
EEG based over-complete rational dilation wavelet transform coupled with
autoregressive for motor imagery classification

Hadi Ratham Al Ghayab a, Yan Li c, Mohammed Diykh b,e,* , Aqeel Sahi c ,
Shahab Abdulla d , Ahmed Rashid Alkhuwaylidee f

a Faculty of Business and IT, TAFE Queensland Southwest, QLD 4350, Australia
b University of Thi-Qar, Nasiriyah, College of Education for Pure Science, 64001, Iraq
c School of Mathematics, Physics and Computing, University of Southern Queensland, QLD 4350, Australia
d UniSQ College, University of Southern Queensland, QLD 4350, Australia
e Information and Communication Technology Research Group, Scientific Research Centre, Al-Ayen University, Thi-Qar, 64001, Iraq
f University of Thi-Qar, College of Computer Science and and Mathematics, Department of Information Technlogy, 64001, Iraq

A R T I C L E I N F O

Keywords:
EEG
BCI
Motor and mental imagery
AR
ORDWT

A B S T R A C T

Motor Imagery (MI) based Brain-Computer Interface (BCI) applications are designed to analyse how the brain
interacts with the external environment from electroencephalograph (EEG) signals. Despite current models
achieving promising results, developing an accurate classification of MI from EEG signals remains a significant
challenge. In this paper, we designed an MI classification model named (ORDWT_AR) utilising an over-complete
rational dilation wavelet transform (ORDWT) coupled with an autoregressive (AR) model. Firstly, EEG re-
cordings are segmented into intervals using a sliding window method. Then, each EEG segment is passed through
the ORDWT to analyse EEG signals. As a result, a series of stop bands is obtained from each segment. Then, the
AR is adopted and integrated with ORDWT to extract representative features from each EEG interval. The
selected features are sent into several classification models, including Weighted k-nearest Neighbour (WKNN),
Decision Tree (DTree) and Boosted Trees (BST). Four benchmark EEG databases were used to evaluate the
proposed model, three of which were collected from brain-computer interface (BCI) Competition III and one from
the CHB-MIT. The results demonstrated that the proposed model ORDWT_AR coupled with the WKNN classifier
achieved an average of 99.8% classification accuracy for the three BCI competition III datasets and 99.7% for the
CHB-MIT dataset. The obtained results revealed that the proposed scheme is a promising tool for classifying EEG
signals and has outstanding results. The proposed model can support experts in aiding disabled people to interact
with their environment accurately and improve the quality of their lives.

1. Introduction

The human brain is the most critical organ, controlling all body ac-
tivities. For example, when a subject moves or does something, the brain
cells are catalysed and send electrical signals to a specific body part to
respond appropriately (Wolpaw et al., 2002, Ang et al., 2015). To reflect
the correct response, various signals could be involved, including Elec-
troencephalography (EEG), Electrooculography (EOG), Electrocardio-
gram (ECG), and Electromyography (EMG) (Nguyen et al., 2015, Zhang
et al., 2017, Gaur et al., 2018).
The BCI system is a communication system that transfers neuronal

information to commands that are employed to control external devices
(Gaur et al., 2018, Dose et al., 2018). BCI systems can provide a prom-
ising communication channel for patients with physical injuries and
impaired movements through various techniques (Siuly et al., 2010).
BCI systems are designed based on several techniques named magne-
toencephalography (MEG), positron emission tomography (PET), func-
tional magnetic resonance imaging (fMRI), and optical imaging. EEG
favours those tools, as PET, FMRI, and MEG are technically expensive
and depend on blood flow, which requires a long time to be collected
and analysed (Wolpaw et al., 2002). For most medical applications, EEG
signals have become the most frequent diagnostic tool used to study the
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brain due to their portability, low cost, pain-free monitoring solution
and real-time capabilities.
In the recent decade, several attempts based on Wavelet Transform

(WT), Short-Time Fourier Transform (STFT), Discrete Wavelet Trans-
forms (DWT), and Empirical Mode Decomposition (EMD) have been
made to classify MI EEG signals (Venkatachalam et al., 2020). Although
those models have achieved promising results, they suffer from some
issues. For example, WT does not work correctly with non-stationary
signals, such as EEG signals, and it becomes computationally intensive
(Rai et al., 2007), DWT causes low oscillations and severe oscillation
frequency, which weakens the ability of the DWT to match high oscil-
latory features (Chen et al., 2012). With STFT, the window size is the
same for all frequencies, while EEG signals require a more flexible tool
with different window sizes depending on the signals’ characteristics
(Kwok and Jones, 2000). In addition, EEG signals produce periodical
impulses and amplitude frequency modulation contents. Designing an
accurate model to analyse EEG patterns is essential for a BCI system to
extract the most representative features from MI signals recorded via
EEG.
Rational Dilation Wavelet Transformed (RDWT) has recently been

widely used in different fields. It was developed to enhance the limita-
tion of dyadic WT and EMD. The RDWT technique can adjust the fre-
quency resolution. However, it neglects to consider the oscillation
property of its wavelet functions (Chen et al., 2012).
Deep learning and graph-based approaches have recently been

widely used in MI EEG classification. For example, Chatterjee et al.
applied an adaptive autoregressive feature extraction model to classify
motor imagery EEG signal classification (Chatterjee et al., (2019).
Chunduri et al. suggested a multi-scale spatiotemporal self-attention
(SA) network model to extract representative features from EEG sig-
nals (Chunduri et al., 2024). Their model utilised temporal and spatial
features of EEG to classify motor imagination EEG segments into four
classes. Meng et al. adopted a time-domain and frequency-domain
feature-based model (Meng et al., 2021). The extracted features were
used as inputs into a neural network. Ma et al. designed a multi-branch
graph adaptive network model for imagery EEG signal classification (Ma
et al., 2023). In that study, the relevant model branch-based adaptive
technique was employed in the classification phase. (Wang et al. 2022)
employed a graph embedding method in which the time-domain fea-
tures were attained using a convoluting technique. (Pan et al. 2024)
integrated principal components analysis, kernel principal components
analysis and spectral density to extract EEG features. Several classifi-
cation models were employed to classify EEG features, such as the
extreme learning machine, k-nearest neighbour, light, and gradient
boosting machine support vector machine. (Venkatachalam et al. 2020)
presented a hybrid approach that utilised Kernel Extreme Learning
Machine, Principal Component Analysis and Fisher’s Linear Discrimi-
nant. Different EEG features were pulled out and sent to several
machine-learning models. (Fei and Chu, 2022) applied a hybrid model
to classify EEG signals. They combined singular value decomposition,
wavelet transform, phase space reconstruction and multi-layer twin
support vector machine. (Han et al., 2022) employed a deep learning
model for motor imagery EEG classification. In that study, a parallel
convolutional neural network model was proposed to classify motor
imagery signals. (Ma et al., 2022) designed an end-to-end novel multi-
branch hybrid neural network model for EEG motor imagery classifi-
cation. They divided EEG signals into four frequency bands and
employed a Bidirectional Gated Recurrent Unit (BGRU) to extract EEG
features from EEG frequencies.
As EEG signals exhibit various oscillatory behaviours (low and high

oscillations), most of the developed models depend on nonlinear char-
acteristics analysis, which does not work correctly with EEG behaviours.
Consequently, this research provides a novel technique to accurately
analyse and classify the MI classification model. In this paper, an ME
classification model named ORDWT_AR is proposed. The proposed
model combines the over-complete RDWT (ORDWT) and an

autoregressive (AR) model. Combining ORDWT and OR can produce
good frequency resolution and representation for EEG signals. The
proposed model has more flexibility in removing redundant frequencies
in the signals. Furthermore, the proposed model was designed to be
effective to apply to different EEG data. In this paper, epileptic and
motor imagery EEG signals were used to validate the proposed mode.
The results demonstrated the proposed model had the ability to analyse
and classify these tow signals Three prevalent classifiers, weighted k-
nearest Neighbour (WKNN), decision tree (DTree), and boosted trees
(BST), are adopted to classify the extracted features into various MI
tasks. The proposed model was assessed using four publicly available
datasets. The main contributions of this study are as follows:

• We proposed an MI recognition method based on EEG signals. The
proposed model efficiently addressed the issue of low oscillations
associated with classic decomposition models for analysing EEG
using over-complete RDWT.

• The proposed model combined over-complete RDWT (ORDWT) and
an autoregressive (AR) model to benefit from both methods. The
proposed hybrid model seeks to improve ME classification accuracy
and channel selection.

• We validated the effectiveness of the proposed method using four
publicly available EEG datasets, and the results obtained demon-
strated the proposed model’s superiority to other methodologies.

This paper is organised as follows: Section 2 explains the data
description, the proposed algorithm, and performance measurements.
Section 3 provides the experimental results. Section 4 presents the main
findings and a comparative study report with several existing methods.
Section 5 concludes and suggests future work.

2. Material and methods

2.1. EEG datasets description

All four datasets used in this study are publicly available. The EEG
datasets were collected during motor and mental imagery tasks and
scalp epileptic EEG data. As shown in Table 1 (Shoeb, 2009), 33 subjects
were considered in this paper.

1. The IVa datasets in BCI Competition III were collected from five
healthy people and denoted as aa, al, av, aw, and ay (Blankertz et al.,
2006). Each subject was tested with two motor imagery (MI) tasks
(two classes). Class number one is for the right hand and is labelled as
RH. Class number two is for the right foot and is labelled as RF. All
the datasets were recorded when the subjects sat in a comfortable
chair and rested their arms on armrests, and 118 electrodes were
used to record the EEG signals. There were 280 cues for each of the
five subjects (aa, al, av, aw, and ay). Through the recording task, the
volunteer was required to perform either of the twoMI tasks (RH and
RF). Each EEG recording is 3.5 s in duration.

2. The V EEG datasets from BCI Competition III were recorded from
three health subjects and denoted as subj1, subj2, and subj3. The
subjects were without any previous experience with BCI or mental
training (Millan et al., 2004). The subjects participated in three
consecutive days of recording. Each subject was tested with three

Table 1
Dataset used for model evaluation.

Dataset Number of subjects

Data set IVa 5
Data set V 3
BCI Competition III 3
CHB-MIT EEG 22
Total number of subjects 33
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mental imagery (MenI) tasks (three classes). The first class was for
the left hand and was labelled as LH. The second class was for the
right hand and labelled RH, while the third class was for generating
words beginning with the same random letter and labelled W. On
each day of MenI tasks, subjects did several consecutive four-minute
recording sessions with more than 5 min breaks between those ses-
sions. During each training session, the subjects switched randomly
every 20 s between the three MenI tasks.

3. The IIIa EEG datasets from BCI competition III were recorded from
three volunteers. Each person sat in a comfortable chair with arm-
rests and was tested with four random imagery tasks of four classes,
such as left hand, right hand, foot or tongue, according to a cue.
These tasks are labelled as LH, RH, F, and T. The multi-class EEG was
sampled at 250 Hz and filtered between 1 and 50 Hz with a Notch
filter. The IIIa datasets recorded from a 64-channel amplifier from
Neuroscan contain 60 channels of EEGs (Lotte et al., 2010).

4. The CHB-MIT EEG datasets are freely available online (Shoeb et al.,
2022). In this study, the EEG data were collected from 22 patients
using 22 electrodes and utilising 10–20 EEG systems. These datasets
were recorded at a 256 Hz sampling rate with 16-bit resolution. Five
patients had less than 10 seizures a day, and ages between 10 and 14
were selected for EEG classification.

2.2. Proposed technique

This section provides a detailed description of the proposed tech-
nique. The diagram of the proposed ORDWT_AR method is shown in
Fig. 1. EEGs are considered vital tools in BCI systems to determine the
mental state of patients, response to actions, and cognitive state
changes. In this paper, we designed an intelligent model for ME classi-
fication. The EEG data were collected from public datasets. Each EEG
signal is segmented into intervals using a sliding window technique.
Then, each EEG segment is passed through ORDWT. AR is integrated
with ORDWT. The AR was employed to extract the most representative
features from EEG signals. The extracted features are sent to several
classification models named WKNN, DTree and Boosted Trees (BST).
Several evaluation metrics are used to evaluate the proposed model.

2.2.1. Pre-processing and feature extraction
In this study, feature extraction is used to reduce the dimensionality

of EEG signals and remove redundant and irrelevant information. The

extracted data are utilised to make the whole classification procedure
faster and more accurate than the entire EEG data. This subsection il-
lustrates the feature extraction procedure.

2.2.1.1. Segmentation. EEG signals are non-stationary, oscillating and
contain many redundant data (Alsafy and Diykh, 2022, Lafta et al.,
2018, Al-Hadeethi et al., 2021, Abdulla et al., 2023, Diykh et al., 2023,
Mohammed et al., 2023). A segmentation approach is used to partition
each EEG signal into smaller segments called windows, denoted as Wi, to
make EEG signals close to quasi-stationary. Eq. (1) shows how to
determine the window size empirically.

Wsize = S(x)/Wi; i = 1,⋯n (1)

where Wsize refers to the window size; S(x) is the input signal of each
class; i is the number of windows. In this paper, the MI EEG data from
each class are divided into four windows (i = 4).

2.2.1.2. Over-complete rational dilation wavelet transform (ORDWT).
This study employs the technique ORDWT to decompose each MI EEG
signal (Bayram and Selesnick, 2009, Bayram et al., 2007). The ORDWT
has several advantages over the classic transformation technique. First,
each frequency scale produced by ORDWT is characterised by a number
of signals generated by different bandpass filters. Second, its construc-
tion involves polynomial array spectral factorisation which is straight-
forward in principle than other frequency-domain approaches. As a
result, it can be produced good frequency resolution. Third, it has more
flexibility in the repetition factor of the transform.
The ORDWT depends on a diversity of controlling parameters, such

as polyphase components (p), quality factor (q) and redundancy (r). Like
other WTs, the ORDWT is executed using two-channel filter banks. The
dilation factor of the ORDWT depends on the rational value of q/p, with
the condition of q > p. In this study, we set the dilation factor as 1 < q/p
< 2. The scaling and wavelet functions in the ORDWT depend on the
rational dilation scaling relation, as shown in Eq.2 and Eq.3.

φ(t) =
(
q
p

)1/2∑1

m∈Z
h0(m)φ

(
q
p
t − m

)

(2)

ψ(t) =
(
q
p

)1/2∑1

m∈Z
h1(m)ψ

(
q
p
t − m

)

(3)

Fig. 1. Diagram of the proposed technique for MI EEG classification.
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where φ(t) is the scaling function. ψ(t) is the wavelet function .h0(m) is a
scaling function filter, and h1(m) is the wavelet function filter. The
ORDWT decomposes EEG signals into different levels of decomposition
based on p, q and r parameters.
The EEG signal is decomposed into stop and low pass bands at each

level. The functions of H0(ω) and H1(ω) are the frequency responses of
h0(n) and h1(n), respectively, as shown in Fig. 2. To calculate the fre-
quency responses, H0(ω) and H1(ω) are defined as in Eq. (4) and Eq.5
(Bayram and Selesnick, 2009, Bayram and Selesnick, 2007).

H0(ω) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

̅̅̅̅̅
pq

√
,ω ∈

[

0,
(

1 −
1
r

)
1
p

π
]

̅̅̅̅̅
pq

√
θH0
(ω − a

b

)
,ω ∈

[(

1 −
1
r

)
1
p

π, π
]

0,ω ∈

[
1
q

π, π
]

(4)

H1(ω) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0,ω ∈

[

0,
(

1 −
1
r

)

π
]

̅̅
r

√
θH1

(
ω − pa
pb

)

,ω ∈

[
r − 1
r

π, p
q

π
]

̅̅̅̅
r,

√ ω ∈

[
p
q

π, π
]

(5)

where a, b and θ are defined as:

a =

(

1 − 1
r

)

π

p
(6)

b =
1
q
−

(

1 − 1
r

)

1

p
(7)

θ(ω) =
(1+ cos(ω) )

2
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2 − cos(ω)

√
, forω ∈ [0, π] (8)

Function θ(ω) is utilised to build the stop and low pass bands of H0(ω)
and H1(ω). θ(ω) originates from the orthonormal of the Daubechies
wavelet filters that include two vanishing moments. Although all
orthonormal filters are usable for building any sharp edges, they cause a
very slow decomposition rate of the φ(t) and ψ(t).
To rebuild the decomposed EEG signal and make the signals clear,

the condition holds was checked for the ORDWT based on
|H0(ω/p) |2/(pq) + |H1(ω) |2/r = 1. It indicates that x(n) = x(n) as
shown in Fig. 2. The rebuilding procedures of the decomposed EEG
signals are discussed as follows:

• The length of the stop band series is amputated as the decomposition
proceeds. To regain the stop band’s lengths, the single branch
reconstruction (SBR) is used to rebuild the series of the decomposi-
tion levels into corresponding wavelet sub-band signals, as shown in
Fig. 3.

• After decomposing the input EEG signal to the jth level and using the
SBR, the EEG signal is rebuilt into the jth-1 level band, as shown in
Figs. 2 and 3 according to Eq.9.

x(n) =
{
Aj(n),Dj(n),Dj− 1(n),⋯.,D1(n)

}
(9)

where Aj(n) is the rebuild approximation sub-bands of the EEG signal
.Dj(n), andDj− 1(n) refer to the jth rebuild sub-bands of the EEG signal.

• The functions, H0(ω) and H1(ω) are defined using Eq.10 and Eq.11,
which are the frequency responses of h0(n) and h1(n), respectively.

H0(ω) =
1
p
h0
(

ω
p

)

(10)

H1(ω) = h1(ω) (11)

where h0(n) and h1(n) are utilised over the decomposition process. In

Fig. 2. The ORDWT decomposes the input EEG signal (x(n)) into stop band H0(ω) and low pass band H1(ω) at jth levels and rebuilds the decomposed x̂(n).

Fig. 3. Rebuild all the wavelet bands from stop and low pass series through using the single branch reconstruction (SBR).
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addition, for the jth decomposition level, the frequency responses, H0(ω)

and H1(ω), can be extended to:

H0j (ω) =
1
pj
H0j

(
ω
pj

)

, j ≥ 1 (12)

H1j− 1 (ω) =

⎧
⎪⎪⎨

⎪⎪⎩

H1(ω), j = 0

1
pj
H0j

(
ω
pj

)

H1

((
q
p

)j

ω
)

, j ≥ 1
(13)

where

Fig. 4. Examples of ORDWT and ordinary WT decomposition: (a) ORDWT method (b) WT method.

Fig. 5. The accuracy results through R value selection by the AR technique using different EEG datasets from the BCI Competition III system. (a) IVa dataset, (b) V
dataset, (c) IIIa dataset.
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H0j (ω) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∏j− 1

n=0
H
(
qj− 1− npnω

)
,ω ∈

[

0,
π
qj

]

0,ω ∈

[
π
qj
, π
] , j ≥ 1 (14)

To rebuild the decomposed EEG signal based on the ORDWT method,
the parameters of p, q and r should satisfy the allowable condition as
below:
(

1 −
1
r

)
1
p

π
〈

π
q

⇒
p
q
+
1
r

〉

1 (15)

This condition does not allow the passbands to overlap between those
bands. This study applies the proposed method to three datasets in BCI
Competition III, as explained in Section 2.1. Also, p, q, and r were set
empirically for both datasets at p = 5; q = 6; r = 2. In addition, the
decomposition level (jth) was also set empirically at 19. Fig. 4 presents a
difference between ordinary WT and the proposed ORDWT techniques
at level 19 of decomposition.

2.2.1.3. Autoregressive (AR) method. The AR method is a linear pre-
diction method used to extract the most representative features and
predict an output from the algorithm depending on the previous outputs.
It is a parametric method for the power spectral density estimation
(Ganapathy et al.,2014, Rajan and Rayner, 1996). The details of the AR
method are explained in (Ganapathy et al.,2014). The AR method works
based on the R value, which should be selected carefully. To choose a
suitable R value, this study performs different R orders in the AR tech-
nique as shown in Fig. 5 (a), (b) and (c). The R value is selected as 6 for
the results in Fig. 5.

2.2.1.4. Classification. The extracted features were taken from motor
imagery (MI) EEG signals based on the BCI systems and forwarded to
different classifiers, such as theWKNN, DTree, and BST, for performance
comparisons. The following section explains the classifiers used in this
study.

2.2.1.5. Weighted k-Nearest Neighbor (WKNN). The K-nearest neigh-
bour classifier is one of the simplest methods among machine learning
algorithms (Abdulla et al., 2023). It is the most popular nonparametric
classifier. For instance, m data points are used as the input testing set to
this classifier that finds the k nearest neighbours through the training
set. In the WKNN, the classifier is used to weigh the class candidates.
Furthermore, the similarity score for each nearest neighbour class to the
test set is used as the weighted class. If the number of the nearest
neighbours share different classes, the neighbour weights of this class
are placed together. The sum of the resulting weights is utilised as the
likelihood of this class concerning the test set. Here, a ranking list is
found for the test set through the classifying scores of the candidate
classes. The classification of the WKNN method can be defined as in
equation (16).

SC(m, ti) =
∑

mj∈WKNN(m)

S
(
m,mj

)
C
(
mj, ti

)
(16)

where SC(m, ti) refers to the score of the m testing set and ti is the
training set. S

(
m,mj

)
indicates the similarity score of each nearest

neighbour class.WKNN(m) is the set of k nearest neighbours of input m
file; C

(
mj, ti

)
indicates the classification formj with relation to ti training

sets that can be defined as below:

C
(
mj, ti

)
{
1,mj ∈ ti
0,mj ∕∈ ti

(17)

where m testing file should be assigned to the class that has the high
scoring weighted sum. In this study, the number of the neighbours k is

selected at k = 10. The motivation for applying this classifier is that it
efficiently minimises the fuss shown in the input data.

2.2.1.6. Decision tree (DTree). DTree is one of the most utilised machine
learning techniques and was developed by (Kevric et al., 2017). The
DTree method is structured as a tree containing internal (test sets) and
leaf nodes (train sets). Each internal node represents a result of the test.
Therefore, each terminal node (leaf node) has a class label that helps to
make a decision. For more details on this method, readers may refer to.
The main reason for applying the DTree classifier in this study is its easy
use. There is no need for further knowledge or parameter setting, and the
classification phase is simple and fast. In addition, the DTree can deal
with multi-dimensional data.

2.2.1.7. Boosted trees (BST). The BST classifier is a powerful method. It
is designed to classify features with high predictive possibility. This
method describes the complex relationships between various features in
a dataset by collecting numerous simple decision tree models. The
classifier is based on a decision tree. The BST classifier often leads to
significantly greater accuracy than competing machine learning
methods, such as logistic regression, neural networks and support vector
machines. However, the major limitation of the BST classifier is that it
needs to build a large number of decision trees, which takes a long time
during the training procedure and leads to difficulty optimising it. For
details of this method, readers can refer to (She et al., 2018).

2.3. Performance measurements

In this study, different measurements were used to assess the per-
formance of the proposed technique. The f-fold cross-validation method
was used. The extracted features were partitioned into (f) folds or parts
(Jin et al., 2019). In each exaction, two parts are used, with one serving
as a testing set and the rest as the training set. Table 2 shows the number
of features employed in the testing and training sets.
An overall accuracy rate (OAR) is calculated from the entire f-fold

cross-validation procedure. In each implementation, 10- folds are used
to test the classification called tests (T1, T2, … Tn), and OAR is yielded
through the 10-fold cross-validation technique.
For further investigation, each subject from the three datasets in the

BCI Competition III was used as the testing set to validate the proposed
method. For instance, one subject was taken as testing input, and the rest
were utilised as the raining input to the classifier.
In addition, a number of statistical measures were applied to eval-

uate the proposed method’s performance, such as accuracy (AC), posi-
tive predictive value (PPV), and negative predictive value (NPV). Their
equations are given below (Selim et al., 2020, Al-Saadi et a.l, 2022,
Diykh et al., 2021).

AC =
truepositives+ truenegatives

totalsamples
× 100 (18)

PPV =
truepositives
totalpositives

× 100 (19)

NPV =
truenegatives
totalnegatives

× 100 (20)

Table 2
The number of samples in the training and testing sets used in this study.

Database Case Total Training set Testing set

IVa dataset RH vs RF 5160 3440 1720
V dataset RH vs LH vs W 4644 3096 1548
IIIa dataset RH vs LH vs F vs T 39,216 26,144 13,072
CHB-MIT Normal vs Seizure 58,824 39,216 19,608
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3. Experimental results

The first goal of this research is to develop a novel technique for
classifying EEG signals. To check the effectiveness of the proposed sys-
tem, a set of experiments was conducted using three different BCI
datasets and one epileptic dataset, as mentioned in Section 2.1. The
ORDWT_AR was applied to analyse the signals, and the vital represen-
tative features from all datasets were obtained. This research used three
steps to analyse EEG signals from the BCI Competition III and CHB-MIT.
Firstly, the input EEG signals were partitioned into several segments
called windows. After that, the ORDWT approach was applied for each
window of the EEG recordings to decompose and rebuild the EEG data.
In this paper, the Autoregressive (AR) method was adopted to reduce the
dimensionality of the ORDWT coefficients and to extract patterns and
key characteristics of EEG signals. Table 2 illustrates the number of
samples how these samples were distributed between training and
testing the proposed model. The extracted features were forwarded to
the WKNN, DTree, and BST classifiers to select the most suitable clas-
sifier. The experiments were conducted using MATLAB R2018b on a
computer with Intel (R) core i7-7700, 3.60 GHz CPU, RAM capacity of
16 GB. The proposed approach was tested and assessed through different
evaluation measurements, as shown in Section 2.3.
The data from all subjects was divided into training and testing sets

to ensure robust evaluation. The AC, PPV and NPV metrics were
employed to evaluate the proposed ORDWT_AR technique. The 10-cross
validation strategy was employed to calculate the results in Table 3. The
AC rates of the ORDWT_AR with the WKNN classifier for three BCI
Competition III and CHB-MIT datasets were 99 % and 98 %, respec-
tively. The WKNN classifier scored the highest accuracies compared
with the DTree and BST classifiers. On the other hand, the lowest

accuracies reached for all databases were 94 %, 64 %, 65 % and 96 %,
respectively, by the BST classifier. The second-highest result was yielded
by the DTree classifier, as shown in Table 3. The DTree classifier yielded
an average of the PPV and NPV of 96 % and 97 %, respectively, for the
IVa datasets, and PPV = 80 % and VNP = 80 % for the V datasets of the
MI EEG signals. However, the proposed technique with DTree achieved
PPV = 73 % and VNP = 74 % for IIIa datasets due to multiclass, which
was the second-highest score. Concerning CHB-MIT datasets, the pro-
posed scheme with the DTree classifier also obtained the second-highest
score.
Next, we evaluated the proposed model per user dataset in this study.

Tables 4–7 report the classification results of the proposed method based
on 10-cross validation. It can be observed that the proposed ORDWT_AR
technique performed well with the WKNN classifier, achieving the
highest accuracy with all the datasets. However, the proposed ORDW-
T_AR technique with the DTree classifier showed an acceptable perfor-
mance. The DTree classifier obtained the second-highest classification
accuracy.
In addition, the metrics f-score, precision, and recall were also

employed to evaluate the proposed model. Fig. 6 shows the performance
of the proposedmodel in terms of score, precision, and recall per user for
all datasets. The proposed model achieved an average f-score, precision,
and recall of 99 %, 98 %, and 99 %, respectively, from all the users for
the IVa dataset, 98 %, 99 %, 98 % for the V dataset, 99 %, 98 %,97 % for
IIIa dataset, and 98 %, 97 %, and 99 % for CHB-MIT.

3.1. Performance evaluation using LOOCV metrics

For further assessment, Leave-One-Out Cross-Validation (LOOCV)
metric was adopted. In this experiment, another EEG dataset which was
collected from ttps://openbci.com/community/publicly-available-eeg-
datasets/ 2024 was used to evaluate the proposed ORDWT_AR tech-
nique. A total of 20 subjects were collected and utilised for the perfor-
mance evaluation. The EEG signals were collected using 64-channels
based on the 10–10 Electrode system. Each subject was asked to do
imagined moving their left hand or right hand. In this experiment, ac-
curacy, f-score, recall, and precision were employed to evaluate the
performance of the proposed. Fig. 7 reports the classification results,
form the results obtained, we can notice that the proposed ORDWT_AR
technique performed very well cross all subjects, however, the accuracy
was dropped with subjects 20 and 17. Our findings showed that there
were misclassifications to motor imagery right hand and left hand
classes. Although there was slight fluctuation in the performance of the
proposed mode, it obtained were acceptable results, and it performed
very well cross most of subjects.

Table 3
Performance of the ORDWT_AR method for three MI EEG databases using 10-
cross validation.

Database Case Classifier AC (%) PPV (%) NPV (%)

IVa
dataset

 WKNN 98 98 97
RH vs RF DTree 97 96 97
 BST 94 95 92

V dataset
 WKNN 99 98 99
RH vs LH vs W DTree 82 80 80
 BST 64 65 64

IIIa
dataset

RH vs LH vs F vs T
WKNN 99 98 97
DTree 74 73 74
BST 65 64 63

  WKNN 98 99 98
CHB-MIT Normal vs

Seizure
DTree 97 96 97

  BST 96 95 94

Table 4
Accuracy (%) of the proposed technique for MI EEG from the IVa datasets.

Database Classifier Accuracy % Average

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

IVa datasets
WKNN 98 97 100 99 98 100 100 98 100 100 99
DTree 98 97 98 98 99 98 97 98 98 99 98
BST 98 98 97 91 99 96 97 98 97 96 96.7

Table 5
Accuracy (%) of the proposed technique for MI EEG from the V datasets.

Database Classifier Accuracy % Average

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

V datasets
WKNN 100 99 100 100 100 99 100 99 100 100 99.7
DTree 82 83 84 82 83 83 82 84 85 82 83
BST 66 66 67 73 66 73 70 73 72 70 69.6
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4. Discussion

The results obtained from the proposed ORDWT_AR method indi-
cated noticeable improvements over the state of the art. The suggested

model showed its effectiveness and ability to categorise motor tasks
from EEG signals. In this section, the main findings are highlighted.

• For further analysis, this study examined the proposed ORDWT_AR
method in terms of the overall accuracy rate (OAR) versus each fold,
as shown in Fig. 8. From Fig. 8, it is observed that the ranges of the
OAR from the ORDWT_AR technique were varied. The highest OAR
was from the proposed method with the WKNN classifier for the EEG
databases. The lowest OAR was from the BST classifier for all the
tests. The experiment results demonstrated that the ORDWT_AR
combined with the WKNN classifier was the best method to classify
the BCI EEG recordings. The results in Fig. 8 support our findings in
Tables 3–6.

• To validate the performance of the proposed ORDWT_AR model. The
Friedman test (FT) was conducted in this paper. The number of
classification models was 3, the number of EEG datasets was 4, and
the significance level was set to 0.05 (α = 0.05). The FT value should
be less than the critical value. Otherwise, the null hypothesis will be
rejected. Table 8 presents the significant and FT values regarding
accuracy, precision, f-score, kappa, and recall. From the results, we
can see that all FT values were greater than the significant value. We
can conclude that all the compared models had substantial
differences.

• The Receiver Operating Characteristics (ROC) curves were also
employed for further evaluation. ROC curves are appropriate metrics
to investigate the dependency of specificity and sensitivity. ROC
curves describe the relationships among actual negative rate, false
negative rate, and valid positive rate. Fig. 9 demonstrates the per-
formance of three classification models using the ROC curves. It can
be observed that the proposed ORDWT_AR combined with WKNN
correctly classified most motor tasks.

• Another experiment was also conducted using the Hamming loss
metric, which tests the fraction of misclassified motor takes. The
value of the Hamming loss metric ranges from 1 to 0; the smaller the
value indicates a good performance. The value 0 is the perfect value.
Fig. 9 shows the performance of classification models in terms of
Hamming loss. The results in Fig. 10 highlight the efficiency of the
proposed ORDWT_AR model combined with WKNN against other
models. The proposed ORDWT_AR model combined with WKNN
gained the lowest HLO compared to other models.

• In addition, this study compared the proposed ORDWT_AR method
with some recently reported studies (Wu et al., (2008), Lin and Hsieh
(2009), Jin et al., (2019)) to assess its performance. Table 9 shows
the comparison of the proposed approach with eleven other existing
methods. From Table 9, Kevric and Subasi (2017) applied a wavelet
packet decomposition to extract the key features based on the mul-
tiscale principal component analysis and higher-order statistics

Table 6
Accuracy (%) of the proposed technique for MI EEG from the IIIa datasets.

Database Classifier Accuracy % Average

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

IIIa datasets
WKNN 99 99 100 98 100 99 100 99 100 99 99.3
DTree 99 98 99 99 98 99 99 99 99 98 98.7
BST 98 99 99 98 97 99 98 99 99 98 98.4

Table 7
Accuracy (%) of the proposed technique for MI EEG from the CHB-MIT datasets.

Database Classifier Testing Average

F1 F2 F3 F4 F5 F6 F7 F8 F9 F10

CHB-MIT datasets
WKNN 99 99 100 98 100 99 100 99 100 99 99.3
DTree 99 98 99 99 98 99 99 99 99 98 98.7
BST 98 95 96 85 97 95 77 76 94 74 88.7

Fig. 6. Performance evaluation using f-score, recall and precision.
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feature methods and classify the extracted features by a KNN clas-
sifier. They achieved an overall accuracy rate of 92.8 %. for the IVa
database. However, our method obtained a 100 % overall accuracy
rate for the three BCI Competition III EEG databases (IIIa, IVa and V
datasets). Siuly et al. (2016) applied an optimum allocation tech-
nique with a Naïve Bayes classifier to classify the mental imagery-
based EEG signals. In total, they yielded an average classification
accuracy of 96.8 %. Siuly et al. (2011) developed a method that used
cross-correlation and a logistic regression classifier. The researchers
reported a 93.91 % classification accuracy for IVa EEG datasets in
BCI Competition III. Another study was made by Siuly et al., (2016)

that applied two different methods individually to classify the IVa
and V databases. The two methods were clustering and simple
random sampling with a least square support vector machine clas-
sifier. As seen in Table 9, the proposed scheme achieved a higher
accuracy than Siuly et al.’s (2014). Wu et al. (2008) yielded a 94.21
% average accuracy for the IVa database using an iterative spatio-
spectral pattern learning method. Lin and Hsieh (2009) reported a
method based on an improved particle swarm optimisation com-
bined with a neural network to classify the V datasets from the
mental imagery EEG data. That method gained a 68.35 % classifi-
cation rate. In comparison, our ORDWT_AR technique yielded 100 %
accuracy for the same database. She et al. (2018) developed a novel
method, which is a common spatial pattern mixture with fisher
discrimination criterion. They also applied an extreme learning
machine to classify the EEG-extracted features. They achieved 80.68
% and 87.54 % accuracy rates for datasets IVa and IIIa in BCI
Competition III EEG databases, respectively. Furthermore, the pro-
posed method also gained higher OAR than that of their approach, as
shown in Table 9. Selim et al. (2020) obtained 85 % and 86.6 %
classification accuracy for datasets IVa and IIIa in BCI Competition III
databases by applying a new method. They utilised a typical spatial

Fig. 7. Performance evaluation using LOOCV metric.

Fig. 8. The OAR comparisons among the three classifiers with the ORDWT_AR technique for BCI Competition III and CHB-MIT epileptic datasets.

Table 8
Performance evaluation using the FF test.

Metric FT Significant value

Accuracy 99.548
2.323F-score 98.987

Recall 97.765
Precision 98.876
Kapp coefficient 96.654
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pattern (CSP) to extract features from EEG signals. They used a
hybrid attractor metagene and Bat optimisation to select the most
discrimination-extracted features from CSP. A support vector ma-
chine was also employed to classify the EEG BCI Competition III
system. Obviously, our technique was better than their method. In
2019, Jin et al. (2019) provided a new technique to classify motor
imagery EEG signals. They implemented a correlation-based channel
selection approach to select the channels with the most related in-
formation. They are also used to regularize a common spatial pattern
to extract discriminative features. To classify the extracted features,
they applied a support vector machine. Their method obtained 87.4
% and 91.9 % for IVa and IIIa EEG datasets, respectively, as seen in
Table 9. Most recently, Selim et al. (2018) employed five feature
extraction methods to choose the best approach for EEGs. They found
that the common spatial pattern feature extraction technique based
on linear discriminant analysis achieved the highest classification
accuracy, with a 79.77 % accuracy for IVa datasets and 86.48 % for
IIIa datasets. In the same year, Yu et al. (2020) used a new feature

extraction scheme based on phase-locking value combined with local
temporal common spatial patterns. They obtained 83.25 % and
90.56 % for IVa and IIIa datasets, respectively, as shown in Table 9.
Recently, Tiwari and Chaturvedi (2021) found an effective way to
minimize the redundancy of EEG channels by using the dynamic
channel relevance method. They achieved slightly more than 85 %
for dataset IVa. Meanwhile, Phadikar et al. (2023) developed an
unsupervised neural network using the weight vector of the
autoencoder. They also applied rectangular windowing to extract the
representative features. Their method obtained 95.33 % for dataset
IIIa. Most existing methods were conducted using the IVa datasets,
and overall classification accuracy was obtained between 76 % and
97 %. Some of those methods utilized the V datasets for their study
and achieved an average accuracy between 60 % − 69 %. Further-
more, some researchers used IIIa datasets and yielded 86 % − 91 %
classification accuracy compared with the proposed ORDWT_AR
scheme that used three different datasets from BCI Competition III
(IIIa, IVa and V). Table 9 highlights the best result among all the
techniques in bold font. The proposed ORDWT_AR scheme with the
WKNN classifier achieved the highest accuracy compared to other
methods.

• In addition, this research also compared the proposed approach
using the CHB-MIT datasets with several recent reported research, as
shown in Table 10. Table 10 summarizes the performance compar-
ison between the proposed and state-of-the-art methods. Compared
with the reported results from (Xiang et al., (2025), Bhattacharyya
and Pachori (2017), Jiang et al., (2020), Liu et al., (2022), Xiong
et al. (2022). The accuracy of the proposed ORDWT_AR technique
was slightly the highest. The proposed scheme can deal with large
amounts of data. The main limitation of the proposed method is that
it may cause a little delay for real-time applications due to the feature
extraction procedure.

Fig. 9. The ROC curves for four datasets.

Fig. 10. Performance evaluation hlo metric.
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• Although the proposed motor task identification gained acceptable
accuracy, evaluating the proposed model with a big real EEG dataset
is necessary to assess its robustness. In addition, other models,
including ensemble classification models and feature selection

models, will be combined with the proposed ORDWT_AR technique
to improve its performance.

5. Conclusion

Developing a novel method to analyse and classify EEG signal types
from BCI interactions is critical. It can help disabled people to commu-
nicate outside of their world. Extracting discriminative features from a
vast amount of EEG data is very important to accurately classify EEG
recordings. This study developed a novel feature extraction technique
for EEG classification. The over-complete rational dilation wavelet
transform combined with the autoregressive model, named the
ORDWT_AR technique, was applied for the feature extraction. The three
popular WKNN, DTree and BST classifiers were tested to select the best
classifier. The experiments were conducted using four publicly available
benchmark EEG databases, two motor imagery (IIIa and IVa databases),
and mental imagery tasks (V database) from BCI Competition III and
CHB-MIT epileptic datasets, respectively. The experimental results
showed that the proposed ORDWT_AR technique and the WKNN clas-
sifier efficiently classify the EEG signals. In the future, we will imple-
ment the ORDWT method with different power spectral models to
extract features from large amounts of EEG recordings and improve
efficiency.
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