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Abstract. This article reports on a comparative study to identify 

electroencephalography (EEG) signals during motor imagery (MI) for motor area 

EEG and all-channels EEG in the Brain Computer Interface (BCI) application. In this 

paper, we present two algorithms: CC-LS-SVM and CC-LR for MI tasks 

classification. The CC-LS-SVM algorithm combines the cross-correlation (CC) 

technique and the least square support vector machine (LS-SVM). The CC-LR 

algorithm assembles the cross-correlation (CC) technique and binary logistic 

regression (LR) model. These two algorithms are implemented on the motor area 

EEG and the all-channels EEG to investigate how well they perform and also to test 

which area EEG is better for the MI classification. These two algorithms are also 

compared with some existing methods which reveal their competitive performance 

during classification. Results on both datasets, IVa and IVb from BCI Competition 

III, show that the CC-LS-SVM algorithm performs better than the CC-LR algorithm 

on both the motor area EEG and the all-channels EEG. The results also demonstrate 

that the CC-LS-SVM algorithm performs much better for the all-channels EEG than 

for the motor area EEG. Furthermore, the LS-SVM based approach can correctly 

identify the discriminative MI tasks, demonstrating the algorithm’s superiority in 

classification performance over some existing methods.  

 

Keywords- Brain Computer Interface (BCI); Electroencephalogram (EEG); Motor 

imagery; Cross-correlation; least square support vector machine; Logistic regression. 
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1. Introduction 

The ability to communicate with the outside world is one of the most indispensible 

assets that people have. Our hands, legs and other limbs are essential for performing 

our daily activities. Unfortunately, these abilities can be lost due to accidents or 

diseases (e.g. amyotrophic lateral sclerosis (ALS), brainstem stroke, mitochondrial 

disease, spinal-cord injury, traumatic-brain injury and even later-stage cerebral palsy 

etc) [1]. These diseases can disrupt the neuromuscular channels through which the 

brain communicates with its environment and exerts control. Therefore, it is 

impossible for the people who are motor disabled, to live and meet their daily needs 

without external help.  

The Brain Computer Interface (BCI) is a well known emerging technology 

and research field, in which people are able to communicate with their environment 

and control prosthetic or other external devices by using only their brain activity [2]. 

It promises to provide a way for people to communicate with the outside world using 

thoughts alone. A motor imagery based BCI translates a subject’s motor intention into 

a command signal through real-time detection of motor imagery states, e.g. 

imagination of left hand or right hand movement. Motor imagery (MI) is a common 

mental task in which subjects are instructed to imagine themselves performing a 

specific motor action (such as a hand or foot movement) without an overt motor 

output [1, 3]. Among various techniques, Electroencephalography (EEG) is the most 

studied potential technique to capture MI brain activities for non-invasive BCI 

designs due to its excellent temporal resolution, non-invasiveness, usability, and low 

set-up costs [4, 5].  

A BCI system, by extracting EEG signals directly from the brain, might help 

to restore abilities to patients who have lost sensory or motor function because of their 
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disabilities. The major purpose of BCI is to translate a brain activity into a command 

to control an external device [6]. Users produce different brain activity patterns that 

will be identified by the system and translated into commands. In most existing BCI, 

this identification relies on a classification algorithm [6], i.e. an algorithm that aims at 

automatically estimating the class of data as represented by a feature vector. BCI 

applications are considered to be pattern recognition problems that signal processing, 

feature extraction and pattern classification techniques are attempting to solve.  

Recently, cross-correlation (CC) technique has become popular in biomedical 

research for feature extraction from time series data. This method has been 

successfully used in many applications like ECG beat detection [7, 8], gait signal 

processing [9, 10], emotional speech recognition [11], heart rate variability 

classification [12], signal to noise enhancement [13] and seizure prediction [14]. This 

study intends to apply the CC technique for feature extraction from the MI EEG data 

as all the channels on the head do not provide independent information and there are 

high correlations between the channels in EEG [15]. EEG signals are also typically 

very noisy and not directly usable in BCI applications. The CC technique can reduce 

noise by means of correlation calculation because of the characteristics of signal 

periodicity [16]. 

This paper focuses on two classifiers, least square support vector machine 

(LS-SVM) and binary logistic regression (LR) for classifying the cross-correlation’s 

features because the LS-SVM is a robust intelligent technique for classification in 

BCI applications and the LR is increasingly popular in machine learning, due to its 

similarity with support vector machines (SVMs). The LS-SVM and LR classifiers are 

employed separately on the cross-correlation features and then compared to see which 

classifier performs better for the cross-correlation features. Thus this study develops 
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the two algorithms for classifying MI EEG signals, namely cross-correlation based 

least square support vector machine denoted by CC-LS-SVM algorithm and cross-

correlation based logistic regression presented as CC-LR algorithm.  In the CC-LS-

SVM algorithm, a CC technique is used for feature extraction and the LS-SVM 

method is employed to classify the features. On the other hand, in the CC-LR method, 

we apply a CC technique to extract representative features from the MI EEG data and 

use a LR logistic regression for classification. 

It is known that EEGs record brain activities as multichannel time series from 

multiple electrodes placed on the scalp of a subject. The different signals from 

different scalp sites do not provide the same amount of discriminative information. In 

this study, we are interested in investigating the performance of the EEG channels of 

the motor cortex area and the all-channels EEG data for the two algorithms. In the 

human brain, the motor cortex area is a very important area that controls voluntary 

muscle movements which are discussed in detail in Section 2. Current studies aim to 

improve the classification accuracy for the development of BCI systems and to 

investigate which area (motor area or the whole brain) is better for acquiring MI 

information for classification. In this paper, we also investigate the performances of 

LS-SVM and LR classifiers on the cross-correlation features in both areas. 

The proposed two algorithms are implemented on datasets, IVa and IVb from 

BCI Completion III [17, 18]. The 3-fold cross validation procedure is used to evaluate 

the performance of the two algorithms on the basis of classification accuracy. In both 

datasets, the experimental outcomes demonstrate that the LS-SVM classifier performs 

much better than the LR classifier on the cross-correlation features in both areas. The 

classification accuracy of the CC-LS-SVM algorithm is higher for the all-channels 

data than the channels of motor area. The experimental results also show that the CC-
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LS-SVM algorithm is superior to the existing methods for the motor area EEG and the 

all-channels EEG data.  

The rest of the paper is organized as follows: Section 1.1 reviews the existing 

research. Section 2 describes the materials and methods that are introduced in this 

study. This section also describes about the experimental data and the 

implementations of these methods. The experimental results are presented in Section 

3 and a brief discussion regarding experimental result is provided in Section 4. Finally 

Section 5 draws the conclusions of the study. 

 

1.1. Review of the existing research  

Over the last two decades, there have been numerous studies performed on BCIs for 

MI tasks classification for dataset IVa of BCI Competition III.  A number of research 

groups have developed BCIs that employ brain signals from the motor cortex area, for 

example, Wang et al. [19] and Song et al. [20]. Some researchers introduced several 

methods for analysing the entire channels EEG data for BCI applications and 

investigated the physiological nature of the experimental paradigms, for instance, 

Blankertz et al. [17] and Wu et al. [21]. 

Wang et al. [19] introduced a technique based on independent component 

analysis (ICA) with constraints, applied to the rhythmic EEG data recorded from a 

BCI system to isolate the rhythmic activity for MI tasks over the motor cortex area. 

Their algorithm includes three parts: spatial filter generation, power feature extraction 

and classification. They used a spatial filter through the technique of spectrally 

constrained ICA (cICA) and extracted power feature in µ-rhythm frequency band as 

the major classification pattern. An advanced SVM was applied to classify the power 
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features. The results demonstrated that the more advanced SVM with cICA based 

power features did not show a significant improvement in performance.  

Song et al. [20] reported a framework to classify EEGs for BCI learning 

optical filters for dynamical system (DS) features. They used EEG signals as the 

output of a networked dynamical system (cortex) and exploited synchronization 

features from the DS for classification. They also proposed a new design for learning 

optical filters automatically from the data by employing a fisher ratio criterion on the 

motor cortex area. Experimental evaluations show that the dynamic system features 

combined with a filter learning approach is not enough to produce competitive 

performance on the motor cortex area for the MI signal classification in BCI 

applications.  One of the disadvantages is that the parameters of their method were 

tuned manually. 

 The BCI III Winner algorithm in [17] involved an ensemble classifier based 

on three methods: (1) common special pattern (CSP) on even-related 

desynchronization (ERD) (2) autoregressive (AR) model on ERD and (3) Linear 

Discriminant Analysis (LDA) on temporal waves of readiness potential for dataset 

IVa. This algorithm was implemented for all-channels of EEG data. For subjects, aa 

and aw in dataset of IVa of BCI Competition, all three features (ERD feature by CSP 

analysis, ERD feature by a AR model and ERP feature by LDA on temporal waves) 

have been used and combined by a bagging method. For the other three subjects, al, 

av and ay of the same dataset, only the CSP based feature was used. Furthermore, the 

Winner algorithm used the bootstrap aggregation and employed formerly classified 

test samples in subjects aw and ay, to achieve the best performance. 

Wu et al. in [21] reported an algorithm for classifying single-trial EEG during 

motor imagery by iterative spatio-spectral patterns learning (ISSPL). In their adopted 
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framework, feature extraction and feature classification are treated as independent 

stages: spectral filters and the classifier are parameterized jointly in the maximal 

margin hyperplane for optimization, and thereby their generalization performance can 

be controlled for the all-channels data. The results for the all-channels data 

demonstrated the efficacy of ISSPL and the resultant spectral filters did not suffer 

from the potential overfitting problem and only a few steps of iterations were needed 

to obtain a satisfactory classification performance. 

Although many methods have been developed in the past decade that yield 

impressive results in interpreting  BCI data,  the BCI technology is still not adequate 

for identifying the MI tasks from original data. This study addresses two questions: (i) 

what algorithm is the best for the MI classification? (ii) Which EEG data is better for 

the MI signal classification? Is it the motor area data or is it the all-channels data? To 

answer these two questions, this paper reports two algorithms based on the CC 

technique as described in Section 2.  

 

2. Materials and methods 

Two different approaches are developed in this study. One approach is the CC 

technique based LS-SVM called as CC-LS-SVM and the other one is the CC based 

LR denoted as CC-LR. The detailed descriptions of these methods are provided 

below. Fig. 1 (a) and Fig. 1(b) display the framework of the CC-LS-SVM algorithm 

and CC-LR algorithm respectively. 

 

2.1. CC-LS-SVM algorithm 

The CC-LS-SVM algorithm is a hybrid approach where the CC technique is used for 

the feature extraction and the LS-SVM is applied for the classification of the extracted 
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features. Fig. 1 (a) presents the scheme of the proposed CC-LS-SVM algorithm. A 

brief description of this algorithm is provided below. 

1. The C3 electrode position is considered as a reference channel. 

2.  The C3 channel is cross correlated with the data of the remaining channels 

and the cross-correlation sequences are obtained using the reference channel 

and any one of other channels. The detailed description of the CC technique is 

available in reference [7, 22].  

3. The six statistical features, mean, median, mode, standard deviation, maximum 

and minimum are extracted from each cross-correlation sequence to 

characterize the distributions of EEG signals, which reduce the dimension of 

the cross-correlation sequence.    

4. Extracted features are segmented as a training and testing set using a 3-fold 

cross validation process. 

5. A two-step grid search technique [23, 24] is implemented on each three fold of 

a 3-fold cross validation method separately to select the optimum values of the 

hyper parameters (γ , 2
σ ) for the LS-SVM.  

6. After selecting the optimal values of the hyper parameters, the training vector 

set is used to train the LS-SVM classifier with radial basis function (RBF) 

kernel and the testing vector set is applied as the inputs to evaluate the 

classification accuracy and effectiveness of the classifier with the selected 

parameters. The details of the LS-SVM algorithm could be found in reference 

[25-27]. 

7. The outputs of the LS-SVM algorithm provide the prediction results that 

directly assign the samples with a label +1 or -1 to identify which category it 

belongs to.  
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2.2. CC-LR algorithm 

The CC-LR algorithm combines two techniques, cross-correlation (CC) and logistic 

regression (LR) for classifying the MI tasks in BCI applications. This algorithm 

performs in two stages: feature extraction and feature classification. The CC approach 

is employed to extract the features from the original MI data and the LR is used to 

distinguish the features. Fig. 1(b) depicts the proposed scheme for the CC-LR 

algorithm described as below. 

1. This algorithm follows the steps 1-4 of the CC-LS-SVM algorithm to 

extract features by using the CC technique. 

2. Then we employ the training and testing feature sets, separately, to the LR 

classifier as the inputs.  The performance of the LR classifier is assessed 

based on the outcomes of the testing set. A detailed description of the LR 

method is available in [28, 29, 14].   

3. The parameters of the LR model are estimated by maximum likelihood 

estimation (MLE) [14] for each of the three folds, separately. 

4. The classification results are obtained at this stage. Based on the outcomes, 

we can decide how many values are predicted correctly for each of two 

classes by the algorithm.   

In the following sections, we shall provide the details about the datasets used in the 

experiments and on how the experiments are set up. The implementations of these two 

algorithms are described in detail in Section 2.3. Then we present experimental results 

as well as discussions in Section 3. 
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2.3. Data and implementation 

Two publicly available datasets, IVa and IVb of BCI Competition III, are used in this 

study to evaluate the efficacy of the proposed approach.  All EEG data of these two 

sets were collected during motor imagery (MI) tasks. 

Dataset IVa [17, 18] was recorded from five healthy subjects (labelled ‘aa’, 

‘al’, ‘av’, ‘aw’, ‘ay’), who performed right hand (RH) and right foot (RF) MI tasks. 

The subjects sat in comfortable chairs with their arms resting on armrests. This data 

set contains data from the four initial sessions without feedback. The EEG signals 

were recorded from 118 electrodes according to the international 10/20 system. There 

are 280 trials for each subject, i.e. 140 trials for each task per subject. During each 

trial, the subject was required to perform either of two MI tasks for 3.5 seconds. A 

training set and a testing set consisted of different sizes for each subject. Among 280 

trials, 168, 224, 84, 56 and 28 trials composed the training set for subjects ‘aa’, ‘al’, 

‘av’, ‘aw’, ‘ay’ respectively. The remaining trials composed the test set. This study 

uses the down-sampled data at 100 Hz where the original sampling rate is 1000 Hz. 

Dataset IVb [17, 18] was collected from one healthy male subject. He sat in a 

comfortable chair with arms resting on armrests. This data set has data from 7 initial 

sessions without feedback. The EEG data consisted of two classes: left hand (LH) and 

right foot (RF) MI tasks. Signals were recorded from 118 channels in 210 trials. 118 

EEG channels were measured at the positions of the extended international 10/20 

system. Signals were band-pass filtered between 0.05 and 200 Hz and digitized at 

1000 Hz with 16 bit (0.1 µV) accuracy. The data was down-sampled at 100 Hz, which 

is used in this research. 

In this study, we intend to implement our two methods on the electrodes of the 

motor cortex area of the brain and also on the all-channel electrodes for comparison. 
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The channels recorded from the motor area are chosen to investigate the activities of 

the motor cortex area of the brain for the proposed algorithms and the all-channels are 

considered to see how the classification algorithms handle feature vectors of relatively 

high dimensions. Actually we are interested to see the performance of the two 

algorithms on the two areas (motor area and all-channels data) and also to decide 

which algorithm is better for given areas of the brain. We know that only a particular 

part of the brain is activated in response to an MI task which is called the motor 

cortex. Motor cortex is one of the important brain areas most involved in controlling 

and execution of voluntary motor functions and this area of the brain is typically 

associated to the MI movements.  

As we are looking for a response specifically in the motor cortex area, we 

manually select the 18 electrodes around the sensorimotor cortex based on the 

placement of international 10/20 system which includes the channels C5, C3, C1, C2, 

C4, C6, CP5, CP3, CP1, CP2, CP4, CP6, P5, P3, P1, P2, P4 and P6 from each of the 

two datasets.  In [19], Wang et al. also considered the same electrodes for their 

research and their experimental results suggested that these electrodes are the best 

channels for getting the MI information. 

As described before, the both datasets are originally recorded from 118 

electrodes. Fig. 2 presents the locations of electrodes of datasets, IVa and IVb from 

BCI competition III. 118 electrodes are shown labelled according to the extended 

international 10/20 system. This figure was made in EEGLAB (MATLAB toolbox for 

processing data from EEG, magnetoencephalography (MEG), and other 

electrophysiological signals) and the electrode system is described in [30]. In [19], 

Wang et al. explained that the selected electrodes cover the motor cortex area.  Thus, 
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prior knowledge as well as the results of the following electrodes are investigated in 

this study.  

In this study we firstly consider the electrode position C3 of the RH class as a 

reference channel from each subject of both datasets for the CC technique. This study 

uses the channel of the C3 electrode in the international 10/20 system as the reference 

channel. The C3 electrode is the best candidate for supplying the MI information 

about brain activities during the MI tasks in the international 10-20 system [31]. In 

each subject, the C3 channel is used as a reference channel for both the motor imagery 

EEG data and the all-channels EEG data. 

Secondly, in the motor area data, the reference channel C3 of the RH class is 

cross-correlated with the data of the remaining 17 channels of that class and the data 

of all 18 channels of the RF class for each subject of both datasets. Thus total 35 

cross-correlation sequences are obtained from the two classes of each subject. Then 

the mentioned six statistical features are calculated from each cross-correlation 

sequence and a feature vector set of 35×6 size is created. In the all-channels data, the 

reference channel C3 of the RH class is cross-correlated with 117 channels of this 

class and also 118 channels data of the RF class in each subject of both datasets. Thus 

we acquire a total of 135 cross-correlation sequences from the two-class MI data of a 

subject and then we extract previously mentioned six statistical features from each 

cross-correlation sequence to generate a feature vector set of 135×6 size. 

Thirdly, we divide the feature vector set randomly as the training set and the 

testing set using the 3-fold cross-validation method [32, 33] in both the motor cortex 

set and the all-channels data, separately. In the 3-fold cross-validation procedure, a 

feature vector set is partitioned into 3 mutually exclusive subsets of approximately 

equal size and the method is repeated 3 times (folds). Each time, one of the subsets is 
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used as a test set and the other two subsets are put together to form a training set. 

Then the average accuracy across all 3 trials is computed. 

Finally, we employ these feature vector sets as the input to the LS-SVM and 

also to the LR. In the CC-LS-SVM algorithm, the training set is applied to train the 

LS-SVM classifier and the testing set is used to verify the effectiveness of the 

classifier for both datasets. As the result of the LS-SVM relies largely on the choice of 

a kernel, the RBF kernel is chosen after many trials. Before the classification, the two 

parameters (γ , 2
σ ) of the LS-SVM method are selected by applying a two-step grid 

search procedure [23] on each three folds for getting reliable performance of the 

method as these parameters play an important role in the classification performance. 

In the LS-SVM, the RF is treated as +1 and RH as -1 for dataset IVa, and the RF is 

considered as +1 and LH as -1 for dataset IVb. 

In the CC-LR algorithm, we employ the training and testing sets as the inputs, 

separately, to the LR classifier; but we use the testing set to validate the classification 

accuracy of the classifier in both datasets. In the LR model, we consider independent 

variables x1 as mean values, x2 as maximum values, x3 as minimum values, x4 as 

standard deviation values, x5 as median values and x6 as mode values. We treat the 

dependent variable y as RH= 0 and RF= 1 for dataset IVa, and RF=0 and LR=1 for 

dataset IVb. The parameters of the LR model are obtained automatically using the 

maximum likelihood estimation (MLE) method. 

          

3. Results  

This section presets the experimental results of the proposed two algorithms for the 

motor area EEG and the all-channels EEG in datasets, IVa and IVb, and also reports a 

comparative study with the existing methods. As accuracy is a major concern in BCI 
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systems, this study uses the classification accuracy as the criterion to evaluate the 

performance of the proposed method. The classification accuracy is calculated by 

dividing the number of correctly classified samples by the total number of samples 

[27, 32, 34]. It is worthy to mention that all experimental results for datasets, IVa and 

IVb, are presented based on the testing set. In this study, MATLAB (version7.7, 

R2008b) is used for mathematical calculations of the CC technique. The classification 

by the LS-SVM is carried out in MATLAB using the LS-SVMlab toolbox (version 

1.5) [35] and the classification by the LR is performed using PASW (Predictive 

Analytics SoftWare) Statistics 18. 

 

3.1 Results for dataset IVa 

The complete experimental results for dataset IVa are summarized in Table 1. The 

table provides the classification performance as well as the overall mean of the CC-

LS-SVM and CC-LR algorithms for the motor area EEG and the all-channels EEG. 

The results of each subject are reported in terms of mean ± standard deviation of the 

accuracy over a 3-fold cross-validation method on the testing set. In the motor area, 

the CC-LS-SVM algorithm yields the classification accuracy 100%, 94.19%, 100%, 

96.97%, 94.45% for subject aa, al, av, aw and ay, respectively  while these values are 

88.9%, 77.0%, 75.0%, 100% and 100% for the CC-LR algorithm. The average 

accuracy rate is 97.12% for the CC-LS-SVM algorithm and 88.18% for the CC-LR 

algorithm for the motor area data. So, the CC-LS-SVM algorithm provides a 9.0% of 

improvement in the average performance over the CC-LR method. The standard 

deviation value of a subject describes the variation of the classification accuracies 

among the three folds. If the variation of the accuracies among the three folds is less, 

it indicates robustness of the method. For the motor area data, we can see that the 
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standard deviation among the three folds in each subject is relatively small in the CC-

LS-SVM algorithm, which indicates the strength of the CC-LS-SVM algorithm.  

For the EEG data recorded from the all-channels, the CC-LS-SVM algorithm 

produced the classification accuracy of 99.57% for subject aa, 94.88% for subject al, 

99.16% for subject av, 97.45% for subject aw and 98.72% for subject ay, whereas 

these values are 100%, 95.67%, 98.7%, 100% and 73.6%, respectively, for the CC-LR 

algorithm. The average accuracy was 97.96% for the CC-LS-SVM algorithm and 

93.59% for the CC-LR method.  Thus the average accuracy of the CC-LS-SVM 

algorithm was increased by 4.37% from the CC-LR method for the all-channels data. 

In the all-channels data, the standard deviation value in each subject was relatively 

low in both the algorithms. So, it can be claimed that the performance of the both 

algorithms are reliable. The results reveal that the CC-LS-SVM algorithm   performs 

better on the both motor area and all-channels data than the CC-LR approach and the 

performance of the CC-LS-SVM method is better for the all-channels data than the 

motor area data.   

Fig. 3 presents a comparison of the classification accuracy between the motor 

area EEG data and the all-channels EEG data for the CC-LS-SVM algorithm. From 

the figure, it may be seen that the CC-LS-SVM algorithm produces a higher 

performance for subject aa and subject av in the motor area EEG data than the all-

channels data. On the other hand, the performance of the all-channels data is better for 

subject al, subject aw and subject ay compared to the motor area data. Fig. 3 also 

illustrates that the overall classification performance of the algorithm is much better 

for the all-channels data than for the motor area data. Error bars of the motor area 

EEG data are also higher than the all-channels data. The error bars indicate the 
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superiority of the CC-LS-SVM algorithm for the all-channels EEG data over the 

motor area data.  

Fig. 4 displays the comparison of the classification accuracy between the 

motor area EEG and the all-channels EEG data for the CC-LR algorithm. It can be 

observed from the figure that the classification accuracy rates for the all-channels data 

are substantially higher for subjects, aa, al and av and the same for subject aw, 

compared to the motor area data. The motor area data provided better results only for 

subject ay over the all-channels data. The overall accuracy for the all-channels data is 

significantly higher than the motor area data for the CC-LR method. Fig. 3 and Fig. 4 

depict that the EEG data recorded from the all-channels give the best result for both 

algorithms when compared to the data recorded from the motor cortex area. 

Table 2 presents a comparison of the performances for the motor cortex area 

of the proposed CC-LS-SVM and CC-LR algorithms with the previously existing 

methods; SVM on   constraints independent component analysis (cICA) power 

features [19] and SVM on dynamical system (DS) features [20]. These two existing 

methods are also implemented on the motor cortex area data for dataset IVa as 

discussed in Section 1.1. From Table 2, it can be seen that the highest accuracy was 

obtained by the CC-LS-SVM algorithm for subject aa and subject av. The CC-LR 

method achieved a better performance for subject aw and subject ay. The existing 

method, SVM on DS features produced the best performance only for subject al. In 

Table 3, it is noted that the CC-LS-SVM algorithm provided the best result with an 

average classification accuracy of 97.12% while this value is 88.18% for the CC-LR 

algorithm, 85.64% for the SVM on DS algorithm and 84.06% for the SVM based on 

cICA approach. The CC-LS-SVM method achieves by 8.94% to 13.06% 

improvements for the motor area data over the three algorithms for dataset IVa. 
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Table 3 lists a comparison study for the all-channels data of our two 

algorithms with BCI III Winner [17] and iterative spatio-spectral patterns learning 

(ISSPL) [21]  for dataset IVa. A brief description of BCI III Winner [17] and ISSPL 

[21] methods are provided in Section 1.1. The CC-LS-SVM algorithm produced an 

excellent result for subject av and subject ay where the CC-LR algorithm achieved the 

best results for subject aa and subject aw. The BCI III Winner method gave the best 

performance for subject al and subject aw. Both BCI III Winner and ISSPL methods 

achieved 100% accuracy for subject al. Obviously, the average classification accuracy 

of the CC-LS-SVM method is excellent for the all-channels data. Table 3 depicts that 

the CC-LS-SVM algorithm is able to increase the classification accuracy by 4.37% 

from the CC-LR algorithm, by 3.76% from BCI III Winner and by 3.75% from the 

ISSPL. 

 

3.2 Results for dataset IVb 

Table 4 reports the classification results of the CC-LS-SVM algorithm and the CC-LR 

algorithm on the motor cortex area data and the all-channels data for dataset IVb. 

These results are listed in Fig. 5. For the CC-LS-SVM algorithm, the classification 

accuracy reaches 94.45% in the motor cortex area data while this value is 88.9% for 

the CC-LR algorithm. For the all-channels data, the CC-LS-SVM method is able to 

yield the accuracy of 98.72%, where the CC-LR method produces 96.83%.  Therefore 

the performance for the all-channels data is 4.27% higher for the CC-LS-SVM and 

7.93% higher for the CC-LR method than the performance of the motor area data. For 

the both algorithms, the standard deviations among the three folds are relatively lower 

for the all-channels data than for the motor cortex area data. The lower value of the 

standard deviation proves the reliability of those two methods in the all-channels data.  
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Fig. 5 shows a clearer picture of the performance for the CC-LS-SVM and 

CC-LR algorithms applied to the motor cortex area and the all-channels data for 

dataset IVb. From Fig. 5, it is observed that the both algorithms produce better results 

on the all-channels data than on the motor area data and the classification accuracy of 

the CC-LS-SVM method is slightly higher for the all-channels data than for the motor 

area data. Note that we could not compare the results of the CC-LS-SVM and CC-LR 

algorithms with any other previously existing methods for this dataset because there 

are no reported research results available.  

4. Discussions 

In this study, we have two queries. First one is: what algorithm is the best for the MI 

classification? Second one is: which EEG data (the motor area data or the all-channels 

data) is better for the MI signal classification? The experimental results for both 

datasets, IVa and IVb, demonstrate that the CC-LS-SVM algorithm is the best method 

for the motor cortex area data and the all-channels data in the MI signal classification. 

The results also indicate that the all-channels data is better to provide the excellent 

performance for the MI signal classification.  

This study results are also compared with the existing methods shown in Table 

2 and Table 3. Generally, it can be observed from Table 2 and Table 3 that there is an 

improvement in performance of the CC-LS-SVM algorithm for both the motor cortex 

area data and the all-channels data over the previously existing methods. Based on 

these results, it can be concluded that the LS-SVM method outperforms the existing 

methods for the MI tasks EEG signal classification on the motor cortex area data and 

the all-channels data and the CC-LS-SVM method performs better on the all-channels 

data than on the motor area data. 
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5. Conclusions  

In this paper, we have presented the CC-LS-SVM and CC-LR algorithms for 

classifying the EEG data during motor imagery. The CC-LS-SVM algorithm 

assembles CC technique and LS-SVM, and the CC-LR algorithm combines the CC 

technique and LR model for MI tasks classification. In order to investigate the 

effectiveness of these two algorithms, we have implemented them individually on the 

EEG data recorded from the motor cortex area and also the all-channels EEG data. 

The results on two datasets, IVa and IVb of BCI Competition III, demonstrate that the 

CC-LS-SVM method produces better accuracy for the all-channels EEG data and the 

motor area EEG data than the CC-LR algorithm. The performance of the CC-LS-

SVM algorithm is higher for the all-channels data than for the motor area data for the 

MI EEG signal classification. The results also suggest that the CC-LS-SVM algorithm 

outperforms the some of the previously existing algorithms in the literature for both 

the motor area and the all-channels data. Thus, it can be concluded that the CC-LS-

SVM algorithm is the best algorithm for the MI EEG signal classification and the all-

channels EEG can provide better information than the motor area EEG for the MI 

classification. In the future, we will extend these algorithms for online analysis. 
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List of figure captions 

1. Diagrams of the proposed two algorithms: (a) CC-LS-SVM (b) CC-LR 

2.  Locations of electrodes for datasets IVa and IVb in BCI Competition III. 118 

electrodes are shown labelled according to the extended international 10/20 

system described in [30].  

3. Comparison of the performance between the motor area EEG and the all-channels 

EEG data for the CC-LS-SVM algorithm. The vertical lines show the standard 

errors of the test accuracies. 

4. Comparison of the performance between the motor area EEG and the all-channels 

EEG data for the CC-LR algorithm. The vertical lines show the standard error of 

the test accuracies 

5. The comparison of the performance for the CC-LS-SVM and CC-LR algorithms 

between the motor area data and the all-channels data. The vertical lines show the 

standard errors of the test accuracies. 
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(a) CC-LS-SVM algorithm (b) CC-LR algorithm 

 

Fig. 1: Diagrams of the proposed two algorithms: (a) CC-LS-SVM (b) CC-LR  
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Fig. 2. Locations of electrodes for datasets IVa and IVb in BCI Competition III. 118 

electrodes are shown labelled according to the extended international 10/20 system 

described in [30].  

 

 

 

Fig. 3. Comparison of the performance between the motor area EEG and the all-

channels EEG data for the CC-LS-SVM algorithm. The vertical lines show the 

standard errors of the test accuracies. 
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Fig. 4. Comparison of the performance between the motor area EEG and the all-

channels EEG data for the CC-LR algorithm. The vertical lines show the standard 

error of the test accuracies. 

 

 

 

Fig. 5. The comparison of the performance for the CC-LS-SVM and CC-LR 

algorithms between the motor area data and the all-channels data. The vertical lines 

show the standard errors of the test accuracies.  
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List of table captions 

1. Experimental results of the two algorithms reported in percentage (mean ± 

standard deviation) for dataset IVa. 

2. The comparison of our two proposed algorithms with two existing methods for the 

motor area data in dataset IVa.  

3. The comparison of our two proposed algorithms with two existing methods for  

the all-channels data in dataset IVa. 

4. Experimental results of the two proposed algorithms reported in terms of the 3-

fold cross validation accuracy (mean ± standard deviation) for dataset IVb 

 

 

Table 1: Experimental results of the two algorithms reported in percentage (mean ± 

standard deviation) for dataset IVa. 

Subject Motor area data All-channels data 

CC-LS-SVM CC-LR CC-LS-SVM CC-LR 

aa 100±0.0 88.9±19.22 99.57±0.74 100±0.0 

al 94.19±5.04 77.0±21.18 94.88±4.45 95.67±4.45 

av 100.0±0.0 75.0±22.05 99.16±1.46 98.7±2.25 

aw 96.97±5.25 100±0.0 97.45±1.26 100.0±0.0 

ay 94.45±4.81 100±0.0 98.72±1.28 73.6±3.20 

Average 97.12±3.02 88.18±12.49 97.96±1.84 93.59±1.98 

 

Table  2: The comparison of our two proposed algorithms with two existing methods for 

the motor area data in dataset IVa.  

 

Subject 

Classification accuracy on the motor area data (%) 

CC-LS-SVM 

 

CC-LR 

 

SVM on cICA power 

features  [19] 

SVM on DS 

features [20] 

a 100.0 88.9 85.7 83.3 

al 94.19 77.0 89.3 96.3 

av 100.0 75.0 75.0 72.7 

aw 96.97 100.0 85.3 86.9 

ay 94.45 100.0 85.0 89.0 

Average  97.12 88.18 84.06 85.64  

 



29 

 

Table 3: The comparison of our two proposed algorithms with two existing methods for  

the all-channels data in dataset IVa. 

 

Subject  

Comparison of accuracy on the all-channel data (%) 

CC-LS-SVM CC-LR BCI III Winner [17] ISSPL [21] 

aa 99.57 100 95.5 93.57 

al 94.88 95.67 100.0 100.0 

av 99.16 98.7 80.6 79.29 

aw 97.45 100 100 99.64 

ay 98.72 73.6 97.6 98.57 

Average  97.96 93.59 94.20 94.21 

 

 

Table 4: Experimental results of the two proposed algorithms reported in terms of the 

3-fold cross validation accuracy (mean ± standard deviation) for dataset IVb. 

 Classification accuracy (%) 

Method  Motor area data All-channels data 

CC-LS-SVM 94.45±4.81 98.72±1.28 

CC-LR 88.9±19.22 96.83±0.72 

 


