 1 1] R
[E(:Jp) N E(:7fp)] ¥ | =RHS (117)
ur
or
0y =AY+ Bur (118)
where

um) , (119)

w_ (gl ) tew
BY = — (EY,) El, (120)
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Similarly, from (113), (114) and (115), the interior valuafsthe subdomaif; is
given by

(i) =A% +B%ur (121)
where

2 _ (g2 7 2 _gld 2

A _(E(ivip)> RHS E(:,bp)ub)’ (122)
2 _ _ (gl \tee

B = <E<:,ip>> Bt (123)

Equation (116) can be expressed as

1

N
u,. u
(ip) (ip)
SR ) [ n2 A2 2
[Dc,ip) D bp) D(afp)] u' | =| PG Plop Plip u
ur ur
(124)

By substituting Equations (118) and (121) into (124), therface valuesir are
determined as

2 2 2
+ D ipA? + Db s

"2 m2_ o2
D(.ip)B? =Dty

0 a1
—D:ipAY ~ Db

pl¥ gy pl

ur = [
(5ip) ¢, fp)

(125)

By substituting (125) into (118) and (121), one can obtagghbdomain solutions
GEilL) andu%zl,).

The combination of LMLS-1D-IRBFN and domain decompositiechnique is de-
veloped to handle this large scale problem using a PC with &<z CPU and
3.25GB of RAM. The computational domain is discretised using Gaate grids

as shown in Figure 13. The grid convergence study of voytiigtribution on the
cylinder surface foRenumber of 40 is presented in Figure 14. It can be seen that
the current simulations converge with increasing grid diexss The results ob-
tained for the grids of 15% 151 and 16 167 are in good agreement with those
of Kim et al. [22] and Dennis and Chang [32]. Therefore, thie @f 151x 151

is then used to investigate the flow field with the other valieRenumbers (i.e.

5, 10 and 20). It is noted that when the flow reaches the stetatly, & pair of
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vortices and the separated region behind the cylinder anmesfd. The length of the
wake is measured from the rear of the cylinder to the end ofdparated region,
while the angle of separation is defined at the point wherestincity vanishes.
Table 9 presents the length of the wake behind the cylindgy)( the separation
angle @sep and the drag coefficienCp) for Renumbers of 5, 10, 20 and 40. The
comparison of vorticity and pressure coefficient distitnuton the cylinder surface

in the case oRenumbers of 5, 10, 20 and 40 are given in Figure 15 and 16, respec
tively. It can be seen that the present numerical resultéhiageod agreement with
other published results. The contours of stream functiahwamticity of the flow
field around the cylinder are shown in Figure 17.

8 Conclusions

A local MLS-1D-IRBFN method is proposed for solving incoragsible viscous
flow problems in terms of stream function and vorticity. Thregent approach is
based on the PU concept and incorporates the MLS and 1D-IRB&tNods. The
LMLS-1D-IRBFN approach offers the same order of accuracthaslD-IRBFN
method, while the system matrix is more sparse than thaieocf iR IRBFN, which
helps reduce the computational cost significantly as désmligarlier. The LMLS-
1D-IRBFN shape function possesses the Kroneékeroperty which allows an
exact imposition of the essential boundary condition. €sain grids are used to
discretise both rectangular and irregular problem domaliee numerical results
for the lid-driven cavity flows at higiRe numbers showed that the calculation of
convection terms using the global 1D-IRBFN technigue aresmagccurate than the
one using the LMLS-1D-IRBFN technique. The combination e t MLS-1D-
IRBFN method and a domain decomposition technique is ssfidsdeveloped
for solving a larger problem. The obtained numerical restor both cases of
lid-driven cavity flow and flow past a circular cylinder aregaod agreement with
other published results available in the literatuFae present method can be used to
handle problems with irregular domains, while the standiaite different method
cannot be applied directly at the grid points near the bognolcirregular domains.
Owing to the use of integrated RBFN for local approximatithe present method
appears to be more accurate than the FDM with central-diffe scheme. Owing
to the use of a fixed Cartesian grid, the present method isceeghb¢o be more
efficient than the conventional FDM, FVM and FEM when solvjrgblems with
moving boundary.
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Table 1: Poisson equation in a square domain subject toHtiboundary conditions: comparisofwith FDM and 1D-

IRBFN) of the number of nonzero elements per row of the systetrix (Nn.pr) and condition numbercond). The system
matrix is stored in a sparse matrix format.

Grid System matrix Nnzpr cond
FDM 1D-IRBEN App.1 App. 2 FDM 1D-IRBEN __ App. 1 App. 2

11x 11 81x 81 5 21 9 13 5.85E+01 1.59E+02 1.66E+02 1.55E+02
21x21 361x 361 5 41 9 13 2.35E+02 5.85E+02 6.93E+02 6.24E+02
31x31 841x 841 5 61 9 13 5.30E+02 1.32E+03 1.57E+03 1.41E+03
41x41 1521« 1521 5 81 9 13 9.43E+02 2.35E+03 2.80E+03 2.50E+03
51x51 2401x 2401 5 101 9 13 1.47E+03 3.67E+03 4.37E+03  3.91E+03
61x61 3481« 3481 5 121 9 13 2.12E+03 5.28E+03 6.30E+03 5.63E+03
71x71 4761x 4761 5 141 9 13 2.89E+03 7.19E+03 8.58E+03 7.66E+03
81x81 6241x 6241 5 161 9 13 3.77E+03 9.39E+03 1.12E+04 1.00E+04
91x 91 7921x 7921 5 181 9 13 4.77E+03 1.19E+04 1.42E+04  1.27E+04
101x 101 9801x 9801 5 201 9 13 5.89E+03 1.47E+04 1.75E+04  1.56E+04
111x 111 11881« 11881 5 221 9 13 7.13E+03 1.78E+04 2.12E+04  1.89E+04
121x 121 14161x 14161 5 241 9 13 8.49E+03 2.11E+04 2.52E+04  2.25E+04
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Table 2: Poisson equation in a square domain subject toHtidboundary conditions: comparisgwith FDM and 1D-
IRBFN) of CPU time and percentage of nonzero elements of yggesn matrix €). Note that for a given grid size the
present Approach 2 is slower than the FDM. However, the pte&pproach 2 achieves a given level of accuracy with a
coarser grid and hence more efficient. For example, as showigure 3, the present Approach 2 with grid=221 yields
better accuracyNe= 6.88e— 6) in 0.88 seconds than the FDM with grid=121121 (Ne= 3.49%—5) in 1.74 seconds.

Grid CPU time(secondgfor all shape functions Total CPU timeecondy £(%)

FDM 1D-IRBEN App.1  App. 2 FDM 1D-IRBEN App.1 App. 2 FDM 1D-IREN App.1 App. 2
11x11 0.00 0.03 0.12 0.22 0.00 0.05 0.18 0.23 5.624 20.988 9.462.751
21x21 0.00 0.06 0.53 0.86 0.01 0.10 0.54 0.88 1.327 10.249 2.3182513
31x31 0.01 0.39 1.31 2.05 0.02 0.58 1.33 2.08 0.578 6.778 1.0214471.
41x 41 0.03 2.12 2.54 3.83 0.05 2.85 2.62 3.97 0.322 5.062 0.5718140.
51x51 0.05 8.58 4.35 6.34 0.09 10.71 4.46 6.58 0.205 4.040 0.365.5210
61x 61 0.10 25.98 6.82 9.71 0.16 30.86 6.99 10.00 0.142 3.361 30.250.362
71x71 0.18 66.68 10.01 14.02 0.25 77.73 10.24 14.49 0.104 2.878 .1850 0.266
81x81 0.30 169.14 14.08 19.44 0.40 190.49 14.40 20.14 0.079 62.51 0.142 0.203
91x91 0.46 462.68 19.15 26.11 0.62 502.23 19.67 26.90 0.063 52.23 0.112 0.161
101x 101  0.69 1073.42 25.36 34.27 0.88 1139.92 26.04 35.58 0.051 .0102 0.091 0.130
111x 111  1.00 2202.37 32.84 43.85 1.25 2308.72 33.61 45.60 0.042 .8261 0.075 0.108
121x 121 1.43 4959.75 41.74 55.33 1.74 5123.18 42.58 57.37 0.035 .6741 0.063 0.090
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Table 3: Poisson equation in a square domain subject toHBtiand Neumann
boundary conditions: comparison condition numlzem@).

Grid cond
1D-IRBFN App. 1 App. 2

11x11 3.87E+02  3.70E+02 4.55E+02
21x21 1.41E+03 1.36E+03 1.63E+03
31x31 3.10E+03 2.94E+03 3.53E+03
41x 41 5.45E+03 5.12E+03 6.14E+03
51x51 8.45E+03  7.89E+03 9.47E+03
61x 61 1.21E+04 1.13E+04 1.35E+04
71x71 1.64E+04 1.52E+04 1.83E+04
81x81 2.14E+04 1.98E+04 2.37E+04
91x91 2.70E+04  2.49E+04 2.99E+04
101x 101 3.33E+04 3.07E+04 3.68E+04
111x 111 4.02E+04 3.70E+04 4.45E+04
121x 121 4.78E+04  4.40E+04 5.28E+04

Table 4: Poisson equation in a square domain with a circuler $ubject to Dirich-
let boundary conditions: comparison of relative error ndid® and condition
number ¢ond).

Grid Ne cond
1D-IRBFN Present 1D-IRBFN Present

25x 25 8.62E-03 4.86E-02 4.15E+02  4.28E+02
33%x33 3.43E-03 2.01E-02 6.20E+02 6.17E+02
41x 41 1.72E-03 9.12E-03 9.60E+02  8.75E+02
49x 49 9.95E-04 4.61E-03 1.35E+03 1.21E+03
57x 57 6.29E-04 2.57E-03 2.19E+03  2.21E+03
65x 65 4.27E-04 1.54E-03 2.15E+03 2.20E+03
73x 73 2.98E-04 9.80E-04 3.55E+03 3.58E+03
81x 81 2.19E-04 6.55E-04 3.58E+03  3.72E+03
89x 89 1.65E-04  4.55E-04 6.15E+03  6.29E+03
97x 97 1.28E-04 3.27E-04 6.65E+03  6.74E+03
105x 105 1.00E-04 2.41E-04 7.83E+03  8.28E+03
113x 113 8.02E-05 1.83E-04 1.35E+04 1.41E+04
121x 121 6.53E-05 1.41E-04 1.20E+04 1.28E+04

129x 129 5.39E-05 1.11E-04 1.47E+04  1.52E+04
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Table 5: Poisson equation in a square domain with a circuler $ubject to Dirich-
let boundary conditions: comparison of CPU time and pesggnbf nonzero ele-
ments of the system matri).

Grid CPU time(secondy £(%)
1D-IRBFN  Present 1D-IRBFN  Present
25x%x 25 0.39 1.71 7.579 2.323
33x 33 0.89 2.71 5.739 1.325
41x 41 3.18 4.41 4.600 0.851
49x 49 9.68 6.65 3.824 0.591
57x 57 24.72 9.49 3.276 0.434
65x 65 55.88 13.02 2.871 0.333
73x 73 115.22 17.27 2.548 0.263
81x 81 222.04 22.56 2.295 0.213
89x 89 464.42 28.76 2.085 0.176
97 x 97 946.15 35.96 1.913 0.148
105x 105 1793.67 44,39 1.766 0.126
113x 113 3153.54 54.16 1.639 0.109
121x 121 5140.94 65.55 1.530 0.095

129x 129 7937.85 78.39 1.435 0.083




Table 6: Lid-driven cavity flowRe= 1000: the grid convergence study and comparison of extréwelacity profiles along
the center lines. The convection terms are calculated uditigS-1D-IRBFN technique. Note that “Error" is relative to a
Benchmark solution.

Grid Umnin Error (%) y Vimax Error (%) X Vimin Error (%) X
Present 2k 21 -0.33342 14.193 0.333 0.27403 27.301 0.220 -0.34690 834.1 0.827
31x 31 -0.33043 14.962 0.202 0.32097 14.848 0.172 -0.43390 7&7.6 0.888
41x 41 -0.35408 8.876 0.183 0.34304 8.993 0.165 -0.47541 9.804 .9010
51x51 -0.36903 5.029 0.177 0.35730 5.211 0.162 -0.49891 5.345 .9060
61x 61 -0.37750 2.848 0.174 0.36561 3.006 0.160 -0.51164 2.930.9070
71x71 -0.38218 1.644 0.173 0.37027 1.769 0.159 -0.51846 1.635.9080
81x 81 -0.38478 0.976 0.172 0.37290 1.072 0.159 -0.52215 0.935.9090
91x91 -0.38626 0.595 0.172 0.37441 0.670 0.158 -0.52420 0.547 .9090
101x 101 -0.38712 0.373 0.172 0.37531 0.432 0.158 -0.52536 0.32®.909
1D-IRBFN [29] 101x 101 -0.38772 0.218 0.172 0.37601 0.247 0.158 -0.52598 0.208.909
FDM (¢ — w) [1] 129x 129 -0.38289 1.462 0.172 0.37095 1.589 0.156 -0.51550 2.19M.906
FDM (u—p) [28] 256x 256 -0.37640 3.132 0.160 0.36650 2.770 0.152 -0.52080 1.192.910
Benchmark [20] -0.38857 0.172 0.37694 0.158 -0.52708 0.909
Present Order of convergence 2.42 2.61 2.92
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Table 7:Lid-driven cavity flow,Re= 1000: comparisons of the number of nonzero
elements per row of the system matri¥,¢,;), number of iterationsNjeration) and
total CPU time Tiotal) required to obtain the converged solution witdL = 10-12,
The time stept is set to be 5 102 for all cases. Note that for a given grid size the
present approach is slower than the FDM. However, the preggmoach achieves
a given level of accuracy with a coarser grid and hence mdiezft. For example,
as shown in Table 6, the present approach with grid=81 yields better accuracy
in 155977 seconds than the FDM with grid=129129 in 173302 seconds.

FDM Present

Grid System matrix Npzpr  Niteration  Trotal(SECONdS Nnzpr  Niteration  Trotal(SECONd$
21x21 361x 361 5 52207 36.46 13 51088 43.66
31x31 841x 841 5 44914 45.67 13 40590 63.48
41x 41 1521x 1521 5 41703 68.59 13 43047 220.69
51x51 2401x 2401 5 36467 148.10 13 44513 452.89
61x 61 3481x 3481 5 39591 250.27 13 45239 781.17
71x71 4761x 4761 5 41803 354.93 13 45569 884.19
81x81 6241x 6241 5 42893 482.21 13 45714 1559.77
91x91 7921x 7921 5 43568 679.77 13 45779 2356.15
101x 101 9801x 9801 5 44028 898.53 13 45807 2964.84
111x 111 9801x 9801 5 44360 1207.33 13 - -
121x 121 9801x 9801 5 44608 1433.07 13 - -
129x 129 9801x 9801 5 44764 1733.02 13 - -




Table 8: Lid-driven cavity flowRe= 1000: the grid convergence study and comparison of extréimarzontal and vertical
velocity profiles along the center lines. The convectiomteare calculated using global 1D-IRBFN technique. Noté tha
“Error" is relative to a Benchmark solution.

Grid Umnin Error (%) y Vimax Error (%) X Vimin Error (%) X
Present 2k 21 -0.30543 21.397 0.223  0.29460 21.844 0.181 -0.39550 624.9 0.866
31x 31 -0.35522 8.583 0.179 0.34326 8.936 0.166 -0.47452 9.971 .9000
41x 41 -0.37207 4.245 0.173 0.35938 4.660 0.162 -0.50276 4.615 .9060
51x51 -0.38005 2.193 0.172 0.36744 2.519 0.160 -0.51576 2.147 .9080
61x 61 -0.38423 1.117 0.171 0.37183 1.356 0.159 -0.52208 0.949 .9090
71x71 -0.38642 0.552 0.171 0.37421 0.725 0.158 -0.52512 0.371.9090
81x 81 -0.38756 0.259 0.171 0.37549 0.385 0.158 -0.52655 0.100 .9090
91x91 -0.38815 0.108 0.171 0.37618 0.203 0.158 -0.52720 0.022 .9090
101x 101 -0.38845 0.032 0.171 0.37655 0.104 0.158 -0.52746 0.073.909
1D-IRBFN [29] 101x 101 -0.38772 0.218 0.172 0.37601 0.247 0.158 -0.52598 0.208.909
FDM (¢ — w) [1] 129x 129 -0.38289 1.462 0.172 0.37095 1.589 0.156 -0.51550 2.19M.906
FDM (u—p) [28] 256x 256 -0.37640 3.132 0.160 0.36650 2.770 0.152 -0.52080 1.192.910
Benchmark [20] -0.38857 0.172 0.37694 0.158 -0.52708 0.909
Present Order of convergence 3.80 3.26 4.26
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Table 9: Flow past a circular cylinder: comparison of the evédngth [sep), the
separation angled¢e) and the drag coefficienC) for Re=5,10,20 and 40, using
agrid of 151x 151.

Re Source Lsep 6Gsep  Cp

5 Dennis and Chang [32] - - 4.116
Kim et al. [22] - - 4.282
Present - - 4.108

10 Dennisand Chang[32] 0.265 29.6 2.846
Ding et al. [21] 0.252 30.0 3.070
Kim et al. [22] 0.281 295 2920
Present 0.27 30.1 2.829

20 Dennisand Chang[32] 0.94 437 2.045
Ding et al. [21] 0.93 441 2180
Kim et al. [22] 0.91 43.7 2017
Present 0.92 43.6 2.010

40 Dennis and Chang [32] 2.345 53.8 1.522
Ding et al. [21] 220 535 1713
Kim et al. [22] 2.187 551 1.640

Present 2.31 53.7 1.542
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Figure 1: Cartesian grid discretisation.
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Figure 4. Poisson equation in a square domain subject toHdétiand Neumann
boundary conditions: convergence study for 1D-IRBFN, Aggh 1 with3 = 10
and Approach 2 witt8 = 5.
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Figure 5: A square domain with a circular hole.
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Figure 6: Poisson equation in a square domain with a cirdutde subject to
Dirichlet boundary conditions: convergence study for EBFN and the present
method (LMLS-1D-IRBFN-5-node) witl3 = 15.
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Figure 7: Lid-driven cavity flow: problem geometry and boandconditions.
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Figure 11: Circular cylinder and associated coordinatéesys.
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Figure 12: Non-overlapping partition of the doma&rinto two subdomain§; and
Qo.
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Figure 13: Flow past a circular cylinder: grid configuration
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Figure 14: Flow past a circular cylinder: grid convergencelg, Re = 40.
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Figure 15: Flow past a circular cylinder. comparison of ity on the circular
cylinder in the cases dke=5,10,20 and 40, using a grid of 154151.
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Figure 16: Flow past a circular cylinder: comparison of puee coefficient on the
circular cylinder in the cases &e= 5,10,20 and 40, using a grid of 154151.
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Figure 17: Flow past a circular cylinder: contours of strefamction (left) and
vorticity (right) for the cases dRe=5,10,20 and 40, from top to bottom, using a
grid of 151x 151.



