
sensors

Article

Cloud- and Fog-Integrated Smart Grid Model for Efficient
Resource Utilisation

Junaid Akram 1,2,*, Arsalan Tahir 3 , Hafiz Suliman Munawar 4 , Awais Akram 5, Abbas Z. Kouzani 6

and M A Parvez Mahmud 6

����������
�������

Citation: Akram, J.; Tahir, A.;

Munawar, H.S.; Akram, A.; Kouzani,

A.; Mahmud, M.A.P. Cloud- and

Fog-Integrated Smart Grid Model for

Efficient Resource Utilisation. Sensors

2021, 21, 7846. https://doi.org/

10.3390/s21237846

Academic Editors: Juan I. Guerrero

and Antonio Martin-Montes

Received: 18 October 2021

Accepted: 18 November 2021

Published: 25 November 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science, The University of Sydney, Camperdown, NSW 2006, Australia
2 Department of Computer Science, Superior University, Lahore 54000, Pakistan
3 Research Center for Modelling and Simulation, National University of Sciences and Technology (NUST),

Islamabad 44000, Pakistan; atahir.mscse17@rcms.nust.edu.pk
4 School of Built Environment, University of New South Wales, Kensington, NSW 2052, Australia;

h.munawar@unsw.edu.au
5 Department of Computer Science, COMSATS University Islamabad, Vehari 61100, Pakistan;

awaisakram1212@gmail.com
6 School of Engineering, Deakin University, Burwood, VIC 3125, Australia;

abbas.kouzani@deakin.edu.au (A.Z.K.); m.a.mahmud@deakin.edu.au (M.A.P.M.)
* Correspondence: jakr7229@sydney.edu.au or junaidakram@superior.edu.pk

Abstract: The smart grid (SG) is a contemporary electrical network that enhances the network’s
performance, reliability, stability, and energy efficiency. The integration of cloud and fog computing
with SG can increase its efficiency. The combination of SG with cloud computing enhances resource
allocation. To minimise the burden on the Cloud and optimise resource allocation, the concept of fog
computing integration with cloud computing is presented. Fog has three essential functionalities:
location awareness, low latency, and mobility. We offer a cloud and fog-based architecture for
information management in this study. By allocating virtual machines using a load-balancing
mechanism, fog computing makes the system more efficient (VMs). We proposed a novel approach
based on binary particle swarm optimisation with inertia weight adjusted using simulated annealing.
The technique is named BPSOSA. Inertia weight is an important factor in BPSOSA which adjusts the
size of the search space for finding the optimal solution. The BPSOSA technique is compared against
the round robin, odds algorithm, and ant colony optimisation. In terms of response time, BPSOSA
outperforms round robin, odds algorithm, and ant colony optimisation by 53.99 ms, 82.08 ms, and
81.58 ms, respectively. In terms of processing time, BPSOSA outperforms round robin, odds algorithm,
and ant colony optimisation by 52.94 ms, 81.20 ms, and 80.56 ms, respectively. Compared to BPSOSA,
ant colony optimisation has slightly better cost efficiency, however, the difference is insignificant.

Keywords: smart grid; fog computing; binary particle swarm optimisation; cloud computing;
makespan minimisation

1. Introduction

The smart grid (SG) controls energy distribution and allows Internet of Things (IoT)
devices to communicate with one another. End users and service providers can engage in
two ways with the SG, allowing them to track their energy use and price [1]. Because of
the vital nature of the SG’s services and the large number of customers using them, rapid
response and processing times are critical. To handle a huge number of requests generated
by a variety of devices such as a smart metre, cloud data must be handled, processed, and
stored [2]. The Cloud’s evolution has reduced the requirements for substantial computing
capacity at the device level [3]. The smart metre, which is permanently saved on the Cloud,
provides individual data and energy use statistics to the smart grid. The Cloud, when
combined with IoT connectivity, offers a wide range of services and allows for intelligent
data management [4].
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The rapid development of IoT devices has greatly increased the Cloud’s computing
burden, resulting in longer response and processing times, which might be important for
time-sensitive applications. When sending data to the Cloud, SG ensures privacy [5]. As
the number of cloud end users grows, it becomes more difficult to manage requests, and
load balancing challenges occur [6]. The fog computing layer is established between the
Cloud and the end users to reduce the effect of an increased processing time and manage
massive requests from end users.

Cloud computing is a centralised system that uses shared computers rather than
decentralised servers to perform computations. The Cloud delivers software as a ser-
vice (SaaS), platform as a service (PaaS), and infrastructure as a service (IaaS) as well as
other services [7–9]. Fog computing is a type of cloud computing that improves system
performance. Fog directly interacts with end users and delivers cloud-like computing
and storage services [10–13]. Fog also has a number of useful functions, such as location
recognition and quick reaction time [14,15]. Fog computing enhances the validity of SG
while lowering the cost of processing and reaction time [16,17]. End-user inquiries are
sent to a cloud-based fog platform where they are routed to micro-grid (MG) services.
Customers send requests to Fog, which locates the nearest MG and contacts the micro-grid
controller. Processing and reaction times are accelerated and the overall performance is
enhanced thanks to Fog [18,19].

We present an integrated SG model with Cloud and Fog in this study. In the proposed
approach, the fog server receives electricity requests from end users and passes them on
to the MG. End-user queries to Fog are managed using a dynamic service broker policy.
Virtual machines (VMs) are present in each fog node. The necessary computations are
handled by virtual machines. A ’Load Balancer’ mechanism is included in each fog node.
The fog load is distributed over several virtual machines by the load balancer, which
minimises the complexity of fog servers.

In recent years, Internet of Things devices have seen a rapid growth in all domains
of modern-day life. The number of IoT devices is expected to grow even more rapidly in
the future. Due to this trend, IoT devices associated with SG have tremendously increased
the computation requirement of cloud servers [20–23]. To mitigate the effect of large
computation requirements, the concept of centralised cloud- and fog-based platform is
presented in [24]. The increased number of IoT devices not only increased computation
requirements but also caused an increase in the response time [25–27]. Moreover, data
storage in the Cloud has also become a critical issue. To manage this, the authors in [28–30]
presented the concept of fog computing. Fog computing is a layer of processing and
communication nodes that relieves the Cloud of the burden of multitasking while managing
large quantities of user requests. Demand overload is a problem in cloud- and fog-based
smart grids due to the unpredictable receipt of requests. Due to the sporadic utilisation
of virtual machines, some resources are frequently and highly utilised while others are
idle. Load balancing is a network distribution strategy that distributes a large number of
virtual machines or CPUs. This aids in the achievement of balanced use which enhances
performance while reducing the reaction time. As a result, efficiently balancing the load
among the resources is a critical challenge. The main problem with fog computing is to
competently manage incoming user requests with quick response times while preventing
resource under-utilisation at the same time. By distributing requests to virtual machines,
several methods are utilised to fulfil client requests with the shortest response time possible.
Because each virtual machine in the Fog accomplishes the same amount of work throughout,
load balancing is critical, lowering the reaction time and improving the total system output.
By dynamically shifting the load to VMs or nodes, a machine’s usage may be balanced.
Different load-balancing strategies have been outlined in the literature for the handling of
user requests in the Cloud. This study proposes a novel load balancing method based on
the aforementioned notion.

The application of computational intelligence (CI) approaches to improve the per-
formance of systems for multi-objective, multi-level optimisation problems in cloud and
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fog computing is the major emphasis of this study. In general, optimisation issues are
divided into two categories based on the variables involved: combinatorial and continuous
optimisation problems, respectively, for discrete and continuous variables. Combinatorial
optimisation problems are addressed in this article, and the results are presented and
analysed. The following are the paper’s key contributions:

• The implementation and design of the particle swarm optimisation method;
• The use of more than one optimisation algorithm together to form hybrid versions

such as the use of the simulated annealing (SA) method to enhance the performance
of binary particle swarm optimisation (BPSO) and the quality of its solutions;

• Two optimisation methods are applied to cloud scheduling—in order to decrease the
response time and execution time of tasks on the Cloud and Fog.

The rest of the paper is divided into the following sections: Section 2 explains the
smart grid and the three architectures that the smart grid is built on. Section 3 discusses
the system model, problem formulation, and proposed load-balancing technique. Section 4
discusses the results in detail. Section 5 summarises this work and presents the conclusion
of the work.

2. Literature Survey

Smart grids are one type of cyber physical system. They are power electricity systems
or networks. They generate electric power and transmit this power to customers such as
factories [31–34]. Smart grids are one of the largest interconnected networks around the
world. A failure in one part of smart grid can cause failures to the whole network of the
smart grid. An overview of a typical smart grid architecture is shown in Figure 1. Examples
of smart grids can be wind power such as wind turbines, which produce electricity power
through turbines [35–37]. Wind power is one of the renewable energy forms that reduce
the production of carbon dioxide [38–40].

Studies have shown that demand for smart grid consumption is rapidly increasing.
The reason forb this is that it increases the efficiency of the supply chain. Consumers tend
to use it in an effective manner [41,42]. The other reason for using smart grids is that they
use less fossil fuels energies. Fossil fuel energies produce more CO2 and pollution and
cause an increase in global warming [43,44]. Smart grids are based on renewable energy
systems. They do not produce CO2, which is harmful for the environment. We can also see
this electricity consumption in transportation. Some people tend to use electric cars, which
use electricity power instead of gasoline. Some buses are hybrid buses, which use electric
power [45–47].

The benefits of smart grids can be that they can reduce the peak load demand or
optimise it. This leads to a reduced generation of electricity power [48,49]. Another benefit
is that smart grids can increase energy efficiency because they can make customers more
involved in the electricity usage [50,51]. However, in addition to the benefits of using smart
grids, there are some disadvantages such as security. Attackers can access the smart grid
network and hack into it to retrieve information or damage the system [50,52].

The security of smart grids is an important matter as it involves critical user data.
If security is not taken care of, it can compromise the overall efficiency of the system.
The leakage of consumer data or the compromise of the system can lead to huge costs
and efforts to recover them and have further ramifications and economic impact [53,54].
Reliability can be one of the security challenges of smart grids. The other challenge can be
quality of smart grids [55]. The main features of smart grids could be that the smart grid
can provide smart meters for customers. Smart meters can measure the amount of use and
price of use [56,57]. The smart meter provides security and therefore, the attacker might
not be able to access it [58].

To provide solutions for cost-effectiveness in power grid systems and ways to deal
with real-time management, numerous solutions have been presented. In accordance with
already-presented architectures, three classes were found for these studies.



Sensors 2021, 21, 7846 4 of 22

Generation

Transmission

Distribution
Home

- Smart Meter
- In-Home Display
- Hi-efficiency Appliances
- Customer EMS
- Gateway to Distribution

Zigbee/Homeplug
Home Area

Network (HAN)

ANSI C 12.22
Local Area

Network (LAN)
TCP/IP Transport with IEC 61970, 61968, and 61850 for DAta
Exchange Wide Area Network (WAN) on WiMax @ 1.8 GHz

Figure 1. Overview of a typical smart grid architecture.

2.1. SG-Derived Architecture

A revised algorithm for energy management derived on the basis of the renewable
energy sources (RES) concept (i.e., PV panels, wind turbine, hydropower systems etc.)
and demand response was introduced by [59,60]. A smart grid-based architecture model
includes photovoltaic panels, principles of demand response, the sharing of various re-
sources for the provision of load, and state of charge. Despite the minimisation of the
makespan and energy cost, there are some limitations to the model. The limitations are
made effective by using Pareto optimisation [61,62] along with multi-objective genetic
algorithm. Consumers observed optimal results after the application of these schemes [63].
Yoldas et al. in [64,65] discussed a review based on the revolutionary changes that occur
in new power systems. This study is presented on the basis of challenges that take place
due to the increase in the demands of electricity worldwide, global scale lacking in RESs
integration, minimisation of carbon emission due to the inadequate cognizance of con-
sumers, and the addition of communication technologies. These previously presented
challenges brought the awareness to establish MGs (power panels for a smaller scale)
which, due to the integration of technology and smart grid tools, are becoming an emerging
domain [66,67]. Furthermore, the authors in [64] also shared talks about the MG along with
its functionalities and the smart services in the smart grid environment.

Massive amounts of Big Data obtained from smart metering in distributed smart en-
ergy grids were accepted by the proposed architecture in [68], which allows for automated
power commercial transactions between participants in a specialised marketplace. Values
fluctuate in function of real-time supply and demand as well as the grid’s state. As a
result of utilising the knowledge provided by the energy marketplace, all participating
stakeholders may make the most out of their product while also contributing to the overall
stability of the energy grid.

For commercial, industrial, and residential loads, Refs. [69,70] followed a genetic
algorithm utilisation scheme and presented demand management in smart grids. In this
system, only adaptable and fixed devices are considered. For minimising the average
cost-to-peak ratio, the elastic load was rescheduled using a genetic algorithm. In the mobile



Sensors 2021, 21, 7846 5 of 22

appliances, after being rescheduled, there was a reduction observed in the average cost-to-
peak ratio. Barbato et al. in [65,71] proposed a complete strategy for requested management
using the infrastructure of smart grids to reduce the peak ratio for the customers. This
study was based on the idea of using two different kinds of strategies, i.e., a hybrid strategy
and completely distributed strategy. Other devices employ self-governing decision in the
first type, but in the second type, i.e., the hybrid, the devices are scheduled based on the
demand. By looking at these strategies in the grid-connected modes, the performances are
discussed on the basis of the numerical evaluation. Following particular system constraints,
an uncooperative game is used to model the system. After the evaluation, it was declared
that there was a 55% minimisation in the peak formed. Appliances are selected to fulfil
the peak average ratio, the comfort of the user, and the objectives of cost. Furthermore,
smart grids’ demand response has been increasing with growth in smart devices. However,
due to the issue of managing huge data and an increment in consumer involvement, it
becomes computationally difficult. To deal with such issues of scalability, computation,
and emergencies, an efficient and reliable system meeting the requirements is needed.

2.2. Fog- and Cloud-Derived Architectures

A great deal of attention has generated by the cloud computing paradigm in the litera-
ture [72,73]. It has been suggested that cloud computing devices are strongly associated
with their architectural frameworks. In terms of the non-technical and technical challenges,
the authors presented the distinctive points and concepts of cloud computing, also talking
about the various future directions highlighted by Armbrust et al. in [74]. An approach
supporting the content retrieval for the images that are encrypted without them being
exposed by the cloud server was discussed by Xia et al. in [75,76]. To begin with, the feature
vectors are used to extract the images. The pre-filter tables are then used to develop a
locality hashing to enhance efficiency surfing. In addition, to secure the feature vectors, the
k nearest neighbour (kNN) algorithm was applied for the protection mechanism. To protect
the images, a standard stream cipher was used to apply the encryption mechanism. To
prevent illegitimate image spreading, a protocol based on the watermark was proposed and
the cloud server was used to add the watermark before transmitting images. In case a copy
of an illegitimate image is achieved, then the extraction process based on the watermark is
used to extract the user. This process is useful in promoting efficiency and protection.

A consumer model with a scheme based on the surfable encryption was developed
using a ranked multi-keyword search. Fu et al. in [77,78] described this scheme as the pur-
pose to provide security in the cloud computing environment. Xia et al. presented a similar
technique for cloud computing updates in [51,79]. This technique is operational for the
encryption of data in cloud computing. It assists in the insertion and deletion of documents
and dynamically updates them. For query transmission and index creation, TF x DF models
and vector-based models are collectively used. Greedy depth-first search algorithm and an
index organisation—being tree-based—were used to intensify the efficiency of surfing. The
kNN algorithm was used for the security of query vectors and indexes’ encryption. These
algorithms depict the score for both query-generated and indexes vectors. For the insertion
and deletion of documents, this scheme sub-linearly used the surfing time which enhances
the scheme efficiency.

To resolve the problem of delay, latency, hourly requests, and response time, Bonomi et al.
in [80] proposed an alternative fog computing paradigm. Fog computing provides us with
solutions for reliability, delay, and time for processing [81]. Nonetheless, in both the
emerging fog and cloud technologies, requests are randomly sent from consumers by any
process. Problems such as overburden and congestion are seen due to a huge number
of requests [82]. However, the unfair task assignment is linked to the overburden of the
servers. Load imbalance is due to random task assignment which occurs due to overloaded
and under-loaded processors [72]. Khiyaita et al. in [83] performed a review finding that the
exploitation of future research obstacles in smart grids may present techniques such as load
balancing in cloud computing. The purpose of load balancing is to transmit the load from
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overloaded to under-loaded processors. Coordination must be enabled by the system to
meet with the consumers’ requests [84]. This may present congestion and it is also directed
to create imbalance in the management of services. For service balancing, load balancing
algorithms are required by cloud computing with minor modifications [85]. Various
researchers are working to solve this issue, for instance, the authors in [86] presented a
remedy to deal with the load-unbalancing problem. Various types of loads such as the
network loads, memory, and computation are considered in this work. To balance all such
work in cloud computing, various heuristic algorithms such as genetic algorithms, tabu
search, and simulated annealing were considered [87].

Nikhit et al. in [88] discussed a hybrid ACHBDF (ant colony honey bee with dynamic
feedback) algorithm for resource utilisation in cloud computing optimisation for a load
balancing mechanism. This algorithm uses the feedback methodology of the dynamic time
step utilising two run time scheduling collective schemes. For effective task scheduling, it
also depends on the quality of honeybee algorithms and ACO. For the maintenance of the
dynamic feedback method, load verification is performed by the support system before
each iteration. Bitam et al. in [89] suggested an improved bees’ life algorithm (BLA)—a bio
inspired algorithm for effectively assigning the tasks in the environment of fog computing.
This study was based on fog node distribution. The main objective of this approach is to
achieve a trade-off between storage-utilising fog nodes and the execution time of the CPU.
The cost and response time for this scheme was also measured and compared with the
previous genetic and PSO algorithms. Out-performance was observed in this case study.

2.3. SG with Cloud-Derived Architecture

Many scholars, such as Mohamed et al. in [90], presented a technique known as
service-oriented middleware (SOM) on the usage of cloud–fog computing to manage and
support smart grids for the effective anatomising of hindrances during the operation and
development of the functionalities of smart cities based on fog and cloud computing. Smart
city ware, also known as SOM, includes fog and cloud computing features. This service
provides users with multiple functionalities along with parameters extracted by the SOM.
This works to improve the services’ parameters and functionalities, as requested by the
consumers in the smart city. Moreover, the problems in the management of resources are
not considered. Reka et al. in [45] presented a smart grid data-based model on cloud com-
puting which takes the distribution advantage of data management for ubiquitous access,
data gathering, and parallel processing for information retrieval. For the effective load
management of smart grids users, stochastic programming is present in cloud computing.
The Gurobi utilizer in Matlab and GUI (designed interface) gives off results. The main idea
behind this is to reduce energy requirements through the addition of hubs.

Moreover, Moghaddam et al. in [50] presented a demand response of the cloud-
based architecture—namely the cloud-based demand response architecture. The demand
responses are of two kinds: distributed demand and cloud-based demand response. These
are utilised by two models such as the communication models and a demand response
model. Enhanced bandwidth utilisation and convergence time is minimised by this study.
Lastly, these models proved that communication costs can be increased through more
consumer requests and the proposed system efficiency. In [55], the authors presented an
enhanced smart grid electric vehicle based on the cloud environment scheduling data by
public service stations. This secures communication between cloud platforms and smart
grids. When using priority assignment algorithms, the waiting time is also considered. For
the EV process, algorithms of two types are used, such as the random priority optimisation
algorithms and calendar priority optimisation. For each EV user, the four types’ priorities
are included. Moreover, this study only deals with the problems of EVs and declines the
request of buildings or home management. Moreover, Gu et al. in [91] handled a cloud
data centre for green scheduling. The purpose of this work was to ensure the trading of the
energy along the power grid. The main objectives were reducing the carbon emission and
energy cost. To cope with hazardous emission energy, renewable sources were used.
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The brief overview of the above-discussed studies shows that the need for a reliable
cloud- and fog-derived smart grids scheme was inevitable for the efficient management
of resources that deal with utility activities and the consumer. Therefore, a scenario is
considered where smart buildings and homes are requested by the users and servers are
used to handle the requests. These are optimised by the servers in such a way to reduce
the response time, the cost of the resources, and the processing time.

3. System Model

The model was adopted from our previous work [18,92]. Cloud service companies
often have numerous data centres (dedicated to computing and storage) spread throughout
the globe. Multiple fog data centres and a cloud data centres were included in the proposed
system model of a cloud–fog environment. Figure 2 shows the SG framework, which is
built on a geo-distributed cloud–fog environment. The end-user layer, fog layer, and core
cloud layer are the three layers that make up the suggested model.

Fog Layer Fog To CloudCloud To Fog

Cloud Layer

Cluster 3 Cluster 4Cluster 1 Cluster 2

U�lity Service Provider

Cloud

End User Layer

MG MG

Electricity Flow

Informa�on Flow

Fog 4Fog 1 Fog 2 Fog 3

Figure 2. Abstract level view of proposed system model.

Fog includes various hardware and software resources. Fog acts as a middle layer
between users and the Cloud. The Fog’s responsibility is to manage user requests that
come from the different regions of the world. The requests include electricity demand and
information access. The Fog is introduced to reduce the load on the Cloud. In this section,
a system model with a three-layer architecture, i.e., a cloud layer, consumer layer, and a fog
layer is proposed. These three layers are interlinked with each other to share information.

We suppose that the end-user layer is made up of N buildings, each with several
homes. To meet the electricity demand, every residence has a renewable energy-producing
unit and an energy storage system (ESS). Because it collects energy from natural sources,
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this sort of generator produces no pollution or fuel costs and is ecologically benign. In
addition, additional generated energy is stored in the ESS during low-generation hours
to meet the home’s load demand. The fog layer receives all the information regarding a
home’s energy usage, generation, and appliance scheduling. To operate their applications,
this layer uses a variety of cloud services. Smart metres connect the fog devices to the
designated smart buildings or residences. Through the cloud–fog environment, all of the
households communicate their power deficiency and excess information with one another.
Smart metres communicate with one another through a local area network, a wide area
network, or a metropolitan area network. In the SG, wireless communication systems such
as Wi-Fi, Z-Wave, and ZigBee are available.

Fog is a cloud extension that handles user requests and works as a middleman between
the client and the Cloud. The Fog connects each of the clusters. Before being transferred
to the Cloud to be permanently kept, the data are briefly stored in the fog layer. Fog is
more user-friendly than the Cloud and offers the same features. End users benefit from
low-latency services in this way. Users’ requests are processed by virtual machines in the
Fog. By submitting a request to the Fog, which is linked to MGs, users may request energy
from MGs.

The fog layer, which is utilised to efficiently regulate latency and network resource
management, is the second layer. The fog layer physically occurs in the clients’ local
location since it is closer to them (i.e., region 1, region 2, etc.). The fog node is closer to
the consumer (i.e., one hop away) when physical and communication distances are equal.
Internet service providers are in charge of these fogs. The fog layer is made up of a variety
of fogs. Each smart building is linked to a fog device in this manner. Fog devices are made
up of virtualised hardware (H/W) resources (such as main memory, storage, network
bandwidth, and CPU). Using the virtualisation idea, a virtual machine monitor manages a
large number of virtual machines on a single physical computer. Many operating systems
(OSs) can run simultaneously on a single H/W platform thanks to the VMM. The virtual
machine manager (VMM) or hypervisor (VMWare, Xen, UML, etc.) acts as an interface
between virtual machines and guest operating systems. Each virtual machine (VM) or guest
operating system (guest OS), which is the central processing unit for running an application
or a request, runs a variety of programmes. Fog is a communication layer that connects
the user to the Cloud. The core cloud layer is the last layer. The data centres are the most
significant components in this tier, since they provide storage and processing power to end
users. They function on a pay-as-you-go basis, based on the application’s requirements.

Remote servers make up the cloud layer which provides on-demand data processing
and administration. Clouds and fogs are inextricably connected. Fogs briefly store user
data before sending the request to the Cloud for permanent storage.

The computational load profile aspects of computing applications are the most es-
sential part of cloud computing (CC). When a large number of apps are run on the same
platform, the server becomes overburdened. A number of approaches were used to address
this problem. This notion is shown in Figure 3 which shows how end-users produce a
significant number of requests to visit the service provider. A load balancer is used in
virtual machines to achieve effective load balancing and resource utilisation. CC uses a
number of load-balancing strategies to provide good computational load profile control.
In SGs, the computational load profile is similar to the electricity load profile concept.
Thus, when we integrate the SG with the cloud–fog-based environment, then the efficient
management of the computational load profile of all SG-related tasks is also necessary
as well. The load-balancing problem was solved using four heuristic solutions in this
study. When this system model is applied to all parts of the globe, each area has a different
quantity of buildings and fogs. These structures may be found in many different settings,
including residential, commercial, and industrial. Two performance evaluation alterna-
tives are included in this system model which will be addressed in further depth in the
simulation section.
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Figure 3. Average response time.

There are six regions in this globe. Because these regions have a dense population
and load balance difficulties, regions 2 and 3, i.e., Europe and Asia, are assumed in this
research. Each region has two fogs which are linked to a cluster of structures.

Here is an overview of the strategies utilised to create excellent load balancing. The
term round robin (RR) refers to a time-slicing technique that divides time into equal chunks.
An equal time slicing approach is used to ensure that resources are equitably allocated
across all hosts. The burden of requests from end users is distributed and balanced across
virtual machines using this technology. The odds-algorithm is a mathematical approach
for solving a subset of optimum halting problems. Their solution is determined by the
odds strategy, and its optimality is determined by the odds importance strategy. These
algorithms, on the other hand, work in a sequential fashion and do not take local or global
optimal results into account. The ant colony optimisation (ACO) method is a heuristic that
simulates natural behaviour using agents (ants). Ants evaluate the quality of paths based
on a number of parameters (distance, amount of pheromone on the trails, etc.) and choose
one at random (the better path quality, the higher probability it represents). After travelling
the whole trail from source to destination, ants deposit a pheromone coating on the track
to teach one another. The agent’s solution choice determines how much pheromone is left:
the better the solution, the more pheromone is left. The BPSOSA method is proposed to
tackle the problems in the above algorithms. This enables us to obtain the greatest results
locally and globally. The current best (local best) value is compared to the previous best
(global best) value in each iteration of this procedure, and the current best is chosen as the
global best if it fulfils the fitness requirement. Otherwise, the first option is still the most
cost-effective. BPSOSA is explained in detail below.

3.1. Problem Formulation

The suggested system architecture is made up of three layers. Figure 2 depicts an
abstract level perspective of the suggested system model. The cloud layer is the first and
highest layer. The fog layer is the second and only intermediate layer. The user layer is
the third and final layer. These layers communicate with one another in order to satisfy
the needs of the users. Six widely separated areas make up the suggested system model.
For computations and other needed actions, the user sends requests to the Fog through the
smart grid (SG). The Fog satisfies the consumers’ requests by making effective use of the
resources. The task set T may be written as follows:

T = T1, T2, ..., Tm (1)
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The number of virtual machines in a fog can be specified as

VM =
v

∑
i=1

(VMi) (2)

The objective function is to minimise the processing and response time which can be
formalised as

Kminimize =
m

∑
j=1

n

∑
i=1

(RT ∗ Pij ∗ Delay) (3)

The Fitness function is calculated as

Fitness = Max[EXCvm1(F1), ..., EXCvmn(Fm)] (4)

Here, EXCvm1(F1) is the execution time of running the set of tasks on fog F1 on vm1.
F1 is the set of clusters of users, i.e., F1 = [C1, C2, ...Cx], where x is the number of users on
fog F1. Furthermore, n is the number of VMs and m is the number of fogs.

3.1.1. Processing Time

The processing time depends on the capacity of VM and length of the task. It can be
calculated as follows:

PT =
N

∑
i=1

M

∑
j=1

(Pij ∗ Ai) (5)

3.1.2. Response Time

The response time is calculated as the difference between the time at which the
execution of the task started and the time at which the user sent a request to be processed:

RT = DelayTime + FinishTime− ArrivalTime (6)

3.1.3. Cost

Another very important factor in Cloud and Fog is cost. Data transfer cost and virtual
machine cost are the two factors on which cost depends. These can be calculated using the
following equations. Here, U is a constant factor and β is a per GB transfer cost:

CostTotal = CostDT + CostMG + CostVM (7)

CostVM =
N

∑
i=1

(VMFinalTime−VMInitialTime) ∗U (8)

CostDT =
TTotal

DataUsed ∗ β
(9)

Equation (10) shows the total time taken by VM:

TotalTime = FinishTime− StartTime (10)

3.2. Proposed Approach

We proposed a hybrid binary particle swarm optimisation with simulated annealing
(BPSOSA). In BPSOSA, the value of inertia weight is set by simulated annealing. PSO
is a swarm intelligence and mobility-based resilient stochastic optimisation approach.
PSO employs the concept of social interaction when it comes to problem solving. It was
founded by James Kennedy and Russell Eberhart in 1995. It makes use of a swarm of
agents (particles) that move around in the search space looking for the best solution. Each
particle is viewed as a point in an N-dimensional space that alters its "flying" based on its
own and other particles’ prior flying experiences.
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PSO is a load balancing approach that is self-adaptive and meta-heuristic. The pop-
ulation, also known as swarm, and the solutions, sometimes known as particles, are the
two most important components of PSO algorithms. The algorithms’ performance is in-
fluenced by the local best position (p̂i) and global best position (ĝ). The fitness function
generates a single value for each particle, which is referred to as the fitness value. Each
particle’s objective functions are developed and validated over time. The method also
provides the velocity (vi) and location of the particle (pi). A particle is defined as a point
in D-dimensional space in this method. Each element has upper and lower limits within
which it can take a value. Each particle has a D-dimensional velocity with a restricted
continuous value for each element. Alternatively, each member of the velocity matrix can
have a value in the range [0, 1] and the components of the binary PSO’s locations matrix
can have a binary value of 0 or 1.

The Equations (11)–(15), where ω is the inertial constant, c1 and c2 are cognitive and
social constants that are typically ∼2, and r1 and r2 are random numbers, represent the
PSO working over a continuous space. mRange and xRange are the lowest and maximum
transmission ranges, respectively, and Ran is a random number between 0 and xRange.
The velocity of particle p’s ith component is updated using Equations (11)–(13), while the
position of that component is updated using Equations (14) and (15):

vi = ωvi + c1r1( p̂i − pi) + c2r2(ĝ− pi) (11)

δ =
xRange−mRange

2
(12)

vi =

{
mRange If vi < δ

δ Otherwise
(13)

pi = Ran + vi (14)

vi =


mRange If pi < mRange
xRange If pi > xRange
pi If mRange ≤ pi ≤ xRange

(15)

The continuous PSO equations are modified to have a binary output of 0 or 1 instead
of a continuous value. The mRange and xRange boundaries are changed to 0 and 1,
respectively, and replacing the Equations (12) and (13) with Equation (16) is going to give
the velocities a value in the range of [0, 1]. The positions’ matrix, however, is updated
using different equations than the continuous PSO as in Equations (17) and (18), where ran
is any random binary and s(pi) is the particle’s sigmoid function value, i.e., Euler’s number.
In the equation, the sigmoid function was utilised to scale the value to keep it inside the
range [0, 1]:

vi =


mRange If vi < mRange
xRange If vi > xRange
vi If mRange ≤ pi ≤ xRange

(16)

s(pi) =
1

1 + e−pi
(17)

pi =

{
mRange If s(pi) ≤ Ran
xRange otherwise

(18)

ω in Equation (11) is the most important parameter as it sets the size of the search space.
The search space should not be so big that it is computationally exhaustive, nor should
it be so narrow that it requires too many iterations to discover the best answer. The
value of omega is usually between 0.9 and 0.1. The RIW technique provided by [93]
outperforms the others in terms of changing the balance between the particle’s local and
global search capacities. RIW uses LDIW in addition to an SA mechanism to enhance
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the likelihood of obtaining a near-optimal solution with less iterations and computation
time. Eberhart et al. [94] proposed LDIW in Equation (19) to reduce the negative impact of
utilising the FIW technique; however, LDIW still has drawbacks, mostly due to the limited
local search capacity at the start of the PSO rounds:

ωi
itr =

(ωmax −ωmin)(itrmax − itr)
itrmax

(19)

where ωi
itr is the inertia weight of particle i in iteration number itr, ωmax is a predefined

maximum possible value of inertia weight, ωmin is a predefined minimum possible value
of ω, and itrmax is the predefined number of maximum iterations. In our study, itrmax is set
to 500.

The complete binary particle swarm optimization is explained in the
Algorithm 1 below.

Algorithm 1 Binary particle swarm optimisation

1: calculate execution times
2: initialize the swarm
3: set global best
4: for i← 0→ numbero f iterations do
5: for j← 0→ numbero f iterations do
6: calculate inertia value
7: calculate new velocities
8: calculate new positions
9: calculate fitness value

10: evaluate solution
11: update particle memory
12: update global best
13: end for
14: end for

Even if a particle starts at the LDIW global optimisation point, it will quickly move
away from it. Similarly, if a particle does not discover a near-optimal solution and remains
stuck in one sector of space, its global search ability reduces due to the linear drop in
ω, reducing the chances of finding a better solution. As a result, the iteration forepart’s
capacity to find the closest ideal solution improves. An SA technique was utilised in
combination with the LDIW to solve the LDIW issues.

The main idea behind RIW, as discussed before, is to overcome the negative influences
of LDIW on both local and global search abilities. To achieve this, RIW learns from historical
velocities and the fitness of the particle where ω make the historical effect by randomly
selecting inertia weights and later adaptively adjusts with the best solution found. To
learn from the historical velocities and fitness values, Yue-lin et al. [93] used an annealing
method with a cooling temperature function, as shown in Equation (20). To increase the
probability of changing the particle’s speed, the average fitness values of each particle
along with the best fitness recorded by any particle are used in the equation:

cTempitr = (
pFitnessitr

avg

pFitnessbest
)− 1 (20)

In this equation, cTempitr is the annealing temperature value in the current iteration
itr, pFitnessitr

avg is the average of all recorded fitness throughout all iterations until the
current iteration, and pFitnessbest is the best recorded fitness of the particle.

According to the aforementioned annealing temperature in Equation (20), ω will be
adjusted according to Equation (22), which is the annealing probability of the proposed
method and will be calculated according to Equation (23), where ρ is the annealing prob-
ability, pFitnessitr is the particle current fitness in current iteration itr, pFitnessitr−k is the
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previous particle’s fitness in iteration itr− k; where k is a fixed number, e is Euler’s number,
cTempitr is the cooling temperature from Equation (20), ωi

itr is the inertia weight ω of
particle i in iteration number itr, and ran is any binary random number:

η =
pFitnessitr−k − pFitnessitr

cTempitr
(21)

ρitr
i =

{
1; pFitnessitr−k ≤ pFitnessitr

e−η ; Otherwise
(22)

ωi
itr =

{
1 + ran

2 ; ρ ≥ ran
0 + ran

2 ; Otherwise
(23)

The Algorithm 2 below explains the complete method to calculate inertia weight (ω)
using simulated annealing.

Algorithm 2 Calculate inertia weight (ω) using the simulated annealing method

1: define value of k
2: define ωmax = 0.9
3: define ωmin = 0.1
4: if itr is a multiple of k then
5: if pFitnessitr−k ≤ pFitnessitr then
6: ρitr

i = 1
7: else
8: cTempitr = (

pFitnessitr
avg

pFitnessbest
)− 1

9: η = pFitnessitr−k−pFitnessitr

cTempitr

10: ρitr
i = e−η

11: end if
12: if ρ ≥ ran then
13: ωi

itr = 1 + ran
2

14: else
15: ωi

itr = 0 + ran
2

16: end if
17: end if
18: if itr is not a multiple of k then
19: calculate ωi

itr =
(ωmax−ωmin)(itrmax−itr)

itrmax
20: end if

4. Simulations and Discussion

Using Java Netbeans, the experiment is run in the CloudSim simulator. The method
may also be incorporated into CloudAnalyst, a CloudSim toolkit extension. CloudAnalyst
also has a graphical user interface. CloudSim employs virtual machines with a variety of
hardware characteristics.

4.1. Response Time Summary

The response time for clusters of users using round robin, odds algorithm, ACO,
and BPSOSA algorithms is shown in Figure 3. In Figure 3, we can see that with the
round robin, odds algorithm, and ACO, the response time is much higher compared to
the BPSOSA. The response time was optimised for all the clusters of users simultaneously.
For Cluster 1, the average response time obtained by the round robin, odds algorithm,
ACO, and BPSOSA is 109.95 ms, 131.29 ms, 131.70 ms, and 61.12 ms, respectively. In this
case, BPSOSA outperforms the round robin by 48.83 ms, the odds algorithm by 70.17 ms,
and ACO by 70.58 ms. For Cluster 2, the average response time obtained by the round
robin, odds algorithm, ACO, and BPSOSA is 109.43 ms, 133.08 ms, 130.20 ms, and 61.28 ms,
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respectively. In this case, BPSOSA outperforms the round robin by 48.15 ms, the odds
algorithm by 71.28 ms, and ACO by 68.92 ms. For Cluster 3, the average response time
obtained by the round robin, odds algorithm, ACO, and BPSOSA is 119.87 ms, 153.74 ms,
153.70 ms, and 64.69 ms, respectively. In this case, BPSOSA outperforms the round robin
by 55.18 ms, the odds algorithm by 89.05 ms, and ACO by 89.01 ms. For Cluster 4, the
average response time obtained by the round robin, odds algorithm, ACO, and BPSOSA
is 124.90 ms, 158.57 ms, 159.11 ms, and 65.05 ms, respectively. BPSOSA outperforms the
round robin by 59.85 ms, the odds algorithm by 93.52 ms, and ACO by 94.06 ms.

By efficiently allocating resources, BPSOSA reduces the burden on the Fog. Rather
than utilising a random ω or a linearly declining ω, BPSOSA utilises a simulated annealing
approach to discover the best feasible solution for each job and schedules requests in the
most efficient way. When a job comes, the load balancer calculates the virtual machine’s
memory, usage, power consumption, and speed. Furthermore, depending on these vari-
ables, the job to be processed is assigned to the virtual machine with the greatest priority,
ensuring that the process does not have to wait long. When compared to the round robin,
odds algorithm, and ant colony optimisation, the results demonstrate that it is signifi-
cantly superior for load balancing. The results demonstrate that the odds method and ant
colony optimisation are quite similar. Both the odds method and ant colony optimisation
performed worse than the round robin. The total overview of the response times for
the methods discussed above is shown in Table 1. Other algorithms are outperformed
by BPSOSA.

Table 1. Overall response time summary of all algorithms.

Algorithms Average (ms) Minimum (ms) Maximum (ms)

Round Robin 116.01 41.79 584.69
Odds Algorithm 144.10 42.63 581.35
ACO 143.60 42.63 577.13
BPSOSA 63.02 38.70 87.37

The round robin, odds algorithm, ACO, and BPSOSA have average reaction times of
116.01 ms, 144.10 ms, 143.60 ms, and 63.02 ms, respectively, as shown in Figure 4.
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Figure 4. Average response time of clusters.

4.2. Processing Time Summary

The processing time for clusters of users using the round robin, odds algorithm, ACO,
and BPSOSA algorithms are shown in Figure 5. In Figure 5, we can see that with the round
robin, odds algorithm, and ACO, the processing time is much higher as compared to the
BPSOSA. The processing time was optimised for all the clusters of users simultaneously.
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For Cluster 1, the average processing time obtained by the round robin, odds algorithm,
ACO, and BPSOSA is 40.98 ms, 54.00 ms, 54.85 ms, and 7.89 ms, respectively. BPSOSA
outperforms the round robin by 33.09 ms, the odds algorithm by 46.11 ms, and ACO
by 46.96 ms. For Cluster 2, the average processing time obtained by the round robin,
odds algorithm, ACO, and BPSOSA is 79.16 ms, 110.97 ms, 107.83 ms, and 15.25 ms,
respectively. In this case, BPSOSA outperforms the round robin by 63.91 ms, the odds
algorithm by 95.72 ms, and ACO by 92.58 ms. For Cluster 3, the average processing time
obtained by the round robin, odds algorithm, ACO, and BPSOSA is 74.69 ms, 107.51 ms,
107.22 ms, and 15.12 ms, respectively. In this case, BPSOSA outperforms the round robin
by 59.57 ms, the odds algorithm by 92.39 ms, and ACO by 91.21 ms. For Cluster 4,
the average processing time obtained by the round robin, odds algorithm, ACO, and
BPSOSA is 70.82 ms, 105.53 ms, 106.33 ms, and 15.32 ms, respectively. In this case, BPSOSA
outperforms the round robin by 55.50 ms, the odds algorithm by 90.21 ms, and ACO by
106.33 ms respectively..
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Figure 5. Processing time comparison of different algorithms.

BPSOSA optimises the load on the Fog with the help of multiple agents which are called
particles. These particles search for an optimal solution with the help of its deterministic
and stochastic components. Another reason for its better performance is that, unlike other
optimisation methods, it has less coefficients to be tuned. In every iteration, a particle
moves closer to the optimal solution. The binary implementation of PSO helps to avoid
overloading of a single processor, that is the case with several other methods. The simulated
annealing method to adjust the inertia weight in every iteration also helps find the optimal
solution in a faster and more efficient manner. The results also support this argument.

Figure 6 and Table 2 shows the average processing time obtained by the round robin,
odds algorithm, ACO, and BPSOSA is 66.33 ms, 94.59 ms, 93.95 ms, and 13.39 ms, respectively.
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Figure 6. Average processing time of fogs.
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Table 2. Overall processing time summary of all algorithms.

Algorithms Average (ms) Minimum (ms) Maximum (ms)

Round Robin 66.33 0.30 531.56
Odds Algorithm 94.59 0.64 530.53
ACO 93.95 1.14 530.31
BPSOSA 13.39 0.17 26.12

4.3. Cost Summary

Figure 7 shows the VM cost and Figure 8 shows the VM cost for the clusters of users
using the round robin, odds algorithm, ACO, and BPSOSA algorithms. In Figure 8, we can
see that with the round robin, odds algorithm, and BPSOSA, the cost is higher than with
ACO. The cost was optimised for all the clusters of users simultaneously.
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Figure 7. Average virtual machine cost of fogs.

Fog 1 Fog 2 Fog 3 Fog 4
267.00

267.25

267.50

267.75

268.00

268.25

268.50

268.75

269.00

To
ta
l C

os
t (
$)

RR
Odds
ACO
BPSOSA

Figure 8. Average total cost of fogs.

In terms of cost, the results demonstrate that ACO is a superior load-balancing algo-
rithm than round robin, odds algorithm, and BPSOSO. The results demonstrate that the
odds method and ant colony optimisation are quite similar. Both the round robin and ant
colony optimisation were outperformed by the odds method. The overall overview of the
cost summary of the previously stated algorithms is shown in Table 3.
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Table 3. Overall cost summary of all algorithms.

Algorithm VM Cost (USD) Data Transfer Cost (USD) Total Cost (USD)

Round Robin 949.89 121.29 1071.18
Odds Algorithm 949.56 121.29 1070.85
ACO 949.54 121.29 1070.83
BPSOSA 950.03 121.29 1071.32

Figure 9 shows the average VM cost obtained by round robin, odds algorithm, ACO,
and BPSOSA is USD 949.89, USD 949.54, USD 949.46, and USD 950.03, respectively.
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Figure 9. Average virtual machine cost.

Figure 10 shows the average cost obtained by round robin, odds algorithm, ACO, and
BPSOSA is USD 1071.89, USD 1070.85, USD 1070.83, and USD 1071.32, respectively.
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Figure 10. Average cost.

We may deduce from the simulation results that the suggested algorithm BPSOSA
outperforms the round robin, ACO, and the odds algorithm. The higher performance
of BPSOSA is due to a combination of the best characteristics of the PSO combined with
the inertia weight modified by simulated annealing. BPSOSA and ACO provided the
best global and local solutions, respectively. Due to its sluggish convergence, the ACO’s
response time, processing time, execution time, and cost were somewhat greater. ACO
may become caught in local optima, preventing it from finding the global best solution.
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To address the concerns with ACO in the future, the ABC fitness step might be
incorporated into the algorithm, which would result in a faster reaction time, processing
time, cost, and execution time due to its greater convergence rate.

5. Conclusions

A system model of cloud- and fog-based environment combined with SG is provided
in this study. This model is made up of three layers: a cloud layer, a fog layer, and an
end-user layer. Cloud servers are put in the cloud layer, fog servers and virtual machines
are deployed in the fog layer, and the end-user layer is made up of a cluster of buildings,
each with several residences. We presented a new method based on binary particle swarm
optimisation with inertia weight adjustment via simulated annealing. The technique is
named BPSOSA. The inertia weight is an important factor in BPSOSA which adjusts the size
of the search space for finding the optimal solution. BPSOSA is evaluated against the round
robin, odds algorithm, and ant colony optimisation. In terms of response time, BPSOSA
outperforms the round robin, odds algorithm, and ant colony optimisation by 53.99 ms,
82.08 ms, and 81.58 ms, respectively. In terms of processing time, BPSOSA outperforms
the round robin, odds algorithm, and ant colony optimisation by 52.94 ms, 81.20 ms, and
80.56 ms, respectively. Ant colony optimisation has a slightly better cost efficiency but the
difference is insignificant.

In the future, our research will look at this prescribed approach in the business sector. It
will also be enhanced to allow users to control a range of load-balancing programmes. That
is, among other things, to improve the SG efficiency, appliance scheduling, and micro-grid
generation. In the future, rather than simulations, the proposed BPSOSA technology will be
compared to other artificial intelligence-based technologies under real-time circumstances.
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Abbreviations
The following abbreviations are used in this manuscript:

SG Smart Grid
IoT Internet of Things
VM Virtual Machine
PaaS Platform as a Service
SaaS Software as a Service
IaaS Infrastructure as a Service
MG Micro-Grid
CI Computational Intelligence
SA Simulated Annealing
BPSO Binary Particle Swarm Optimisation
NIST National Institute of Standards and Technology
RFID Radio Frequency Identification
WSN Wireless Sensor Networks
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RES Renewable Energy Source
SOM Service-Oriented Middleware
BPSOSA Binary Particle Swarm Optimisation Simulated Annealing
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64. Yoldaş, Y.; Önen, A.; Muyeen, S.; Vasilakos, A.V.; Alan, İ. Enhancing smart grid with microgrids: Challenges and opportunities.
Renew. Sustain. Energy Rev. 2017, 72, 205–214. [CrossRef]

65. Munawar, H.S.; Maqsood, A. Isotropic surround suppression based linear target detection using hough transform. Int. J. Adv.
Appl. Sci. 2017, 4, 37–42. [CrossRef]

66. Costa-Campi, M.T.; Jamasb, T.; Trujillo-Baute, E. Economic analysis of recent energy challenges: Technologies, markets, and
policies. Energy Policy 2018, 118, 584–587. [CrossRef]

67. Munawar, H.S.; Khan, S.I.; Anum, N.; Qadir, Z.; Kouzani, A.Z.; Mahmud, P. Post-Flood Risk Management and Resilience Building
Practices: A Case Study. Appl. Sci. 2021, 11, 4823. [CrossRef]

68. Markakis, E.K.; Nikoloudakis, Y.; Lapidaki, K.; Fiorentzis, K.; Karapidakis, E. Unification of Edge Energy Grids for Empowering
Small Energy Producers. Sustainability 2021, 13, 8487. [CrossRef]

69. Rajarajeswari, R.; Vijayakumar, K.; Modi, A. Demand side management in smart grid using optimization technique for residential,
commercial and industrial load. Indian J. Sci. Technol. 2016, 9, 1–7. [CrossRef]

70. Munawar, H.S.; Zhang, J.; Li, H.; Mo, D.; Chang, L. Mining multispectral aerial images for automatic detection of strategic bridge
locations for disaster relief missions. In Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining,
Macau, China, 14–17 April 2019; Springer: Berlin/Heidelberg, Germany, 2019; pp. 189–200.

71. Barbato, A.; Capone, A.; Chen, L.; Martignon, F.; Paris, S. A distributed demand-side management framework for the smart grid.
Comput. Commun. 2015, 57, 13–24. [CrossRef]

72. Zahoor, S.; Javaid, N.; Khan, A.; Muhammad, F.; Zahid, M.; Guizani, M. A cloud-fog-based smart grid model for efficient
resource utilization. In Proceedings of the 14th IEEE International Wireless Communications and Mobile Computing Conference
(IWCMC-2018), Limassol, Cyprus, 25–29 June 2018.

73. Munawar, H.S.; Hammad, A.; Ullah, F.; Ali, T.H. After the flood: A novel application of image processing and machine learning
for post-flood disaster management. In Proceedings of the 2nd International Conference on Sustainable Development in Civil
Engineering (ICSDC 2019), Jamshoro, Pakistan, 5–7 December 2019; pp. 5–7.

74. Armbrust, M.; Fox, A.; Griffith, R.; Joseph, A.D.; Katz, R.; Konwinski, A.; Lee, G.; Patterson, D.; Rabkin, A.; Stoica, I.; et al. A view
of cloud computing. Commun. ACM 2010, 53, 50–58. [CrossRef]

75. Xia, Z.; Wang, X.; Zhang, L.; Qin, Z.; Sun, X.; Ren, K. A privacy-preserving and copy-deterrence content-based image retrieval
scheme in cloud computing. IEEE Trans. Inf. Forensics Secur. 2016, 11, 2594–2608. [CrossRef]

76. Munawar, H.S.; Qayyum, S.; Ullah, F.; Sepasgozar, S. Big data and its applications in smart real estate and the disaster management
life cycle: A systematic analysis. Big Data Cogn. Comput. 2020, 4, 4. [CrossRef]

77. Fu, Z.; Ren, K.; Shu, J.; Sun, X.; Huang, F. Enabling personalized search over encrypted outsourced data with efficiency
improvement. IEEE Trans. Parallel Distrib. Syst. 2016, 27, 2546–2559. [CrossRef]

78. Qadir, Z.; Ullah, F.; Munawar, H.S.; Al-Turjman, F. Addressing disasters in smart cities through UAVs path planning and 5G
communications: A systematic review. Comput. Commun. 2021, 168, 114–135. [CrossRef]

79. Xia, Z.; Wang, X.; Sun, X.; Wang, Q. A Secure and Dynamic Multi-Keyword Ranked Search Scheme over Encrypted Cloud Data.
IEEE Trans. Parallel Distrib. Syst. 2016, 27, 340–352. [CrossRef]

80. Bonomi, F.; Milito, R.; Zhu, J.; Addepalli, S. Fog Computing and Its Role in the Internet of Things. In Proceedings of the First
Edition of the MCC Workshop on Mobile Cloud Computing, MCC ’12, Helsinki, Finland, 13–17 August 2012; ACM: New York,
NY, USA, 2012; pp. 13–16. [CrossRef]

http://dx.doi.org/10.1109/REPSGIE.2018.8488824
http://dx.doi.org/10.1016/j.egyr.2021.01.018
http://dx.doi.org/10.1109/TSG.2015.2495133
http://dx.doi.org/10.1109/ACCESS.2018.2809778
http://dx.doi.org/10.3390/buildings11070302
http://dx.doi.org/10.1016/j.jksues.2016.03.001
http://dx.doi.org/10.1016/j.rser.2017.01.064
http://dx.doi.org/10.21833/ijaas.2017.08.006
http://dx.doi.org/10.1016/j.enpol.2018.04.007
http://dx.doi.org/10.3390/app11114823
http://dx.doi.org/10.3390/su13158487
http://dx.doi.org/10.17485/ijst/2016/v9i43/101858
http://dx.doi.org/10.1016/j.comcom.2014.11.001
http://dx.doi.org/10.1145/1721654.1721672
http://dx.doi.org/10.1109/TIFS.2016.2590944
http://dx.doi.org/10.3390/bdcc4020004
http://dx.doi.org/10.1109/TPDS.2015.2506573
http://dx.doi.org/10.1016/j.comcom.2021.01.003
http://dx.doi.org/10.1109/TPDS.2015.2401003
http://dx.doi.org/10.1145/2342509.2342513


Sensors 2021, 21, 7846 22 of 22

81. Mahmud, R.; Kotagiri, R.; Buyya, R. Fog Computing: A Taxonomy, Survey and Future Directions. In Internet of Everything:
Algorithms, Methodologies, Technologies and Perspectives; Di Martino, B., Li, K.C., Yang, L.T., Esposito, A., Eds.; Springer: Singapore,
2018; pp. 103–130. [CrossRef]

82. Xu, D.; Li, Y.; Chen, X.; Li, J.; Hui, P.; Chen, S.; Crowcroft, J. A Survey of Opportunistic Offloading. IEEE Commun. Surv. Tutor.
2018, 20, 2198–2236. [CrossRef]

83. Khiyaita, A.; El Bakkali, H.; Zbakh, M.; El Kettani, D. Load balancing cloud computing: State of art. In Proceedings of the
Network Security and Systems (JNS2), 2012 National Days of Network Security and Systems, Marrakech, Morocco, 20–21 April
2012; pp. 106–109.

84. AL-Hazemi, F.; Peng, Y.; Youn, C.H.; Lorincz, J.; Li, C.; Song, G.; Boutaba, R. Dynamic allocation of power delivery paths in
consolidated data centers based on adaptive UPS switching. Comput. Netw. 2018, 144, 254–270. [CrossRef]

85. Xu, Y.; Cello, M.; Wang, I.; Walid, A.; Wilfong, G.; Wen, C.H.; Marchese, M.; Chao, H.J. Dynamic Switch Migration in Distributed
Software-Defined Networks to Achieve Controller Load Balance. IEEE J. Sel. Areas Commun. 2019, 37, 515–529. [CrossRef]

86. Mishra, S.K.; Sahoo, B.; Parida, P.P. Load Balancing in Cloud Computing: A big Picture. J. King Saud-Univ.-Comput. Inf. Sci. 2018,
32, 149–158. [CrossRef]

87. Zhang, J.; Ding, G.; Zou, Y.; Qin, S.; Fu, J. Review of job shop scheduling research and its new perspectives under Industry 4.0. J.
Intell. Manuf. 2019, 30, 1809–1830. [CrossRef]

88. Pawar, N.; Lilhore, U.K.; Agrawal, N. A Hybrid ACHBDF Load Balancing Method for Optimum Resource Utilization In Cloud
Computing. Int. J. Sci. Res. Comput. Sci. Eng. Inf. Technol. 2017, 2, 367–373.

89. Bitam, S.; Zeadally, S.; Mellouk, A. Fog computing job scheduling optimization based on bees swarm. Enterp. Inf. Syst. 2018,
12, 373–397. [CrossRef]

90. Mohamed, N.; Al-Jaroodi, J.; Jawhar, I.; Lazarova-Molnar, S.; Mahmoud, S. SmartCityWare: A service-oriented middleware for
cloud and fog enabled smart city services. Ieee Access 2017, 5, 17576–17588. [CrossRef]

91. Gu, C.; Fan, L.; Wu, W.; Huang, H.; Jia, X. Greening cloud data centers in an economical way by energy trading with power grid.
Future Gener. Comput. Syst. 2018, 78, 89–101. [CrossRef]

92. Mehmood, M.; Javaid, N.; Akram, J.; Abbasi, S.H.; Rahman, A.; Saeed, F. Efficient Resource Distribution in Cloud and Fog
Computing. In Advances in Network-Based Information Systems; Barolli, L., Kryvinska, N., Enokido, T., Takizawa, M., Eds.; Springer
International Publishing: Cham, Switzerland, 2019; pp. 209–221.

93. Yue-lin, G.; Yu-hong, D. A new particle swarm optimization algorithm with random inertia weight and evolution strategy. In
Proceedings of the International Conference on Computational Intelligence and Security Workshops, CISW 2007, Harbin, China,
15–19 December 2007; IEEE: Piscataway, NJ, USA, 2007, pp. 199–203.

94. Eberhart, R.C.; Shi, Y. Empirical study of particle swarm optimization. In Proceedings of the 1999 Congress on Evolutionary
Computation, CEC, Washington, DC, USA, 6–9 July 1999; Volume 99.

http://dx.doi.org/10.1007/978-981-10-5861-5_5
http://dx.doi.org/10.1109/COMST.2018.2808242
http://dx.doi.org/10.1016/j.comnet.2018.08.004
http://dx.doi.org/10.1109/JSAC.2019.2894237
http://dx.doi.org/10.1016/j.jksuci.2018.01.003
http://dx.doi.org/10.1007/s10845-017-1350-2
http://dx.doi.org/10.1080/17517575.2017.1304579
http://dx.doi.org/10.1109/ACCESS.2017.2731382
http://dx.doi.org/10.1016/j.future.2016.12.029

	Introduction
	Literature Survey
	SG-Derived Architecture
	Fog- and Cloud-Derived Architectures
	SG with Cloud-Derived Architecture

	System Model
	Problem Formulation
	Processing Time
	Response Time
	Cost

	Proposed Approach

	Simulations and Discussion
	Response Time Summary
	Processing Time Summary
	Cost Summary

	Conclusions
	References

