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1. INTRODUCTION 

A few years ago, my colleagues and I embarked on a journey that had multiple rationales 

and multiple outcomes. We had all been software developers at some point in our 

professional lives and we noticed a growing interest in the software developer community 

about so-called Agile methods, and eXtreme Programming (XP) in particular (Beck, 1999; 

Beck & Andres, 2005). None of us had explicitly applied these methods in the projects in 

which we had been a part, but we did have some other colleagues who had and still were. 

As academics, these Agile methods interested us because our developer colleagues were 

reporting significant benefits of using them. Many of the practices seemed to reflect the way 

these developers preferred to work and since traditional software development methods had 

a relatively low adoption rate, perhaps these new methods provided a more relevant 

approach. We also saw a research opportunity, a gap, with many practitioner reports but 

little academic research focussing on Agile methods. Another rationale was to build research 

capacity by mentoring young researchers in designing, conducting and reporting research. 

Our efforts culminated in a number of research outputs (Ally, Darroch & Toleman, 2005; 

Darroch, Toleman & Ally, 2004; Toleman, Ally & Darroch, 2004; Toleman, Ally & Darroch, 

2005; Toleman, Darroch & Ally, 2006) with several more still to be written. The research 

team has moved on and we may return to the original agenda when other circumstances 

change. However, my point in this article is not to describe or detail our research; that can 

be found in the articles referenced. The purpose of this article is to describe our research 

approach, which actually took on a form reminiscent of XP with its practices and problems. 

Did we start out to use a form of XP as our research approach? No, but it did seem to us 

that many of our research practices reflected XP practices. 

XP was originally centred on twelve core practices (Ally, Darroch & Toleman, 2005), also 

known now as Xp Xtudes, which guide the software development process (Table 1).  An 

updated version of XP is available (Beck, 1999) which is less restrictive in terms of defining 

practices, but the essential features and practices are still relevant.  These practices reflect 

the sentiment/intent of the twelve principles underpinning the Agile Manifesto. 

Table 1. XP Core Practices (Source: adapted from [7]) 
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 So how did our research approach match these practices? Below are each of the twelve core 

practices and a brief description of our how our approach matched or might be considered to 

match.  

2. The Planning Game 

Each week we met to plan or map out research activities for the following week. These 

meetings ranged up to one hour and included allocation of various research-related tasks 

including research design, data collection, data analysis and writing tasks. We always had 

XP Core Practices Description  

The Planning Game The customer decides on the functionality (called stories) 

to be implemented while the developers estimate the 

time required, and through negotiation, workloads for the 

next cycle (project-dependent but perhaps week) are 

planned.  

Small Releases Production software is released to customers regularly, 

usually weekly, but potentially daily.  

System Metaphor The team has an overarching view or model of the 

system being developed.  At the very least a common 

vocabulary is required. 

Simple Design Developers avoid unnecessary complication with respect 

to software architecture and coding, staying with the 

stories agreed with the customer each cycle. 

Test Driven 

Development 

Tests are written prior to code development. 

Design Improvement 

(was Refactoring) 

There is a process of continual improvement of the code 

as the developer’s understanding of the system grows.  

Functionality is not altered so all tests should still operate 

effectively.  

Pair Programming Two programmers collaborate on the same program code. 

.Every code fragment is developed by a team of two 

programmers sitting together working at the same 

workstation. There are two roles, namely, a driver 

controlling the mouse, keyboard or other input device to 

write the code and unit tests, and a navigator, observing 

and quality assuring the code, asking questions, 

considering alternative approaches, identifying defects, 

and thinking strategically. The partners are considered 

equals and will regularly swap roles and partners. 

Collective Code 

Ownership 

Developers were free to work on all code.  Any code may 

be changed provided it is done by pairs of developers, 

complying with coding standards and subject to a 

satisfactory run of all tests.   

Continuous Integration This involves the integration of new code into the project 

with consequential system building and testing. 

Sustainable Pace 

(was 40-Hour Work 

Week) 

Developers are restricted to about 40 hours of work per 

week.  

Whole Team 

(was On-site Customer) 

Customer availability in project gives developers 

continuous access thereby lessening the need for 

extensive requirements documents.  They can ask the 

customer about functionality, test cases, interfaces, etc, 

at any time.  

Coding Standards Coding standards are developed for each project.  Since 

code may be worked on by any programmer at any time, 

coding standards are essential and must be rigorous.  
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multiple projects in progress. There was no actual customer involved in these meetings. 

However, if one of our customers could be considered as an upcoming conference deadline 

or a book chapter or journal submission schedule, then they were certainly deciding on the 

‘functionality to be implemented’. Our outputs were not software systems but research 

reports and articles, and they needed to address the expectations of the various forums with 

which we engaged. Other customers could be our developer colleagues. Again these were 

not explicitly involved in our planning meetings but we did regularly make them aware of 

our research explorations. 

3. Small Releases 

Each week there was an expectation on each member of the team to undertake the tasks 

allocated. We built our research outputs in small manageable chunks, each of us 

concentrating on those aspects of the output that reflected our expertise. We could not say 

that we released our outputs to customers weekly, but we did communicate with developer 

colleagues regularly, sometimes informally and sometimes formally via an established 

‘Developers on the Downs’ group. Deliverables for conferences, books and journals were 

obviously less frequent than weekly, thank goodness! 

4. System Metaphor 

We did not really establish a system metaphor for our research approach. This is a not 

uncommon failing of XP projects. We did, however, establish a common vocabulary even 

becoming known in our academic department as ‘the Agile group’. In retrospect, XP itself, or 

some version of XP, might be considered the metaphor for our approach to research. 

5. Simple Design 

For several reasons we chose simple approaches to research design and methodology. Our 

first few studies, for example (Darroch, Toleman & Ally, 2004; Toleman, Ally & Darroch, 

2005) were reports on cases, some successful and others not so successful. Not all of the 

cases examined have been written up, for various reasons, which is perhaps typical of an 

Agile approach in itself. We also conducted designed experiments on pairing and pair 

programming (still to be reported) and even developed theoretical frameworks (Ally, 

Darroch & Toleman, 2005); Toleman, Ally & Darroch, 2004) relevant to Agile approaches to 

software development. In all these we avoided complexity and complication. Our goal was to 

produce research outputs that met the needs of our customers with the minimum of fuss. 

6. Test Driven Development 

Not all of our research outputs met the needs of customers the first time. Indeed some were 

rejected outright. However, we took each rejection as a message about the suitability of the 

research output for the intended audience and considered ways to improve the output for 

the next customer. No customers were happy the first time and if the reader is a software 

developer, then they will know this story well. 

7. Design Improvement 

Testing indicated design flaws in our outputs so improvements were necessary if we were to 

have eventual success. It has to be said that, at times, this testing did show some 

significant design faults but due to the simple designs chosen the correction was never a 

major concern. So far, every output has found a ‘home’. 

8. Pair Programming 
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We designed experiments to examine pairing and pair programming, thus far unpublished, 

and even enhanced an existing framework about pair programming success (Ally, Darroch & 

Toleman, 2005). Did we use pairing in our research? On a couple of occasions, we found it 

useful to allocate tasks to pairs. We even found situations where, as a group, we could 

achieve a level of knowledge and understanding about some issue better than as individuals. 

However, we did not apply pairing routinely to all tasks. Like the case of ‘system metaphor’, 

this is a not uncommon outcome for XP projects 

9. Collective Code Ownership 

We were free to work on any part of any research output at any time. Initially we used an 

approach that involved passing a token around so that we did not accidentally over-ride 

someone’s work. Later we used a central repository to house the various outputs in their 

various stages. However, contamination of output was rarely an issue because of the task 

allocation mechanism we used at planning meetings. Research these days is so rarely an 

individual pursuit. It is imperative that a system is in place to allow maximum involvement 

and activity at all phases in the projects. Would our system have worked so successfully in a 

larger team? Our team will never know as we never desire nor expect to be much bigger, 

but I am sure there are large research teams out there, particularly in biotechnology or 

laboratory experiment situations, where similar issues apply. 

10. Continuous Integration 

At times, we needed considerable and consolidated effort on a particular research output. 

This was over and above our usual tasks for the week and most often involved an afternoon 

or full day. We would use a computer linked to a projector and systematically review, 

evaluate and update a particular output for a specific purpose. Usually such efforts were 

driven by a pending (or overdue) deadline. 

11. Sustainable Pace 

With multiple conflicting requirements on our time, fitting our research into a typical 40-hour 

week was just not possible. Inevitably, we completed research tasks outside normal working 

hours, at night and on weekends; indeed I am writing this on the Monday of a long 

weekend. Most academic researchers will concur that research is so often the last thing that 

is done in a working week, after teaching and administration are completed (if they are ever 

completed either). However, in terms of some of the cases of XP use that we examined, our 

situation is no different to the developer. 

12. Whole Team 

The definition of a customer is perhaps the most problematic issue for my XP metaphor for 

our research approach. Whether the customer is a software developer or a publication 

outlet, they were certainly not continuously available. Sometimes that level of availability 

would have been extremely helpful and avoided the need for trips down many blind alleys 

but the reality of our situation was that this was not a possible scenario. 

13. Coding Standards 

Our coding standards evolved over time so that eventually our written work was receiving 

less criticism and was being accepted more readily. A major component of research is 

identifying that part of the research that is necessary and sufficient for the audience. 

Another is effectively communicating the findings. These coding standards help external 

communication as well as internal communication for the research group; we established a 

common vocabulary even becoming known for this in our academic department. 
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14. Conclusion 

We learned much conducting research on Agile methods and XP in particular. We learned 

about new approaches to software development, and about the people using the approaches 

and the situations in which they found themselves. We learned about designing, conducting 

and reporting research and about building a research agenda, and about ourselves, how we 

interacted within such an environment. 

Were we being Agile? I think so. In the sense of the dictionary meaning of ‘agile’ we were 

certainly active and lively in producing relevant outputs efficiently. Did we really follow the 

XP practices? Certainly some were more obviously visible than others but this seems to be 

the practitioner experience of XP use too. Was it a successful approach to research 

management? You can be the judge but my view, based on relevant research outputs and 

our original goals to target a research gap and build research capacity, is a firm yes. 
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