REVIEW

Cognitive-Inspired Deep Learning Models for Aspect-Based Sentiment Analysis: A Retrospective Overview and Bibliometric Analysis

Xieling Chen¹ · Haoran Xie² · S. Joe Qin² · Yaping Chai² · Xiaohui Tao³ · Fu Lee Wang⁴

Received: 31 March 2024 / Accepted: 19 July 2024 / Published online: 6 August 2024 © The Author(s) 2024

Abstract

As cognitive-inspired computation approaches, deep neural networks or deep learning (DL) models have played important roles in allowing machines to reach human-like performances in various complex cognitive tasks such as cognitive computation and sentiment analysis. This paper offers a thorough examination of the rapidly developing topic of DL-assisted aspect-based sentiment analysis (DL-ABSA), focusing on its increasing importance and implications for practice and research advancement. Leveraging bibliometric indicators, social network analysis, and topic modeling techniques, the study investigates four research questions: publication and citation trends, scientific collaborations, major themes and topics, and prospective research directions. The analysis reveals significant growth in DL-ABSA research output and impact, with notable contributions from diverse publication sources, institutions, and countries/regions. Collaborative networks between countries/regions, particularly between the USA and China, underscore global engagement in DL-ABSA research. Major themes such as syntax and structure analysis, guiding future research endeavors. The study identifies prospective avenues for practitioners, emphasizing the strategic importance of syntax analysis, neural network methodologies, and domain-specific applications. Overall, this study contributes to the understanding of DL-ABSA research dynamics, providing a roadmap for practitioners and researchers to navigate the evolving landscape and drive innovations in DL-ABSA methodologies and applications.

Keywords Deep learning · Aspect-based sentiment analysis · Bibliometric analysis · Topic modeling · Social network analysis

Introduction

Deep Learning for Aspect-Based Sentiment Analysis

Cognitive computing, with the aim of simulating or better understanding the biological cognitive systems of human beings to resolve complicated problems and integrate human intelligence into machines at scale, has marked a new era of computing [1, 2]. As cognitive-inspired computation

Haoran Xie hrxie@ln.edu.hk

- ¹ School of Education, Guangzhou University, Guangzhou, China
- ² School of Data Science, Lingnan University, Tuen Mun, Hong Kong, China
- ³ School of Sciences, University of Southern Queensland, Toowoomba, Australia
- ⁴ School of Science and Technology, Hong Kong Metropolitan University, Ho Man Tin, Hong Kong, China

technologies, deep neural networks (DNNs) are considered increasingly essential in fields such as cognitive computation and sentiment analysis [3]. Aspect-based sentiment analysis (ABSA) is a specialized branch of sentiment analysis [4] focusing on analyzing sentimental expressions toward specific aspects or attributes in texts, such as products, services, or topics [5, 6]. Unlike traditional sentiment analysis, which provides a general sentiment polarity for an entire document or sentence, ABSA offers a more granular understanding by attributing sentiments to individual aspects or entities mentioned within the text [7]. This nuanced approach enables organizations to gain deeper insights into customer opinions, product reviews, and public sentiment toward various aspects of interest [8].

In the realm of ABSA, researchers and practitioners employ a variety of methods and technologies to extract sentiment information from textual data. These methods encompass a spectrum of methods including rule-based and machine learning algorithms [9, 10]. Rule-based techniques depend on pre-established guidelines and patterns to determine sentiment-bearing aspects and classify their associated sentiments [11]. Machine learning techniques, on the other hand, leverage statistical models and algorithms to automatically learn patterns and relationships from labeled data, enabling more flexible and scalable sentiment analysis [12]. Common machine learning approaches in ABSA include supervised learning, where models are trained using labeled data to forecast sentiment labels for cases yet to be encountered, and unsupervised learning, which involves clustering and topic modeling to uncover latent sentiment patterns within text [13].

With the proliferation of large-scale textual data and the growing complexity of sentiment analysis tasks, deep learning (DL) has emerged as a powerful paradigm for advancing ABSA research [14]. As cognitive-inspired computation approaches, DL techniques, characterized by neural network architectures with multiple layers of abstraction, offer unparalleled capabilities in a variety of complicated cognitive tasks, including natural language processing (NLP) [15, 16]. In the context of ABSA, DL models can effectively capture subtle nuances in sentiment expressions across diverse domains and textual modalities [17, 18]. Moreover, DL frameworks enable end-to-end learning, where models automatically learn feature representations from data without the need for handcrafted features or domain-specific knowledge [19]. This capability makes DL particularly well-suited for ABSA tasks, where the identification of sentiment-bearing aspects and the interpretation of contextual nuances are paramount [20]. As a result, the increasing importance of DL for ABSA (DL-ABSA) research is evident, with researchers leveraging cutting-edge neural networks to push the boundaries of sentiment analysis and unlock new opportunities for understanding human opinions and preferences [21, 22].

Cognitively and Biologically Inspired Basis of DL-ABSA

Sentiment analysis, as an important component of affective computing, has developed into an interdisciplinary field between computer science, artificial intelligence (AI), cognitive neuroscience, etc., aiming at enabling intelligent systems to identify, infer/predict, and interpret human emotions [23]. The analysis of human emotion, which involves complex behavior, cognition, psychology, and physiology, is a challenge in cognitive computing. Research in cognitive science [24] has revealed the relevance of the human brain's cognitive processing system to emotions. For example, positive emotions, such as joy, contribute to the creation of innovative solutions for problem-solving; on the contrary, negative emotions, such as distress, may result in low performance in cognitive tasks [25]. According to [26], the study of the brain's cognitive functions provides opportunities for natural language comprehension. As a result, researchers

have attached increasing importance to cognitive heuristic mechanisms and the application of human cognitive principles in various fields of NLP, including sentiment analysis and ABSA [27].

The recent development of cognitive-inspired computing, interactions, and systems is promising for changing how we live [28]. As cognitive-inspired computing approaches, DNNs are fundamentally inspired by human structure and function, which mimic the hierarchy and learning process of biological neural networks and have achieved success in various areas, including cognitive computation and sentiment analysis [3], by empowering machines with cognitive abilities to distinguish, explain, and express emotions and sentiments [29]. For example, [30] introduced a cognitive computing methodology based on big data analytics for sentiment analysis by adopting binary brain-storm optimization and fuzzy cognitive maps for feature selection and emotion classification, respectively. Inspired by the emotional processing mechanisms in cognitive neuroscience, [31] proposed a multi-level attentionbidirectional long short-term memory (LSTM) method based on cognitive limbic systems to analyze emotions within multimodal data [32]. Developed a cognitive awareness framework that transferred cognitively-oriented knowledge within multimodal data using attention-based fusion and classified emotions using LSTM sub-models.

Review of DL-ABSA and its Relevant Topics

Performing a systematic review and analysis of papers in niche fields is a major means of obtaining a comprehensive understanding of the topic [33]. Numerous surveys and reviews of relevant material have previously been published. A thorough overview of ABSA was given by Truscć and Frasincar [11], who also presented a categorization system for aspect extraction and highlighted important works with a focus on contemporary approaches. Bensoltane and Zaki [34] provided a thorough analysis of Arabic ABSA studies, highlighting the main obstacles that various strategies must face, as well as future research objectives and gaps in the body of literature. To map linkages between aspects, interactions, dependencies, and contextual-semantic correlations, and to anticipate the development of sentiment dynamics, Nazir et al. [21] addressed challenges related to aspect and sentiment extraction.

Several reviews focused on DL-ABSA. DL in ABSA was evaluated by Do et al. [35] for contextualizing approaches. The authors also included concerns pertaining to sentiment analysis and ABSA, as well as the task's overall structure and the challenges associated with it. In the examination of DL methods inside ABSA, Trisna and Jie [36] explored possible directions for further research. Benchmark datasets, assessment measures, and DL techniques were presented by Liu et al. [37] for ABSA.

However, this study's use of indicators differs from prior research which mostly used a narrative method. Technological, social, and business perspectives are driving the dynamic growth of the DL-ABSA sector, necessitating periodic reviews and meta-analyses employing bibliometric approaches. These investigations use a variety of methodologies that cover several modes, nodes, aspects, and levels and include bibliometrics, surveys, knowledge, information, and data analytics. It is possible that earlier research ignored elements that are now important. Moreover, there is limited discussion on how research methods relate to theme developments across time. With its probabilistic methodology, topic models are able to identify topics based on word co-occurrences, which makes them useful for assessing a variety of abstracts in a field [38]. They support scholars, particularly those just new to the field, by helping them navigate research paths and better understand changing research trends in specific areas.

Research Aims and Questions

This global bibliometric mapping study aims to methodically investigate theoretical developments and the status of knowledge in the quickly developing topics of DL-ABSA. This research, which takes a wide view and covers the years 2016 to 2023, provides a comprehensive review of the birth and development of new fields and specializations. To illustrate the worldwide contributions of publishing sources, nations/regions, and institutions, we first use bibliometric indicators, including publication counts, total citations, and the H-index. These indicators are then employed to pinpoint facets of DL-ABSA research between 2016 and 2023. The second goal is to look for partnerships between organizations, nations, and areas by employing social network analysis (SNA) and visualization. Lastly, we use topic modeling and term co-occurrence analysis to look at DL-ABSA patterns and areas of focus. The following four research questions (RQs) were developed for this study based on earlier bibliometric research (e.g., [39, 40]).

RQ1: In the field of DL-ABSA, what are the patterns of publishing and citation along with the top sources, academic institutions, and geographic locations?

RQ2: In the field of DL-ABSA, how do contributors collaborate?

RQ3: Which main topics and areas of focus best describe DL-ABSA research?

RQ4: How can researchers further DL-ABSA research, and what directions should they take?

The significance and motivations for answering these RQs are as follows.

First, by examining annual numbers of publications and citations (RQ1), this study offers perspectives on the progression and evolution of DL-ABSA research. The growth in numbers suggests the increasingly active landscape of this field [41]. Recognizing major contributors and publication sources allows for a better understanding of the global research landscape of DL-ABSA, including channels for making contributions and key actors for fostering efficient academic exchange [42, 43].

Second, by visualizing the collaborative networks (RQ2), this study reveals the complex collaborations and connections among contributors in the field of DL-ABSA. This knowledge is important to identify leading and influential collaborative groups in knowledge exchange and resource sharing when conducting DL-ABSA research activities [44].

Furthermore, by using topic modeling and keyword analysis approaches (RQ3), this study reveals the thematic structure within the DL-ABSA publications [45], shedding light on the important areas of research and interdisciplinary research directions. Visualization of the developmental tendencies of topics allows researchers to keep up-to-date with research developments and evolutions [43] when planning scientific and technological activities related to DL-ABSA.

In addition, by exploring topic dynamics and communities (RQ3), this study provides insights into the development of DL-ABSA research priorities and informs researchers of the evolving trajectories and areas of ongoing concern [46]. This knowledge contributes to understanding the history and current status of this field, as well as predicting its future.

First, the findings reveal that DL-ABSA publications and citations constantly grew during the study period. Second, journals such as IEEE Access, Knowledge-Based Systems, and Neurocomputing are the most active in this field. Third, China, India, and the USA are the top three countries in publishing DL-ABSA studies, with China contributing to over 63% of publications and three of its institutions, namely, the Chinese Academy of Sciences, Wuhan University, and South China Normal University, ranked in the top list. Fifth, countries/regions and institutions showing high levels of international collaboration demonstrate high productivity and research impact. Sixth, terms/phrases such as "opinion," "graph," "dependency," "convolution," "neural network," and "attention mechanism" show high frequency in DL-ABSA publications. Furthermore, research topics such as "syntax and structure analysis for sentiment analysis," "categorization and identification for ABSA," "domain adaptation for sentiment analysis," "network and connectivity approaches for ABSA," and "ABSA in pharmacovigilance" received increasing attention during the study period. In addition, potential future directions include the strategic importance of syntactic analysis, neural networks, and domain-specific applications.

The contributions of this study are as follows: (1) present a quantitative analysis of DL-ABSA literature based on bibliometrics and topic models; (2) identify the annual numbers of publications and citations to better understand the progress and evolution of DL-ABSA; (3) discover active publication sources to highlight channels for publishing DL-ABSA studies; (4) reveal active contributors to share insights or develop collaborations; (5) visualize collaborations among contributors to identify the leaders in collaborative networks; (6) uncover research topics and emerging themes to understand previous, current, and future DL-ABSA research; and (7) present an analytical approach suitable for large-scale literature analytics to overcome the limitations of manual qualitative analysis.

Research Methodologies

This section describes the research methodologies, which include database selection and retrieval, data processing and screening of the literature, and data analysis through topic models, bibliometrics, SNA, and keyword/phrase frequency analysis. Figure 1 shows the general research framework.

Data Search

Web of Science (WoS) provided the data used in this study. We used four citation databases: "Conference Proceedings Citation Index-Social Sciences & Humanities (CPCI-SSH)," "Conference Proceedings Citation Index-Science (CPCI-S)," "Science Citation Index Expanded (SCI-Expanded)," and "Social Sciences Citation Index (SSCI)." The articles under examination were mostly concerned with the application of ABSA to textual materials. Publications pertaining to ABSA in areas including biological signal processing, audio, video, images, and other processing domains were excluded. We used a sophisticated search approach that allowed for keyword combinations utilizing Boolean operators ("AND" and "OR") to make the process of selecting articles easier. The search query is presented in Table 7 in the Appendix. Conference proceedings are given the same weight in this study as journal publications. Only articles

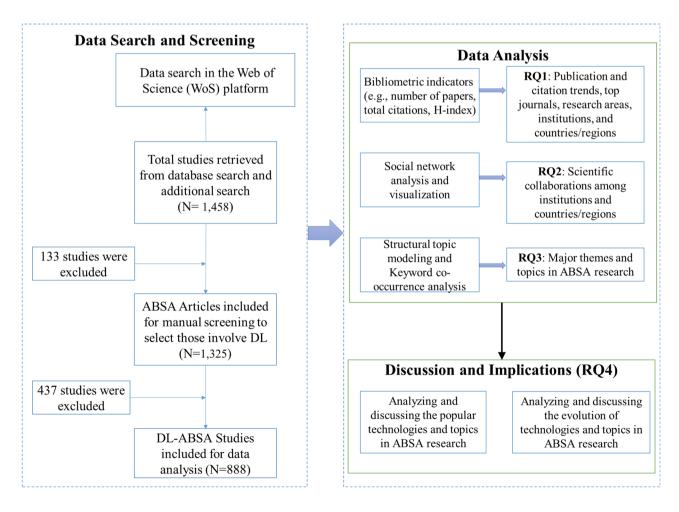


Fig. 1 Flowchart of data search, screening, and analysis

published between January 2009 and the end of 2023 were taken into account in our research. These publications came in a variety of formats, such as "conference paper" and "article." All 1458 publications were gathered from the four databases listed above.

Data Screening

A manual screening procedure comprising two stages was conducted to find papers closely related to DL-ABSA based on the original dataset of 1458 publications. In the first stage, each paper was examined to ensure relevance to ABSA. Specifically, the included document needed to address at least one of the following requirements: (1) aspect-based emotional polarity classification and analysis; (2) public opinion on certain facets of problems, occasions, or goods; (3) emotional grading and assessment based on aspects; (4) aspect classification, aspect word extraction, aspect category classification, and semantic feature extraction targeted at enhancing ABSA; and (5) the creation of methods or algorithms for ABSA. In this stage, 133 studies that met at least one of the criteria presented in Table 8 in the Appendix were excluded. Finally, 1325 ABSA papers were selected to be examined in the second stage.

In the second stage, each of the 1325 papers was examined to select those related to both DL and ABSA. Specifically, each paper on DL needed to address at least one of the following requirements: (1) DL models, (2) DL terminologies, and (3) DL frameworks. In this stage, 437 studies that met at least one of the following criteria were excluded: (1) mentions of traditional machine learning only, (2) lack of specificity, (3) conceptual discussions without method application, and (4) ambiguity in methodologies. A final dataset of 888 DL-ABSA publications from 2016 to 2023, including 521 journal articles and 367 conference papers, was used for data analysis.

Data Analysis

To address the RQs, analyses were performed on 888 DL-ABSA articles spanning the years 2016 to 2023. These analyses covered the following aspects: (1) trends in publications and citations, (2) scientific cooperation, (3) major themes and topics, and (4) future avenues, employing bibliometrics, SNA, key-word/phrase frequency analysis, and topic modeling techniques.

We used metrics such as total citation count, average citations, H-index, number of publications in the top 10%, number of publications from single/multiple countries, and the percentage of single-country publications to evaluate publication outlets, fields of study, affiliations, and geographic locations in order to address RQ1. The spatial pattern of productivity was shown using GeoDa [47]. We used SNA in conjunction with Gephi [48] to answer RQ2 by creating a visual representation of scientific collaboration across affiliations, nations, and regions. SNA quantifies the relationships between things, such as persons, institutions, or nations, by using graphical networks to depict the structures that result from these interactions. In this architecture, quantifiable interactions are represented by edges, while entities are symbolized by nodes. Because of its visual clarity and ease of use, SNA is an excellent method for communicating the quantitative understanding of scientific collaboration among affiliations or nations.

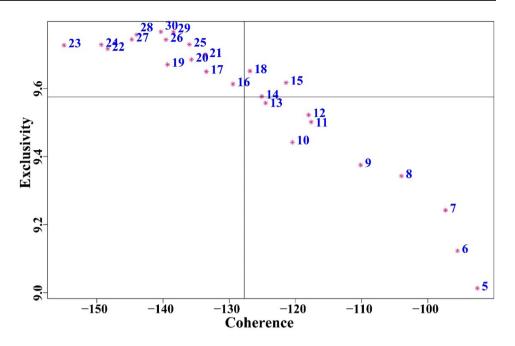
We used topic modeling to find recurrent themes in response to RQ3. To improve the vocabulary, we employed the term frequency-inverse document frequencies and a filtering threshold of 0.05. Using the R stm [49] package, we used structural topic modeling (STM) to analyze two models of 15 and 18 topics from the DL-ABSA dataset, respectively, according to coherence and semantic distinctiveness criteria (Fig. 2). Following a comprehensive assessment by subjectmatter specialists, who relied on their vast expertise in the field, the researchers finally decided on a 15-topic model. Considerations such as interpretability, efficacy, external validation, and semantic consistency went into making this choice. This methodology guaranteed that the model retained its interpretative value while generating topics.

The correlations between topics are estimated and visualized by the topicCorr function in the R huge package [50] to plot a graph with nodes and links indicating topics and correlations. In this study, the correlation between the maximum a posteriori estimates and the document-topic proportion distribution was calculated to obtain the marginal correlation of the variational distribution model. After setting the correlation threshold as 0, we used the topicCorr function to generate the correlative graph based on forcedirected layout. A positive correlation (>0) between two topics indicates the possibility of discussing them in one publication. The shorter the link between two topics, the higher the correlation between them. Topics showing negative correlation (<=0) are disconnected. Finally, we followed [51] to add color ellipses in the correlation graph to highlight topic clusters (labeled G1~G4).

To fully understand the important topics in the DL-ABSA inquiry, keyword/phrase frequency analysis was further included. Specifically, we used statistical analysis to determine the frequency of important terms or phrases. After that, these frequently recurring key terms and phrases were retrieved to provide the basis for further investigation into the primary approaches and topics in DL-ABSA.

As a reaction to RQ4, the analytical and visual findings were carefully reviewed and evaluated, taking into account a variety of factors including the most popular topics and research philosophies in each DL-ABSA theme. In addition, thorough analysis and discussion were carried out to Fig. 2 Semantic coherence and

exclusivity values



elucidate the development of research approaches and topics in the DL-ABSA domain.

Results and Analysis

Publication and Citation Trends

As Table 1 shows, from 2016 to 2019, there were 195 research papers published on DL-ABSA, with a total citation value of 776 and a mean citation value of 3.98. These papers involved 744 authors from 354 affiliations across 249 countries/regions, averaging 3.82 authors and 1.82 affiliations per paper, and spanning 1.28 countries/regions per paper. From 2020 to 2023, the volume of research significantly increased, with 693 papers published, accumulating

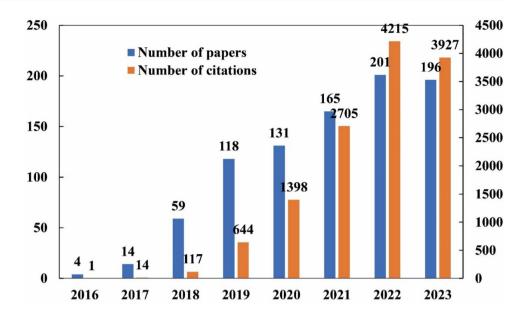
Table 1 Production analysis

Indicators	2016-2019	2020-2023	2016-2023
Number of papers	195	693	888
Total citation score	776	12,245	13,021
Mean citation score	3.98	17.67	14.66
Total number of authors	744	2812	3556
Mean authors per papers	3.82	4.06	4.00
Total number of affiliations	354	1255	1609
Mean affiliations per papers	1.82	1.81	1.81
Total number of countries/ regions	249	878	1127
Mean countries/regions per papers	1.28	1.27	1.27

a total citation score of 12,245 and a mean citation score of 17.67. The number of authors also rose to 2812, representing 1255 affiliations from 878 countries/regions, with a slight increase in mean authors per paper to 4.06 and consistent mean affiliations per paper of 1.81, maintaining an average of 1.27 countries/regions per paper. Overall, from 2016 to 2023, the total number of papers reached 888, with a cumulative citation value of 13,021 and mean citation value of 14.66, involving 3556 authors from 1609 affiliations across 1127 countries/regions, with mean authors and affiliations per paper averaging at 4.00 and 1.81, respectively, and a mean of 1.27 countries/regions per paper. This suggests a significant expansion in both the volume and influence of this field's study across time, accompanied by increasing collaboration across institutions and nations.

Over the span of eight years, from 2016 to 2023, research on DL-ABSA experienced substantial growth in both the number and corresponding citations (Fig. 3). The trend shows progressive growth, with a notable surge from 2019 onwards. In 2019, 118 papers were published, accumulating 644 citations. By 2023, this had risen to 196 papers and 3927 citations. Particularly noteworthy is the significant increase in citations from 2020 onwards, with 131 papers published in 2020 amassing 1398 citations. By 2022, the number of papers reached 201, with a staggering 4215 citations. This data reflects a robust and escalating interest in DL-ABSA research over the years, highlighting its growing importance and impact within the academic community.

The increase in the number and impact of DL-ABSA studies can be explained by improved abilities in processing and understanding complicated texts, as well as finetuning tasks on small samples due to the availability of



advanced neural network models such as convolutional neural networks (CNNs), LSTM networks, and, more recently, pre-trained language models such as bidirectional encoder representations from transformers (BERTs) and generative pre-trained (GPT) models [16, 52, 53]. Furthermore, the rapid increase in user-generated content provides rich data sources for DL-ABSA to achieve efficient and robust model training and benchmarking [54, 55]. In addition, the growing need for using DL-ABSA approaches to understand customers' opinions and sentiments toward different aspects of products and services for optimized decision-making is driving the development of effective DL-ABSA applications and systems [13, 21, 56].

We also present a systematic analysis of 25 papers ranked among the top 20 lists according to number of total citations and annual citations [57] to understand the research issues, technologies used, and purpose and effectiveness of technology used in these studies. The results are shown in Table 9 in the Appendix. The use of different embeddings (e.g., [58–63]) highlights the importance of initializing models with rich semantic representations. While BERT's contextual embeddings show superior performance, traditional embeddings such as GloVe and Word2Vec still play a crucial role in non-BERT models. Also, the deployment of advanced architectures such as graph convolutional networks (GCNs), LSTMs, and CNNs (e.g., [64–71]) underscores the complexity of ABSA tasks. Each architecture addresses different aspects of sentence representation, from capturing dependencies (e.g., GCNs) to long-term contextual information (e.g., LSTMs) and local feature extraction (e.g., CNNs).

Moreover, the emphasis on attention mechanisms (e.g., [72–74]) reveals their critical role in ABSA. They allow models to selectively focus on important parts of the input, thereby improving the accuracy of aspect and sentiment classification.

Furthermore, the consistent use of Adam Optimizer and regularization techniques such as L2 regularization (e.g., [75–80]) across various models indicates their importance in achieving stable and generalizable performance. In addition, techniques such as interactive multi-task learning networks and domainspecific embeddings (e.g., FastText) (e.g., [81, 82]) highlight the benefits of tailoring models to specific domains, which can significantly improve task performance. Overall, the technologies used in the top 25 DL-ABSA studies demonstrate a multifaceted approach to tackling the challenges of sentiment analysis at the aspect level, from leveraging advanced neural architectures to employing sophisticated optimization techniques. The integration of contextual embeddings, attention mechanisms, and domain-specific knowledge further underscores the importance of a holistic and adaptive approach in this field.

Top Publication Sources and Research Areas

The statistical analysis of 888 research papers on DL-ABSA reveals a diverse landscape of publication sources and their corresponding impact (see Table 2). Most papers were released in IEEE Access (61 papers, 6.87% of total publications) and Knowledge-Based Systems (49 papers, 5.52%), followed by Neurocomputing (33 papers, 3.72%). The top three journals in publishing DL-ABSA research emphasized interdisciplinary topics, including AI and neural networks, and are published by reputable publishers (i.e., IEEE and Elsevier). These journals have also been identified as active sources in previous reviews on AI-related topics (e.g., [83, 84]). The results corroborate [35], which demonstrates the connection between sentiment analysis and AI-powered tools. The three journals were also included in the SSCI or SCI databases, with 5-year impact factors of 4.1, 8.6, and

Publication sources	Р	PP	TCS	MCS	Н	P1	PP1
IEEE Access	61	6.87%	895	14.67	16	5	5.62%
Knowledge-Based Systems	49	5.52%	1101	22.47	19	8	8.99%
Neurocomputing	33	3.72%	519	15.73	14	3	3.37%
International Joint Conference on Neural Networks	26	2.93%	50	1.92	3	0	0.00%
Applied Intelligence	24	2.70%	267	11.13	8	1	1.12%
Applied Sciences-Basel	19	2.14%	137	7.21	4	1	1.12%
AAAI Conference on Artificial Intelligence	18	2.03%	893	49.61	12	7	7.87%
The Association for Computational Linguistics	18	2.03%	1569	87.17	14	13	14.61%
Conference on Empirical Methods in Natural Lan- guage Processing	18	2.03%	731	40.61	13	6	6.74%
Journal of Intelligent and Fuzzy Systems	14	1.58%	107	7.64	3	1	1.12%
Journal of Supercomputing	14	1.58%	37	2.64	4	0	0.00%

P and *PP* number and proportion of publications, *TCS* total citations, *MCS* mean citations, *H* H-index, *P1* and *PP1* number and proportion of publications in top 10% rank

6, respectively. As [85] shows, studies published in journals with high impact factors are generally of high quality with wide influence [86]. Also claimed that researchers may wish to publish their results in prestigious conferences or journals to have a higher possibility of receiving funding support.

The Association for Computational Linguistics had the highest total citation score (1569), mean citation score (87.17), and H-index (14), indicating its significant influence in the field. However, regarding the number of publications in the top 10% by rank, IEEE Access, Knowledge-Based Systems, and AAAI Conference on Artificial Intelligence stand out, with proportions of 5.62%, 8.99%, and 7.87%, respectively, showcasing their prominence in impactful research dissemination. Overall, this analysis underscores the importance of considering both the quantity and quality of publications in understanding the scholarly contributions within the domain of DL-ABSA.

The statistical analysis of 888 research papers focusing on DL-ABSA reveals the distribution of publications across various sources over different time periods (see Fig. 4). From 2016 to 2019, there was a relatively lower volume of research, with notable contributions from journals such as IEEE Access and The Association for Computational Linguistics. From 2020 to 2023, there was a substantial increase in research output, with conferences and journals such as the AAAI Conference on Artificial Intelligence, The Association for Computational Linguistics, the Conference on Empirical Methods in Natural Language Processing, and Knowledge-Based Systems exhibiting significant growth in the number of papers published. Notably, Applied Intelligence and IEEE Access also saw a considerable rise in contributions during this later period. Overall, this analysis highlights the evolution of research efforts in DL-ABSA,

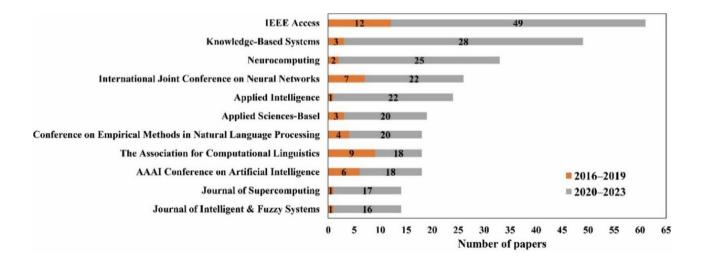


Fig. 4 Top publication sources

with a notable surge in publications from 2020 onwards across various publication sources.

Top Institutions and Countries/Regions

The statistical analysis of 888 research papers on DL-ABSA reveals the dominant contributions from institutions come primarily from China (see Table 3), with the Chinese Academy of Sciences leading with 33 publications, comprising 3.72% of the total. Chinese institutions, including South China Normal University and Wuhan University, exhibit high rates of collaboration, with a significant proportion of publications coming from multiple institutions, indicating strong research networks within China. Notably, Nanyang Technological University also emerges as a prominent contributor, ranking fourth in terms of the number of publications, but securing the highest total and mean citation values, reflecting its impactful research output. Overall, this analysis underscores the substantial presence of Chinese institutions in DL-ABSA research, along with notable contributions from selected international institutions such as Nanyang Technological University.

The statistical analysis of 888 research papers on DL-ABSA indicates a diverse spectrum of institutional contributions across two distinct time periods (see Fig. 5). Notably, Chinese institutions feature prominently in both sets, with the Chinese Academy of Sciences leading with 24 papers published from 2020 to 2023, followed closely by Wuhan University and South China Normal University, each with 21 and 22 papers, respectively. Nanyang Technological University emerges as a significant contributor with 13 papers during the same period. Furthermore, institutions such as East China Normal University, Fudan University, and Shandong Jiaotong University demonstrate considerable growth in research output from 2016 to 2019 to 2020 to 2023, underscoring the evolving landscape of collaborative research efforts in this field. Overall, these findings highlight the active engagement of various institutions in advancing knowledge and understanding within the realm of DL-ABSA.

The statistical analysis of 888 research papers on DL-ABSA demonstrates global engagement, with China leading in both the number of publications and total citation score (see Table 4). Chinese institutions contributed significantly with 562 papers, accounting for 63.29% of the total publications and amassing a total citation score of 8136. USA, India, and Singapore also made substantial contributions, with notable collaborations between multiple countries/ regions, particularly evident in Singapore, with 70.73% of its publications being collaborative. Furthermore, countries such as the UK, Australia, and Germany also demonstrated significant involvement in research efforts. This analysis underscores widespread interest and collaboration across various countries/regions in advancing the understanding and application of DL-ABSA, highlighting its global importance in academic research. Figure 6 illustrates the geographical distribution of published documents by country/region, using graduated colors to indicate the number of published documents; darker colors indicate a larger number of published documents. It reveals that China exhibits the highest engagement in DL-ABSA research.

The statistical analysis of 888 research papers on DL-ABSA highlights a significant surge in research activity, particularly from 2020 to 2023 (see Fig. 7). China emerges as the predominant contributor with 562 papers, indicating a substantial focus on this topic. India follows with 72 papers, demonstrating a notable increase compared to earlier years. The USA, though still actively engaged, shows a more modest growth trajectory with 65 papers. Other countries such as Singapore, the UK, and Australia also show

Table 3	Productive	institutions
---------	------------	--------------

Institutions	Р	РР	SIP	MIP	PMIP	TCS	MCS	Н	P1	PP1
Chinese Academy of Sciences	33	3.72%	2	31	93.94%	305	9.24	11	2	2.25%
South China Normal University	24	2.70%	12	12	50.00%	216	9.00	6	2	2.25%
Wuhan University	24	2.70%	12	12	50.00%	361	15.04	6	3	3.37%
Nanyang Technological University	23	2.59%	6	17	73.91%	1181	51.35	14	8	8.99%
University of Chinese Academy of Sciences	22	2.48%	1	21	95.45%	187	8.50	7	2	2.25%
Beijing University of Posts and Telecommunications	21	2.36%	7	14	66.67%	171	8.14	8	1	1.12%
Harbin Institute of Technology	21	2.36%	3	18	85.71%	446	21.24	7	5	5.62%
Shandong Jiaotong University	17	1.91%	4	13	76.47%	159	9.35	8	0	0.00%
Shandong Normal University	17	1.91%	4	13	76.47%	133	7.82	8	0	0.00%
East China Normal University	15	1.69%	2	13	86.67%	190	12.67	6	1	1.12%
Fudan University	15	1.69%	7	8	53.33%	494	32.93	9	3	3.37%

The same as Table 2 except for three indicators (*SIP* single institution publications, *MIP* multiple institutions publications, *PMIP* percentage of multiple institutions publications)

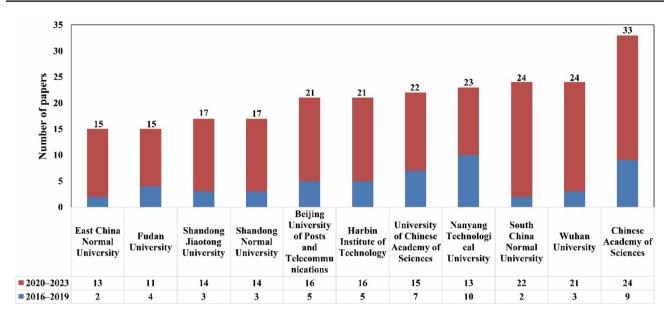


Fig. 5 Top institutions

varying levels of engagement, reflecting a global interest in advancing DL-ABSA. Overall, the data suggest a robust and diversified research landscape, with contributions from various countries driving advancements in this field.

The differences in research outputs between various countries and institutions can be attributed to research capabilities, funding, or policies that promote AI research [87]. For instance, the Chinese government has invested substantial funds in AI-related scientific activities as an important component of its strategic initiatives, such as the Next Generation Artificial Intelligence Development Plan (NGAIDP) launched on July 28, 2017. The goal of this plan is to improve the competitive advantages of national AI development and accomplish high levels of technological autonomy [88]. Furthermore, public policies have

attached increasing importance to the intelligent development of various economic and social sectors through the promotion of next-generation AI promotion. Government support has encouraged large-scale NLP- and AI-related research projects such as DL-ABSA to be conducted in various Chinese institutions, for example, the Chinese Academy of Sciences, Wuhan University, and South China Normal University.

Collaboration Analysis

Seven countries/regions are shown in Fig. 8, with cooperation frequencies ranging from 11 to 32. Three of these are found in Asia. Remarkably, the most robust cooperation was noted in 32 articles between the USA and China.

C/R	Р	PP	SCP	MCP	РМСР	TCS	MCS	Н	P1	PP1
China	562	63.29%	431	131	23.31%	8136	14.48	45	60	67.42%
India	72	8.11%	56	16	22.22%	646	8.97	12	4	4.49%
USA	65	7.32%	20	45	69.23%	2082	32.03	21	18	20.22%
Singapore	41	4.62%	12	29	70.73%	1959	47.78	19	14	15.73%
UK	28	3.15%	7	21	75.00%	712	25.43	12	6	6.74%
Australia	25	2.82%	2	23	92.00%	176	7.04	5	1	1.12%
South Korea	22	2.48%	11	11	50.00%	274	12.45	8	2	2.25%
Vietnam	21	2.36%	14	7	33.33%	221	10.52	7	2	2.25%
Germany	18	2.03%	9	9	50.00%	245	13.61	8	3	3.37%
Netherlands	18	2.03%	11	7	38.89%	142	7.89	4	2	2.25%
Pakistan	18	2.03%	5	13	72.22%	173	9.61	7	1	1.12%

The same as Table 2 except for four indicators (*C/R* countries/regions, *SCP* single country/region publications, *MCP* multiple countries/regions publications, *PMCP* percentage of multiple countries/regions publications)

Table 4	Most productive	
countrie	s/regions	

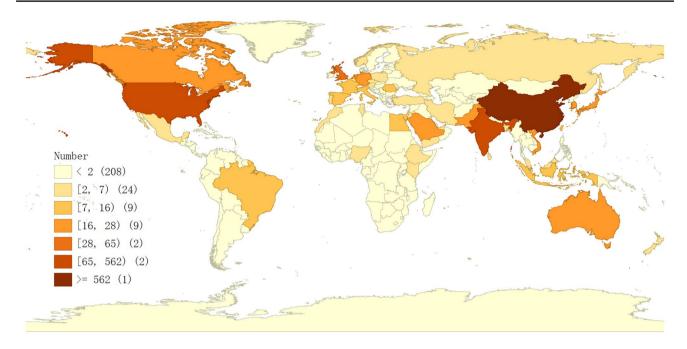


Fig. 6 Geographic distribution

Subsequently, there were partnerships between China and the UK (18), Australia (18), Singapore (17), Canada (11), and Hong Kong (11). A total of 10 countries/regions are represented in Fig. 9, where partnership frequencies range from five to seven. Three are from Europe and seven are from Asia. These three collaborative clusters, including (1) India and Singapore, (2) the Netherlands and Romania, and (3) Pakistan, Saudi Arabia, South Korea, China, Japan, and Germany, showcase how closely they collaborate. Figure 10 presents collaborations between 15 countries/ regions with three to four cooperating frequencies. Five collaborative clusters demonstrate the strong collaborative relationships that these 15 countries/regions maintain: (1) Singapore and the UK; (2) Saudi Arabia and Egypt; (3)

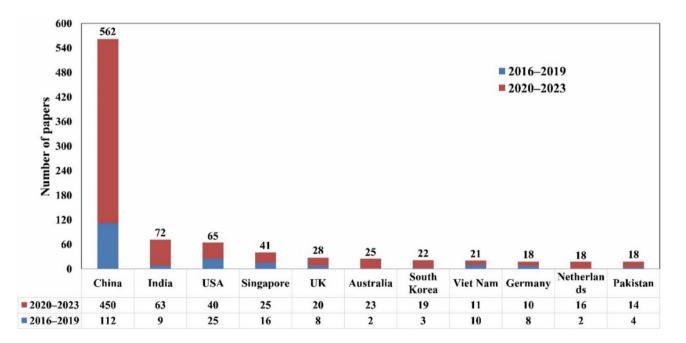


Fig. 7 Top countries/regions

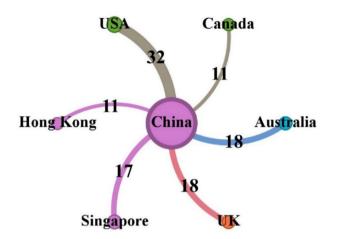


Fig. 8 Regional collaborations where the frequency ranges from 11 to 32

South Korea and Pakistan; (4) the Czech Republic, the USA, and India; and (5) Vietnam, Japan, Spain, China, Italy, and Macau.

Institutional partnerships are shown in Figs. 11, 12, and 13, with cooperation frequencies ranging from 4 to 21. Four universities' partnerships are shown in Fig. 11, with a range of collaborative frequencies from 12 to 21. China is home to all four of these institutions. Two collaborative clusters, including (1) the University of Chinese Academy of Sciences and the Chinese Academy of Sciences and (2) Shandong Jiaotong University and Shandong Normal University, showcase their strong collaboration. Seven

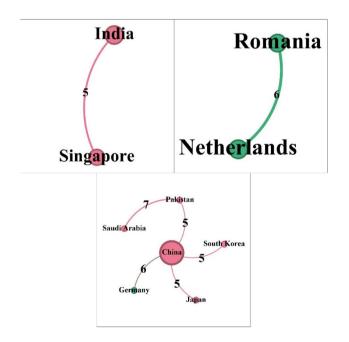


Fig. 9 Regional collaborations where the frequency ranges from five to seven

university partnerships are shown in Fig. 12, with a range of five to six cooperation frequencies. Three collaborative clusters demonstrate how closely they collaborate: (1) Erasmus University and Bucharest University of Economic Studies; (2) University of Warwick, Peng Cheng Lab, and Harbin Institute of Technology; and (3) Ryerson University and East China Normal University. Six collaborative networks with a collaboration frequency of four, created by 15 universities, are depicted in Fig. 13. Numerous collaborative partners, including (1) Beijing Municipal Commission of Education and Beijing Jiaotong University; (2) Vietnam National University, Ton Duc Thang University, and Electric Power University; (3) East China Normal University and Fudan University; and (4) Ryerson University and York University, demonstrate the substantial cooperation within these seven collaborative networks among organizations from the same nation or area.

The collaborative network visualization shows China's leadership and involvement in collaborating with different countries. According to [89], scientific collaborations, by allowing the sharing of knowledge, experience, technologies, and resources, are regarded as important channels to achieve research visibility and high-quality achievements, as witnessed by the performance of China in the field of DL-ABSA research. The high level of collaboration found in this study can be explained by the interdisciplinary nature of DL-ABSA research [90]. Specifically, in addition to relying primarily on computer science and AI, research on DL-ABSA has benefited from other fields such as psychology, linguistics, neuroscience, and cognitive science [17]. As a result, the study of DL-ABSA is increasingly multidisciplinary. As [91] suggests, the study of complex and multidisciplinary issues brings together researchers from various regions and areas. However, aligning with prior reviews (e.g., [43, 57, 87]), our results show high levels of collaboration in DL-ABSA studies within national borders due mainly to geographic proximity and ease of communication [92].

Frequently Used Words/Phrases

Table 5 shows the 50 most commonly occurring words. At the top of the list, "opinion," which has been used in 223 articles, is the most often occurring word (25.11%). "Aspect-level" (22.75%), "term" (22.41%), "extraction" (21.51%), "graph" (17.79%), "dependency" (17.45%), "convolutional" (16.78%), "language" (15.77%), and "target" (15.54%) are other important terms. This study also included the non-parametric MK test results with annual term frequency data. The majority of the terms on the list, including "syntactic," "dependency," "opinion," "term," "extraction," "graph," and "convolutional," showed statistically significant increases in frequency.

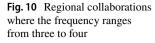




Table 6 highlights commonly used phrases. Of these, "sentiment polarity" is the most frequently chosen phrase, appearing in 161 articles. Other frequently used terms include "neural network" (153 articles), "aspect term" (94 articles), "convolutional network" (92 articles), "attention mechanism" (91 articles), and "deep learning" (74 articles). The trend test revealed that many phrases showed notable variations in frequency: "sentiment polarity," "aspect term," "convolutional network," and "dependency tree."

The trends in the frequency of terms and phrases observed in the DL-ABSA studies are driven by advances in DL technologies, improvements in data processing, increased interest in fine-grained sentiment analysis, and the growing need for the application of DL-ABSA in real-world scenarios. For example, the increased frequencies of "convolutional" and "convolutional network" reflect the increasing application of CNNs and other neural network models to capture local features in textual data to improve accuracy in identifying

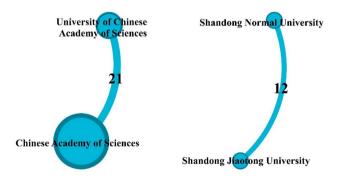
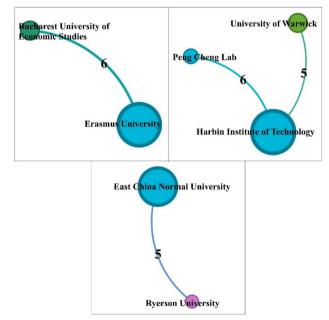


Fig. 11 Institutional collaborations where the frequency ranges from $12 \mbox{ to } 21$

aspect-specific emotions [56]. Similarly, the rise in the frequency of "attention mechanism" is driven by the interest in exploiting attention mechanisms and transformer models such as BERT and GPT to improve the ABSA models' abilities to focus on relevant parts of texts [93, 94]. In addition, terms such as "dependency," "syntactic," and "dependency tree" appear with increasing frequency due to the increasing emphasis on the use of syntax and dependency parsing to understand sentence structure to improve the extraction



 $\ensuremath{\mbox{Fig. 12}}$ Institutional collaborations where the frequency ranges from five to six

four

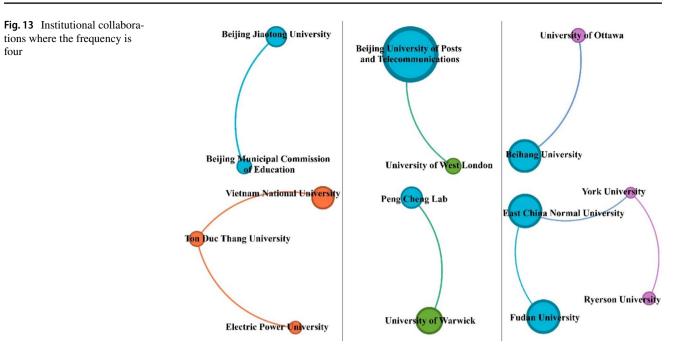


 Table 5
 Frequently used words

Terms	Р	PP	MK test			Terms	Р	PP	MK test		
			р	S	trend				р	S	trend
Opinion	223	25.11%	0.0044	24	$\uparrow\uparrow\uparrow$	Embedding	78	8.67%	0.0416	17	$\uparrow\uparrow$
Aspect-level	202	22.75%	0.0461	17	$\uparrow\uparrow$	Online	78	8.56%	0.0170	20	$\uparrow\uparrow$
Term	199	22.41%	0.0020	26	$\uparrow\uparrow\uparrow$	Label	77	8.45%	0.0028	25	$\uparrow\uparrow\uparrow$
Extraction	191	21.51%	0.0044	24	$\uparrow\uparrow\uparrow$	Training	77	8.11%	0.0020	26	$\uparrow\uparrow\uparrow$
Graph	158	17.79%	0.0028	25	$\uparrow\uparrow\uparrow$	Interaction	76	7.77%	0.0028	25	$\uparrow\uparrow\uparrow$
Dependency	155	17.45%	0.0008	28	$\uparrow\uparrow\uparrow\uparrow$	Score	75	7.43%	0.0187	20	$\uparrow\uparrow$
Convolutional	149	16.78%	0.0012	27	$\uparrow\uparrow\uparrow$	Prediction	72	7.32%	0.0017	26	$\uparrow\uparrow\uparrow$
Language	140	15.77%	0.0461	17	$\uparrow\uparrow$	Improvement	69	7.32%	0.0044	24	$\uparrow\uparrow\uparrow$
Target	138	15.54%	0.1346	13	↑	Vector	66	7.32%	0.0635	16	1
Knowledge	119	13.40%	0.0053	23	$\uparrow\uparrow\uparrow$	Category	65	7.21%	0.0248	19	$\uparrow\uparrow$
Syntactic	116	13.06%	0.0012	27	$\uparrow\uparrow\uparrow$	Sequence	65	7.21%	0.0170	20	$\uparrow\uparrow$
Framework	113	12.73%	0.0028	25	$\uparrow\uparrow\uparrow$	Technique	65	7.09%	0.0170	20	$\uparrow\uparrow$
Enhance	111	12.50%	0.0028	25	$\uparrow\uparrow\uparrow$	Contextual	64	7.09%	0.0291	18	$\uparrow\uparrow$
Domain	109	12.27%	0.0094	22	$\uparrow\uparrow\uparrow$	Train	64	6.87%	0.0327	18	$\uparrow\uparrow$
Level	105	11.82%	0.1346	13	↑	Detection	63	6.87%	0.0061	23	$\uparrow\uparrow\uparrow$
Structure	97	10.92%	0.0028	25	$\uparrow\uparrow\uparrow$	Set	63	6.87%	0.0248	19	$\uparrow\uparrow$
User	94	10.59%	0.0127	21	$\uparrow\uparrow$	Pre-trained	61	6.87%	0.0070	22	$\uparrow\uparrow\uparrow$
Absa	93	10.47%	0.0028	25	$\uparrow\uparrow\uparrow$	Significantly	61	6.87%	0.0031	24	$\uparrow\uparrow\uparrow$
Bert	90	10.14%	0.0109	21	$\uparrow\uparrow$	Subtask	61	6.76%	0.0039	24	$\uparrow\uparrow\uparrow$
Memory	85	9.57%	0.3688	8	↑	Tree	61	6.76%	0.0012	27	$\uparrow\uparrow\uparrow$
Product	85	9.57%	0.0039	24	$\uparrow\uparrow\uparrow$	Twitter	61	6.64%	0.0083	22	$\uparrow\uparrow\uparrow$
Relation	84	9.46%	0.0094	22	$\uparrow\uparrow\uparrow$	Mining	60	6.42%	0.1024	14	↑
Social	84	9.46%	0.0028	25	$\uparrow\uparrow\uparrow$	Service	60	8.67%	0.0061	23	$\uparrow\uparrow\uparrow$
System	82	9.23%	0.0355	18	$\uparrow\uparrow$	Embed	59	8.56%	0.2581	10	↑
Layer	79	8.90%	0.0028	25	$\uparrow\uparrow\uparrow$	Global	57	8.45%	0.0327	18	$\uparrow\uparrow$

Similar to Table 4. Ascending (descending) trend but not statistically significant (p > 0.05); statistically growing (decreasing) for $\uparrow\uparrow(\downarrow\downarrow)$, $\uparrow\uparrow\uparrow(\downarrow\downarrow\downarrow\downarrow)$, and $\uparrow\uparrow\uparrow\uparrow(\downarrow\downarrow\downarrow\downarrow)$ (p<0.05, p<0.01, and p<0.001, respectively). S: MK test statistics

Table 6 Frequently used phrases

Phrases	Р	PP	MK test		
			p	S	trend
Sentiment polarity	161	18.13%	0.00277	25	$\uparrow\uparrow\uparrow$
Neural network	153	13.46%	0.1346	13	1
Aspect term	94	10.59%	0.009375	22	$\uparrow\uparrow\uparrow$
Convolutional network	92	10.36%	0.001189	27	$\uparrow\uparrow\uparrow$
Attention mechanism	91	10.25%	0.04606	17	$\uparrow\uparrow$
Deep learning	74	8.33%	0.0113	21	$\uparrow\uparrow$
Semantic information	44	4.95%	0.008321	22	$\uparrow\uparrow\uparrow$
Sentiment classification	65	7.32%	0.07619	15	↑
Natural language processing	41	4.62%	0.05945	16	↑
Aspect term extraction	40	4.50%	0.001681	26	$\uparrow\uparrow\uparrow$
Aspect category	33	3.72%	0.0809	15	1
Aspect word	33	3.72%	0.01471	20	↑
Syntactic information	32	3.60%	0.00962	21	$\uparrow\uparrow\uparrow$
Aspect extraction	31	3.49%	0.1669	12	1
Dependency tree	31	3.49%	0.003851	24	↑↑↑
Opinion word	30	3.38%	0.01265	21	↑↑ 1
Context word	28	3.15%	0.05945	16	1
Online review	28	3.15%	0.03267	18	↑↑
Opinion mining	28	3.15%	0.1669	12	î. Î
Social medium	26	2.93%	0.008321	22	↑↑↑
Syntactic structure	23	2.59%	0.01342	19	$\uparrow\uparrow$
Multiple aspect	19	2.14%	0.1285	13	↑ Î
Neural model	19	2.14%	0.1024	14	, ↓
Short-term memory	19	2.14%	0.02907	18	_ ↑↑
Aspect information	18	2.03%	1	1	↑ ↑
Opinion term	18	2.03%	0.09511	14	, ↓
Pre-trained language model	17	1.91%	0.05447	15	, ↓
User review	16	1.80%	0.0113	21	↑↑
Aspect category detection	15	1.69%	0.00962	21	↑↑↑ 1
Opinion target	15	1.69%	0.6124	5	1
Restaurant datasets	15	1.69%	0.7957	3	, ↑
Twitter datasets	15	1.69%	0.03833	17	↑↑
External knowledge	14	1.58%	0.00583	22	↑↑↑
Sentiment word	14	1.58%	0.05413	16	↑
Syntactic dependency	14	1.58%	0.00734	21	↑↑↑
Dependency relation	13	1.46%	0.02907	18	↑↑ ↑↑
Graph attention network	13	1.46%	0.0044	23	↑↑↑
Multi-head attention	24	2.70%	0.02393	18	↑ ↑↑
Semantic relationship	13	1.46%	0.05413	16	↑ 1
Semantic representation	13	1.46%	0.04888	16	 ↑
Adversarial training	12	1.35%	0.01584	19	$\uparrow\uparrow$
Local context	12	1.35%	0.0126	20	↑↑ ↑↑
Multi-task learning	12	1.35%	0.05413	16	↑ 1
Social network	12	1.35%	0.02907	18	` ↑↑
Aspect representation	12	1.24%	0.02907	18	11 ↑
Contextual word	11	1.24%	0.08785	14	ı ↑
Dependency graph	11	1.24%	0.03199	10	
Semantic feature		1.24%	0.03199		↑↑ ↑
	11	1.24%	0.00219	13	1

Table 6	(continu	ed)
Iable 0	(continu	cu)

Phrases	Р	PP	MK test		
			p	S	trend
Sentiment feature	11	1.24%	0.2836	9	1
Short-term memory network	11	1.24%	1	-1	\downarrow

Similar to Table 5

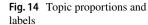
accuracy of terms and their associated emotions [21, 95]. Similarly, the use of graph-based methods to represent dependencies and relationships between words has gained attention, as witnessed by the term "graph," to capture complex dependencies and improve ABSA performance [96, 97].

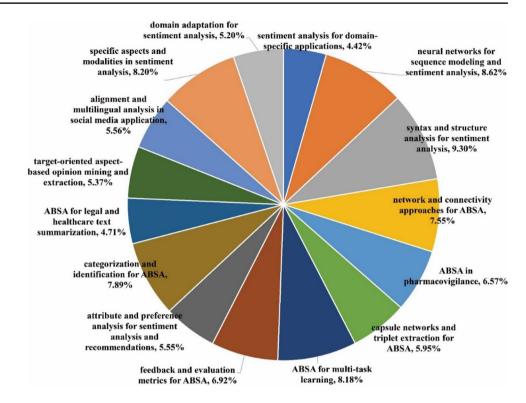
Topic and Trend Analysis

Figure 14 shows the results of the topic modeling, including article proportions and suggested labels. The top four topics with the most frequency included "syntax and structure analysis for sentiment analysis" (9.30%), "neural networks for sequence modeling and sentiment analysis" (8.62%), "specific aspects and modalities in sentiment analysis" (8.20%), and "ABSA for multi-task learning" (8.18%).

Topics related to grammar and structure, neural networks, specific aspects, and multi-task learning highlight the importance of applying both basic and advanced technologies to improve ABSA performance. Specifically, the use of dependency resolution, syntax trees, and other structural analysis methods is helpful for understanding the syntactic and structural aspects of language and capturing the relationships between words and their contextual meanings [98, 99], thus improving accuracy in extracting aspects and their associated emotions [100]. Second, neural networks such as RNNs, LSTMs, and transformers are regarded as important in text sequence data modeling due to their abilities to capture remote dependencies and contextual information in ABSA [101]. Furthermore, the combination of specific aspects (e.g., product features) and patterns (e.g., text, images, or multimodal data) allows for detailed and nuanced analysis of emotions, especially in real-world applications with different aspects or types of data [102, 103]. In addition, multi-task learning, which involves simultaneous model training on multiple relevant tasks, has been increasingly exploited to improve ABSA performance by leveraging shared information across tasks, such as aspect extraction and sentiment classification [104].

The trend analysis for the 15 topics is shown in Fig. 15, which displays the 15 topics' respective dynamic prevalence over time throughout the whole dataset. For example, topics such as "syntax and structure analysis for sentiment analysis," "categorization and identification for ABSA,"





"domain adaptation for sentiment analysis," "network and connectivity approaches for ABSA," and "ABSA in pharmacovigilance" have shown a constant increase over the studied period. Other topics, such as "sentiment analysis for domain-specific applications" and "target-oriented aspectbased opinion mining and extraction," have shown a constant decrease over the studied period. Topics such as "specific aspects and modalities in sentiment analysis" and "alignment and multilingual analysis in social media application" have shown a decrease in the last 3 years.

The evolution of research topics shows the ongoing innovation and expanding application of DL-ABSA in various domains. Specifically, the need for more accurate and sophisticated models to understand language structure has ensured constant attention has been paid to syntax and structure analysis in DL-ABSA research [105]. Second, as foundational tasks in ABSA, categorizing and identifying aspects and sentiments have been improved in terms of accuracy alongside the advances in DL technologies [9, 106]. Third, the increased research interest in domain adaptation for ABSA is attributed to the need for transferring models across various domains (e.g., from product reviews to restaurant reviews) without decreasing model performance [107–109]. Furthermore, attention has also been paid to exploring graph neural networks to represent and utilize connectivity in textual data by leveraging the relationships between entities and words [110]. In addition, the growing interest in monitoring and analyzing drug safety and adverse effects has driven ongoing research in applying DL-ABSA models in pharmacovigilance [111].

The interrelations among the 15 topics revealed the presence of four separate groupings (Fig. 16). Group 1 (G1) encompassed "attribute and preference analysis for sentiment analysis and recommendations" and "feedback and evaluation metrics for ABSA." Group 2 (G2) included three topics: "ABSA for multi-task learning," "capsule networks and triplet extraction for ABSA," and "target-oriented aspect-based opinion mining and extraction." Group 3 (G3) included two topics: "neural networks for sequence modeling and sentiment analysis" and "specific aspects and modalities in sentiment analysis." Group 4 (G4) comprised two topics: "syntax and structure analysis for sentiment analysis" and "network and connectivity approaches for ABSA."

The interrelations among topics show how different research areas interact with each other. Specifically, topics in G1 highlight the increasing need for understanding user preferences based on user feedback analysis and evaluating the effectiveness of ABSA systems [112, 113]. Second, topics in G2 show an increasing focus on the application of cutting-edge methods such as multi-task learning and capsule networks in target-oriented mining for precise ABSA [13, 114]. Furthermore, G3 suggests a rise in the use of neural networks for modeling sequences and focusing on specific aspects or modalities for capturing detailed and contextual sentimental information [115]. In addition, topics in G4 demonstrate an increased trend in capturing dependencies and connections to understanding the structural relationships within textual data to improve sentiment and aspect extraction [21].

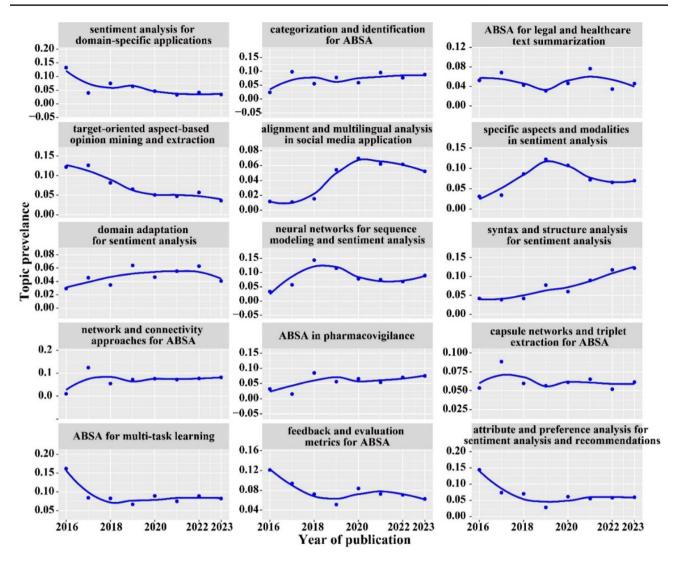


Fig. 15 Trends of the 15 topics

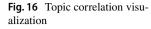
Research Hotspots and Trends

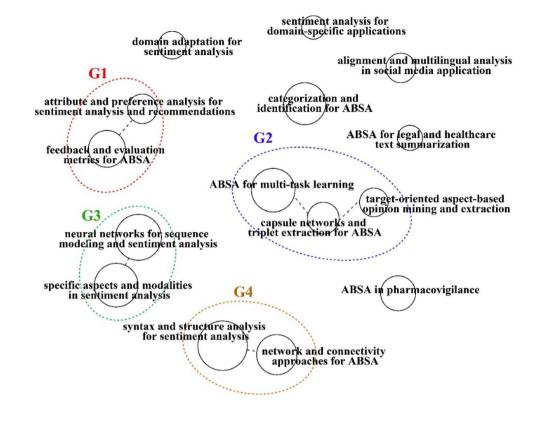
"Frequently Used Words/Phrases" and "Topic and Trend Analysis" have revealed that research methodologies and issues within DL-ABSA demonstrate continuous evolution. Research on DL-ABSA has experienced a notable surge in activity, with several distinct hotspots and trends emerging from the analysis of scholarly literature.

Topics with High Frequency

First, "syntax and structure analysis for sentiment analysis" has emerged as a prominent hotspot, capturing 9.30% of the research focus, reflecting the recognition of the pivotal role played by syntactic and structural features in capturing nuanced sentiment expressions [116]. By leveraging syntactic information, researchers can enhance the depth and granularity of sentiment analysis, allowing for more accurate identification and interpretation of sentiment-bearing elements within textual data [117]. The focus on syntax underscores a strategic effort to harness linguistic insights and computational methods to overcome challenges related to ambiguity and context dependency inherent in sentiment analysis tasks [118].

Second, "neural networks for sequence modeling and sentiment analysis" has garnered significant attention, representing 8.62% of the research focus. This underscores the growing reliance on DL techniques to model sequential data and extract meaningful patterns from textual contexts. Neural networks offer unparalleled capabilities in learning complex representations, enabling ABSA models to discern subtle sentiment





nuances across diverse domains and textual modalities [119]. The widespread adoption of neural architectures reflects their scalability, adaptability, and effectiveness in capturing contextual dependencies [12], thereby driving advancements in ABSA research and facilitating the development of more robust and versatile sentiment analysis solutions.

Third, the exploration of "specific aspects and modalities in sentiment analysis" has emerged as a critical hotspot, comprising 8.20% of the research focus, reflecting the emphasis on the identification and analysis of specific attributes, domains, or modalities that influence sentiment orientations [120]. By dissecting sentiment at a finer granularity, researchers can uncover domain-specific patterns, linguistic markers, and contextual nuances, enabling targeted and contextually informed ABSA solutions. The emphasis on specificity underscores a maturing understanding of sentiment dynamics and the need for tailored approaches to accommodate diverse application scenarios and user preferences [121].

Fourth, "ABSA for multi-task learning" has emerged as a notable trend, capturing 8.18% of the research focus. This signifies a strategic shift toward more holistic and integrated ABSA frameworks capable of addressing multiple related tasks simultaneously [122, 123]. Multi-task learning approaches offer synergistic benefits, including improved generalization, enhanced model robustness, and efficient knowledge transfer across tasks [124]. The growing interest in multi-task learning demonstrates a concerted effort to develop comprehensive ABSA solutions capable of capturing the multifaceted nature of sentiment analysis tasks and accommodating the diverse needs of real-world applications [125].

Topics Receiving Increasing Attention

The trend analysis of topics in DL-ABSA reveals several persistent hotspots and emerging trends that are shaping the landscape of research in this field. Notably, topics such as "categorization and identification for ABSA," "domain adaptation for sentiment analysis," "network and connectivity approaches for ABSA," and "ABSA in pharmacovigilance" have shown a constant increase in prevalence over the studied period, indicating their significance as research hotspots.

First, the consistent rise in attention toward "categorization and identification for ABSA" underscores the ongoing efforts to develop robust methodologies for accurately categorizing and identifying sentiment-bearing aspects within textual data [126]. As ABSA becomes increasingly integral to applications such as recommendation systems, market analysis, and social media monitoring, the need for effective categorization and identification techniques has intensified [127]. DL approaches offer promising solutions by leveraging rich representations and contextual information to discern subtle sentiment nuances across diverse domains and textual modalities. Second, "domain adaptation for sentiment analysis" has become a well-known hotspot, reflecting the growing recognition of the difficulties brought about by domain shifts in ABSA tasks. With sentiment expression varying significantly across different domains and contexts, domain adaptation methods are essential for improving the generalization and robustness of ABSA models [13]. By leveraging transfer learning and domain-specific knowledge, researchers aim to develop adaptive ABSA solutions capable of effectively handling domain shifts and accommodating the diverse needs of real-world applications [128, 129].

Furthermore, the increasing emphasis on "network and connectivity approaches for ABSA" signifies a strategic focus on leveraging network science principles and graphbased representations to capture complex relationships and dependencies among sentiment-bearing elements [58]. By modeling the interconnectedness of aspects, sentiments, and contextual information, network-based approaches offer insights into the underlying structures and dynamics of sentiment analysis tasks, enabling more accurate and interpretable ABSA solutions [130].

Lastly, the growing interest in "ABSA in pharmacovigilance" highlights the critical role of sentiment analysis in pharmacovigilance efforts aimed at monitoring adverse drug reactions and ensuring public health safety [131]. The amount of textual data relevant to pharmacovigilance has increased due to the growth of social media platforms, Internet forums, and healthcare databases, necessitating advanced ABSA techniques for efficient and timely detection of adverse events [125, 132]. Utilizing DL techniques in pharmacovigilance enables automated analysis of large-scale textual data, facilitating early detection and intervention in adverse drug events, thereby enhancing patient safety and regulatory compliance [133].

Groups Among Topics

The identification of distinct groupings among topics in DL-ABSA sheds light on key research hotspots and emerging trends in the field. First, G1, encompassing "attribute and preference analysis for sentiment analysis and recommendations" alongside "feedback and evaluation metrics for ABSA," underscores the importance of fine-grained attribute analysis and robust evaluation methodologies in ABSA research. This group reflects the ongoing efforts to develop more sophisticated ABSA models capable of capturing nuanced aspects of sentiment expression and providing actionable insights for recommendation systems [134]. The emphasis on attribute analysis and evaluation metrics highlights a strategic focus on improving the interpretability, accuracy, and utility of ABSA solutions, thereby addressing critical challenges in real-world deployment scenarios [135, 136].

Second, G2, comprising "ABSA for multi-task learning," "capsule networks and triplet extraction for ABSA," and "target-oriented aspect-based opinion mining and extraction," represents a convergence of innovative methodologies aimed at advancing ABSA. The inclusion of multi-task learning underscores a growing interest in holistic ABSA frameworks capable of simultaneously addressing multiple related tasks, enhancing model efficiency, and generalization [36]. Additionally, the integration of capsule networks and triplet extraction techniques reflects a shift toward more specialized and context-aware ABSA models capable of capturing complex relationships and dependencies among sentiment-bearing elements [13]. The focus on target-oriented aspect-based opinion mining underscores the importance of contextually informed sentiment analysis, tailored to specific domains or user preferences, thus driving advancements in personalized recommendation systems and opinion summarization [137].

G3, consisting of "neural networks for sequence modeling and sentiment analysis" and "specific aspects and modalities in sentiment analysis," highlights the foundational role of DL techniques in ABSA research and the ongoing exploration of domain-specific sentiment dynamics [138]. The utilization of neural networks for sequence modeling underscores their efficacy in capturing temporal dependencies and contextual nuances in textual data, facilitating more accurate sentiment analysis outcomes across diverse domains. Furthermore, the emphasis on specific aspects and modalities reflects a nuanced approach toward sentiment analysis, aimed at identifying and analyzing domain-specific patterns, linguistic markers, and contextual nuances that influence sentiment orientations, thereby addressing the diverse needs of real-world ABSA applications [139, 140].

G4, comprising "syntax and structure analysis for sentiment analysis" and "network and connectivity approaches for ABSA," highlights the intersection of linguistic insights and computational methodologies in ABSA research [141]. The focus on syntax and structural analysis underscores the importance of linguistic features in capturing nuanced sentiment expressions, enhancing the interpretability and accuracy of ABSA models [142]. Similarly, the exploration of network and connectivity approaches reflects efforts to leverage network science principles and graph-based representations for capturing complex relationships and dependencies among sentiment-bearing elements, thereby advancing ABSA [143].

In summary, the identified hotspots and trends in DL-ABSA reflect research priorities aimed at addressing key challenges, advancing state-of-the-art methodologies, and fostering the creation of effective and adaptable sentiment analysis solutions tailored to diverse application domains. These hotspots underscore the interdisciplinary nature of ABSA research, bridging linguistic insights, computational methods, and domain-specific knowledge to propel the field forward and address the evolving needs of sentiment analysis in various domains. By addressing these hotspots through innovative methodologies and interdisciplinary collaborations, researchers can drive advancements in DL-ABSA research, leading to the creation of accurate, adaptable, and contextually aware sentiment analysis solutions tailored to diverse application domains and user preferences.

Conclusion and Implications

Conclusion

The comprehensive bibliometric and topic modeling analysis conducted on DL-ABSA research revealed several key insights and trends. First, there has been a significant increase in both the volume and impact of research in this field, with a significant increase in citations and publications starting in 2020. This underscores the growing importance and impact of DL-ABSA research within the academic community.

Second, the analysis identified prominent publication sources, research areas, institutions, and countries/regions contributing to DL-ABSA research. Journals such as IEEE Access and conferences such as the AAAI Conference on Artificial Intelligence emerged as significant publication venues, while institutions from China, particularly the Chinese Academy of Sciences, demonstrated a substantial presence in DL-ABSA research. Additionally, collaborative efforts between countries/regions, particularly between the USA and China, were observed, highlighting the global engagement and cooperation in advancing DL-ABSA research.

Third, the analysis of major themes and topics in DL-ABSA research revealed key areas of focus, such as syntax and structure analysis, neural networks for sequence modeling, and specific aspects and modalities in sentiment analysis. These topics reflect the diverse research landscape and the ongoing exploration of innovative methodologies and approaches to enhance DL-ABSA techniques.

Finally, the identification of distinct groupings among DL-ABSA topics provided valuable insights into the interrelations and thematic clusters within the field. These groupings, such as attribute and preference analysis, multi-task learning, and network and connectivity approaches, offer guidance for researchers to explore interdisciplinary collaborations and advance DL-ABSA research in strategic directions.

In conclusion, this research provides an extensive summary of the publication trends, collaborative networks, thematic clusters, and emerging directions in DL-ABSA research. By leveraging these insights, researchers can identify research gaps, foster collaborations, and drive advancements in DL-ABSA methodologies, ultimately contributing to developing accurate, interpretable, and contextually aware sentiment analysis solutions tailored to diverse application domains.

However, this study has its limitations. First, it only used the WoS database. Although the WoS is popularly used in literature reviews, there might still be DL-ABSA publications that were not included in our analysis. Future work might consider including data from more databases. Second, this study did not analyze specific elements of a publication, such as what systematic reviews do. Future work could exploit ways to effectively integrate the advantages of text mining and systematic analysis to promote an in-depth understanding of specific aspects of DL-ABSA literature.

Implications for Practice and Prospective Avenues in ABSA Research

The evolving landscape of DL-ABSA research unveils multifaceted implications for both practice and prospective avenues. The prominence of "syntax and structure analysis for sentiment analysis" signals a strategic emphasis on leveraging linguistic insights to enhance sentiment analysis accuracy. Integrating syntactic features into DL-ABSA models holds promise for practitioners, enabling them to capture nuanced sentiment expressions and address challenges related to ambiguity and context dependency. Moreover, the surge in attention toward "neural networks for sequence modeling and sentiment analysis" underscores the pivotal role of DL in ABSA research, offering practitioners scalable and adaptable solutions to discern subtle sentiment nuances across diverse textual data sources. This trend suggests prospective avenues for practitioners to explore novel neural architectures tailored to ABSA tasks, fostering more effective sentiment analysis outcomes.

Furthermore, the exploration of "specific aspects and modalities in sentiment analysis" signifies a shift toward contextually informed ABSA solutions tailored to diverse application domains and user preferences. Practitioners can leverage this trend to focus on identifying domain-specific patterns and linguistic markers, thereby enhancing the relevance and applicability of ABSA models. Additionally, the rising interest in "ABSA for multi-task learning" offers opportunities for practitioners to develop comprehensive frameworks capable of addressing multiple related tasks simultaneously, thus improving model efficiency and adaptability.

The identified hotspots also shed light on prospective avenues for practitioners in specific domains. For instance, the emphasis on "domain adaptation for sentiment analysis" underscores the importance of developing adaptive DL-ABSA solutions capable of handling domain shifts, which is particularly relevant for practitioners operating in diverse contexts. Moreover, the growing attention toward "ABSA in pharmacovigilance" presents practitioners in the healthcare domain with opportunities to leverage DL methods for efficient and timely detection of adverse drug events, thereby enhancing patient safety and regulatory compliance.

In summary, the integration of diverse research hotspots and trends in DL-ABSA research underscores the

Appendix

interdisciplinary nature of the field and offers practitioners a roadmap for advancing sentiment analysis methodologies and applications. By leveraging linguistic insights, computational methods, and domain-specific knowledge, practitioners can drive innovations in DL-ABSA research, leading to accurate, adaptable, and contextually aware DL-ABSA solutions tailored to diverse application domains and user preferences.

Table 7 Search query

((TS = ((("aspect-based" or "feature-level" or "aspect-level" or "aspect term*" or "aspect categor*") AND ("sentiment analy*" or "opinion analy*" or "polarity analy*" or "affective analy*" or "subjectivity analy*" or "sentiment classifi*" or "opinion classifi*" or "subjectivity classifi*" or "polarity classifi*" or "affective classifi*" or "sentiment detect*" or "opinion detect*" or "polarity detect*" or "affective detect*" or "subjectivity detect*" or "sentiment identifi*" or "opinion identifi*" or "oplarity identifi*" or "affective identifi*" or "subjectivity identifi*" or "sentiment categor*" or "opinion categor*" or "polarity categor*" or "affective categor*" or "subjectivity categor*" or "sentiment recogni*" or "opinion recogni*" or "polarity recogni*" or "affective recogni*" or "subjectivity recogni*" or "opinion target*" or "sentiment mining" or "opinion mining" or "semantic orientation" or "sentiwordnet*" or "sentic*" or "affective computing" or "sentiment learning" or "subjectivity learning" or "affective learning")))) NOT TS = (("face image*" or "temperature" or "image*" or "biosignal*" or "image process*"))) NOT TI = (("facial" or "speech" or "sound*" or "face" or "dance" or "temperature" or "image*" or "spoken" or "electroencephalography" or "biosignal*" or "voice*"))

Fable 8 Exclusion criteria related to ABSA	(1) Detection and classification of physical emotions and medical conditions
	(2) Recognition of affective postures
	(3) Research focused on the analysis and identification of emotions through various mediums such as pho- tos, human facial expressions, physiology, and electrical signals like electrocardiograms
	(4) Investigation into humans' ability for emotion recognition
	(5) Exploration of theory of mind
	(6) Psychological or pharmacological experimental studies
	(7) Creation of ontologies, corpora, or datasets
	(8) Literature reviews or survey papers
	(9) Multimodal analysis as opposed to solely text analysis

Research issue	Technologies used	Purpose of technology used	Effectiveness	TCS MCS
Determine the sentiment polarity	GCN SenticNet	To extract graph representations To leverage affective dependencies for specific aspects	Effective in enhancing word depend- encies in sentences and improving sentiment extraction learning ability.	164 82
	Dependency tree	To capture syntactical information	Effective in constructing un-directional graphs to fully utilize sentence depend-	
	Aspect-specific affective enhanced dependency graph	to enhance affective information	ency trees and derive precise affective relations	
	LSTM	To derive hidden contextual representa- tions from sentence embeddings		
	GloVe	For word embeddings in non-BERT models, capturing semantic relation- ships		
	L2 regularization	To prevent overfitting by penalizing large weights		
	Adam optimizer	For efficient parameter optimization		
	Uniform initialization	To initialize weights and biases uni- formly for neural network layers		
	BERT	For contextual word embeddings for sentiment analysis		
Hotel recommendation system based on sentiment analysis of the reviews	BERT	To classify sentiments in reviews using an ensemble model with three phases	Effective in reducing computational time and achieving higher accuracy for	70 23.33
	Word2vec	To generate word vectors as textual features for the sentiment classification model	sentiment analysis by combining all feature settings	
	TF-IDF	To calculate the importance of frequent words in the reviews as textual features for the classification model		
	Random forest classifier	To classify the sentiment of reviews based on various textual features		
	Fuzzy logic	To categorize reviews into different aspects by handling misspellings and typographical errors		
	TPU v3-8	To accelerate the training process of the BERT model		
	Fuzzy string matching	To improve the accuracy of aspect-based review categorization by handling vari-		

Stud- ies [81]	Deconch iceno	Toohnolocios neod		Effortivance	
[81]		recumorogics used	Furpose of technology used	ENTECHNELICS	TCS MCS
	Aspect-level sentiment classification	Interactive multitask learning networks	Solves multiple tasks simultaneously, enabling better exploitation of interac- tions between tasks	Effective in co-extracting aspect and opinion terms. Effective in utilizing domain-specific knowledge through	112 22.4
		Message passing mechanism	Allows informative interactions between tasks by sending useful information back to a shared latent representation	joint training and domain-specific embeddings to enhance task per- formance. Effective in maintaining competitive performance even without	ţ
		CNN	Used in the feature extraction compo- nent after the word embedding layer to extract features from the input sequence	domain-specific embedding	
		Shared latent representation	A sequence of latent vectors shared among all tasks, initialized by the fea- ture extraction component and updated through message passing		
		Glove	Provides pre-trained word vectors to cap- ture general semantic information		
		FastText	Provides pre-trained word vectors, trained on a large domain-specific corpus for the restaurant and laptop domains		
		Adam optimizer	To optimize the learning process		

 $\textcircled{ } \underline{ \widehat{ } }$ Springer

Work Reservision Technologie used Effectivenes 101 Aspect currection Neurol embeddings To mp work that wandby coverant Effectivenes 101 Aspect currection Neurol in the currecting extending space Effectivenes and facult/ying segratule aspects 111 Aspect currection Comp work that wandby coverant Effectivenes and facult/ying segratule aspects 111 Aspect currection Comp work that wandby coverant Effectivenes and facult/ying segratule aspects 111 Aspect currection Comp work that wandby coverant Effectivenes and facult/ying segratule aspects 111 Aspect currection Comp work that wandby coverant Effectivenes and facult/ying segratule aspects 111 Aspect currection Comp work that wandby coverant and work To epforten Loci Loci Loci Loci Loci Loci Loci Loci	Table 9	Table 9 (continued)				
Aspect extraction Neural word embeddings To map words that usually co-occur within the same context to reactly points in the came context or reactly primits in the came context aspect in the same context aspects in the same context aspect in the same context aspects in the same context aspect in the same context and satisfy the same context and satisfy the same context aspect in the same context and satisfy the satisfy the same context and satisfy the satisfy the same context and satisfy the satisfy the satisfy the sate sate satisfy the sate satisfy the sate satisfy the sate satisfy the sate sate satisfy the sate sate sate sate sate sate sate sat	Stud- ies	Research issue	Technologies used	Purpose of technology used	Effectiveness	TCS MCS
Aspect embeddings To represent aspects in the same embedding search Grid search To optimize hyperparameters of topic models using the topic coherence Gribbs LDA++ To perform 1000 iterations of sampling the topic coherence Gribbs LDA++ To implement Loc LDA for topic models using the topic coherence Gribbs LDA++ To implement Loc LDA for topic models Gribbs LDA++ To implement Loc LDA for topic models Gribbs LDA++ To implement Loc LDA for topic models Mond2vec Word2vec Word2vec Word2vec Mond2vec To implement Loc LDA for topic models Mond2vec To implement Loc LDA for topic models Mond2vec Word2vec Mond2vec To implement Loc LDA for topic Mond2vec To implicit per word embedding matrix With pertainties To implicit per word embedding matrix Mond2vec To implicit per word embedding	[76]	Aspect extraction	Neural word embeddings	To map words that usually co-occur within the same context to nearby points in the embedding space	Effective in extracting coherent aspects and identifying separable aspects despite challenges in specific catego-	220 31.43
Grid search To optimize hyperparameters of topic models using the topic coherence metric Gibbs sampling To perform 1000 iterations of sampling for all topic models to infer topic distributions Gibbs LDA + + To infinize the word embedding metric Word2 vec To infinize the word embedding distributions Word2 vec To infinize the word embedding metrix with perferience word vectors and set specific parameters Mam optimizer To infinizize the word embedding matrix with cluster centroids from word embedding Aspect-term sembrant analysis Adam optimizer Aspect-term sembrant analysis To infinizize the word embedding matrix with cluster centroids from word embeddings Aspect-term sembrant analysis Comparameters Aspect-term sembrant analysis To optimize model parameters during training Aspect-term sembrant analysis Comparameters Aspect-term sembrant analysis To enforce an orthogonality constraint word embedding Aspect-term sembrant analysis Comparameters Aspect-term sembrant analysis To enforce an orthogonality constraint word embedding words Aspect-term sembrant analysis To enforce an orthogonality constraint word embedding words Aspect-term sembrant analysis To enforce an orthogonality constraint word embedding words Aspect-term sembrant analysis To enforce an orthogonality constraint on spect rempreding words Aspect-term se			Aspect embeddings	To represent aspects in the same embed- ding space as words	ries such as taste and smell	
Gibbs sampling To perform 1000 iterations of sampling for all topic models to infer topic distributions GibbsLDA++ To implement LocLDA for topic mod- eling using Gibbs sampling Word2vec To implement LocLDA for topic mod- eling using Gibbs sampling Word2vec To initialize the word enbedding matrix with pre-trained word vectors and set specific parameters Adam optimizer To initialize the aspect embedding matrix with cluster centroids from watrix with cluster centroids from matrix with cluster centroids from watrix with cluster centroids from matrix with cluster centroids from watrix with cluster centroids from matrix center centroids from trainec Adagrad optimizer To clinicize un oct-vocellangrav words matrix center centroids from matrix center centroids from matrix center centroids from matrix center centroids from ce			Grid search	To optimize hyperparameters of topic models using the topic coherence metric		
GibbsLDA++ To implement LocLDA for topic modeling using Gibbs sampling WordZvec To initialize the word embedding matrix with pre-trained word vectors and set specific parameters WordZvec To initialize the word embedding matrix with the trained word vectors and set specific parameters R-means clustering To initialize the aspect embedding matrix with the trained word vectors and set specific parameters Adam optimizer To initialize the aspect embedding Adam optimizer To optimize model parameters from word embeddings Aspect-category sentiment analysis and Chhogonality penalty Aspect-term sentiment analysis Orthogonality penalty To optimize model parameters during Aspect-term sentiment analysis Conforce an orthogonality constraint Aspect-term sentiment analysis To optimize model parameters at fitterent training Aspect-term sentiment analysis To efficiently extract N-gram features at based on the given aspect or entity Multiple filters in convolutional layers To selectively ouptu sentiment features based on the given aspect or entity Multiple filters in convolutional layers To initialize word embedding vectors Uniform distribution To initialize word embedding vectors Multiple filters in convolutional layers To initialize word embedding vectors Uniform distribution To initialize word embedding vectors Multiple filters To initialize			Gibbs sampling	To perform 1000 iterations of sampling for all topic models to infer topic distributions		
Word2vec To initialize the word embedding matrix with pre-trained word vectors and set specific parameters K-means clustering To initialize the aspect embedding matrix with cluster centroids from word embeddings Adam optimizer To initialize the aspect embedding matrix with cluster centroids from word embeddings Adam optimizer To initialize the aspect embedding Adam optimizer To initialize the aspect embedding Adam optimizer To initialize the aspect embedding Adam optimizer To optimize matrix with cluster centroids from word embeddings Aspect-category sentiment analysis and CNN Aspect-category sentiment analysis Conthogonality penalty Aspect-category sentiment analysis To enforce an orthogonality constraint on aspect embedding sentiment features Aspect-term sentiment analysis Gated Tanh-ReLU units To efficiently extract N-gram features at Enularities Multiple filters in convolutional layers To efficiently extract N-gram features Uniform distribution To selectively output sentiment features Uniform distribution To entitize entroiding vectors Uniform distribution To initialize out-of-vocebulary words Magrad optimizer To optimizer Adagrad optimizer To optimizer			GibbsLDA + +	To implement LocLDA for topic mod- eling using Gibbs sampling		
K-means clustering To initialize the aspect embedding matrix with cluster centroids from word embeddings Adam optimizer Adam optimizer Adam optimizer To optimize model parameters during matrix with cluster centroids from word embeddings Aspect-category sentiment analysis and controgonality penalty To enforce an orthogonality constraint on aspect embeddings Aspect-category sentiment analysis CNN To enforce an orthogonality constraint on aspect embeddings Aspect-term sentiment analysis CNN To efficiently extract N-gram features at aspect embeddings Aspect-term sentiment analysis Cated Tanh-ReLU units To selectively output sentiment features at analtysis Aspect-term sentiment analysis Cated Tanh-ReLU units To selectively output sentiment features at analtysis Aspect-term sentiment analysis Cated Tanh-ReLU units To selectively output sentiment features Aspect-term sentiment analysis Cated Tanh-ReLU units To selectively output sentiment features Aspect-term sentiment analysis Cated Tanh-ReLU units To selectively output sentiment features Aspect-term sentiment analysis Cated Tanh-ReLU units To capture features at different granularities Multiple filters in convolutional layers To capture features at different granularities To initialize out-of-vocabulary words <th></th> <td></td> <td>Word2vec</td> <td>To initialize the word embedding matrix with pre-trained word vectors and set specific parameters</td> <td></td> <td></td>			Word2vec	To initialize the word embedding matrix with pre-trained word vectors and set specific parameters		
Adam optimizer To optimize model parameters during training Orthogonality penalty Orthogonality constraint Aspect-category sentiment analysis and aspect-term sentiment analysis CNN Aspect-term sentiment analysis Conthread on the given aspect or entity Aspect-term sentiment analysis To selectively output sentiment features Aspect-term sentiment analysis To selectively output sentiment features Analtiple filters in convolutional layers To capture features at different granulari- ties within each receptive field Core Continialize word embedding vectors Uniform distribution To initialize word embedding vectors Adagrad optimizer To initialize out-of-vocabulary words			K-means clustering	To initialize the aspect embedding matrix with cluster centroids from word embeddings		
Orthogonality penalty To enforce an orthogonality constraint Aspect-category sentiment analysis CNN on aspect embeddings Aspect-term sentiment analysis CN To efficiently extract N-gram features at multiple granularities Aspect-term sentiment analysis Gated Tanh-ReLU units To efficiently extract N-gram features at multiple granularities Multiple filters in convolutional layers To selectively ouput sentiment features based on the given aspect or entity Multiple filters in convolutional layers To capture features at different granularities GloVe To initialize word embedding vectors Uniform distribution To initialize out-of-vocabulary words with a uniform distribution Adagrad optimizer To optimize model parameters			Adam optimizer	To optimize model parameters during training		
Aspect-category sentiment analysis and aspect-term sentiment analysis CNN To efficiently extract N-gram features at multiple granularities Better sentiment analysis Gated Tanh-ReLU units To selectively ouput sentiment features based on the given aspect or entity Multiple filters in convolutional layers To capture features at different granularities GloVe To initialize word embedding vectors Uniform distribution To initialize out-of-vocabulary words with a uniform distribution Adagrad optimizer To optimize model parameters			Orthogonality penalty	To enforce an orthogonality constraint on aspect embeddings		
anh-ReLU unitsTo selectively output sentiment features based on the given aspect or entitye filters in convolutional layersTo capture features at different granulari- ties within each receptive field To initialize word embedding vectorsn distributionTo initialize out-of-vocabulary words with a uniform distributiond optimizerTo optimize model parameters	[71]	Aspect-category sentiment analysis and aspect-term sentiment analysis	CNN	To efficiently extract N-gram features at multiple granularities	Effective in controlling sentiment infor- mation flow at a fine granularity. Effec-	300 50
e filters in convolutional layers To capture features at different granulari- ties within each receptive field To initialize word embedding vectors To initialize out-of-vocabulary words with a uniform distribution d optimizer To optimize model parameters			Gated Tanh-ReLU units	To selectively output sentiment features based on the given aspect or entity	tive in unraveling aspect and sentiment information. Effective in differentiating	
n distribution d optimizer			Multiple filters in convolutional layers	To capture features at different granulari- ties within each receptive field	the sentiments of multiple entities within the same sentence	
			GloVe	To initialize word embedding vectors		
			Uniform distribution	To initialize out-of-vocabulary words with a uniform distribution		
			Adagrad optimizer	To optimize model parameters		

🖄 Springer

Stud- ies	Stud- Research issue ies	Technologies used	Purpose of technology used	Effectiveness	TCS MCS	MCS
[77]	Aspect-level sentiment classification	LSTM	To model aspects and texts simultane- ously and learn long-term depend- encies while avoiding the gradient vanishing or exploding problem	Effective in learning sentiment polarities 192 of different aspects. Effective in iden- tifying sentiment-indicating words for specific aspects when multiple aspects		32
		Bi-LSTM	To learn the hidden semantics of words in both the sentence and the aspect tar- get by processing the sequence in both forward and backward directions	within a sentence		
		Attention-over-attention module	To automatically generate mutual atten- tion from aspect-to-text and text-to- aspect			
		Uniform initialization	To initialize all weight matrices ran- domly from a uniform distribution			
		Zero initialization	To initialize all bias terms to zero			
		L2 regularization	To prevent overfitting			
		GloVe	To initialize word embeddings			
		Adam optimizer	To optimize the model			

 $\textcircled{ } \underline{ \widehat{ } }$ Springer

Table 9	lable 9 (continued)					
Stud- ies	Research issue	Technologies used	Purpose of technology used	Effectiveness	TCS MCS	ACS
[74]	Aspect term extraction	LSTM	To build initial aspect and opinion representations by recording sequential information	Effective in leveraging opinion sum- maries for improved aspect extraction. Effective in discovering uncommon	114 1	19
		Truncated history attention (THA)	To encode historical information into aspect representations by distilling useful features from recent aspect pre- dictions and generating history-aware aspect representations	aspects by utilizing history attention mechanisms		
		Selective transformation network (STN)	To obtain opinion summaries by apply- ing aspect information to transform initial opinion representations and using attention over these transformed representations			
		Bi-linear attention network	To calculate the opinion summary as a weighted sum of new opinion repre- sentations based on their associations with the current aspect representation			
		GloVe	To initialize word embeddings			
		Uniform distribution	To initialize embeddings for out-of- vocabulary words randomly sampled from the uniform distribution			
		Glorot uniform initialization	To initialize the matrices in LSTMs using the Glorot Uniform strategy			
[64]	Aspect-based sentiment classification	GCN	To exploit syntactical information and word dependencies	Effective in demonstrating the insuf- ficiency of directly integrating syntax	205 41	÷
		Bi-LSTM	To capture contextual information regarding word order in sentences	information into the attention mechanism		
		Multi-layered graph convolution struc- ture	To encode and update the representation of nodes in the graph using features of immediate neighbors and to draw syntactically relevant words to the target aspect			
		GloVe	To initialize word embeddings			
		Uniform initialization	To initialize all model weights uniformly			
		Adam optimizer	To optimize the model			
		L2 regularization	To prevent overfitting			

Stud-	Research issue	Technologies used	Purpose of technology used	Effectiveness	TCS MCS	I CS
ies						
[65]	Aspect-level sentiment analysis	Bi-LSTM	To learn representations for features of a sentence by integrating context infor- mation in both forward and backward directions	Effective in encoding context and dependency information into aspect vectors for sentiment classification. Effective in propagating relevant infor-	169	33.8
		GCN	To enhance the embeddings learned by Bi-LSTM by integrating dependency information directly from the depend- ency tree of the sentence	mation along the sequence of words and syntactic dependency paths		
		Dependency tree	To structure the sentence in a way that highlights syntactic relationships between words			
		GloVe	To initialize word embeddings			
		Part-of-speech (POS) embeddings	To incorporate syntactic information into the model by embedding POS tags			
		Bi-LSTM	To capture contextual information for each word by learning embeddings			
		Adam optimizer	To optimize the model parameters			
[09]	Aspect extraction and aspect sentiment classification	BERT	To initialize the word embeddings with pre-trained language model representa- tions	Effective in improving aspect extrac- tion by incorporating contextualized domain knowledge. Effective in	285 57	٢
		FP16 computation	To reduce the size of both the model and hidden representations of data	enhancing classification across mul- tiple review-based tasks through joint		
		Adam optimizer	To optimize the model parameters dur- ing training	post-training		

Table 9	Table 9 (continued)					
Stud- ies	Research issue	Technologies used	Purpose of technology used	Effectiveness	TCS MCS	MCS
[78]	Aspect-level sentiment classification	Global lexical graph	To encode corpus-level word co-occur- rence information	Effective in leveraging both syntactic and lexical graphs to improve clas-	95	23.75
		Hierarchical syntactic graph	To differentiate various types of depend- ency relations by grouping similar dependency types	sification and sentiment polarity identi- fication		
		Hierarchical lexical graph	To distinguish different types of word co-occurrence relations			
		Bi-level interactive graph convolution network	To fully exploit and integrate the infor- mation from both the syntactic and lexical graphs			
		GloVe	To initialize word embeddings			
		spaCy toolkit	To extract dependency relations from text			
		Adam optimizer	To optimize the neural network			
		L2 regularization	To prevent overfitting			
[67]	Aspect-level sentiment classification	Knowledge transfer from document-level data	To improve the performance of aspect- level sentiment classification by leveraging less expensive, document- level data	Effective in capturing domain-specific opinion words. Effective in handling sentences with negation words. Effective in recognizing neutral instances to	107	17.83
		LSTM	To enhance aspect-level sentiment classification by integrating document- level knowledge	compensate for the lack of aspect-level training examples		
		GloVe	To initialize embeddings			
		L2 regularization	To prevent overfitting by penalizing large weights			
		RMSProp optimizer	To optimize the model parameters			

Cognitive Computation (2024) 16:3518–3556

Table 9	Table 9 (continued)				
Stud- ies	Research issue	Technologies used	Purpose of technology used	Effectiveness	TCS MCS
[80]	Aspect-level sentiment classification	Interactive attention networks (IAN)	To interactively learn attention in contexts and targets and generate their representations separately	Effective in interactively learning and modeling the representations of targets and contexts for sentiment classifica-	494 70.57
		LSTM	To handle sequential data and capture long-term dependencies in the text for sentiment classification	tion. Effective in enhancing sentiment polarity prediction by fully consider- ing the interaction between target and context	
		GloVe	To initialize word embeddings from context and target with pre-trained word vectors		
		Uniform initialization	To initialize embeddings by sampling from a uniform distribution		
		Zero initialization	To initialize all biases to zero		
		Momentum optimization	To train the parameters of IAN		
		L2 regularization	To prevent overfitting		
[99]	Aspect sentiment triplet extraction	Unified tagging system	To label aspect terms and sentiments using a unified tagging schema built on top of stacked Bi-LSTM networks	Effective in extracting aspects and their associated sentiments simultane- ously. Effective in leveraging mutual	104 26
		Bi-LSTM	To perform sequence tagging for aspect extraction, sentiment classification, and opinion term extraction by capturing contextual information in both direc- tions	information among aspect extraction, sentiment classification, and opinion term extraction to enhance overall per- formance. Effective in incorporating sentiment classification signals to aid	
		BIO-like tagging system	To label opinion terms, providing a structured way to identify the begin- ning, inside, and outside of opinion expressions	in the accurate extraction of opinion terms	
		GCN	To utilize semantic and syntactic infor- mation in a sentence for opinion term tagging		
		GloVe	To initialize word embeddings		
		SGD optimizer	To train the model with a stochastic gradient descent algorithm		

Note Reserve have Technologies used Purpose of technology used Effectivension (01 Appectively claniment classification CN 10-capture section on sensor. Effective in appunity sommany and sensor. (01 Appectively claniment classification CN 10-capture the contextual information for appects in one sensor. Effective in appunity sommany and sensor. (11 Appectively classification CN 10-capture the contextual information for appects in one sensor. Effective in appunity sommany and the sensor of the last information anney and the sensor. (12) Appectively classification CO 10-initialize the word embeddings with appects in the sensor. Effective in apprint of the last information anney and the sensor. (13) A percisive information anney and fastibution To initialize the word embeddings with appects in the sensor. Appective in the sensor. Appective in the sensor. (13) A percisive in distribution To initialize the word embedding with the sensor. Appective in the sensor. Appective in the sensor. (13) Appective in the sensor. To initialize the word embedding with the sensor. Appective in the sensor. Appective in the sensor. (13) Appective in the sensor. To	Table 9	Table 9 (continued)					
Aspect-level sentiment classification CCN To equure sentiment dependencies between multiple aspects in one sentence Bi-LSTM Bi-LSTM To equure the contextual information for each word GloVE To initialize the word embeddings with per-ratined language model tepresentations Normal distribution To initialize the word embeddings with per-ratined language model tepresentations Normal distribution To initialize the word embeddings with per-ratined language model tepresentations Admontance To initialize the word embeddings with per-ratined language model tepresentations Distribution To initialize the word embeddings with per-ratined language model tepresentations Admontantification To initialize the word embeddings with per-ratined language model tepresentations Admontantification To initialize the word embeddings with per-ratined language model tepresentation Admontantification To initialize the word embeddings and embeddings with per-sentimentation Admontantification To initialize the word embeddings and embeddings and embeddings and embeddings and embeddings with the state of the last fully connected layer using a normal distribution Adam optimizer To initialize the word embeddings with the state of the last fully connected layer using a normal distribution Adam optimizer To optimizer the word embeddings with the state o	Stud- ies	Research issue	Technologies used	Purpose of technology used	Effectiveness	TCS MCS	MCS
Bi-LSTM To capture the contextual information for each word GloVe To initialize the word embeddings BERT BERT To initialize the word embeddings metrained language model representa- tion Normal distribution To initialize the word embeddings with pre-trained language model representa- distribution Normal distribution To initialize the word embeddings with pre-trained language model representa- distribution Aspect-level sentiment classification La regularization To initialize the word embeddings with pre-trained language model representa- distribution Aspect-level sentiment classification La regularization To initialize all weight matrices (except dualy connected layer) using a nuiform distribution Aspect-level sentiment classification To optimize the word-level interaction the staft dualy connected layer) using a nuiform distribution Aspect-level sentiment classification To optimize the word-level interaction the staft dualy connect dualy connect dualyer trained anotext (MGAN) Aspect-level sentiment classification To capture the overall interaction the tween aspect and context (MGAN) Bi-LSTM To enpure the overall interactions anong words by processing sequences in both comprehensive aspect and dontext (MGAN) Bi-LSTM To enpure the overall interactions analysis CloVe To initialize the words by processing sequences in both connect and aspect words in dontext (Di dividialize the words duretion Dinitialize the words duretion (Di dividialize the words by	[67]	Aspect-level sentiment classification	GCN	To capture sentiment dependencies between multiple aspects in one sentence	Effective in capturing sentiment depend- encies between multiple aspects in one sentence. Effective in capturing	67	24.25
GloVe To initialize the word embeddings with BERT BERT To initialize the word embeddings with pre-trained language model representa- tions Normal distribution To initialize the weight matrix of the last fully connected layer using a normal distribution Uniform distribution To initialize the weight matrix of the last fully connected layer using a normal distribution Aspect-level sentiment classification Energalarization Aspect-level sentiment classification Fine-grained attention mechanism Aspect-level sentiment classification To optimize the model parameters fully connected layer using a normal distribution Aspect-level sentiment classification Fine-grained attention mechanism Aspect-level sentiment classification To optimize the model parameters fully connected layer using a normal distribution Bi-LSTM To optimize the word encodings for both completensive aspect and context and context CloVe To capture the overal interactions among words by processing sequences in both forward and packward directions for ontext and aspect words CloVe To optime functions Distribution To initialize the word bite Distribution To capture temporal interaction among words by processing sequences in both forward and septer words Distribution To initialize the word bite Distribution To initialize the word bite Distribution To capture temporal interaction bite <td></td> <td></td> <td>Bi-LSTM</td> <td>To capture the contextual information for each word</td> <td>interactive information among multiple aspects</td> <td></td> <td></td>			Bi-LSTM	To capture the contextual information for each word	interactive information among multiple aspects		
BERT To initialize the word embeddings with hous Normal distribution To initialize the word embeddings with hous Normal distribution To initialize the weight matrix of the last fully connected layer using a normal distribution Uniform distribution To initialize all weight matrix of the last fully connected layer using a normal distribution Aspect-level sentiment classification To prevent overfitting Aspect-level sentiment classification To optimize the model parameters matrix of the set distribution Aspect-level sentiment classification To prevent overfitting Aspect-level sentiment classification To optimize the model parameters matrix of negatined attention mechanism Aspect-level sentiment classification To capture the overall interaction between aspect and context Aspect-level sentiment classification To capture the overall interaction mechanisms for compute the overall interactions among words by processing sequences in both server Bi-LSTM To capture temporal interactions among words by processing sequences in both server and aspect words Clove To initialize the weight matrix and bias words by processing sequences in both server and aspect words Direction To initialize the weight matrix and bias form Direction To initialize the weight matrix and bias form Direction To initialize the weight matrix and bias form Direction To initialize the weight matrix and bias			GloVe	To initialize the word embeddings			
Normal distribution To initialize the weight matrix of the last fully connected layer using a normal distribution Uniform distribution To initialize the weight matrices (except the last fully connected layer) using a uniform distribution La regularization La regularization Adam optimizer To prevent overfluing Aspect-level semtiment classification To prevent overfluing Aspect-level semtiment classification To optimize the model parameters Aspect-level semtiment classification To capture the word-level interaction Brit-Stained attention mechanism To capture the overall interaction Brit-STM To capture the overall interactions among Construct To capture the overall interactions among Brit-STM To capture the overall interactions among Dereven appet and context To capture temporal interactions among <			BERT	To initialize the word embeddings with pre-trained language model representa- tions			
Uniform distribution To initialize all weight matrices (except the last fully connected layer) using a uniform distribution L2 regularization L2 regularization Adam optimizer To prevent overfitting Adam optimizer To optimize the model parameters Adam optimizer To capture the vort-level interaction Biture To capture the overall interaction Biture To compute fine -grained and coarse- (MGAN) Biture To compute fine -grained and coarse- (MGAN) <			Normal distribution	To initialize the weight matrix of the last fully connected layer using a normal distribution			
L2 regularization L2 regularization L2 regularization Aspect-level sentiment classification Fine-grained attention mechanism To optimize the model parameters Aspect-level sentiment classification Fine-grained attention mechanism To compute the overall interaction Between aspect and context Multi-grained attention mechanism To compute the overall interaction Between aspect and context Multi-grained attention mechanism To compine fine-grained and coarse- (MGAN) Between aspect and context To compine fine-grained and coarse- (MGAN) To compine fine-grained and coarse- grained attention mechanisms for comprehensive aspect-level sentiment Bi-LSTM To compine fine-grained and coarse- (MGAN) To compine fine-grained and coarse- grained attention mechanisms for comprehensive aspect-level sentiment Bi-LSTM To compine fine-grained and coarse- (MGAN) To compine fine-grained and coarse- grained attention mechanisms for comprehensive aspect-level sentiment Bi-LSTM To compine fine-grained and coarse- (MGAN) To compine fine-grained and coarse- grained attention mechanisms for comprehensive aspect-level sentiment Bi-LSTM To compine fine-grained and coarse- (MGAN) To compine fine-grained and coarse- grained attention mechanisms for comprehensive and paise Bi-LSTM To initialize word embeddings for both context and aspect word embeddings for bot			Uniform distribution	To initialize all weight matrices (except the last fully connected layer) using a uniform distribution			
Adam optimizer To optimize the model parameters Aspect-level sentiment classification Fine-grained attention mechanism To capture the word-level interaction Aspect-level sentiment classification Ene-grained attention mechanism To capture the word-level interaction Bitween aspect and context Coarse-grained attention mechanism To capture the overall interaction Bitween aspect and context Coarse-grained attention network To capture the overall interaction Bitween aspect and context To compire fine-grained and coarse- grained attention mechanisms for comprehensive aspect-level sentiment analysis Bitween aspect Do capture temporal interactions among words by processing sequences in both forward and backward directions Conform To capture temporal interactions Bitween To initialize terve Bitween To initialize terve Bitween </td <td></td> <td></td> <td>L2 regularization</td> <td>To prevent overfitting</td> <td></td> <td></td> <td></td>			L2 regularization	To prevent overfitting			
Aspect-level sentiment classification Fine-grained attention mechanism To capture the word-level interaction Coarse-grained attention mechanism To capture the overall interaction Coarse-grained attention mechanism To capture the overall interaction Multi-grained attention mechanism To capture the overall interaction Multi-grained attention mechanism To capture the overall interaction Multi-grained attention mechanism To combine fine-grained and coarse- (MGAN) To capture temporal interactions among (MGAN) To capture temporal interactions among (MOV To capture temporal interactions among (MOV To capture temporal interact			Adam optimizer	To optimize the model parameters			
grained attention mechanismTo capture the overall interaction between aspect and contexttrained attention networkTo combine fine-grained and coarse- grained attention mechanisms for comprehensive aspect-level sentiment analysisMTo capture temporal interactions among words by processing sequences in both forward and backward directions To initialize word embeddings for both context and aspect wordsn initializationTo initialize the weight matrix and bias by sampling from a uniform distribu- tion	[73]	Aspect-level sentiment classification	Fine-grained attention mechanism	To capture the word-level interaction between aspect and context	Effective in linking and fusing informa- tion between context and aspect words.	238	39.67
trained attention networkTo combine fine-grained and coarse- grained attention mechanisms for comprehensive aspect-level sentiment analysisMTo capture temporal interactions among words by processing sequences in both forward and backward directionsMTo capture temporal interactions among words by processing sequences in both forward and backward directions to initialize word embeddings for both context and aspect wordsn initializationTo initialize the weight matrix and bias by sampling from a uniform distribu- tionlarizationTo prevent overfitting			Coarse-grained attention mechanism	To capture the overall interaction between aspect and context	Effective in handling aspects with multiple words, reducing informa-		
MTo capture temporal interactions among words by processing sequences in both forward and backward directionsTo initialize word embeddings for both context and aspect wordsn initializationTo initialize the weight matrix and bias by sampling from a uniform distribu- tionlarizationTo prevent overfitting			Multi-grained attention network (MGAN)	To combine fine-grained and coarse- grained attention mechanisms for comprehensive aspect-level sentiment analysis	tion loss in coarse-grained attention mechanisms. Effective in capturing aspect-level interactions to improve performance, especially in datasets		
n initialization ılarization			Bi-LSTM	To capture temporal interactions among words by processing sequences in both forward and backward directions	with multiple aspects per sentence		
			GloVe	To initialize word embeddings for both context and aspect words			
			Uniform initialization	To initialize the weight matrix and bias by sampling from a uniform distribu- tion			
			L2 regularization	To prevent overfitting			

Stud: Reserch Isare Technologie used Puryos of technology used Effectivens [69] Appect-based sentiment analysis Dependency parsing To obtain the dependency tree of a field sentiment and the appect oriented dependency tree of a field and and the appect oriented dependency tree of a field and and the appect oriented dependency tree of a moduling and the appect oriented dependency tree of a field and and the appect oriented dependency tree of a field and and the appect oriented dependency tree of a moduling and the appect oriented dependency tree of a moduling and the appect oriented dependency tree of the acturacy across differents and the appect oriented dependency tree of the acturacy across differency and the appect oriented dependency tree of the acturacy across differency and the appect oriented dependency tree of the acturacy across differency acturacy across acturacy across differency acturacy across acro							
Aspect-based sentiment analysis Dependency parsing sentence To obtain the dependency tree of a sentence E Relational graph attention network (R-GAT) To enood the aspect-oriented depend- ency tree structure for sentiment prediction To enood the aspect-oriented depend- ency tree structure for sentiment prediction E Relation of tree To provide pert-alize encoding for the and the aspect word embeddings of tree E Relation To provide pert-alize encoding for the and the aspect word embeddings of tree To provide pert-alize encoding for the aspect word embeddings of tree Target dependent aspect detection and targeted aspect-based polarity clas- sification E To provide per-trained word represent- tions, with fine-tuning on the task tran dependencies in the task datasch tran dependencies in the task datasch trans dependencies in the task datasch trans dependencies in the task datasch trans defendencies in the task datasch trans defendencies in the task datasch trans datasch trans defendencies in the task datasch trans datasch transch transch trans datasch trans datasch trans datasch trans datasc	Stud- ies	Research issue	Technologies used	Purpose of technology used	Effectiveness	TCS MCS	ACS
Relational graph attention network To encode the aspect-oriented depend- ency tree structure for sentiment prediction Graph attention network (GAT) To generalize encoding graphs with labeled edges Bi-LSTM Cope attention network (GAT) Taget-dependent aspect words To encode the word embeddings for R-GAT BERT To provide vord embeddings for R-GAT BERT To provide vord embeddings for R-GAT Target-dependent aspect detection and targeted aspect-based polarity clas- sification To provide pre-trained word representa- tions, with fine-tuning on the task Target-dependent aspect detection and targeted aspect-based polarity clas- sification LSTM To provide pre-trained word representa- tions, specifically target-level and statemer-based optimization Target-dependent aspect detection and targeted aspect-based polarity clas- sification Sentic LSTM To model sequences and maintain long- term dependencies in the text data Sentic LSTM Sentic LSTM To integrate explicit connonsense within the LSTM argoheterus and invested To integrate explicit connonsense within the LSTM argoheterus for onvector parternes and sentence-level Sentic LSTM To integrate explicit control parternes and sentence-level To integrate explicit connonsense within the LSTM argoheterus for concept parters Sentic LSTM To integrate explicit control parternes and sentence-level To integrate explicit control parternes and sentence-level Sentic LSTM To provide oncept parteser	[69]	Aspect-based sentiment analysis	Dependency parsing	To obtain the dependency tree of a sentence	Effective in capturing important syntac- tic structures for sentiment analysis.	211 5	52.75
Graph attention network (GAT) To generalize encoding graphs with labeled edges B:LSTM B:LSTM To encode the word embeddings of tree ondes and the aspect words GIOVE To provide pre-trained word representa- tions, with fine-tuning on the task Target-dependent aspect detection and targeted aspect-based polarity clas- sification LSTM To provide pre-trained word representa- tions, with fine-tuning on the task Target-dependent aspect detection and targeted aspect-based polarity clas- sification LSTM To model sequences in the text data Sected attention mechanism To model sequences in the text data To model sequences in the text data Sected attention mechanism To focus on different levels of infor- motion, specifically target-level and methon-ference To integrate explicit commonsense knowledge with implicit knowledge Sentic LSTM To integrate explicit commonsense knowledge with implicit knowledge To integrate explicit commonsense knowledge with implicit knowledge Sentic LSTM To integrate explicit commonsense knowledge with implicit knowledge To integrate explicit commonsense knowledge with implicit knowledge Sentic LSTM To extract a set of concept candidates at evel time step To extract a set of concept candidates at evel time step			Relational graph attention network (R-GAT)	To encode the aspect-oriented depend- ency tree structure for sentiment prediction	Effective in handling multiple aspects within a single sentence, improving the accuracy across different semantic distance ranges		
Bi-LSTM To encode the word embeddings of tree nodes and the aspect words GloVe To provide word embeddings for R-GAT BERT To provide word embeddings for R-GAT BERT To provide word embeddings for R-GAT BERT Adam optimizer Adam optimizer To provide pre-trained word representa- tions, with fine-tuning on the task Adam optimizer Adam optimizer Target-dependent aspect detection and targeted aspect-based polarity clas- sification LSTM Target-dependent aspect detection and targeted aspect-based polarity clas- sification Concole sequences and maintain long- term dependencies in the text data to nodel sequences and maintain long- term dependencies in the text data settence-level Senic LSTM To integrate explicit commonsense kinkin the LSTM architecture Recurrent additive network To integrate explicit commonsense kinkin the LSTM architecture Syntax-based concept parser To simulate semantic patterns and entence-level Syntax-based concept parser To simulate semantic patterns and entence-level AffectiveSpace embedding To provide concept candidates at reportine concept candidates the concept embedding the concept embedding the concept embedding the concept septers of the concept embedding the concept septers of the			Graph attention network (GAT)	To generalize encoding graphs with labeled edges)		
GloVe To provide word embeddings for R-GAT BERT Co provide pre-trained word representa- tions, with fine-tuning on the task Target-dependent aspect detection and targeted aspect-based polarity clas- sification Co provide pre-trained word representa- tions, with fine-tuning on the task Target-dependent aspect detection and targeted aspect-based polarity clas- sification LSTM To train the model with efficient gradient-based optimization Target-dependent aspect detection and targeted aspect-based polarity clas- sification LSTM To model sequences and maintain long- term dependencies in the text data Settic LSTM Settic LSTM To focus on different levels of infor- mence-level To integrate explicit commonsense within the LSTM architecture Recurrent additive network To simulate semantic patterns and enditive effects of sentiments Syntax-based concept parser To simulate semantic patterns and enditive effects of sentiments Syntax-based concept parser To simulate semantic patterns and enditive effects of sentiments AffectiveSpace embedding To provide concept candidates at pre-estent the affective aspects of the expresent the affective aspects of the expresent the affective aspects of the enditions that			Bi-LSTM	To encode the word embeddings of tree nodes and the aspect words			
BERT To provide pre-trained word representations, with fine-tuning on the task Adam optimizer Adam optimizer To train the model with efficient gradient-based optimization Target-dependent aspect detection and targeted aspect-based polarity classification LSTM To model sequences and maintain long-term dependencies in the text data Sification Stacked attention mechanism To focus on different levels of information, specifically target-level and sentence-level Sentic LSTM To integrate explicit commonsense knowledge with implicit knowledge			GloVe	To provide word embeddings for R-GAT			
Adam optimizet To train the model with efficient gradient-based optimization Target-dependent aspect detection and targeted aspect-based polarity classification LSTM To model sequences and maintain long- term dependencies in the text data Target-dependent aspect based polarity classification Stacked attention mechanism To model sequences and maintain long- term dependencies in the text data Stacked attention mechanism To focus on different levels of information, specifically target-level and sentence-level Sentic LSTM To integrate explicit commonsense knowledge with implicit knowledge with inthe LSTM by modeling the additive network Recurrent additive network To simulate semantic patterns and enhance the LSTM by modeling the additive effects of sentiments Syntax-based concept parser To extract a set of concept candidates at each time step AffectiveSpace embedding To provide concept tembeddings that represent the affective aspects of the concept section and the concept			BERT	To provide pre-trained word representa- tions, with fine-tuning on the task			
Target-dependent aspect detection and target-dependent aspect-based polarity classification LSTM To model sequences and maintain long-term dependencies in the text data targeted aspect-based polarity classification Enterm dependencies in the text data targeted aspect-based polarity classification To model sequences and maintain long-term dependencies in the text data targeted aspect-based polarity classification Enterm dependencies in the text data targeted aspect-based polarity classification To focus on different levels of information. specifically target-level and sentence-level To note polarity target-level and sentence-level To integrate explicit commonsense knowledge with implicit knowledge Recurrent additive network To integrate explicit commonsense knowledge with implicit knowledge To integrate explicit commonsense knowledge with implicit knowledge Recurrent additive network To integrate explicit commonsense knowledge with implicit knowledge To integrate explicit commonsense knowledge Syntax-based concept parser To simulate semantic patterns and enhance the LSTM by modeling the additive effects of sentiments Syntax-based concept parser To extract a set of concept candidates at each time step AffectiveSpace embedding To provide concept embeddings that represent the affective aspects of the concept			Adam optimizer	To train the model with efficient gradient-based optimization			
Stacked attention mechanismTo focus on different levels of information, specifically target-level and sentence-levelSentic LSTMmation, specifically target-level and sentence-levelSentic LSTMTo integrate explicit commonsense knowledge with implicit knowledge within the LSTM architectureRecurrent additive networkTo simulate semantic patterns and enhance the LSTM by modeling the additive effects of sentimentsSyntax-based concept parserTo extract a set of concept candidates at each time stepAffectiveSpace embeddingTo provide concept embeddings that represent the affective aspects of the concepts	[10]	Target-dependent aspect detection and targeted aspect-based polarity clas-	RTM	To model sequences and maintain long- term dependencies in the text data	Effective in significantly improving aspect detection. Effective in using	187 3	31.17
ħ		sification	Stacked attention mechanism	To focus on different levels of infor- mation, specifically target-level and sentence-level	target-level attention to identify parts of target expressions with higher senti- ment salience		
T			Sentic LSTM	To integrate explicit commonsense knowledge with implicit knowledge within the LSTM architecture			
GL			Recurrent additive network	To simulate semantic patterns and enhance the LSTM by modeling the additive effects of sentiments			
T			Syntax-based concept parser	To extract a set of concept candidates at each time step			
			AffectiveSpace embedding	To provide concept embeddings that represent the affective aspects of the concepts			

Table 9 (continued)

Stud- Research issue ies [75] Aspect-level ser	sue	Tachnalactiae usad		5 8 1	1	
		recumoraice used	Purpose of technology used	Effectiveness	TCS	TCS MCS
	Aspect-level sentiment classification	Syntax-based GCN	To model the syntactic dependency tree and enhance sentence representation toward a given aspect independently	Effective in incorporating syntactic dependency trees and knowledge graphs for aspect-level sentiment	91	22.75
		Knowledge-based GCN	To model commonsense knowledge graphs independently and enrich sentence representation toward a given aspect	classification. Effective in enriching sentence representations toward given aspects		
		Bi-LSTM	To obtain contextualized word represen- tations as input features for the GCN by modeling the sentence from the embeddings			
		GloVe	To provide pre-trained word embeddings			
		BERT	To generate contextualized word embed- dings that capture the meaning of words in context			
		Uniform initialization	To initialize all out-of-vocabulary words and weights with a uniform distribu- tion			
		Adam optimizer	To optimize the model parameters			

Stud- ies	Research issue	Technologies used	Purpose of technology used	Effectiveness	TCS MCS	ICS
[61]	Aspect-level sentiment classification	Dependency graph	To represent a sentence as a dependency graph instead of a word sequence	Effective in leveraging dependency graphs to propagate sentiment features	116 23	23.2
		Graph attention network (GAT)	To propagate sentiment features from important syntax neighborhood words to the aspect target in the dependency graph	from syntax-dependent words to the aspect target. Effective in utilizing syn- tax information to improve sentiment classification performance		
		LSTM	To explicitly capture aspect-related information across layers during recur- sive neighborhood expansion within the TD-GAT framework			
		GloVe	To provide pre-trained word embeddings for initializing the model			
		BERT	To incorporate deep contextualized word representations			
		L2 regularization	To prevent overfitting by penalizing large weights			
		Adam optimizer	To optimize the model parameters			
		SGD optimizer	To fine-tune and stabilize the model after initial training with the Adam optimizer			
[62]	Target-dependent sentiment classifica- tion	BERT	To leverage pre-trained DL models that understand the context of words in a sentence by looking at the words before and after the target word	Effective in integrating target position output information into BERT models to enhance classification accuracy. Effective in applying information	155 31	-
		Target-dependent BERT	To enhance the BERT model by incor- porating target-specific information for improved performance in aspect-level sentiment classification	fusion techniques such as element-wise multiplication or concatenation to improve model performance	Ð	
		Adam optimizer	To optimize the model parameters			

 $\textcircled{ } \underline{ \widehat{ } }$ Springer

Table 9	Table 9 (continued)					
Stud- ies	Research issue	Technologies used	Purpose of technology used	Effectiveness	TCS MCS	MCS
[72]	Aspect-based sentiment analysis and targeted sentiment analysis	TSTM	To model the sequential dependencies in the data and capture long-term relationships within the text	Effective in using target- and aspect- dependent sentence attention to retrieve relevant information for both	330	55
		Hierarchical attention mechanism	To focus on target- and sentence-level information for more precise sentiment analysis	aspect categorization and sentiment classification. Effective in incorpo- rating affective properties through knowledge integration		
		Sentic LSTM	To extend the traditional LSTM by integrating commonsense knowledge tightly into the recurrent encoder)		
		Bi-LSTM	To process the input sequence in both forward and backward directions			
		Pre-trained skip-gram model	To initialize the word embeddings			
[82]	Aspect-level sentiment classification	Feature capsules	To transform N-gram features into capsules that represent more complex patterns and features	Effective in transferring knowledge from document-level tasks. Effective in lev- eraging shared features across related	108	21.6
		Semantic capsules	To aggregate feature capsules into aspect-related sentence-level represen- tations	tasks. Effective in utilizing multi-task learning variants to achieve robust performance despite label noise		
		Class capsules	To generate capsules that correspond to sentiment polarities			
		GloVe	To use pre-trained word embeddings for improved word representation			
		Adam optimizer	To optimize the neural network			
[68]	Sentence-pair classification	BERT	To enhance the accuracy of TABSA by fine-tuning a pre-trained BERT model using its final hidden state representa- tions and a classification layer	Effective in expanding the corpus by converting target and aspect informa- tion into auxiliary sentences. Effective in constructing auxiliary sentences for	248	49.6
		Auxiliary sentence construction	To create supplementary sentences that aid in transforming the (T)ABSA task into a sentence-pair classification task	complex ABSA tasks		

Stud- ies	Stud- Research issue ies	Technologies used	Purpose of technology used	Effectiveness	TCS MCS	ACS
[63]	Domain aspect classification, aspect- term and opinion-word separation, and	Word2Vec	To compute word embeddings for word similarity calculations	Effective in multilingual domain aspect 108 18 classification. Effective in separat-	108 1	8
	sentiment polarity classification	Apache Spark MLlib	To implement and compute domain- based word embeddings efficiently	ing aspect terms from opinion words without additional supervision		
		LDA-based topic model	To identify and extract topics from text data, adapted with biased topic mod- eling parameters			
		Maximum entropy classifier	To categorize sentences into predefined classes based on the learned distribu- tions			
TCS Tot	TCS Total citations, MCS Mean citations					

Author Contributions Xieling Chen: conceptualization, formal analysis, writing—original draft, writing—review and editing, and funding acquisition. Haoran Xie: conceptualization, methodology, writing review and editing, supervision, and funding acquisition. S. Joe Qin: methodology, data curation, and supervision. Yaping Chai: data curation, visualization, and validation. Xiaohui Tao: methodology, data curation, and conceptualization. Fu Lee Wang: resources, supervision, funding acquisition, and project administration.

Funding Open Access Publishing Support Fund provided by Lingnan University. The research has been supported by the National Natural Science Foundation of China (No. 62307010) and the Faculty Research Grants (DB23B2 and DB24A4) of Lingnan University.

Data Availability The data that support the findings of this study are available from the corresponding author, Haoran Xie, upon reasonable request.

Declarations

Informed Consent Informed consent was not required as no human or animals were involved.

Human and Animal Rights This article does not contain any studies with human or animal subjects performed by any of the authors.

Competing Interests The authors declare no competing interests.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

- Ren M, Chen N, Qiu H. Human-machine collaborative decisionmaking: an evolutionary roadmap based on cognitive intelligence. Int J Soc Robot. 2023;15(7):1101–14.
- Chamola V, Sai S, Sai R, Hussain A, Sikdar B. Generative AI for consumer electronics: enhancing user experience with cognitive and semantic computing. IEEE Consum Electron Mag. 2024;1–9. https://doi.org/10.1109/MCE.2024.3387049.
- Zhong G, Jiao W, Gao W, Huang K. Automatic design of deep networks with neural blocks. Cognit Comput. 2020;12(1):1–12.
- Yosipof A, Drori N, Elroy O, Pierraki Y. Textual sentiment analysis and description characteristics in crowdfunding success: the case of cybersecurity and IoT industries. Electron Mark. 2024;34(1):30.
- He K, Mao R, Gong T, Li C, Cambria E. Meta-based self-training and re-weighting for aspect-based sentiment analysis. IEEE Trans Affect Comput. 2023;14(03):1731–42.
- Dashtipour K, Gogate M, Gelbukh A, Hussain A. Extending persian sentiment lexicon with idiomatic expressions for sentiment analysis. Soc Netw Anal Min. 2022;12:1–13.

Table 9 (continued)

- Lengkeek M, van der Knaap F, Frasincar F. Leveraging hierarchical language models for aspect-based sentiment analysis on financial data. Inf Process Manag. 2023;60(5):103435.
- Kontonatsios G, Clive J, Harrison G, Metcalfe T, Sliwiak P, Tahir H, et al. FABSA: an aspect-based sentiment analysis dataset of user reviews. Neurocomputing. 2023;562:126867.
- Chauhan GS, Nahta R, Meena YK, Gopalani D. Aspect based sentiment analysis using deep learning approaches: a survey. Comput Sci Rev. 2023;49:100576.
- Karaoğlan KM, Fındık O. Extended rule-based opinion target extraction with a novel text pre-processing method and ensemble learning. Appl Soft Comput. 2022;118:108524.
- Truşcă MM, Frasincar F. Survey on aspect detection for aspect-based sentiment analysis. Artif Intell Rev. 2023;56(5):3797-846.
- Wang Y, Liu L, Wang C. Trends in using deep learning algorithms in biomedical prediction systems. Front Neurosci. 2023;17:1256351.
- Zhang W, Li X, Deng Y, Bing L, Lam W. A survey on aspectbased sentiment analysis: tasks, methods, and challenges. IEEE Trans Knowl Data Eng. 2023;35(11):11019–38.
- Sohangir S, Wang D, Pomeranets A, Khoshgoftaar TM. Big data: deep learning for financial sentiment analysis. J Big Data. 2018;5(1):1–25.
- Mahmud M, Kaiser MS, McGinnity TM, Hussain A. Deep learning in mining biological data. Cognit Comput. 2021;13(1):1–33.
- Anas M, Saiyeda A, Sohail S, Cambria E, Hussain A. Can generative AI models extract deeper sentiments as compared to traditional deep learning algorithms? IEEE Intell Syst. 2024;39(2):5–10.
- Lu Q, Sun X, Long Y, Gao Z, Feng J, Sun T. Sentiment analysis: comprehensive reviews, recent advances, and open challenges. IEEE Trans Neural Netw Learn Syst. 2023;1–21. https://doi.org/ 10.1109/TNNLS.2023.3294810.
- Fan C, Lin J, Mao R, Cambria E. Fusing pairwise modalities for emotion recognition in conversations. Inf Fusion. 2024;106:102306.
- Alzubaidi L, Bai J, Al-Sabaawi A, Santamaría J, Albahri AS, Al-dabbagh BSN, et al. A survey on deep learning tools dealing with data scarcity: definitions, challenges, solutions, tips, and applications. J Big Data. 2023;10(1):46.
- Zhang Y, Yang Y, Liang B, Chen S, Qin B, Xu R. An empirical study of sentiment-enhanced pre-training for aspect-based sentiment analysis. In: Findings of the Association for Computational Linguistics: ACL 2023. 2023. p. 9633–51.
- Nazir A, Rao Y, Wu L, Sun L. Issues and challenges of aspectbased sentiment analysis: a comprehensive survey. IEEE Trans Affect Comput. 2020;13(2):845–63.
- Fei H, Ren Y, Zhang Y, Ji D. Nonautoregressive encoderdecoder neural framework for end-to-end aspect-based sentiment triplet extraction. IEEE Trans Neural Netw Learn Syst. 2021;34(9):5544–56.
- Zhang J, Yin Z, Chen P, Nichele S. Emotion recognition using multi-modal data and machine learning techniques: a tutorial and review. Inf Fusion. 2020;59:103–26.
- Riaz A, Gregor S, Dewan S, Xu Q. The interplay between emotion, cognition and information recall from websites with relevant and irrelevant images: a Neuro-IS study. Decis Support Syst. 2018;111:113–23.
- Huang F, Li X, Yuan C, Zhang S, Zhang J, Qiao S. Attentionemotion-enhanced convolutional LSTM for sentiment analysis. IEEE Trans Neural Netw Learn Syst. 2021;33(9):4332–45.
- Jung-Beeman M. Bilateral brain processes for comprehending natural language. Trends Cogn Sci. 2005;9(11):512–8.
- 27. Chen J, Huang Z, Xue Y. Bilateral-brain-like semantic and syntactic cognitive network for aspect-level sentiment analysis.

In: 2021 International Joint Conference on Neural Networks (IJCNN). 2021. p. 1–8 IEEE.

- Zhu R, Liu L, Ma M, Li H. Cognitive-inspired computing: advances and novel applications. Futur Gener Comp Syst. 2020;109:706–9.
- Poria S, Cambria E, Bajpai R, Hussain A. A review of affective computing: From unimodal analysis to multimodal fusion. Inf Fusion. 2017;37:98–125.
- Jain DK, Boyapati P, Venkatesh J, Prakash M. An intelligent cognitive-inspired computing with big data analytics framework for sentiment analysis and classification. Inf Process Manag. 2022;59(1):102578.
- Li Y, Zhang K, Wang J, Gao X. A cognitive brain model for multimodal sentiment analysis based on attention neural networks. Neurocomputing. 2021;430:159–73.
- Rahmani S, Hosseini S, Zall R, Kangavari MR, Kamran S, Hua W. Transfer-based adaptive tree for multimodal sentiment analysis based on user latent aspects. Knowledge-Based Syst. 2023;261:110219.
- Diwali A, Saeedi K, Dashtipour K, Gogate M, Cambria E, Hussain A. Sentiment analysis meets explainable artificial intelligence: a survey on explainable sentiment analysis. IEEE Trans Affect Comput. 2023;1–12. https://doi.org/10.1109/TAFFC.2023.3296373.
- Bensoltane R, Zaki T. Aspect-based sentiment analysis: an overview in the use of Arabic language. Artif Intell Rev. 2023;56(3):2325–63.
- Do HH, Prasad PWC, Maag A, Alsadoon A. Deep learning for aspect-based sentiment analysis: a comparative review. Expert Syst Appl. 2019;118:272–99.
- Trisna KW, Jie HJ. Deep learning approach for aspect-based sentiment classification: a comparative review. Appl Artif Intell. 2022;36(1):2014186.
- Liu H, Chatterjee I, Zhou M, Lu XS, Abusorrah A. Aspect-based sentiment analysis: a survey of deep learning methods. IEEE Trans Comput Soc Syst. 2020;7(6):1358–75.
- Dwivedi YK, Sharma A, Rana NP, Giannakis M, Goel P, Dutot V. Evolution of artificial intelligence research in technological forecasting and social change: research topics, trends, and future directions. Technol Forecast Soc Change. 2023;192:122579.
- Camacho D, Panizo-LLedot A, Bello-Orgaz G, Gonzalez-Pardo A, Cambria E. The four dimensions of social network analysis: an overview of research methods, applications, and software tools. Inf Fusion. 2020;63:88–120.
- Chen X, Xie H. A structural topic modeling-based bibliometric study of sentiment analysis literature. Cognit Comput. 2020;12:1097–129.
- Chen X, Xie H, Hwang G-J. A multi-perspective study on artificial intelligence in education: grants, conferences, journals, software tools, institutions, and researchers. Comput Educ Artif Intell. 2020;1:100005.
- 42. Dong M, Li F, Chang H. Trends and hotspots in critical thinking research over the past two decades: insights from a bibliometric analysis. Heliyon. 2023;9(6):e16934.
- 43. Chen X, Xie H, Tao X, Xu L, Wang J, Dai H, et al. A topic modeling-based bibliometric exploration of automatic summarization research. Wiley Interdiscip Rev Data Min Knowl Discov. 2024;e1540. https://doi.org/10.1002/widm.1540.
- 44. Mostaghel R, Oghazi P, Parida V, Sohrabpour V. Digitalization driven retail business model innovation: evaluation of past and avenues for future research trends. J Bus Res. 2022;146:134–45.
- Kumar V, Srivastava A. Trends in the thematic landscape of corporate social responsibility research: a structural topic modeling approach. J Bus Res. 2022;150:26–37.
- 46. Chen X, Zou D, Cheng G, Xie H. Detecting latent topics and trends in educational technologies over four decades using structural topic modeling: a retrospective of all volumes of computer & education. Comput Educ. 2020;151:103855.

- 47. Anselin L, Syabri I, Kho Y. GeoDa: an introduction to spatial data analysis. In: Handbook of applied spatial analysis: Software tools, methods and applications. Springer; 2009. p. 73–89.
- Bastian M, Heymann S, Jacomy M. Gephi: an open source software for exploring and manipulating networks. In: Proceedings of the Third International AAAI Conference on Weblogs and Social Media. 2009. p. 361–2.
- 49. Roberts ME, Stewart BM, Tingley D. Stm: an R package for structural topic models. J Stat Softw. 2019;91:1–40.
- Zhao T, Liu H, Roeder K, Lafferty J, Wasserman L. The huge package for high-dimensional undirected graph estimation in R. J Mach Learn Res. 2012;13(Apr):1059–62.
- Chen X, Zou D, Xie H. A decade of learning analytics: structural topic modeling based bibliometric analysis. Educ Inf Technol. 2022;27(8):10517–61.
- Minaee S, Kalchbrenner N, Cambria E, Nikzad N, Chenaghlu M, Gao J. Deep learning based text classification: a comprehensive review. ACM Comput Surv. 2023;54(3):1–40.
- 53. Khan W, Daud A, Khan K, Muhammad S, Haq R. Exploring the frontiers of deep learning and natural language processing: a comprehensive overview of key challenges and emerging trends. Nat Lang Process J. 2023;4: 100026.
- Yusuf A, Sarlan A, Danyaro KU, Rahman ASBA, Abdullahi M. Sentiment analysis in low-resource settings: a comprehensive review of approaches, languages, and data sources. IEEE Access. 2024;12:66883–909.
- 55. Deng J, Ren F. A survey of textual emotion recognition and its challenges. IEEE Trans Affect Comput. 2021;14(1):49–67.
- Alturayeif N, Aljamaan H, Hassine J. An automated approach to aspect-based sentiment analysis of apps reviews using machine and deep learning. Autom Softw Eng. 2023;30(2):30.
- Chen X, Tao X, Wang FL, Xie H. Global research on artificial intelligence-enhanced human electroencephalogram analysis. Neural Comput Appl. 2022;34(14):11295–333.
- Liang B, Su H, Gui L, Cambria E, Xu R. Aspect-based sentiment analysis via affective knowledge enhanced graph convolutional networks. Knowledge-Based Syst. 2022;235:107643.
- Ray B, Garain A, Sarkar R. An ensemble-based hotel recommender system using sentiment analysis and aspect categorization of hotel reviews. Appl Soft Comput. 2021;98:106935.
- 60. Xu H, Liu B, Shu L, Yu PS. BERT post-training for review reading comprehension and aspect-based sentiment analysis. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies. 2019. p. 2324–35.
- 61. Huang B, Carley KM. Syntax-aware aspect level sentiment classification with graph attention networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019. p. 5469–77.
- Gao Z, Feng A, Song X, Wu X. Target-dependent sentiment classification with BERT. IEEE Access. 2019;7:154290–9.
- García-Pablos A, Cuadros M, Rigau G. W2VLDA: almost unsupervised system for aspect based sentiment analysis. Expert Syst Appl. 2018;91:127–37.
- 64. Zhang C, Li Q, Song D. Aspect-based sentiment classification with aspect-specific graph convolutional networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP). 2019. p. 4568–78.
- 65. Sun K, Zhang R, Mensah S, Mao Y, Liu X. Aspect-level sentiment analysis via convolution over dependency tree. In: Proceedings of the 2019 conference on empirical methods in natural language processing and the 9th international joint conference

on natural language processing (EMNLP-IJCNLP). 2019. p. 5679-88.

- 66. Peng H, Xu L, Bing L, Huang F, Lu W, Si L. Knowing what, how and why: a near complete solution for aspect-based sentiment analysis. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2020. p. 8600–7.
- 67. Zhao Q, Yang F, An D, Lian J. Modeling structured dependency tree with graph convolutional networks for aspect-level sentiment classification. Sensors. 2024;24(2):418.
- Sun C, Huang L, Qui X. Utilizing BERT for aspect-based sentiment analysis via constructing auxiliary sentence. In: Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, vol. 1. 2019. p. 380–5.
- Wang K, Shen W, Yang Y, Quan X, Wang R. Relational graph attention network for aspect-based sentiment analysis. In: Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020. p. 3229–38.
- Ma Y, Peng H, Khan T, Cambria E, Hussain A. Sentic LSTM: a hybrid network for targeted aspect-based sentiment analysis. Cognit Comput. 2018;10(4):639–50.
- Xue W, Li T. Aspect based sentiment analysis with gated convolutional networks. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, vol. 1. 2018. p. 2514–23.
- Ma Y, Peng H, Cambria E. Targeted aspect-based sentiment analysis via embedding commonsense knowledge into an attentive LSTM. In: Thirty-Second AAAI Conference on Artificial Intelligence. 2018. p. 5876–83.
- Fan F, Feng Y, Zhao D. Multi-grained attention network for aspect-level sentiment classification. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018. p. 3433–42.
- Li X, Bing L, Lam W, Yang Z. Aspect term extraction with history attention and selective transformation. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence. 2018. p. 4194–200.
- Zhou J, Huang JX, Hu QV, He L. Sk-gcn: modeling syntax and knowledge via graph convolutional network for aspectlevel sentiment classification. Knowledge-Based Syst. 2020;205:106292.
- 76. He R, Lee WS, Ng HT, Dahlmeier D. An unsupervised neural attention model for aspect extraction. In: Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics, vol. 1. 2017. p. 388–97.
- Huang B, Ou Y, Carley KM. Aspect level sentiment classification with attention-over-attention neural networks. In: Proceedings of the 11th International Conference on Social, Cultural, and Behavioral Modeling. 2018. p. 197–206.
- Zhang M, Qian T. Convolution over hierarchical syntactic and lexical graphs for aspect level sentiment analysis. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020. p. 3540–9.
- He R, Lee WS, Ng HT, Dahlmeier D. Exploiting document knowledge for aspect-level sentiment classification. In: Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics, vol. 2. 2018. p. 579–85.
- Ma D, Li S, Zhang X, Wang H. Interactive attention networks for aspect-level sentiment classification. In: Proceedings of the 26th International Joint Conference on Artificial Intelligence. 2017. p. 4068–74.
- He R, Lee WS, Ng HT, Dahlmeier D. An interactive multitask learning network for end-to-end aspect-based sentiment analysis. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019. p. 504–15.

- Chen Z, Qian T. Transfer capsule network for aspect level sentiment classification. In: Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019. p. 547–56.
- Wang G, He J. A bibliometric analysis of recent developments and trends in knowledge graph research (2013–2022). IEEE Access. 2024;12:32005–13.
- Chen X, Xie H, Wang J, Li Z, Cheng G, Wong ML, et al. A bibliometric review of soft computing for recommender systems and sentiment analysis. IEEE Trans Artif Intell. 2021;3(5):642–56.
- Azer SA, Azer S. Top-cited articles in medical professionalism: a bibliometric analysis versus altmetric scores. BMJ Open. 2019;9(7):e029433.
- Mohsen MA. A bibliometric study of the applied linguistics research output of Saudi institutions in the Web of Science for the decade 2011–2020. Electron Libr. 2021;39(6):865–84.
- Chen X, Zou D, Xie H, Cheng G, Liu C. Two decades of artificial intelligence in education: contributors, collaborations, research topics, challenges, and future directions. Educ Technol Soc. 2022;25(1):28–47.
- Khanal S, Zhang H, Taeihagh A. Development of new generation of artificial intelligence in China: when Beijing's global ambitions meet local realities. J Contemp China. 2024;1–24. https:// doi.org/10.1080/10670564.2024.2333492.
- Guerrero Bote VP, Olmeda-Gómez C, de Moya-Anegón F. Quantifying the benefits of international scientific collaboration. J Am Soc Inf Sci Technol. 2013;64(2):392–404.
- Ke Q. Interdisciplinary research and technological impact: evidence from biomedicine. Scientometrics. 2023;128(4):2035–77.
- 91. Ozenc-Ira G. Mapping research on musical creativity: a bibliometric review of the literature from 1990 to 2022. Think Ski Creat. 2023;48:101273.
- Hernández-Torrano D, Ibrayeva L. Creativity and education: a bibliometric mapping of the research literature (1975–2019). Think Ski Creat. 2020;35:100625.
- Mewada A, Dewang RK. SA-ASBA: a hybrid model for aspectbased sentiment analysis using synthetic attention in pre-trained language BERT model with extreme gradient boosting. J Supercomput. 2023;79(5):5516–51.
- Abdelgwad MM, Soliman THA, Taloba AI. Arabic aspect sentiment polarity classification using BERT. J Big Data. 2022;9(1):115.
- Aziz MM, Bakar AA, Yaakub MR. CoreNLP dependency parsing and pattern identification for enhanced opinion mining in aspect-based sentiment analysis. J King Saud Univ Inf Sci. 2024;36(4):102035.
- Xiang C, Zhang J, Zhou J, Li F, Teng C, Ji D. Phrase-aware financial sentiment analysis based on constituent syntax. IEEE/ ACM Trans Audio, Speech, Lang Process. 2024;32:1994–2005.
- Zeng Y, Li Z, Chen Z, Ma H. Aspect-level sentiment analysis based on semantic heterogeneous graph convolutional network. Front Comput Sci. 2023;17(6):176340.
- Liang Y, Meng F, Zhang J, Chen Y, Xu J, Zhou J. A dependency syntactic knowledge augmented interactive architecture for end-to-end aspect-based sentiment analysis. Neurocomputing. 2021;454:291–302.
- Zhang Q, Wang S, Li J. A contrastive learning framework with tree-LSTMs for aspect-based sentiment analysis. Neural Process Lett. 2023;55(7):8869–86.
- Zou W, Zhang W, Tian Z, Wu W. A syntactic features and interactive learning model for aspect-based sentiment analysis. Complex Intell Syst. 2024;10:5359–77. https://doi.org/10.1007/ s40747-024-01449-5.

- Alomari A, Idris N, Sabri AQM, Alsmadi I. Deep reinforcement and transfer learning for abstractive text summarization: a review. Comput Speech Lang. 2022;71:101276.
- Grewal R, Gupta S, Hamilton R. Marketing insights from multimedia data: text, image, audio, and video. J Mark Res. 2021;58(6):1025–33.
- Hazmoune S, Bougamouza F. Using transformers for multimodal emotion recognition: taxonomies and state of the art review. Eng Appl Artif Intell. 2024;133:108339.
- Yao C, Song X, Zhang X, Zhao W, Feng A. Multitask learning for aspect-based sentiment classification. Sci Program. 2021;2021:1–9.
- 105. Antonakaki D, Fragopoulou P, Ioannidis S. A survey of Twitter research: data model, graph structure, sentiment analysis and attacks. Expert Syst Appl. 2021;164:114006.
- Zhang Y, Du J, Ma X, Wen H, Fortino G. Aspect-based sentiment analysis for user reviews. Cognit Comput. 2021;13(5):1114–27.
- López M, Valdivia A, Martínez-Cámara E, Luzón MV, Herrera F. E2SAM: evolutionary ensemble of sentiment analysis methods for domain adaptation. Inf Sci (Ny). 2019;480:273–86.
- Rietzler A, Stabinger S, Opitz P, Engl S. Adapt or get left behind: domain adaptation through BERT language model finetuning for aspect-target sentiment classification. In: Proceedings of the Twelfth Language Resources and Evaluation Conference. 2020. p. 4933–41.
- Knoester J, Frasincar F, Truşcă MM. Cross-domain aspect-based sentiment analysis using domain adversarial training. World Wide Web. 2023;26(6):4047–67.
- Phan HT, Nguyen NT, Hwang D. Convolutional attention neural network over graph structures for improving the performance of aspect-level sentiment analysis. Inf Sci (Ny). 2022;589:416–39.
- 111. Zhang T, Lin H, Xu B, Yang L, Wang J, Duan X. Adversarial neural network with sentiment-aware attention for detecting adverse drug reactions. J Biomed Inform. 2021;123:103896.
- 112. Mehra P. Unexpected surprise: emotion analysis and aspect based sentiment analysis (ABSA) of user generated comments to study behavioral intentions of tourists. Tour Manag Perspect. 2023;45:101063.
- 113. Chang Y-C, Ku C-H, Le Nguyen D-D. Predicting aspect-based sentiment using deep learning and information visualization: the impact of COVID-19 on the airline industry. Inf Manag. 2022;59(2):103587.
- Qi R-H, Yang M-X, Jian Y, Li Z-G, Chen H. A local context focus learning model for joint multi-task using syntactic dependency relative distance. Appl Intell. 2023;53(4):4145–61.
- Tembhurne JV, Diwan T. Sentiment analysis in textual, visual and multimodal inputs using recurrent neural networks. Multimed Tools Appl. 2021;80(5):6871–910.
- Zhang J, Sun X, Li Y. Mining syntactic relationships via recursion and wandering on A dependency tree for aspect-based sentiment analysis. In: 2022 International Joint Conference on Neural Networks (IJCNN). 2022. p. 1–8 IEEE.
- 117. Poria S, Hazarika D, Majumder N, Mihalcea R. Beneath the tip of the iceberg: current challenges and new directions in sentiment analysis research. IEEE Trans Affect Comput. 2020;14(1):108–32.
- Wibawa AP, Kurniawan F. A survey of text summarization: techniques, evaluation and challenges. Nat Lang Process J. 2024;7:100070.
- 119. Zarandi AK, Mirzaei S. A survey of aspect-based sentiment analysis classification with a focus on graph neural network methods. Multimed tools Appl. 2024;83:56619–95.https://doi.org/10.1007/ s11042-023-17701-y.
- 120. Gandhi A, Adhvaryu K, Poria S, Cambria E, Hussain A. Multimodal sentiment analysis: a systematic review of history, datasets, multimodal fusion methods, applications, challenges and future directions. Inf Fusion. 2023;91:424–44.

- 121. Ji Y, Liu H, He B, Xiao X, Wu H, Yu Y. Diversified multiple instance learning for document-level multi-aspect sentiment classification. In: Proceedings of the 2020 conference on empirical methods in natural language processing (EMNLP). 2020. p. 7012–23.
- 122. Wang X, Xu G, Zhang Z, Jin L, Sun X. End-to-end aspect-based sentiment analysis with hierarchical multi-task learning. Neuro-computing. 2021;455:178–88.
- 123. Mao R, Li X. Bridging towers of multi-task learning with a gating mechanism for aspect-based sentiment analysis and sequential metaphor identification. In: Proceedings of the AAAI Conference on Artificial Intelligence. 2021. p. 13534–42.
- 124. Tan Z, Luo L, Zhong J. Knowledge transfer in evolutionary multi-task optimization: a survey. Appl Soft Comput. 2023;138:110182.
- Rani S, Jain A. Aspect-based sentiment analysis of drug reviews using multi-task learning based dual BiLSTM model. Multimed Tools Appl. 2024;83(8):22473–501.
- 126. Vashishtha S, Gupta V, Mittal M. Sentiment analysis using fuzzy logic: a comprehensive literature review. Wiley Interdiscip Rev Data Min Knowl Discov. 2023;13(5):e1509.
- 127. Birjali M, Kasri M, Beni-Hssane A. A comprehensive survey on sentiment analysis: approaches, challenges and trends. Knowledge-Based Syst. 2021;226:107134.
- 128. Yang M, Yin W, Qu Q, Tu W, Shen Y, Chen X. Neural attentive network for cross-domain aspect-level sentiment classification. IEEE Trans Affect Comput. 2019;12(3):761–75.
- Chen Z, Qian T. Retrieve-and-edit domain adaptation for end2end aspect based sentiment analysis. IEEE/ACM Trans Audio Speech Lang Process. 2022;30:659–72.
- An W, Tian F, Chen P, Zheng Q. Aspect-based sentiment analysis with heterogeneous graph neural network. IEEE Trans Comput Soc Syst. 2022;10(1):403–12.
- 131. Han Y, Liu M, Jing W. Aspect-level drug reviews sentiment analysis based on double BiGRU and knowledge transfer. IEEE Access. 2020;8:21314–25.
- Imani M, Noferesti S. Aspect extraction and classification for sentiment analysis in drug reviews. J Intell Inf Syst. 2022;59(3):613–33.
- 133. Shaik T, Tao X, Li L, Xie H, Velásquez JD. A survey of multimodal information fusion for smart healthcare: mapping the

journey from data to wisdom. Inf Fusion. 2024;102:102040. https://doi.org/10.1016/j.inffus.2023.102040.

- 134. Wang H-C, Justitia A, Wang C-W. AsCDPR: a novel framework for ratings and personalized preference hotel recommendation using cross-domain and aspect-based features. Data Technol Appl. 2023;58(2):293–317.
- Sindhu I, Daudpota SM, Badar K, Bakhtyar M, Baber J, Nurunnabi M. Aspect-based opinion mining on student's feedback for faculty teaching performance evaluation. IEEE Access. 2019;7:108729–41.
- Ren P, Yang L, Luo F. Automatic scoring of student feedback for teaching evaluation based on aspect-level sentiment analysis. Educ Inf Technol. 2023;28(1):797–814.
- Zhang J, Lu X, Liu D. Deriving customer preferences for hotels based on aspect-level sentiment analysis of online reviews. Electron Commer Res Appl. 2021;49:101094.
- Yadav A, Vishwakarma DK. Sentiment analysis using deep learning architectures: a review. Artif Intell Rev. 2020;53(6):4335–85.
- Kumar N, Hanji BR. Aspect-based sentiment score and star rating prediction for travel destination using multinomial logistic regression with fuzzy domain ontology algorithm. Expert Syst Appl. 2024;240: 122493.
- 140. Hammi S, Hammani SM, Belguith LH. Advancing aspect-based sentiment analysis with a novel architecture combining deep learning models CNN and bi-RNN with the machine learning model SVM. Soc Netw Anal Min. 2023;13(1):117.
- 141. Shi J, Li W, Bai Q, Yang Y, Jiang J. Syntax-enhanced aspectbased sentiment analysis with multi-layer attention. Neurocomputing. 2023;557:126730.
- Binder M, Heinrich B, Hopf M, Schiller A. Global reconstruction of language models with linguistic rules–explainable AI for online consumer reviews. Electron Mark. 2022;32(4):2123–38.
- 143. Wu H, Zhou D, Sun C, Zhang Z, Ding Y, Chen Y. LSOIT: lexicon and syntax enhanced opinion induction tree for aspect-based sentiment analysis. Expert Syst Appl. 2024;235:121137.

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.