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Background and Objective: Exposure to solar ultraviolet (UV) radiation can cause malignant keratinocyte cancer 
and eye disease. Developing a user-friendly, portable, real-time solar UV alert system especially or wearable 
electronic mobile devices can help reduce the exposure to UV as a key measure for personal and occupational 
management of the UV risks. This research aims to design artificial intelligence-inspired early warning tool 
tailored for short-term forecasting of UV index (UVI) integrating satellite-derived and ground-based predictors 
for Australian hotspots receiving high UV exposures. The study further improves the trustworthiness of the newly 
designed tool using an explainable artificial intelligence approach.
Methods: An enhanced joint hybrid explainable deep neural network model (called EJH-X-DNN) is constructed 
involving two phases of feature selection and hyperparameter tuning using Bayesian optimization. A compre-
hensive assessment of EJH-X- DNN is conducted with six other competing benchmarked models. The proposed 
model is explained locally and globally using robust model-agnostic explainable artificial intelligence frame-
works such as Local Interpretable Model-Agnostic Explanations (LIME), Shapley additive explanations (SHAP), 
and permutation feature importance (PFI).
Results: The newly proposed model outperformed all benchmarked models for forecasting hourly horizons 
UVI, with correlation coefficients of 0.900, 0.960, 0.897, and 0.913, respectively, for Darwin, Alice Springs, 
Townsville, and Emerald hotspots. According to the combined local and global explainable model outcomes, the 
site-based results indicate that antecedent lagged memory of UVI and solar zenith angle are influential features. 
Predictions made by EJH-X-DNN model are strongly influenced by factors such as ozone effect, cloud conditions, 
and precipitation.
Conclusion: With its superiority and skillful interpretation, the UVI prediction system reaffirms its benefits for 
providing real-time UV alerts to mitigate risks of skin and eye health complications, reducing healthcare costs 
and contributing to outdoor exposure policy.
1. Introduction

Exposure to solar ultraviolet (UV) radiation (290-400 nm) poses 
both beneficial and harmful effects on people, as well as terrestrial ani-
mal and plant life. In terms of benefits, exposure to UV radiation enables 
the human body to produce a sufficient amount of vitamin D that helps 
strengthen muscles, bones and the overall immune system [1]. The abil-
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ity of UV radiation to inactivate potentially harmful micro-organisms 
(such as protozoa) has led to its application as a disinfectant in the wa-
ter and food industry [2]. Recently, UV light was increasingly utilized as 
a significant disinfectant for coronavirus-contaminated surfaces during 
the COVID-19 pandemic [3]. Contrary to the benefits, elevated expo-
sure to UV light radiation causes temporary or irreversible damage to 
the process of photosynthesis in plants [4]. Above all, the most pressing 
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concern for the health sector is the detrimental effects of erythemally-
effective UV irradiance at the short end of the spectrum (290 to 315 
nm) that poses high exposure risks for human skin and eyes [5,6]. Pro-
longed UV exposure may result in skin-based malignant keratinocyte 
cancers and eye diseases that include cataracts and pterygium [7].

UV radiation-induced skin cancers have led to an increased mortal-
ity rate in most temperate countries. In 2018, there was a significant 
mortality of 126,000 for skin cancer on a global basis, which imposes 
a profound economic burden on healthcare services [8]. Having a high 
ambient UV irradiance and prevalence of fair skin types in the Aus-
tralian and New Zealand population, the two countries recorded the 
highest incidence of melanoma and keratinocyte carcinoma on a global 
basis in 2021 [9]. In Australia, such skin-related public health problems 
are more severe and they impose a huge burden on the Australian health 
sector with an annual estimated expenditure of $1.7 billion (AUD) on 
skin cancer treatment [10].

In order to develop engineering-based solutions for wearable elec-
tronics and other personal protection tools that can implement sun 
protection and mitigate the impacts of sun-exposure-related skin and 
eye health risks, the World Health Organization (WHO), International 
Commission on Non-Ionizing Radiation Protection (ICNIRP), World Me-
teorological Organization (WMO) and United Nations Environment Pro-
gramme (UNEP) have developed the global solar UV index (UVI). This is 
a numeric-scale indicator of the public health risk of UV, ranging from 
0 to 11+ [11]. With a high UVI, the associated UV exposure severity 
and potential damage to the skin and eye is expected to rise. Preven-
tative interventions with innovative decision support tools capable of 
providing sun exposure information to individuals can help mitigate the 
detrimental effects of UV exposure, as well as reduce healthcare costs. 
For some decades, ground-based [5] and satellite-based [6] instrumen-
tations have been commonly employed to estimate the incoming solar 
UV irradiance. Though the two approaches can deliver accurate sun-
exposure information, the major drawback of their practical utility is 
the high costs of installation, maintenance and operation [12].

Predictive frameworks designed through the application of artifi-
cial intelligence (AI) modeling can pragmatically deliver more accurate 
forecasts of UV exposure metrics that are adaptable to changing phys-
ical conditions in the atmosphere and useful to users of mobile tech-
nology. Machine learning (ML) and deep learning (DL) algorithms are 
widely used AI-based forecasting systems that are cost-effective, robust 
and user-friendly for time-dependent forecasting [13]. Recent studies 
reveal that the DL technology is gaining more prominence in its appli-
cation, particularly in the UVI forecasting framework where simulations 
of UVI forecasts have captured high predictive accuracy [14,15]. How-
ever, the DL models have a black-box architecture with hidden internal 
workings that are highly complex and non-explainable. To better under-
stand the DL black-box-generated outcomes, most recent studies have 
utilized explainable artificial intelligence (xAI) architecture [16,17]. 
The xAI architectures enable the DL models to become transparent, as 
the outcomes are interpretable and more trustworthy for the end users 
and decision-makers [16]. A plethora of innovative research methodolo-
gies has applied the model-agnostic tools in the xAI domain that include 
the local and global model explainability. At the local level, the local 
interpretable model-agnostic explanations (LIME) technique robustly 
explains the individual prediction of the black-box model [18]. In re-
gards to global explanations, the Shapley additive explanations (SHAP) 
and permutation feature importance (PFI) frameworks are capable of 
explaining the entire decision of the black-box predictive model [19]. 
The applications of xAI technique further allow the layperson to clar-
ify the logic underlying the process of decision-making by a black-box 
model. Currently, there appears to be a significant gap in the literature 
on integrating xAI in modeling UVI, as no previous studies have applied 
the xAI architecture in the UVI forecasting framework.

This paper focuses on designing an xAI-based enhanced UVI fore-
casting system using DL technology to offer local and global explain-
2

ability regarding the influence of the predictor variables on model 
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outcomes. Solar zenith angle (SZA) is one important attribute that influ-
ences the level of solar UV radiation on the earth’s surface. This variable 
is known to govern the optical path length while the incident radiation 
traverses through the earth’s atmosphere [5]. At any given SZA, the un-
broken cloud cover condition is another meteorological variable that 
significantly reduces the solar UVI by 50 to 60% and even more dur-
ing precipitation [20]. However, the scattering of solar irradiation by 
partial intermittent cloud cover can cause an escalated spike in ground-
level UV radiation, thus exceeding the nominal cloud-free surface UV 
radiation [5]. In this scenario, the general public can be subjected to 
more severe UV exposure, which poses even greater damaging effects on 
the skin and eyes. Aerosols are another important atmospheric variable 
that impacts the surface-level UVI [15]. Furthermore, the UVI is also 
affected by absorption and scattering due to stratospheric ozone [21].

The objective of the current study is to design an enhanced joint 
hybrid explainable deep neural network (DNN) to deliver more accu-
rate short-term forecasts of solar UVI using satellite-derived variables 
(including SZA as a ground-based variable) and the partial autocorrela-
tion function (PACF) of the UVI data generated at the most significant 
lags. Our model is an enhanced joint hybrid (EJH) for the reason that 
a dual-phase feature selection is carried out, followed by an application 
of Bayesian optimization to enhance the model performance. A remark-
able xAI framework (denoted as X) is further utilized to offer local and 
global model explanations.

Thus, this objective model is denoted as EJH-X-DNN. The primary 
contributions of this paper are summarized as follows:

• A robust DL architecture, known as DNN is proposed and applied 
to a UVI forecasting domain using satellite-derived and ground-
based datasets for four Australian hotspots (Darwin, Alice Springs, 
Townsville and Emerald) with high solar UV radiation.

• Dual-phase feature selection is employed for dimensionality reduc-
tion. In the first phase, the informative attributes are selected us-
ing model-specific feature importance by integrating random forest 
(RF) as the base model. In the second phase, the redundant predic-
tors are identified and eliminated with respect to high correlation 
(r).

• Further enhancement of the predictive performance is achieved 
through efficient tuning of the model hyperparameters using a 
Bayesian optimizer (BO).

• Model-agnostic xAI is applied to interpret the predictive behavior 
of the model, where LIME is used to explain the model outcomes 
at the local level, while SHAP and PFI are used for explanations at 
the global level.

• The accurate and interpretable forecasts of short-term UVI by the 
predictive framework can facilitate the end-users to deliver more 
precise sun protection behavior recommendations to the general 
public and mitigate UV-exposure-related skin and eye health risks.

The remainder of the paper is organized as follows: Section 2 reviews 
the background and related literature; Section 3 discusses the theoreti-
cal overview of the focused concepts; Section 4 describes the different 
methods adopted in designing an explainable UVI forecasting system; 
Section 5 presents the results and deliberates related discussions; Sec-
tion 6 discourses the concluding remarks of this study and future re-
search directions.

2. Related works

Conventional mechanistic methods with instruments such as spec-
troradiometers and radiometers have been commonly utilized by most 
health sectors to extract UV exposure information and deliver timely 
sun protection advice to the general public [22]. However, the real-
time application of these devices can be constrained by the high costs 
of equipment, installation, calibration and maintenance [5]. With such 

flaws and the issue of accessibility for most remote locations, an alter-
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native deterministic method has been applied in developing the UVI

forecasting framework. Though the deterministic approach seems to 
be promising, limitations caused by the use of estimated and assumed 
fixed initial conditions continue to affect the overall prediction accu-
racy [5,23].

The advent of AI-inspired expert predictive systems can robustly 
address the drawbacks of mechanistic and deterministic methods, par-
ticularly in forecasting solar UVI. The AI-based ML and DL forecasting 
platforms are known to exhibit immense computational efficiency and 
these algorithms are highly skillful in handling the non-linearity in in-
put datasets [14]. The potential of the ML technique has been explored 
by [24] in forecasting long-term UVI on a global scale using a feed-
forward multi-layered artificial neural network (ANN). Additionally, 
an extreme learning machine integrated with SZA was applied by [5]
to forecast short-term UVI for a study site in Toowoomba, Australia. 
However, other studies have opted to employ DL technology over the 
ML approach, as the former employs a non-linear model of multiple 
hidden layer architecture that enables the framework to learn the com-
plex relationship between outputs and inputs [25]. The ML technique 
also entails some overfitting issues [26]. In a recent work, three days 
ahead UVI was forecasted in a global context by exploiting a DL long 
short-term memory (LSTM) network [27]. Similarly, the daily UVI was 
forecasted for the state of Western Australia using a hybrid DL convo-
lution long short-term memory (CNN-LSTM) network [14]. In another 
study, a wavelet hybrid convolutional LSTM (convLSTM) network was 
integrated with sky images and SZA in forecasting multi-step UVI for a 
Toowoomba-based study site in Australia [15].

In terms of model interpretability, none of the aforementioned pre-
dictive systems have applied xAI to extract model-agnostic local and 
global explanations that are instrumental in understanding the influ-
ences of different attributes on UVI predictions. Some relevance may be 
drawn from a recent study where an xAI-inspired model-agnostic SHAP 
and PFI explainers were integrated with a RF model to offer global in-
terpretations based on interactions of the feature variables in predicting 
solar radiation [28]. Another similar research applied the LIME model-
agnostic tool to extract local explanations for heat demand forecasting 
using different configurations of the LSTM networks [18]. SHAP expla-
nation technique was also integrated with LSTM networks to analyze 
the global influence of input variables on energy consumption forecast-
ing [29]. A recent survey highlighted that the SHAP explainer displays 
powerful performance in generating global post-hoc explanations based 
on the input perturbations using DNN [30].

The model-agnostic LIME, SHAP and PFI explainers have their sepa-
rate strengths and shortcomings. The LIME technique is highly effective 
in delivering local post-hoc explanations by exploiting surrogate inter-
pretable and reliable representations that best approximate the refer-
ence predictive model [31]. In comparison with SHAP, LIME is faster 
in execution as the latter algorithm generates instance-based interpre-
tations [32]. On the positive side, the SHAP method efficiently offers 
explanations for the entire decision of the reference model at a global 
level. Although the SHAP tool can elegantly offer global explanations, 
the execution time of the algorithm is a bit high [17]. Keeping in mind 
the benefits of LIME and SHAP explainers, most researchers have opted 
to implement these methods simultaneously to extract more rigorous 
and faithful black-box model interpretations both at local and global 
levels for better decision-making [16,17]. Furthermore, PFI is another 
remarkable algorithm that provides black-box model explanations at 
the global level. However, like the SHAP tool, the PFI method also takes 
a slightly higher execution time to generate effective model explainabil-
ity [33].

As mentioned earlier, a knowledge gap has been identified as the 
model-agnostic xAI architectures are not yet integrated with any DL 
black-box model to offer local and global explanations. Henceforth, the 
current study advocates a more comprehensive combination of LIME, 
SHAP and PFI explainers to provide model transparency, as well as to 
3

overcome any embedded biases of the UVI simulating black-box model 
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for better decision-making. Through xAI decision support tools, more 
reliable and credible sun-exposure behavior recommendations can be 
delivered to the public in the risk zone.

3. Methodology

In this study, the design phase of DL hybrid explainable UVI fore-
casting framework entails multiple modeling stages. The flowchart pre-
sented in Fig. 1 summarizes the significant stages affiliated with the 
modeling of UVI forecasts. In accordance with the flow chart summary, 
the first stage involves retrieval of satellite-derived and ground-based 
predictors plus the target variable for the four Australian hotspots with 
high UV radiation exposure. The second stage involves pre-processing 
and imputation of extracted datasets. In the third stage, the cross-
correlation and partial auto-correlation of the features and the label are 
determined at the most significant hourly lag. The fourth stage entails 
dual-phase feature selection, where the first phase involves an applica-
tion of a model-specific feature selection technique with RF and in the 
second phase the redundant features are eliminated on the basis of hav-
ing higher r. In stage five, a DL hybrid explainable EJH-X-DNN model 
is designed and benchmarked with competing counterparts to forecast 
hourly ahead UVI. A BO is further applied to fine-tune the model hy-
perparameters. To assess the performance of the proposed EJH-X-DNN 
model against the benchmarked models, robust statistical score metrics 
are used. In the final stage, we exploit xAI-based model-agnostic tools 
(LIME, SHAP and PFI) to offer local and global explanations based on 
the black-box EJH-X-DNN model predictions.

Hereafter, the sub-sections provide a detailed methodology of the 
aforementioned stages involved in constructing the DL hybrid explain-
able UVI forecasting system.

3.1. Study site and data extraction

To establish and validate the merits of the proposed hybrid ex-
plainable EJH-X-DNN model in generating hourly forecasts of UVI, four 
Australian hotspots that are at high risk of harmful exposure to solar 
UV radiation are selected.

Table 1 shows the geographical description of the study sites and 
the inferential statistics of UVI. Two of these study sites are Darwin 
and Alice Springs from the Northern Territory (NT) while the other 
two are Townsville and Emerald from the State of Queensland (QLD). 
These hotspots are known to be subtropical regions that receive a large 
number of sunshine hours on an annual basis [5]. The health sector 
within these hotspots is significantly burdened by UV-exposure-related 
impacts on skin and eye health. Table 1 (a) details the geographical 
description of the four selected research hotspots.

In constructing the proposed model pipeline to forecast hourly hori-
zon UVI, the first stage involves data extraction. The Australian Radi-
ation Protection and Nuclear Safety Agency (ARPANSA) provided the 
ground data for the target variable UVI, which has been accessed from 
https://www .arpansa .gov .au and for all four Australian hotspots. Con-
sidering that one unit of UVI is equivalent to 25 mWm−2 of erythemally 
effective irradiance [20,5], UVI is mathematically represented as:

𝑈𝑉 𝐼 = 1
25 mWm−2

400

∫
290

𝑆(𝜆) ⋅𝐸𝑈𝑉 (𝜆) ⋅ 𝑑𝜆, (1)

where 𝐸𝑈𝑉 is the spectral energy in Wm−2 nm−1 measured over the ter-
restrial wavelengths of 290 to 400 nm, and 𝑆(𝜆) is the relative erythema 
effectiveness at each discrete wavelength. To ensure cost-effectiveness 
and accurate procedure, the ARPANSA data is closely monitored by 
regular data assessment and quality checks. For each selected site, Ta-
ble 1 (b) presents the inferential statistics of ARPANSA-sourced UVI in 
terms of mean, standard deviation, median, maximum value, minimum 
value, skewness and kurtosis. All the statistical descriptions are very 

significant. For instance, the UVI values showing low kurtosis indicate 

https://www.arpansa.gov.au
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Fig. 1. Flowchart highlighting the major stages in the design phase of proposed hybrid EJH-X-DNN model for generating hourly ahead forecasts of UVI with 
model-agnostic explanations.

Table 1

(a) The geographical description of the study sites, (b) Inferential statistics of UVI.

(a) Site Name, State Location

Latitude (°E) Longitude (°E) Elevation (m)

Darwin, NT 12.43 130.89 28
Alice Springs, NT 23.80 133.89 576
Townsville, QLD 23.53 148.16 15
Emerald, QLD 19.33 146.76 189

(b) Target Variable Location Mean St. Dev. Median Max. Min. Skewness Kurtosis

UVI Darwin 4.99 3.72 4.45 16.63 0.01 0.53 -0.62
Alice Springs 4.72 3.67 3.97 16.72 0.01 0.71 -0.45
Townsville 4.69 3.57 3.89 16.65 0.03 0.80 -0.17
Emerald 4.50 3.45 3.86 16.20 0.01 0.78 -0.20
that the datasets are light-tailed relative to a normal distribution. Hav-
ing light-tailed distribution implies a lack of outliers in the overall UVI

dataset.
In selecting the model inputs, satellite-derived predictors have 

been sourced from the National Aeronautics and Space Administra-
tion (NASA) database, particularly the Goddard Online Interactive Vi-
sualization and Analysis Infrastructure (GIOVANNI) geoscience data 
repository from https://giovanni .gsfc .nasa .gov /giovanni/. GIOVANNI 
acquires data for over 2000 satellite variables, for which it eminently 
provides online-based visualizations and analytical platforms [34]. Due 
to the inadequacy of ground-based datasets, most meteorological prob-
lems have been alternatively addressed using satellite-based remote 
sensing data [35].

For the purpose of this study, we preferably adopted the satellite-
derived products captured by the Modern-Era Retrospective Analysis 
for Research and Applications (MERRA) satellite to simulate forecasts 
of hourly horizon UVI. Considering that the variations in incident UV 
4

radiation are significantly interconnected with cloud cover conditions, 
ozone effects, atmospheric aerosol column, dust concentrations and 
content of water vapor [5,36], eight relative predictor variables were 
extracted from the MERRA satellite for fusion with the proposed DL 
UVI simulating framework.

Additionally, the ground-based SZA that is known to highly affect 
the intensity of solar UV-radiation was acquired by integrating a deter-
ministic Pro6UV method [5]. Table 2 details the eight MERRA-derived 
predictors and the ground-based SZA with corresponding acronyms, 
data extraction source, units, instrument/model for data acquisition and 
spatial resolution in degrees.

To construct the hybrid explainable EJH-X-DNN model, two years 
of datasets for the aforementioned ground-based and satellite-derived 
meteorological variables were extracted from 1st January 2020 to 31st

December 2021, as indicated in Table 3. These datasets were extracted 
at a time resolution of 1 hour from 7.30 am to 4.30 pm on a daily basis. 
After having extracted these important meteorological parameters, the 
UVI (target input) and the nine predictors (feature inputs) datasets were 

ready for further preprocessing toward modeling UVI.

https://giovanni.gsfc.nasa.gov/giovanni/
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Table 2

Description of the input features (ground-based and satellite-derived) used to construct the proposed hybrid 
explainable EJH-X-DNN model.

Attribute Name Acronym Source Units Instrument/Model Spatial 
Resolution

Solar zenith angle SZA Ground ° Pro6UV -
Cloud area fraction for high clouds CAFHC MERRA-2 - M2T1NXRAD v5.12.4 0.5°×0.625°
Cloud area fraction for middle clouds CAFMC MERRA-2 - M2T1NXRAD v5.12.4 0.5°×0.625°
Cloud area fraction for low clouds CAFLC MERRA-2 - M2T1NXRAD v5.12.4 0.5°×0.625°
Total aerosol angstrom parameter TAAP MERRA-2 - M2T1NXAER v5.12.4 0.5°×0.625°
Total aerosol scattering AOT TAS MERRA-2 - M2T1NXAER v5.12.4 0.5°×0.625°
Dust scattering AOT DS MERRA-2 - M2T1NXADG v5.12.4 0.5°×0.625°
Total column ozone TCO MERRA-2 Dobsons M2T1NXSLV v5.12.4 0.5°×0.625°
Total precipitable water vapor TPWV MERRA-2 kg m−2 M2T1NXSLV v5.12.4 0.5°×0.625°

Table 3

Site-based segregation of input datasets into training, validation and testing during the model design 
phase.

Sites Period Data 
Points

Training 
Points (≈80%)

Validation 
Points

Testing
Points (≈20%)

Darwin 01-Jan-2020 to 31-Dec-2021 7265 5815 1450
Alice Springs 01-Jan-2020 to 31-Dec-2021 7267 5815 10% of 1452
Townsville 01-Jan-2020 to 31-Dec-2021 7276 5817 Training 1459
Emerald 01-Jan-2020 to 31-Dec-2021 7273 5815 1458
3.2. Data preprocessing

The second stage of UVI modeling for the four sites in Australia en-
tails data preprocessing. It was important to carefully scrutinize the 
extracted datasets to locate any missing data. There were very few 
instances when some datasets were missing and these were duly recov-
ered by imputing with the monthly median of the respective variable 
at the same daily time domain. For this study, the median imputation 
technique among the three imputation methods of mean, median and 
listwise deletion was adopted. Imputation using the median approach 
is robust and generates more accurate imputed values in comparison 
with the mean and listwise deletion methods [37]. Once the complete 
sets of data were obtained through imputation, the stationarity in these 
datasets was further tested by applying the augmented Dickey-Fuller 
Test [38]. The test outcome disclosed that all the input datasets were 
stationary for the four hotspots.

In the third stage, the cross-correlation coefficient (𝑟𝑐𝑟𝑜𝑠𝑠) and partial 
autocorrelation function (PACF) were assessed with the aid of correl-
ogram plots to obtain time-lagged inputs at the most significant lag 
for modeling UVI. For instance, Fig. 2 (a) illustrates the 𝑟𝑐𝑟𝑜𝑠𝑠 plots 
to investigate the co-variances between UVI and feature variables for 
the Darwin hotspot. A 95% confidence band was used as a reference 
where the lags of any variable within this boundary were considered 
insignificant. After evaluating 𝑟𝑐𝑟𝑜𝑠𝑠 of each feature with UVI, the most 
significant historically preceding values of the predictor variables were 
selected as inputs to construct the proposed hourly ahead UVI forecast-
ing system for all four sites.

Fig. 2 (b) presents the PACF plot of the UVI time series that displays 
the antecedent behavior in terms of hourly lags of UVI for the Darwin 
hotspot. After analyzing the PACF of UVI time series, the four most 
significant antecedent lagged UVI were considered as model inputs. For 
the purpose of this study, the four antecedent lags of UVI at 𝑡 - 1, 𝑡
- 2, 𝑡 - 3 and 𝑡 - 4 are denoted as PACF1, PACF2, PACF3 and PACF4, 
respectively, where 𝑡 represents real-time. The time-lagged inputs for 
the other three sites of Alice Springs, Townsville and Emerald were 
also extracted via assessment of 𝑟𝑐𝑟𝑜𝑠𝑠 and PACF in a similar manner. 
Thereafter, a historical lagged matrix was created for the ground-based 
and satellite-derived predictors at a lag of (𝑡 - 1) as inputs toward feature 
5

selection for each site.
3.3. Feature selection

The fourth stage of model building involves dual-phase feature se-
lection of the ground and satellite-acquired predictor variables. In the 
first phase, a wrapper-based model-specific approach was exploited to 
select the most pertinent attributes. The feature datasets were first sub-
jected to a base ML model to search the space of all possible subsets of 
the feature inputs in terms of their importance. In this study, a RF model 
is applied as the base ML model to fit the attribute datasets and assess 
all possible combinations with respect to the evaluation criterion in se-
lecting the most informative features. After evaluation, the base model 
ranked the input predictor variables in accordance with their overall 
importance to the model.

Fig. 3 shows the model-specific feature importance generated by the 
base model for the four selected sites. With respect to the displayed 
ranked attributes, the base model has considered SZA as the most per-
tinent feature with the highest importance score for each selected site. 
The criterion was to eliminate any inapt predictor variable that captures 
zero feature importance scores. As per the feature selection outcomes 
described in Fig. 3, it is observed that none of the attributes within 
the feature space yielded zero feature importance scores for all four 
sites. Consequently, all the features were considered important using 
the model-specific feature selection approach.

Having none of the attributes eliminated from the feature set in the 
first phase, the study adopted a second phase of filter-based feature 
selection by assessing the degree of correlation between the attributes 
within the feature space. The correlations among the nine predictor 
variables of the four sites are described with an aid of a color-coded 
heatmap in Fig. 4.

The criterion was to drop one of the attributes having a high cor-
relation, preferably r > 0.8 or r < -0.8 for this study. Any two predictor 
variables displaying high correlation become redundant as they con-
tribute very similar information towards model training and eliminating 
one of them improves the computational efficiency. In conformity with 
Fig. 4, none of the features were observed to be redundant for all four 
sites. No two attributes among the feature space captured high corre-
lations as per the selection criteria and for this reason, all the features 
were considered pertinent inputs for the model construction phase. To-

gether with the selected feature variables, the four historical lagged 
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Fig. 2. Hourly lagged correlograms showing (a) cross-correlation coefficient (𝑟𝑐𝑟𝑜𝑠𝑠) for UVI versus the nine predictor variables (acronyms described in Table 2) for 
the Darwin site, (b) Partial autocorrelation function (PACF) of the UVI series showing the four most significant lags for the Darwin site.

Fig. 3. First phase of feature selection using model-specific feature importance with the base model of random forest for (a) Darwin, (b) Alice Springs, (c) Townsville 
6

and (d) Emerald; where any predictor variable having feature importance scores equal to zero is eliminated from the design phase of the hybrid EJH-X-DNN model.
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Fig. 4. Second phase of feature selection using a color-coded heat map highlighting a visual overview of low, average and high correlation (r) of the predictor inputs 
considered for (a) Darwin, (b) Alice Springs, (c) Townsville and (d) Emerald; where any two variables having high r (preferably r > 0.8 or r < -0.8 for this study) are 
regarded redundant and one of them is eliminated from the design phase of the hybrid explainable EJH-X-DNN model.
memories of UVI (PACF1, PACF2, PACF3 and PACF4) were applied as 
overall inputs towards simulating the next hourly UVI series.

3.4. Design of the UVI predictive model

In the fifth stage, the actual hybrid explainable EJH-X-DNN model 
is designed. For developing the model pipeline, an eminent Python 
programming language was implemented via a Google Colab platform 
with a freely available Jupyiter Notebook interface supported by a ten-
sor processing unit (TPU) and graphical processing unit (GPU). The 
virtual environment of the powerful python tool provides remarkable 
packages for the execution of ML and DL algorithms, which include 
Scikit-learn [39], Keras [40] and TensorFlow [41]. Additionally, the 
MATLAB programming tool was employed for plotting the correlograms 
of the predictand and predictors [42].

Prior to feeding the target and predictor inputs to the model, the 
datasets were normalized in the range of [0-1] so that each variable 
would exhibit the same order of magnitude. This was achieved by ap-
plying a min-max normalization [43], defined as follows:

𝑋𝑁𝑂𝑅𝑀 =
𝑋𝐴𝐶𝑇 −𝑋𝑀𝐼𝑁

𝑋𝑀𝐴𝑋 −𝑋𝑀𝐼𝑁

, (2)

where 𝑋𝑁𝑂𝑅𝑀 is normalized input data, 𝑋𝐴𝐶𝑇 is actual input data, 
𝑋𝑀𝐼𝑁 is the minimum value and 𝑋𝑀𝐴𝑋 is the maximum value. 
7

Through the normalization process, stable convergence of biases and 
weights is guaranteed for efficient training and testing of the predictive 
model [44].

Consequently, a train-test split was carried out by partitioning the 
input datasets into training, validation and testing, as shown in Table 3. 
Data segregation is a critical phase of model building as the forecast-

ing capability and overall feasibility of the predictive model are largely 
dependent on the partitioning ratio. Since there is no standard rule for 
data partitioning, this study adopts an earlier research strategy [45,46]

to segregate 80% of the site-based input datasets for training and 20% 
for testing. Additionally, 10% of the training data was utilized for model 
validation, primarily to overcome the issues regarding model biases via 
a 10-fold cross-validation approach. On the same notion, the modeling 
constraints led by over-fitting can also be addressed using the cross-

validation process [47]. While partitioning, the training and testing 
datasets were cut-off using date-time to ensure that the future patterns 
of the training set do not leak into the testing set.

The scope of this study was to design a hybrid explainable EJH-

X-DNN model that could simulate more accurate forecasts of hourly 
horizon UVI with local and global model-agnostic interpretability based 
on the influences of the input features on predicted outcomes. For com-

prehensive benchmarking of the newly proposed model, we further 
designed some skillful competing models, which include EJH-FCN, EJH-
ANN, EJH-MLP, EJH-AB, EJH-SGD and EJH-DT. The designations of the 
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Table 4

Designations of the enhanced joint hybrid deep learning and machine learning models 
developed to simulate hourly ahead forecasts of UVI.

Model Type Model Designation

Proposed xAI Model: Enhanced Joint Hybrid Explainable DNN EJH-X-DNN

Benchmarked Models: Enhanced Joint Hybrid FCN EJH-FCN
Enhanced Joint Hybrid ANN EJH-ANN
Enhanced Joint Hybrid MLP EJH-MLP
Enhanced Joint Hybrid AdaBoost EJH-AB
Enhanced Joint Hybrid SGD EJH-SGD
Enhanced Joint Hybrid DT EJH-DT
objective model along with the benchmarked models are distinctly de-
scribed in Table 4.

In constructing the EJH-X-DNN model, a robust DL DNN was inte-
grated as a suitable base model. The DL-based models are less explored 
in UVI forecasting and their supremacy over conventional ML-based 
models is well known [15]. A DNN is an extension of an ANN that is 
constructed by concatenating three principle layers in the architecture: 
an input layer, one or more fully connected hidden layers and an out-
put layer [48]. The depth of DNN architecture is defined by the number 
of hidden layers and each layer of the network has available one or 
more interconnected artificial neurons. By having networks of multi-
ple hidden layers and nodes in the design architecture, the DNN model 
automatically extracts relevant features or information from the input 
datasets [49]. For generating time-series predictions, the most suitable 
number of neurons in the output layer is one. A feed-forward mode is 
utilized for information processing, which begins from the input layer, 
goes through the hidden layers, and finally arrives at the output lay-
ers. For each layer, the inputs are multiplied by weights, followed by 
the addition of a bias to the sum of the resulting product. Mathemati-
cally, the neural network forward propagation model [45] can be best 
described as:

𝑎𝑙
𝑖
= 𝑓

⎛⎜⎜⎝
𝑁𝑙−1∑
𝑗=1

𝑤𝑙
𝑖𝑗
𝑎𝑙−1
𝑗

+ 𝑏𝑙
𝑖

⎞⎟⎟⎠ , (3)

where 𝑎𝑙
𝑖

is the output value from the 𝑖𝑡ℎ neurons in the 𝑙𝑡ℎ layer neural 
network, 𝑎𝑙−1

𝑗
is the output value from the 𝑖𝑡ℎ neurons in the (𝑙 − 1)𝑡ℎ

layer neural network, 𝑤𝑙
𝑖𝑗

is the weight from the 𝑗𝑡ℎ neurons in the 
(𝑙 − 1)𝑡ℎ layer to the 𝑖𝑡ℎ neurons in the 𝑙𝑡ℎ layer, 𝑏𝑙

𝑖
is the bias term from 

the 𝑖𝑡ℎ neurons in the 𝑙𝑡ℎ layer neural network, 𝑁𝑙−1 is the number of 
neurons in the (𝑙 − 1)𝑡ℎ layer and 𝑓 (⋅) is the activation function of the 
neurons.

A common DL DNN architecture comprising a feed-forward back 
propagation network (FFBPN) is applied in this study. Generally, the 
FFBPN in the architecture enables the model to efficiently learn and 
map the input-output relationships. Through the processes of learning 
and mapping, the model’s weight and threshold values are adjusted so 
that the predictive error is minimized and the overall performance is op-
timized. Selection of an optimal number of hidden layers, neurons, ac-
tivation functions (such as sigmoid function, hyperbolic tangent (tanh) 
function, rectified linear unit (ReLU) function and exponential linear 
unit (ELU) function) further optimizes the model performance [48]. Ad-
ditionally, the issue of overfitting in DNN is significantly reduced by 
exploiting a regularization approach that includes a weight penalty and 
early stopping (or dropout) during model training [45]. In construct-
ing the enhanced joint hybrid benchmarked models, the architecture 
of base models includes a fully convolutional network (FCN), artificial 
neural network (ANN), multilayer perceptrons (MLP), AdaBoost (AB), 
stochastic gradient descent (SGD) and decision tree (DT), respectively. 
The conceptual and architectural details of the benchmarked models 
8

are elucidated elsewhere, as these are well-known methods [50–55].
3.5. Hyperparameter tuning using Bayesian optimizer

While the DNNs exhibit superior performance capability, the fore-
casting accuracy can be affected by improper tuning of model hyper-
parameters during training and validation. To enhance the predictive 
performance, a powerful BO was applied with a Gaussian process surro-
gate algorithm for optimizing the hyperparameters of the DNN architec-
ture. BO is an elegant hyperparameter tuning algorithm that directs the 
search for a global optimization problem based on Bayes’ rule of condi-
tional probability [56]. The Bayes’ rule of conditional probability [57]
is given as:

𝑝(𝑤|𝐷) = 𝑝(𝐷|𝑤) 𝑝(𝑤)
𝑝(𝐷)

, (4)

where 𝑝(𝑤|𝐷) is the posterior distribution, 𝑝(𝐷|𝑤) is the likelihood, 𝑝(𝑤)
is the prior distribution, 𝑝(𝐷) is the marginal, 𝑤 is an unobserved quan-
tity and 𝐷 is the input dataset.

The BO approaches the optimal point more efficiently than ran-
dom sampling because the optimization process selects the values of 
the next iteration by considering the outcomes of prior iterations [56]. 
In comparison with other common optimization techniques such as 
grid search and random search, BO has higher hyperparameter tun-
ing efficiency [58]. For grid and random search, each evaluation in 
its iterations is independent of prior iterations. In such cases, the hy-
perparameter search space regions with unsatisfactory performance are 
unavoidably assessed, which finally leads to high computational costs.

During optimization, the BO fits a surrogate function over an un-
known objective function using randomly selected data points. A highly 
robust and flexible Gaussian process [59], which is also utilized for 
the purpose of this study, forms the posterior distribution over the ob-
jective function to consequently update the surrogate function. In this 
instance, an acquisition function is generated using the posterior dis-
tribution to explore new regions within the search space, as well as 
to make use of the regions captured with optimal results [60]. These 
processes continue to feed the surrogate model with updated outcomes 
and terminate just after meeting a pre-defined stopping criterion. In 
this case, the acquisition function, known as the expected improvement 
(EI) [58] is applied where the criterion is to maximize this function to 
locate the next sampling point. The EI is given as:

EI(𝜃) =
𝑃𝑔𝑜𝑜𝑑 (𝜃)
𝑃𝑏𝑎𝑑 (𝜃)

, (5)

where 𝑃𝑔𝑜𝑜𝑑 is the probability that 𝜃 is in the good group, 𝑃𝑏𝑎𝑑 is the 
probability that 𝜃 is in the bad group and 𝜃 represents the hyperparam-
eter set.

Table 5 details the search space and the optimal architecture of the 
proposed model that includes the number of neurons in the input layer 
and hidden layers, batch size, number of epochs, activation function, 
optimizer, learning rate and the parameters of the backpropagation al-
gorithm (𝛽1, 𝛽2 and Epsilon) for the four selected sites. The input layer 
of DNN architecture was selected using the dual-phase feature selection 
approach. To achieve a deep architecture of DNN, four hidden layers 
were utilized. The output layer was assigned a single neuron to gener-

ate the predicted UVI. While we selected a good learning rate of 0.001, 
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Table 5

Optimal architecture of the hybrid explainable EJH-X-DNN model and the competing counterparts designed to generate 
hourly ahead UVI forecasts.

Predictive 
Models

Hyperparameters Search Space Optimal Hyperparameters

Darwin Alice Springs Townsville Emerald

EJH-X-DNN Input neurons [100, 110, 120] 100 120 100 110
Hidden neurons 1 [70, 80, 90] 70 70 90 90
Hidden neurons 2 [40, 50, 60] 60 60 40 40
Hidden neurons 3 [20, 25, 30] 20 25 30 20
Hidden neurons 4 [5, 10, 15] 10 10 15 15
Batch size, Epochs [200, 300], [150, 200] 200, 150 200, 150 200, 200 200, 200
Activation function [ReLU] ReLU
Optimizer, Learning rate [Adam], [0.001] Adam, 0.001
𝛽1, 𝛽1, Epsilon [0.9], [0.999], [1×10−10] 0.9, 0.999, 1×10−10

EJH-FCN Filters 1 [50, 80, 100] 80 100 80 50
Filters 2 [40, 50, 60] 50 40 60 50
Filters 3 [20, 30, 40] 30 40 30 40
Batch size, Epochs [200, 300], [150, 200] 300, 150 200, 150 200, 200 200, 150
Activation function [ReLU] ReLU
Optimizer, Learning rate [Adam], [0.001] Adam, 0.001
𝛽1, 𝛽1, Epsilon [0.9], [0.999], [1×10−10] 0.9, 0.999, 1×10−10

EJH-ANN Input neurons [100, 110, 120] 100 110 110 100
Hidden neurons [30, 40, 50] 40 50 50 40
Batch size, Epochs [200, 300], [150, 200] 200, 200 300, 200 200, 200 300, 200
Activation function [ReLU] ReLU
Optimizer, Learning rate [Adam], [0.001] Adam, 0.001
𝛽1, 𝛽1, Epsilon [0.9], [0.999], [1×10−10] 0.9, 0.999, 1×10−10

EJH-MLP Hidden layer sizes [30, 50, 80] 50 80 80 80
Learning rate init [1×10−5, 1.5×10−5] 1.5×10−5 1.5×10−5 1.5×10−5 1.5×10−5

Maximum iteration [1000, 2000, 3000] 3000 3000 3000 3000
Tol [1×10−8, 1.5×10−8, 2×10−8] 1×10−8 1.5×10−8 1.5×10−8 2×10−8

Activation function [ReLU] ReLU
Solver, Alpha [Adam] , [0.0001] Adam, 0.0001
𝛽1, 𝛽1, Epsilon [0.9], [0.999], [1×10−10] 0.9, 0.999, 1×10−10

EJH-AB n estimators [100, 200, 300] 100 100 200 200
Learning rate [1.0, 1.5, 2.0] 1.0 1.0 1.0 1.0
Loss [linear] linear

EJH-SGD Eta0 [0.01, 0.02, 0.03] 0.03 0.03 0.02 0.03
Power_t [0.25, 0.30, 0.35] 0.25 0.25 0.25 0.25
Maximum iteration [500, 1000, 1500] 1000 1500 1500 1000
Tol [0.001, 0.002, 0.003] 0.002 0.001 0.001 0.001
Alpha [0.0001] 0.0001

EJH-DT Minimum samples split [2, 4, 6] 6 6 4 6
Maximum depth [5, 10, 15] 5 15 5 10
Minimum samples leaf [1, 5, 10] 5 10 10 10
Maximum features [‘auto’, ‘sqrt’, ‘log2’] ‘auto’
the activation function was selected as ReLU. To further handle the is-
sue of over-fitting, an early stopping technique was employed through 
monitoring the model performance during the validation phase. The 
BO algorithm was also implemented to tune the hyperparameters of the 
counterpart models, for which the search details and optimized archi-
tectures are described in Table 5.

3.6. Model performance criteria

The study applied a range of performance metrics for rigorous eval-
uation of the newly constructed EJH-X-DNN model against the bench-
marked models in forecasting hourly ahead UVI for the four Australian 
sites. The set of these statistical metrics includes Pearson’s Correlation 
Coefficient (r), Mean Absolute Error (MAE), Root Mean Squared Error 
(RMSE) and the Legate-McCabe Efficiency Index (LME) [23,61]. Math-
ematically, these metrics can be represented as:

𝑟 =

∑𝑁

𝑖=1

(
𝑈𝑉 𝐼𝑂

𝑖
−𝑈𝑉 𝐼

𝑂
)(

𝑈𝑉 𝐼𝐹
𝑖
−𝑈𝑉 𝐼

𝐹
)

√∑ (
𝑂
)2

√∑ (
𝐹
)2

, (6)
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𝑁

𝑖=1 𝑈𝑉 𝐼𝑂
𝑖
−𝑈𝑉 𝐼

𝑁

𝑖=1 𝑈𝑉 𝐼𝐹
𝑖
−𝑈𝑉 𝐼
𝑅𝑀𝑆𝐸 =

√√√√ 1
𝑁

𝑁∑
𝑖=1

(𝑈𝑉 𝐼𝑂
𝑖
−𝑈𝑉 𝐼𝐹

𝑖
)2, (7)

𝑀𝐴𝐸 = 1
𝑁

𝑁∑
𝑖=1

|||𝑈𝑉 𝐼𝑂
𝑖
−𝑈𝑉 𝐼𝐹

𝑖

||| , (8)

and

𝐿𝑀𝐸 = 1 −

∑𝑁

𝑖=1
|||𝑈𝑉 𝐼𝑂

𝑖
−𝑈𝑉 𝐼𝐹

𝑖

|||∑𝑁

𝑖=1
||||𝑈𝑉 𝐼𝑂

𝑖
−𝑈𝑉 𝐼

𝑂||||
, (9)

where 𝑁 is the total number, 𝑈𝑉 𝐼𝑂
𝑖

and 𝑈𝑉 𝐼𝐹
𝑖

are observed and fore-

casted UVI for the 𝑖𝑡ℎ observation, 𝑈𝑉 𝐼
𝑂

and 𝑈𝑉 𝐼
𝐹

are average 
observed and average forecasted UVI. The values of r range between 
-1 to +1, where the two extremes are ideal values. The error values of 
MAE and RMSE range from 0 to ∞, where 0 and ∞ imply a perfect fit 
and worst fit, respectively. The LME can robustly address the predictive 

limitations and it ranges between 0 to 1, where 1 is an ideal value.
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3.7. Explainability of model outcomes

In the next stage, xAI-based model-agnostic tools were exploited to 
explain the predictions of the newly designed EJH-X-DNN model for the 
four hotspots. To extract local explainability, the LIME algorithm was 
applied to reveal the instance-based local impact of respective predictor 
variables fed in the UVI simulating system. To obtain global explainabil-
ity, the SHAP and PFI tools were applied.

3.8. xAI-based local interpretable model-agnostic explanations (LIME)

The LIME algorithm is an eminent xAI tool that efficiently explains 
the predictions of a regression or classification “black-box” model by 
approximating it locally with a surrogate interpretable model [62]. 
To generate model explanations, LIME supports three formats of input 
datasets that include image, text and tabular data [63]. For the current 
study, LIME is applied with a tabular data format to derive local inter-
pretability. The model explanations offered by LIME allow the end users 
to understand and interpret the predictive decisions. The LIME-defined 
explanation [64] is given as:

𝜉(𝑥) = argmin
𝑔∈𝐺

(𝑓, 𝑔, 𝜋𝑥) + Ω(𝑔), (10)

where 𝑓 denotes the explained black-box model, 𝜋𝑥 is the proximity 
measure defining the neighborhood size around instance 𝑥, 𝐺 represents 
the set of interpretable models, (𝑓, 𝑔, 𝜋𝑥) is the measurement of the un-
faithfulness of explanation model 𝑔 in approximating prediction of the 
original black-box model 𝑓 , and Ω(𝑔) component measures the com-
plexity of the explanation for all 𝑔 ∈ 𝐺. The first goal is to have a low 
Ω(𝑔) component so that the model is simple enough to offer better in-
terpretability. The second and major goal is to minimize the (𝑓, 𝑔, 𝜋𝑥)
component to achieve an interpretable approximation of the original 
reference model.

LIME enumerates local explanations that highlight the contribution 
of individual feature variables toward the black-box prediction of a sam-
ple data [16]. In accomplishing this, LIME replicates the feature data by 
perturbing the input observations several times, thereafter generating a 
prediction with the black-box model based on the perturbed data. By 
benchmarking the perturbed data with the original data point, LIME de-
termines the Euclidean distance between them. Finally, LIME uses the 
calculated distance of the original observation from the perturbed data 
point and indicates which input features are useful for the black-box 
model in generating predictions.

3.9. xAI-based Shapley additive explanations (SHAP)

SHAP algorithm robustly extracts global explanations in terms of 
interactions and influences of the feature variables on decisions of a 
black-box model in delivering predictions [65]. For this purpose, the 
SHAP tool is deployed to enhance the global interpretability of the 
UVI predictive framework. The foundation of SHAP is derived from the 
concept of Shapley value in game theory, which has a major goal of 
fairly distributing the players’ contributions in achieving a particular 
outcome collectively [66,67]. Similarly, Shapely values can be applied 
in black-box models, to quantify the contribution of individual predic-
tor variables for generating predictions. For a given predictor, 𝑋𝑗 in a 
black-box model, the SHAP value [66,65] is given as:

𝑆ℎ𝑎𝑝𝑒𝑙𝑦(𝑋𝑗 ) =
∑

𝑆⊆𝑁∖{𝑗}

𝑘! (𝑝− 𝑘− 1)!
𝑝!

(𝑓 (𝑆 ∪ {𝑗}) − 𝑓 (𝑆)) , (11)

where 𝑁∖{𝑗} defines the set of all possible combinations of feature vari-
ables excluding 𝑋𝑗 , 𝑆 represents a feature set in 𝑁∖{𝑗}, 𝑝 denotes the 
total number of features, 𝑓 (𝑆) represents the black-box model predic-
tion with features in 𝑆 and 𝑓 (𝑆 ∪ {𝑗}) represents the black-box model 
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prediction with both features in 𝑆 and feature 𝑋𝑗 . The 𝑆ℎ𝑎𝑝𝑒𝑙𝑦(𝑋𝑗 )
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represents the SHAP value of a feature, which is the weighted aver-
age of the marginal contribution over all possible models with different 
combinations of feature variables [66]. Though SHAP takes up some 
computational time in executing, the process utilizes all the subsets 
of the input data to deliver consistent, transparent and more accurate 
global interpretations. For the purpose of this study, a skillful kernel 
explainer was utilized while implementing the SHAP algorithm to re-
veal the impact of the predictor variables on the overall decisions and 
predictions of the proposed hybrid explainable model.

3.10. Permutation feature importance (PFI)

PFI is another effective xAI tool that is model-agnostic and offers 
global explanations for the black-box processes in generating predic-
tions. Basically, the PFI is determined by permuting the values of a 
predictor variable 𝑖, followed by the calculation of the increment in 
prediction error due to this permutation [28]. The PFI score (PFI𝑠) is 
given as:

𝑃𝐹𝐼𝑠 = 𝑒𝑝 − 𝑒𝑜, (12)

where 𝑒𝑜 is the estimated original model error and 𝑒𝑝 is the calculated 
new error after permuting the values of the feature variable 𝑖. A feature 
with a large PFI score has a higher influence on the model’s predictions. 
PFI can be executed with different error functions, yet the common ones 
are mean absolute error (MAE) and root mean square error (RMSE) [28,
68]. For this study, PFI is applied with an error function of MAE to 
globally explain the decisions of the DL UVI predictive system.

4. Results

This section consolidates the extensive performance evaluation and 
model-agnostic explanations of the prescribed EJH-X-DNN model to 
demonstrate the superiority of the proposed UVI forecasting tool against 
six benchmarked models that include EJH-FCN, EJH-ANN, EJH-MLP, 
EJH-AB, EJH-SGD and EJH-DT. To appraise the merits of the proposed 
model based on the statistical score metrics described in (6)-(9) and vi-
sual plots, all models were meticulously assessed for generating hourly 
horizon forecasts using the testing datasets for four solar-rich hotspots 
in Australia. Table 6 enumerates the testing phase performance of the 
EJH-X-DNN model against the comparative counterparts for all four 
sites. Almost all the experimentally captured modeling statistics reveal 
that the objective model outperforms the competing counterpart mod-
els in forecasting UVI with the highest Pearson’s correlation coefficient 
(r), lowest root mean square error (RMSE) and lowest mean absolute 
error (MAE) for all four hotspots. The proposed model demonstrates 
superior forecasting capability for each of site by yielding the highest 
accuracies (i.e. r = 0.897 - 0.960; RMSE = 1.071 - 1.638; MAE = 0.633 
- 1.081) against its counterparts (i.e. r = 0.842 - 0.954; RMSE = 1.139 -
2.025; MAE = 0.682 - 1.641). We aver that our hybrid explainable EJH-
X-DNN model approaches the best predictive precision by capturing r
values that approach 1, RMSE values that approach 0 and MAE values 
that approach 0 as well.

The assessment of the newly constructed EJH-X-DNN model using 
the most stringent performance indicator of the Legate-McCabe Effi-
ciency Index (LME) further revealed its outstanding performance in 
Fig. 5. For almost all the hotspots, the objective model yields the highest 
values of LME (i.e. LME = 0.652 - 0.804) and outshines the compara-
tive models (i.e. LME = 0.466 - 0.789). Having captured the highest 
LME statistics indicates that the proposed model exhibits the lowest 
stringent errors in forecasting short-term UVI.

Consequently, the xAI-inspired model-agnostic tools were applied to 
robustly offer explanations on the predictive contributions of the input 
variables that included satellite-derived predictors, ground-based pre-
dictors and the antecedent lagged memory of UVI. The satellite-derived 

xAI inputs for this research include cloud cover effects (i.e. CAFHC, 
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Table 6

Testing phase performance of the newly designed EJH-X-DNN model against the counterpart models in terms of correlation 
coefficient (r), root mean square error (RMSE) and mean absolute error (MAE) in forecasting hourly ahead UVI for the four sites.

UVI Forecast 
Model

Darwin Alice Springs Townsville Emerald

r 𝑀𝐴𝐸 𝑅𝑀𝑆𝐸 r 𝑀𝐴𝐸 𝑅𝑀𝑆𝐸 r 𝑀𝐴𝐸 𝑅𝑀𝑆𝐸 r 𝑀𝐴𝐸 𝑅𝑀𝑆𝐸

EJH-X-DNN 0.900 1.638 1.081 0.960 1.071 0.633 0.897 1.601 1.068 0.913 1.359 0.883
EJH-FCN 0.889 1.865 1.239 0.950 1.273 0.809 0.872 1.840 1.342 0.906 1.462 1.036
EJH-ANN 0.898 1.659 1.069 0.954 1.139 0.682 0.891 1.675 1.114 0.903 1.473 0.930
EJH-MLP 0.888 1.729 1.133 0.950 1.179 0.704 0.871 1.777 1.271 0.878 1.631 1.112
EJH-AB 0.871 1.966 1.598 0.910 1.872 1.569 0.842 2.025 1.641 0.864 1.771 1.410
EJH-SGD 0.889 1.713 1.138 0.947 1.214 0.757 0.866 1.798 1.315 0.870 1.658 1.170
EJH-DT 0.882 1.776 1.177 0.946 1.228 0.708 0.869 1.793 1.262 0.875 1.701 1.040
Fig. 5. Rader plot of the Legate-McCabe Efficiency Index (LME) elucidating 
the performance of the newly designed EJH-X-DNN model (M1) alongside the 
competing benchmarked models of EJH-FCN (M2), EJH-ANN (M3), EJH-MLP 
(M4), EJH-SGD (M5), EJH-AB (M6) and EJH-DT (M7) in forecasting UVI for the 
four selected sites.

CAFMC and CAFLC), aerosol scattering (i.e. TAS and TAAP), ozone ef-
fect (i.e. TCO), dust particles (i.e. DS) and water vapor (i.e. TPWV). 
Other xAI inputs include the ground-based predictor of solar zenith an-
gle (i.e. SZA) and the antecedent lagged memory of UVI at lags of 𝑡 -
1, 𝑡 - 2, 𝑡 - 3 and 𝑡 - 4 (i.e. PACF1, PACF2, PACF3 and PACF4) for all the 
selected sites.

To retrieve the local explanations on the predictions of the hybrid 
explainable model, the study applied an elegant LIME model-agnostic 
framework. In this study, the number of LIME-explainable instances 
was equal to the number of hourly UVI datum points in the testing 
data series that ranged from instance 0 to instance 5815. For the pur-
pose of visualization, the LIME-generated local explainability analysis 
on instance-based prediction is displayed in Fig. 6 for instance 25 and 
instance 175. The local interpretability presented with the aid of bar 
graphs reflects individual feature contributions towards the forecast-
ing of these instances for the four Australian hotspots that have high 
ground-level UV exposures. On the bar graphs, the y-axis displays the 
features with corresponding feature values, while the x-axis shows the 
relative strengths of individual features in terms of their numerical con-
tributions. The attributes that have increased or supported the predicted 
value of the UVI forecast are emphasized in green. Conversely, the 
attributes that have decreased or negatively impacted the predicted in-
stance are highlighted in red. Additionally, the predicted value of UVI

is represented on a bar in orange color.
The comparisons of LIME outputs at instance 25 and instance 175 

for the Darwin, Alice Springs and Townsville sites in Fig. 6 (a)-(c) reveal 
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that the feature attributes of PACF1 and SZA are the major contributors 
towards the outcome of UVI forecasting. However, for the Emerald site 
in Fig. 6 (d), PACF1 is the major contributor in predicting UVI for both 
instances. Moreover, SZA shows a positive effect on UVI predictions for 
all four hotspots. It is also observed that PACF1 has contributed pos-
itively for most instances, except for instance 175 of the Darwin site 
and instance 25 of the Emerald site, where the predictive contribu-
tions were negative. As per the LIME values presented on the x-axis, 
PACF1 is the largest predictive contributor at instance 175 for the Al-
ice Springs and Emerald site where PACF1 > 6.38 strongly envisages the 
outcome of the UVI forecast. However, as per instance 25 of Emerald 
site where 1.52 < PACF1 < 3.71, it has the highest negative effect on this 
predictive outcome. SZA is shown to be largely responsible for the pre-
diction outcomes for both instances at the Darwin site. At this site, SZA 
> 30.21° highly favors the prediction outcome. Other predictors that 
include TCO, PACF3, TPWV, CAFMC and CAFHC also displayed sig-
nificant predictive contributions at different sites. The overall outputs 
of the LIME tool offer substantial instance-based local interpretations 
that can boost the trustworthiness of the hybrid explainable EJH-X-DNN 
model.

For extracting the global explanations on the entire predictions of 
the hybrid explainable model, the study applied a classic SHAP model-
agnostic framework. The SHAP feature importance bar plots presented 
on the left-hand side in Fig. 7 illustrate the mean absolute Shapley val-
ues of individual features on the x-axis and the ranked input features 
on the y-axis. These attributes are ranked by prioritizing the features 
with larger absolute Shapley values. The SHAP summary violin plots 
presented on the right-hand side in Fig. 7 display the feature effects 
of the ranked attributes based on the feature importance. In outlining 
the violin plot, each instance equal to the number of hourly UVI datum 
points in the testing data series is plotted with the corresponding Shap-
ley value for each feature attribute on the x-axis against ranked input 
features on the y-axis. The feature value at each instance is denoted by 
different colors with pink and light blue representing high and low fea-
ture values, respectively. The higher feature values of all the predictor 
variables denoted in pink imply positive Shapley values that highly con-
tribute towards the outcome of UVI prediction. In contrast, the lower 
feature values shown in light blue have negative Shapley values that do 
not favor the outcome of predicted UVI.

The inforgraphics presented in Fig. 7 reveals that PACF1 and SZA 
have the most impact on the outcome of the UVI forecast for all four 
Australian hotspots. For the Darwin site in Fig. 7 (a), SZA contributes 
more than PACF1 towards the predictive outcome on the Shapley scale. 
However, PACF1 is more dominant in impacting the outcome of pre-
dicted UVI for the Alice Springs, Townsville and Emerald hotspots in 
Fig. 7 (b)-(d). For these highly impactful predictors, the higher fea-
ture values in pink favor the outcomes of UVI predictions, while those 
in light blue with lower values of features do not favor the predicted 
outcomes. Together with PACF1 and SZA, other influential attributes 
on UVI predictions include TCO, PACF3, TPWV, PACF2, CAFMC and 
CAFLC for most sites. It is further observed that the importance of 
the DS attribute is negligible on the SHAP summary plots for all four 

hotspots. Further descriptions of the variations in model predictions 
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Fig. 6. LIME explanation bar plots at (i) instance 25 and (ii) instance 175 for the sites (a) Darwin, (b) Alice Springs, (c) Townsville and (d) Emerald, where the green 
bars indicate that the features have a positive impact on the model (increase the model score) and the red bars indicate that the features have a negative impact on 
the model (decrease the model score).
with respect to the feature importance values and respective feature in-
12

teractions can be obtained using a SHAP dependence plot.

The SHAP dependence plots shown in Fig. 8 can help understand 
the marginal effect of two attributes on the predicted outcome of the hy-
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Fig. 7. SHAP feature importance bar plots and SHAP summary violin plots for the sites (a) Darwin, (b) Alice Springs, (c) Townsville and (d) Emerald.
brid explainable EJH-X-DNN model. For the purpose of this study, these 
plots were utilized to explore the testing phase interactions between 
the most influential predictor variables i.e. PACF1 and SZA towards the 
model prediction outcomes. For the Darwin hotspot, the SHAP depen-
dence plot in Fig. 8 (a) reveals that the predicted values of UVI are 
more likely to be favored when SZA < 47° and PACF1 values are high. 
In the case of the Alice Springs site, the SHAP dependence plot in Fig. 8
(b) indicates that with SZA < 52° and high values of PACF1, it is more 
likely that the predicted UVI values are favored. Similarly, interactions 
between these two features in Fig. 8 (c) show that the predicted UVI

values are more likely to be favored at high values of PACF1 and SZA 
< 36° for the Townsville site. Moreover, the predicted UVI values for 
the Emerald hotspot in Fig. 8 (d) are more likely to be favored when 
SZA < 46° and PACF1 values are high. For all the sites, it is observed 
that the feature interactions between the two most influential predictor 
13

variables of SZA and PACF1 highly favor the prediction outcomes of the 
proposed EJH-X-DNN model at lower values of SZA and higher values 
of PACF1.

For further veracity and comparisons of the global interpretable re-
sults generated by SHAP, a prominent PFI model-agnostic framework 
was applied. The PFI bar plots presented in Fig. 9 rank the predictor 
variables with respect to their PFI values and illustrate that SZA and 
PACF1 are the most influential attributes in impacting the prediction 
outcomes of the newly developed EJH-X-DNN model. It is observed that 
the results of the PFI bar plots and the SHAP summary plots (Fig. 7) are 
almost in conformity. According to the PFI plots, Fig. 9 (a) and Fig. 9 (c) 
reveal that the most impactful features for the Darwin and Townsville 
site are SZA and PACF1, while TAS and DS have very less impact on 
the prediction outcome. Fig. 9 (b) shows that PACF1 and SZA are the 
most influential predictor variables, while TAAP has the least influence 
in predicting UVI for the Alice Springs hotspot. For the Emerald hotspot 

in Fig. 9 (d), PACF1 and SZA are the most important attributes in gen-
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Fig. 7. (continued)
erating UVI prediction outcomes, while TAAP and DS show the lowest 
importance. The implementation of the PFI model-agnostic tool along 
with the SHAP framework offers more reliable and in-depth global ex-
planations of the UVI prediction outcome by the proposed model for 
the usefulness of the end-users.

5. Discussion

The artificial intelligence predictive system designed in this study ro-
bustly forecasts short-term UVI to demonstrate its efficacy as a decision 
support tool that can deliver more accurate sun-exposure information 
to the public and help mitigate UV radiation-associated skin diseases 
and eye health ailments. The performance evaluation aptitudes, such 
as those illustrated in Table 6 and Fig. 5 offer compelling evidence to 
establish the hybrid explainable EJH-X-DNN model as a credible UVI

forecasting system for all four Australian hotspots that are exposed 
14

to high ground-level UV radiation. Alongside the comparative mod-
els, the proposed model is the most superior forecasting framework 
as its assessment demonstrates high-performance efficiencies with all 
the performance measurement criteria. After testing on four different 
datasets of Darwin, Alice Springs, Townsville and Emerald hotspots, we 
further assert that the prescribed model exhibits remarkable forecast-
ing stability as it captured the lowest error values of RMSE and MAE on 
almost all four datasets. Though the proposed model outperformed the 
benchmarked models for all four sites, it delivered the best site-based 
performance for the Alice Springs hotspot. The site-to-site variations in 
performance are largely led by the intermittent and stochastic nature 
of the cloud cover effects. For instance, the evaluation outcomes of the 
Darwin site have recorded slightly better MAE and LME values by the 
EJH-ANN model while the r and RMSE values are dominated by the 
proposed EJH-X-DNN model. Despite these subtle variations in perfor-
mance, all other captured aptitudes affirm the prescribed model as the 

best overall performer in forecasting hourly ahead UVI for the four sites.
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Fig. 8. SHAP dependence plots for interaction between SZA and PACF1, which are the most important features in the UVI forecasting framework for (a) Darwin, (b) 
Alice Springs, (c) Townsville and (d) Emerad.
Though the outcomes of the newly designed EJH-X-DNN model are 
promising, this study employed the xAI tool to further expand the mod-
el’s transparency and reliability for its practical applications. According 
to the literature, some previous studies have developed AI-based ML 
and DL models to forecast solar UVI for different sites [14,5,27,15]. 
However, it is evident that none of the previous studies have designed a 
UVI forecasting system by integrating the xAI tool to explain the predic-
tive outcomes of their models. Thus, by applying a model-agnostic xAI 
approach to offer the predictive explanations of the proposed DL “black-
box” model, the current research fills this gap in the literature. Through 
the applications of xAI in this study, the “black-box” model interpreta-
tions of the decisions taken in simulating UVI forecasts were obtained 
both in terms of local and global explanations. [69] proposed the ap-
plications of the fascinating LIME, SHAP and PFI algorithms to extract 
local and global post-hoc explanations based on the input perturbations 
using a classification-based predictive model to classify oropharyngeal 
cancer. The current study also applied the xAI frameworks of LIME, 
SHAP and PFI, but with a major focus on explaining a forecasting-based 
model in predicting hourly horizon UVI.

The advantage of applying LIME is its ability to offer instance-based 
model explanations for the time-series UVI forecasting system devel-
oped in this study. LIME has the capacity to obtain better coverage 
values in terms of weighted sums so that the end users could easily 
comprehend how the predictions are made for each instance [17,64]. 
The applications of SHAP and PFI framework are also highly beneficial 
as these tools provide global explanations of the newly designed UVI
15

forecasting system. The SHAP values based on coalitional game theory 
capture the mean marginal contribution of individual feature attributes 
to the single prediction made by a “black-box” model [69]. Here, the 
motivation for the approach is that the SHAP-extracted explainable out-
comes are statistically more reliable. For the purpose of this study, the 
SHAP xAI algorithm offers a complete explanation between the global 
average and the model output as the overall interpretation of the pre-
dicted UVI. Considering the PFI algorithm [28], this tool presents global 
explanations of the “black-box” model predictions by using the aggre-
gated importance scores to account for the impact of feature attributes 
on the entire performance of the prescribed UVI simulating system. 
The study applied both the SHAP and PFI frameworks, to generate re-
markable comparisons of the global explanations for the proposed UVI

predictive system for the four Australian hotspots.
The overall instance-based model explanations acquired using LIME 

indicate that PACF1 and SZA are the two major contributors towards 
predicting short-term UVI for all four Australian hotspots. Similarly, 
the outcomes of SHAP and PFI tools have revealed PACF1 and SZA 
as the most impactful predictor variables in generating UVI predictions 
for these four hotspots. Further model explainability extracted using the 
LIME, SHAP and PFI xAI frameworks show that the contribution of the 
DS feature variable towards UVI predictions is very low. This indicates 
that the scattering of solar UV radiation by the atmospheric dust par-
ticles has very less impact on ground-level UV radiation. The analysis 
of the SHAP summary and feature importance plots highlight that the 
effect of the TAS attribute is also significantly low on the model pre-
dictions for almost all the sites. In terms of the cloud cover effects, the 

attributes of CAFMC and CAFLC show some significant influence on the 
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Fig. 9. Permutation feature importance (PFI) bar plots for (a) Darwin, (b) Alice Springs, (c) Townsville and (d) Emerald.
forecasted UVI. It is known that the scattering by partial cloud cover 
may cause a sudden escalated spike in the stochastic UV, which can 
exceed nominal cloud-free surface solar UV radiation [5]. The SHAP 
summary and feature importance plots offer vivid global explanations 
of how each attribute impacts the model decisions in generating the 
predictive outcomes of the UVI forecasts. The global explainability out-
comes of the SHAP summary plots, together with the PFI results offer 
a generic overview of the ranked impacts that each feature has on the 
model forecasts.

The findings of forecasting performance and model explainability 
outcomes presented in this research have indicated remarkable practical 
applications of the newly designed EJH-X-DNN model to forecast short-
term UVI by replacing the previously used mechanistic measurement 
and deterministic modeling techniques. It is known that the traditional 
mechanistic method is highly constrained by the issue of accessibility 
for most remote regions, along with high installation, operation and 
maintenance costs [15]. The proposed hybrid explainable EJH-X-DNN 
model can robustly substitute the mechanistic approach as it is poten-
tially portable, cost-effective and user-friendly for the benefit of the 
end-users. Our proposed model can also substitute the conventional de-
terministic method that is constrained by the applications of assumed 
fixed initial conditions [5]. There are no assumed initial conditions be-
ing integrated into the architectural design of this hybrid explainable 
UVI forecasting framework.

The prescribed DL model trained with atmospheric variable datasets 
avers its practical utility in forecasting short-term UVI for most temper-
ate countries, particularly for remote regions. For instance, our model 
trained with cloud cover conditions datasets can overcome the com-
plex intermittency issue to successfully predict the cloud-affected UVI. 
It is known that the unbroken cloud cover condition attenuates the 
ground-level UVI by 50 to 60% and even more during precipitation [5]. 
However, under partial cloud cover conditions, the sudden spikes of 
scattered intermittent UV radiation are escalated above the nominal 
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cloud-free surface solar UV radiation. Due to the significant influence 
of stochastic cloud cover effects on the ground-level UVI, this study 
adopted a short-term forecasting horizon instead of a long-term to en-
sure that the escalated spikes of UV radiation are effectively captured. 
The proposed model is also trained with aerosol, ozone, dust scatter-
ing and precipitation datasets to enhance the forecasting capability and 
applicability of the hybrid explainable model for most geographical lo-
cations outside the range of the current ARPANSA network in Australia, 
as well as other temperate countries where the general public is at high 
risk of harmful UV exposure effects.

Considering the enhanced performance and ability to offer explain-
able outcomes, we have further exemplified the potential real-life appli-
cation of the proposed UVI forecasting system in Fig. 10. The predictive 
system works on online and offline modes to deliver short-term fore-
casted sun exposure information to the public at risk of UV exposure. 
The online system is a pre-trained EJH-X-DNN model that can integrate 
the new unlabeled datasets as inputs to forecast hourly ahead UVI. This 
early warning UV exposure tool can deliver the predictions in terms of 
low, moderate and high UVI, together with the evaluated aptitudes that 
present the predictive correctness in terms of r, MAE, RMSE and LME

on the user interface. The user interface can also offer local and global 
model-agnostic explanations to increase the reliability and trustworthi-
ness of model predictions. Through the offline framework, the proposed 
model can be continuously trained, fine-tuned and updated with the 
newly labeled datasets derived from the databases. The updated model 
via the offline framework can replace the pre-trained online model on a 
periodic basis to maintain robust and credible forecasting performance. 
Through further analysis of the user interface outputs, an expert end-
user (preferably a UV specialist or a forecaster) can provide real-time 
sun-protection behavior recommendations to the general public to miti-
gate UV-exposure-related eye and skin diseases, including skin cancers.

Most of the powerful AI-inspired technologies suffer from the fact 
that it becomes difficult to explain why a certain outcome was pre-
dicted. The robustness of the “black-box” models is affected by even 

the smallest perturbations in the input data that induce dramatic effects 
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Fig. 10. Flowchart with real-life application of the online and offline hybrid explainable EJH-X-DNN framework in generating short-term UVI forecasts.
on the output and lead to completely different results. This is relevant in 
virtually all critical domains that are constrained by poor data quality 
due to a lack of expected independent and identically distributed (i.i.d.) 
datasets [70,71]. These limitations also affect the sensitive medical do-
main where AI-based predictive models suffer from low data quality. 
Consequently, the demand for trustworthy medical AI capable of ex-
plaining the “black-box” model outcomes has escalated considerably. 
In this regard, the regulatory requirements for AI applications in the 
medical domain that impacts human life have now made it mandatory 
to provide model explainability through traceability, transparency and 
interpretability capabilities [70]. On the same notion, it is imperative 
to include the ethical and legal aspects in the context of future trust-
worthy medical AI, so that all future AI-derived solutions are ethically 
responsible and legally compliant [71]. Explainability and robustness 
can promote reliability and confidence in results and enable human 
experts to remain in control. It ensures that human intelligence is com-
plemented by artificial intelligence. For this purpose, the current study 
integrated remarkable xAI tools that enable the predictions of the newly 
designed DL “black-box” model to become more interpretable and trust-
worthy.

Though the newly constructed EJH-X-DNN model with satellite-
derived predictors, ground-based SZA and lagged memory of UVI de-
livers promising forecasting capability and model explanations, future 
research can further boost its performance by incorporating real-time 
sky images as features that depict the stochastic cloud movements. Us-
ing the sky images, the temporal intermittent cloud cover effects can 
be extracted by integrating the merits of convolutional neural networks 
(CNNs) in some future research. Moreover, this research is contextu-
alized primarily on short-term forecasting to successfully capture and 
predict the sudden escalated spikes of UV radiation. These spikes are 
led by partial cloud cover conditions that do not obscure the sun and 
can cause more severe skin damage with high risks of malignant ker-
atinocyte cancer. If an investigation in the context of long-term fore-
casting is deemed important, future research could consider re-training 
the EJH-X-DNN model on long-term datasets.

6. Conclusions

Erythemally-effective UV radiation poses harmful exposure risks 
that can cause severe skin diseases such as malignant keratinocyte can-
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cers and eye health ailments in humans. The engineering solutions pro-
vided by this study, in respect to developing an expert system that can 
deliver an accurate, reliable and trustworthy sun protection behaviour 
recommendations could be classified as an effective way to mitigate 
UV-exposure-related risks and provide benefits for the general public.

To address this serious issue, a hybrid explainable EJH-X-DNN 
model was constructed to forecast hourly ahead UVI for the four Aus-
tralian hotspots that included Darwin, Alice Springs, Townsville and 
Emerald. The model was successfully trained and tested on satellite-
derived and ground-based disparate datasets of the four sites. Through 
robust evaluation metrics and visual infographics, it was found that the 
prescribed model outperformed all the six benchmarked models in fore-
casting hourly UVI. The objective model displayed superior predictive 
performance for all four hotspots by capturing high values of r and LME

with lower error values (i.e. MAE and RMSE). Through dual-phase fea-
ture selection and hyperparameter optimization by BO, the prediction 
capability of the newly designed UVI forecasting system was further 
enhanced. The model-agnostic LIME tool successfully offered instance-
based local interpretations, while the SHAP and PFI frameworks were 
highly effective in delivering global explainability of UVI forecasts. In 
accordance with the combined interpretable outcomes of the local and 
global model-agnostic approaches, PACF1 (i.e. antecedent lagged mem-
ory of UVI at a lag of 𝑡 - 1) and solar zenith angle were found to be the 
major contributing predictor variables in forecasting short-term UVI for 
all four sites. It was also found that the feature attributes associated 
with ozone effects, cloud cover conditions and precipitation showed 
some significant impact on model predictions.

The newly designed hybrid explainable EJH-X-DNN model in this 
research can aid the end-users in decision-making to provide more ac-
curate, transparent and credible UVI exposure risk information to the 
general public. The performance superiority and trustworthiness of this 
intelligent framework can potentially extend its practical utility as an 
early warning tool for UV exposure through an online or mobile mode 
for most temperate countries. This may also be advantageous for users 
situated in remote locations outside the range of the current ARPANSA 
network.
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Appendix A. List of acronyms (Table A.1)

Table A.1

List of acronyms.

Acronym Definition

AB AdaBoost

AI Artificial Intelligence

ANN Artificial Neural Network

ARPANSA Australian Radiation Protection and Nuclear Safety Agency

AUD Australian Dollars

BO Bayesian Optimizer

CNN Convolution Neural Network

DL Deep Learning

DNN Deep Neural Network

DT Decision Tree

ELU Exponential Linear Unit

FCN Fully Convolutional Network

FFBPN Feed-Forward Back Propagation Network

GIOVANNI Goddard Online Interactive Visualization and Analysis Infrastructure

GPU Graphical Processing Unit

ICNIRP International Commission on Non-Ionizing Radiation Protection

LIME Local Interpretable Model-Agnostic Explanations

LME Legate-Mccabe Efficiency Index

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MERRA Modern-Era Retrospective Analysis for Research and Applications

ML Machine Learning

MLP Multilayer Perceptrons

NT Northern Territory

PACF Partial Autocorrelation Function

PFI Permutation Feature Importance

QLD Queensland

r Correlation

r Pearson’s Correlation Coefficient

r𝑐𝑟𝑜𝑠𝑠 Cross-Correlation Coefficient

ReLU Rectified Linear Unit

RF Random Forest

RMSE Root Mean Squared Error

SGD Stochastic Gradient Descent

SHAP Shapley Additive Explanations

SZA Solar Zenith Angle

TPU Tensor Processing Unit

UNEP United Nations Environment Programme

UV Solar Ultraviolet

UVI Ultraviolet Index

WHO World Health Organization

WMO World Meteorological Organization

xAI Explainable Artificial Intelligence
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