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Abstract

We have revisited the problem of anomalously diffusing species, modelled at the mesoscopic level

using continuous time random walks, to include linear reaction dynamics.

If a constant proportion of walkers are added or removed instantaneously at the start of each

step then the long time asymptotic limit yields a fractional reaction-diffusion equation with a

fractional order temporal derivative operating on both the standard diffusion term and a linear

reaction kinetics term. If the walkers are added or removed at a constant per capita rate during

the waiting time between steps then the long time asymptotic limit has a standard linear reaction

kinetics term but a fractional order temporal derivative operating on a non-standard diffusion term.

Results from the above two models are compared with a phenomenological model with standard

linear reaction kinetics and a fractional order temporal derivative operating on a standard diffusion

term.

We have also developed further extensions of the CTRW model to include more general reaction

dynamics.
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I. INTRODUCTION

Reaction-diffusion equations have been studied extensively as mathematical models of

systems with reactions and diffusion across a wide range of applications including; nerve

cell signalling, animal coat patterns, population dispersal, and chemical waves. The generic

form of these equations is [1]

∂n(x, t)

∂t
= D∇2n(x, t) + f(n(x, t)) (1)

where n is a vector whose components represent the numbers of a particular species per unit

volume. The first term on the right hand side accounts for the spatial diffusion of the species

and D is a diagonal matrix whose elements are the diffusivities of the different species. The

second term on the right hand side, a functional of n, accounts for ‘reactions’ that produce

or destroy species. This partial differential equation can be motivated by a mesoscopic

description based on a coarse grained representation of space with diffusion between cells

and reactions within cells [1]. The cells are considered to be arbitrarily small so that the

diffusion of reactants within cells is instantaneous. In this case the reactants within cells are

homogeously mixed and the production or destruction of particles in the cells is a reaction-

limited process that can be modelled according to the law of mass action. The characteristic

length scale `D and time scale τD for the mesoscopic description are defined relative to the

following physical scales: the characteristic size of a reaction zone δ`R; the characteristic

microscopic diffusion time for encounters between reactants δτD; the microscopic reaction

time δτR; the size of the domain L; the time scale of the experiment T . Explicitly (i)

δ`R � `D � L and (ii) δτD � δτR � τD � T . The length scale `D and the time scale τD

are both considered to be arbitrarily small but (in the case of standard Brownian motion)

`2D/τD is finite.

In this mesoscopic description the number density n(x, t) can be interpreted as an ensem-

ble average over many statistical realizations of the system [1] or as the number density for

a particular realization if the number density is sufficiently large. An underlying assumption

in the formulation of Eq.(1), is that the diffusion between cells is standard Brownian motion.

Over the past few decades an intensive effort has been put into developing theoretical

models for systems with diffusive motion that cannot be modelled as standard Brownian

motion [2–4]. The signature of this anomalous diffusion is that the mean square displacement

of the diffusing species, 〈(∆x)2〉, scales as a nonlinear power law in time, ie., 〈(∆x)2〉 ∼ tα.
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Faster than linear scaling (α > 1) is referred to as super-diffusion and slower than linear

scaling (0 < α < 1) is referred to as sub-diffusion. In recent years the additional motivation

for these studies has been stimulated by experimental measurements of sub-diffusion in

porous media [5], glass forming materials [6], biological media [7, 8], and Monte Carlo

studies of sub-diffusion in materials with trapping or binding sites [9]. One of the most

successful theoretical paradigms to emerge from this research has been fractional calculus

models for anomalous diffusion justified at a mesoscopic level by Continuous Time Random

Walks (CTRWs) [3, 4, 10]. In the CTRW model anomalous sub-diffusion arises when the

asymptotic long time limit of the waiting time probability density function is heavy tailed,

ie., ψ(t) ∼ t−α−1 with 0 < α < 1. The evolution equation for the concentration of non-

reacting species undergoing sub-diffusion can then be modelled using a fractional diffusion

equation which differs from the conventional diffusion equation in that it has a fractional

order temporal derivative acting on the spatial Laplacian.

In recent years reaction terms have been incorporated with anomalous sub-diffusion in the

CTRW-fractional calculus paradigm yielding so called fractional reaction-diffusion equations

[11–22]. Most of these studies posit a fractional order temporal derivative acting on the

spatial Laplacian with standard classical rate equations for the reaction terms [11–15, 18, 20–

23]. However some studies consider the fractional temporal order derivative to operate on

both the Laplacian and classical rate equation reaction terms [16, 17, 19]. These two models

produce very different Turing patterns in two species activator-inhibitor systems [24]. In the

absence of experimental results to validate either model we have been led to reconsider the

theoretical foundations of the models. Both models were obtained from balance equations

for CTRWs with source or sink terms. In the original model introduced by Henry and

Wearne [11] the source or sink term was convolved with the survival probability for random

walkers. The heuristic interpretation was that the concentration of walkers at x and t is

composed of walkers coming from other positions x′ at earlier times t′ < t, plus walkers that

were added by reactions at location x at earlier times t′ < t and then survived there, minus

walkers removed by reactions at location x at earlier times t′ < t that would otherwise have

survived at this location had they not been removed. The replacement of this source or sink

term with standard reaction rate kinetics (see e.g., [12, 14, 20, 22]) is then ad hoc. The

model introduced by Seki, Wojcik and Tachiya [16, 17] was for the particular problem of

geminate recombination and the extension to other reaction rate kinetics [19] is again ad
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hoc. Very recently, Sokolov, Schmidt and Sagués [25] revisted the problem of reactions with

sub-diffusion, and in the case of a monomolecular conversion A → B, they found that the

fractional reaction-diffusion equation includes the effects of the reactions in both an additive

reaction term and a non-standard diffusion term. The latter can not be represented by a

temporal fractional order derivative operating on a standard diffusion term.

Here we have revisited the CTRW model to allow for the addition or removal of species

via one of three different linear processes: (i) Walkers are added or removed via a source/sink

term with linear reaction rate kinetics in the generalized CTRW model introduced by Henry

and Wearne [11]. The long time asymptotic limit is a fractional reaction-diffusion equation

with standard linear reaction kinetics and a fractional order temporal derivative operating

on a standard diffusion term. (ii) A constant proportion of walkers is added or removed

instaneously at the start of each step. In this case the long time asymptotic description in

terms of fractional reaction-diffusion equations yields a fractional order temporal derivative

operating on both the diffusion term and a linear reaction kinetics term. (iii) Walkers are

added or removed at a constant per capita rate during the waiting time before a step is made.

Here the long time asymptotic limit in terms of fractional reaction-diffusion equations can be

represented with standard linear reaction kinetics but a fractional order temporal derivative

operating on a non-standard diffusion term.

A sub-diffusive CTRW model for case (ii) with a linear degradation term was considered

recently by Hornung, Berkowitz and Barkai [26]. Here we have formulated the CTRW in

terms of a fractional diffusion equation with a fractional order temporal derivative operating

on both the (Laplacian) diffusion term and the (linear) reaction term. In case (iii) we obtain

similar CTRW results to those recently reported by Sokolov, Schmidt and Sagués [25] but we

have represented the long time asymptotics by a fractional reaction diffusion equation with a

linear reaction term and a temporal order fractional derivative operating on a non-standard

diffusion term.

We have obtained explicit solutions for the three fractional reaction-diffusion equations

considered in these models. The different solutions are informative of different physical

processes involving anomalous diffusion with linear reaction dynamics.

The remainder of these notes are organized as follows. In section II we summarize the

CTRW formalism for (possibly anomalous) diffusion. Most of this material up to the formu-

lation of the master equation appears elsewhere but we have revisited it here to clarify the
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subsequent extension to include source and sink terms. In section III we introduce linear

reaction dynamics into the CTRW formalism according to the different processes outlined

above and we derive the appropriate fractional reaction-diffusion equations for the long time

asymptotic behaviour. In section IV we outline further extensions of the CTRW model to

include more general reaction dynamics. In section V we present explicit solutions of the

fractional reaction-diffusion equations resulting from the different linear models. In section

VI we discuss the results.

II. CONTINUOUS TIME RANDOM WALKS

The continuous time random walk (CTRW) was introduced by Montroll and Weiss [27],

and Scher and Lax [28], as a generalization of the standard random walk introduced by

Pearson in 1905 [29]. In Pearson’s formulation the random walk consists of a sequence of

equal length steps taken at regular time intervals. In the CTRW the waiting times between

successive steps and the length of the steps are both random variables with the associated

probability density Ψ(x, t) for the particle to step a distance x after waiting a time t. In

the original formulation by Montroll and Weiss [27] the walk was considered to have taken

place on a discrete lattice.

A fundamental quantity to calculate is the conditional probability density p(x, t|x0, 0)

that a walker starting from position x0 at time t = 0 is at position x at time t. First it is

useful to consider the conditional probability density qn(x, t|x0, 0) that a walker starting at

x0 at time zero arrives at position x at time t after n steps. This latter probability density

satisfies the recursion equation [28]

qn+1(x, t|x0, 0) =
∑

x′

∫ t

0

Ψ(x− x′, t− t′)qn(x′, t′|x0, 0)dt′ (2)

where Ψ(x − x′, t − t′) is the probability density that a random walker jumps a distance

x − x′ after waiting a time t − t′ in a single step. Note that the sum over x′ includes the

possibility x′ = x. The initial condition that the walker is at x0 at time zero,

q0(x, t|x0, 0) = δx,x0
δ(t), (3)

satisfies the normalization
∑

x′

∫ ∞

0

q0(x
′, t′|x0, 0)dt′ = 1. (4)
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The conditional probability density q(x, t|x0, 0) that a walker arrives at position x at time t

after any number of steps is given by

q(x, t|x0, 0) =

∞∑

n=0

qn(x, t|x0, 0). (5)

Note that we can write

∞∑

n=0

qn(x, t|x0, 0) = q0(x, t|x0, 0) +
∞∑

n=0

qn+1(x, t|x0, 0),

so that, after performing a summation over n, the recursion relation, Eq.(2), can be written

as [28, 30]

q(x, t|x0, 0) =
∑

x′

∫ t

0

Ψ(x′, t′)q(x− x′, t− t′|x0, 0)dt′ + δ(t)δx,x0
. (6)

In the remainder it is supposed that the probability density Ψ(x, t) decouples in space and

time, i.e.,

Ψ(x, t) = ψ(t)λ(x) (7)

where ψ(t) is the waiting time probability density given by

ψ(t) =
∑

x′

Ψ(x′, t) (8)

and λ(x) is the step length probability density given by

λ(x) =

∫ ∞

0

Ψ(x, t′)dt′. (9)

It is also useful to define the survival probability distribution Φ(t) that the walker does not

take a step in time interval t

Φ(t) = 1 −
∫ t

0

ψ(t′)dt′ =

∫ ∞

t

ψ(t′)dt′. (10)

The conditional probability density p(x, t|x0, 0) that a walker starting from the origin at

time zero is at position x at time t is equivalent to the probability density that the walker

arrived at x at any earlier time t′ and thereafter did not take a step, i.e., [27, 28, 30]

p(x, t|x0, 0) =

∫ t

0

q(x, t− t′|x0, 0)Φ(t′)dt′. (11)
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The results in Eq.(6) and Eq.(11) can be combined using Laplace transforms to yield the

master equation for the probability density p(x, t|x0, 0). The Laplace transform of Eq.(11)

yields

p̂(x, u|x0, 0) = q̂(x, u|x0, 0)Φ̂(u), (12)

and the Laplace transform of Eq.(6) yields

q̂(x, u|x0, 0) =
∑

x′

Ψ̂(x′, u)q̂(x− x′, u|x0, 0) + δx,x0
. (13)

We can combine these two results to obtain

p̂(x, u|x0, 0) =
∑

x′

Ψ̂(x′, u)Φ̂(u)q̂(x− x′, u|x0, 0) + Φ̂(u)δx,x0
,

=
∑

x′

Ψ̂(x′, u)p̂(x− x′, u|x0, 0) + Φ̂(u)δx,x0
. (14)

The inverse Laplace transform of Eq.(14) now yields the master equation [30];

p(x, t|x0, 0) = Φ(t)δx,x0
+
∑

x′

∫ t

0

p(x′, t′|x0, 0)Ψ(x− x′, t− t′)dt′. (15)

Most of the recent literature on CTRWs take Eq.(15), or the continuum version [31]

p(x, t|x0, 0) = Φ(t)δx,x0
+

∫ t

0

ψ(t− t′)

[∫ ∞

−∞

λ(x− x′)p(x′, t′|x0, 0) dx′
]
dt′. (16)

as the starting point for further analysis. For example Mainardi and co-workers [31] motivate

this equation on probability arguments with the interpretation that the first term expresses

the persistence of a walker at the initial position and the second term is the contribution

from a walker being at point x′ at time t′ and then jumping to x and t after waiting a time

t− t′.

It follows from Eq.(15), that if there is an initial concentration of c(x0, 0|x0, 0) random

walkers at x = x0 at time t = 0 and if these walkers do not interact then the expected

concentration c(x, t|x0, 0) at position x and time t is given by

c(x, t|x0, 0)

c(x0, 0|x0, 0)
= Φ(t)δx,x0

+
∑

x′

∫ t

0

c(x′, t′|x0, 0)

c(x0, 0|x0, 0)
Ψ(x− x′, t− t′)dt′. (17)

After multiplying by the initial concentration we have

c(x, t|x0, 0) = Φ(t)c(x0, 0|x0, 0)δx,x0
+
∑

x′

∫ t

0

c(x′, t′|x0, 0)Ψ(x− x′, t− t′)dt′. (18)
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Now suppose that we have a different initial concentration at each possible starting point

x0 and sum over all possible starting points then

∑

x0

c(x, t|x0, 0) =
∑

x0

Φ(t)c(x0, 0|x0, 0)δx,x0

+
∑

x′

∫ t

0

∑

x0

c(x′, t′|x0, 0)Ψ(x− x′, t− t′)dt′ (19)

= Φ(t)c(x, 0|x, 0) +
∑

x′

∫ t

0

∑

x0

c(x′, t′|x0, 0)Ψ(x− x′, t− t′)dt′. (20)

We now identify the number density

n(x, t) =
∑

x0

c(x, t|x0, 0) (21)

as the total expected concentration of walkers at position x and time t (independent of their

starting locations) and

n(x, 0) = c(x, 0|x, 0) (22)

as the initial concentration of walkers at x. The result in Eq.(20) can now be written as

n(x, t) = Φ(t)n(x, 0) +
∑

x′

∫ t

0

n(x′, t′)Ψ(x− x′, t− t′) dt′. (23)

III. CONTINUOUS TIME RANDOM WALKS WITH SUB-DIFFUSION AND

LINEAR REACTION KINETICS

In earlier work [11] we considered an extension of the conservation equation, Eq.(23) to

incorporate sources and sinks as follows;

n(x, t) = Φ(t)n(x, 0) +
∑

x′

∫ t

0

n(x′, t′)Ψ(x− x′, t− t′)dt′ +

∫ t

0

Φ(t− t′)s(x, t′) dt′. (24)

The heuristic interpretation of the additional source/sink term was that it represents the

net contribution to the concentration of walkers at x and t due to i) walkers added at x at

time t′ < t that then do not jump from x over the time (t − t′) and ii) walkers removed

at x at time t′ < t that would not otherwise have jumped from x during the time (t − t′).

Thus walkers with survival characteristics represented through Φ(t) are added or removed

from the system at a rate s(x, t). If the source/sink term arises from reactions among the

walkers, then it is tempting to replace s(x, t) with f(n(x, t)), the standard reaction rate
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kinetics from the law of mass action. However the resulting phenomenological model has

not been justified at the mesoscopic level of the random walks and the physical interpretation

is not clear. Nevertheless one of the appealing features of this model is that the asymptotic

long time limit yields a fractional reaction-diffusion equation [11] that only differs from the

standard reaction-diffusion equation through a fractional temporal order derivative operating

on the standard spatial Laplacian. This model can thus be derived phenomenologically from

the standard conservation law for reaction-diffusion processes [32] by replacing the general

flux transport with a fractional temporal order derivative operating on the gradient of the

concentration - a time fractional Fickian process [33]. Similarly the space fractional diffusion

equation [34] can be reconciled with a space fractional Fickian process [35]. In the models

below we have attempted to move beyond a phenomenological description by incorporating

the physical basis of the source/sink terms at the level of the random walks.

A. Instantaneous creation and annihilation processes

In this subsection we consider a simple extension of the standard CTRW model to include

the instantaneous addition or removal of a fixed proportion of the walkers at the start of the

waiting time before they take their next step. A sub-diffusive CTRW formulation of this

problem in the case of removals (physically representing the degradation of morphogens)

was considered recently by Hornung, Berkowitz and Barkai [26]. In the derivation below we

show that the CTRW for this problem can be formulated as a fractional reaction-diffusion

equation. One of the appealing features of this representation is that it provides a ready

comparison between standard reaction-diffusion equations and the corresponding problem

with anomalous diffusion. Another appealing feature is that standard mathematical methods

for partial differential equations and the mathematical tools of fractional calculus can be

employed to provide the asymptotic long time behaviour of this problem without further

approximation.

The probability density for walkers to arrive at position x at time t at the end of their

(n+ 1) th step, given that a fixed proportion are added or removed instantaneously (at the

start or end of the step), is now given by

qn+1(x, t) =

∫ t

0

∑

x′

(qn(x′, t′) ± kqn(x′, t′))ψ(t− t′)λ(x− x′) dt′. (25)
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Here we have increased (+) or reduced (−) the walkers that arrived after n steps by a

constant proportion k ∈ (0, 1). We could of course write r = (1 ± k) and then

qn+1(x, t) = r

∫ t

0

∑

x′

qn(x′, t′)ψ(t− t′)λ(x− x′) dt′. (26)

Similar to Eq.(6) we can now sum over n to obtain

q(x, t) = r
∑

x′

∫ t

0

ψ(t− t′)λ(x− x′)q(x′, t′) dt′ + δ(t)δx,x0
(27)

where we have included the initial condition that walkers are starting at x0.

We now consider the probability density for walkers to be at x at time t. This is given

by

p(x, t) = r

∫ t

0

Φ(t− t′)q(x, t′) dt′, (28)

i.e., the walkers at x at time t are those that arrived there at an earlier time t < t′ and

then did not jump away, increased or reduced by the constant fraction of arrivals that were

added or removed by the source/sink term. Note that in the case r = 1− k, Eq.(28) can be

written as [26]

p(x, t) =

∫ t

0

Π(t− t′)q(x, t′) dt′ (29)

with

Π(t) = 1 − (1 − k)

∫ t

0

ψ(t′) dt′ − k

∫ t

0

ψR(t′) dt′ (30)

and ψR(t) = δ(t). In this representation, ψR(t) is a degradation time density (taken to be

instantateous here) and k can be considered as the probability for degradation to occur,

so that Π(t) is the probability that the walker survives at position x and does not degrade

during the time interval t.

It follows from Eq.(27) that we can also write

p(x, t) = r

∫ t

0

Φ(t−t′)δx,x0
δ(t′) dt′+r2

∫ t

0

Φ(t−t′)
(
∑

x′

∫ t′

0

ψ(t′ − t′′)λ(x− x′)q(x′, t′′) dt′′

)
dt′

(31)

We can combine the results of Eq.(28) and Eq.(31) as in the derivation of the master equa-

tion, Eq.(15), to obtain

p(x, t) = rΦ(t)δx,x0
+ r

∑

x′

∫ t

0

p(x′, t′)ψ(t− t′)λ(x− x′) dt′. (32)
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Allowing for walkers starting from different initial positions and proceeding through steps

similar to those leading to Eq.(23) we have the following equation for the number density

n(x, t) = rΦ(t)n(x, 0) + r
∑

x′

∫ t

0

n(x′, t′)ψ(t− t′)λ(x− x′) dt′. (33)

The fractional reaction diffusion equation in Henry and Wearne [11] was derived after a

spatial Fourier transform and temporal Laplace transform of the master equation, Eq.(24),

with asymptotic expansions for small values of the Fourier and Laplace variables, followed

by inverse transforms using the definition of the Riemann-Liouville fractional derivative.

We follow this approach here starting with the new balance equation, Eq.(33). The Fourier-

Laplace transform of Eq.(33) with Fourier variable q and Laplace variable u yields

ˆ̂n(q, u) = rΦ̂(u)n̂(q, 0) + rψ̂(u)λ̂(q)ˆ̂n(q, u) (34)

The Laplace transform of the survival probability, Eq.(10), can be written as

Φ̂(u) =
1

u
− ψ̂(u)

u
(35)

and the small q asymptotic expansion of the step length density is given by

λ̂(q) ∼ 1 − q2σ2

2
+O(q4) (36)

with

σ2 =

∫
r2λ(r) dr (37)

finite. We can thus approximate Eq.(34) as

uˆ̂n(q, u) = r
(
1 − ψ̂(u)

)
n̂(q, 0) + ruψ̂(u)

(
1 − q2σ2

2

)
ˆ̂n(q, u). (38)

We now consider asymptotic small u results for a heavy tailed waiting time density

ψ(t) ∼ κ

τD

(
t

τD

)−α−1

(39)

that is characteristic of anomalous sub-diffusion (see e.g., [3]). In this expression K is a

dimensionless constant and τD is the characteristic mesoscopic time scale. The asymptotic

Laplace transform for this density function is obtained from a Tauberian (Abelian) theorem

[36, 37] as

ψ̂(u) ∼ 1 − κΓ(1 − α)

α
τα
Du

α. (40)
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The asymptotic results in Eqs.(39),(40) apply for times t � τD. We now substitute the

above expansion into Eq.(38) to arrive at

uˆ̂n(q, u) = r
κΓ(1 − α)

α
τα
Du

αn̂(q, 0) + ru

(
1 − κΓ(1 − α)

α
τα
Du

α

)(
1 − q2σ2

2

)
ˆ̂n(q, u) (41)

If we re-arrange this equation and retain only leading order terms then

uˆ̂n(q, u)− n̂(q, 0) = − α

κΓ(1 − α)τα
D

u1−α

(
1 − r

r
ˆ̂n(q, u) +

q2σ2

2
ˆ̂n(q, u)

)
. (42)

The above equation can also be derived without long time asymptotics in the special case

where the waiting time density is given by the derivative of a Mittag-Leffler function [38].

The inverse Laplace transform and inverse Fourier transform of Eq.(42) now yields

∂n

∂t
= D(α)D1−α∂

2n

∂x2
+

α

κΓ(1 − α)τα
D

(
r − 1

r

)
D1−αn (43)

where the diffusivity

D(α) =
σ2α

2κΓ(1 − α)τα
D

(44)

and we use the notation

D1−α [y(x, t)] =
∂1−α

∂t1−α
y(x, t) + L−1{ ∂

−α

∂t−α
y(x, t)|t=0}, 0 < α < 1 (45)

where
∂1−α

∂t1−α
y(x, t) (46)

is the Riemann-Liouville fractional derivative defined as the ordinary derivative of the

Riemann-Liouville fractional integral

D−α [y(x, t)] =
∂−α

∂t−α
y(x, t) =

1

Γ(α)

∫ t

0

y(x, t)

(t− s)1−α
ds, 0 < α < 1. (47)

Note that the operator Dγ has a different definition depending on whether γ is positive,

Eq.(45), or negative, Eq.(47) (see Appendix A). Note too that the inverse Laplace transform

of the fractional integral evaluated at time zero, which appears in the operator D1−α in

Eq.(45), will cancel in Eq.(43) if the method of Laplace transforms is applied to find the

solution.

The fractional reaction-diffusion equation, Eq.(43), has a fractional order temporal deriva-

tive operating on both the diffusion term and a linear kinetics reaction term. Before leaving

this section we note that Eq.(42) for the Fourier-Laplace representation of the CTRW is
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consistent with Eq.(10) in [26]. However after representing Eq.(40) by a fractional reaction-

diffusion equation in Eq.(43) we can find an explicit solution in this space-time domain

without further approximation (see Section V.). By comparison, the authors of [26] obtain

an approximate space-time representation of Eq.(10) (see section IV of [39]).

B. Non-instantaneous creation and annihilation processes

We now consider an extension of the CTRW model to include the addition or removal

of walkers at a constant per capita rate during the times that they wait before taking their

next step. The CTRW model in this case is similar to that recently formulated [25] for

monomolecular conversions. The probability density for arrivals at the end of the (n+ 1)th

step in this case is given by

qn+1(x, t) =

∫ t

0

∑

x′

(
qn(x′, t′)e±k(t−t′)

)
ψ(t− t′)λ(x− x′) dt′. (48)

The exponential factor accounts for the constant per capita increase (+) or decrease (−)

during time intervals t− t′. In the usual way after summing over n we have

q(x, t) =
∑

x′

∫ t

0

ψ(t− t′)λ(x− x′)q(x′, t′)e±k(t−t′) dt′ + δ(t)δx,x0
(49)

The probability for walkers to be at x at time t is now given by

p(x, t) =

∫ t

0

Φ(t− t′)q(x, t′)e±k(t−t′) dt′ (50)

=

∫ t

0

Φ(t− t′)e±k(t−t′)

(
∑

x′

∫ t′

0

ψ(t′ − t′′)λ(x− x′)q(x′, t′′)e±k(t′−t′′) dt′′

)
dt′

+

∫ t

Φ(t− t′)e±k(t−t′)δx,x0
δ(t′) dt′ (51)

= Φ(t)e±ktδx,x0
+
∑

x′

∫ t

0

p(x′, t′)e±k(t−t′)ψ(t− t′)λ(x− x′) dt′. (52)

The concentration balance equation in this case is

n(x, t) = Φ(t)e±ktn(x, 0) +
∑

x′

∫ t

0

n(x′, t′)e±k(t−t′)ψ(t− t′)λ(x− x′) dt′. (53)

and the Fourier-Laplace transform of the balance equation results in

ˆ̂n(q, u) = Φ̂(u∓ k)n̂(q, 0) + ψ̂(u∓ k)λ̂(q)ˆ̂n(q, u). (54)
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From the result in Eq.(35) we can re-write the above equation as

(u∓ k)ˆ̂n(q, u) =
(
1 − ψ̂(u∓ k)

)
n̂(q, 0) + (u∓ k)λ̂(q)ψ̂(u∓ k)ˆ̂n(q, u). (55)

In the case of anomalous sub-diffusion we use the asymptotic results in Eq.(36) and Eq.(40)

to obtain

uˆ̂n(q, u) − n̂(q, 0) = − α

κΓ(1 − α)τα
D

(u∓ k)1−α q
2σ2

2
ˆ̂n(q, u) ± k ˆ̂n(q, u) (56)

and then after taking the inverse Fourier and Laplace transforms,

∂n(x, t)

∂t
= L−1{D(α)(u∓ k)1−α∂

2n̂(x, u)

∂x2
} ± kn(x, t) (57)

where it remains to evaluate the inverse Laplace transform represented by the operator

L−1{}. This step follows from the identity

L−1{u1−αŷ(u)} = D1−αy(t) (58)

together with the shift theorem

L−1{z(u± k)} = e∓ktz(t) (59)

so that finally we have

∂n

∂t
= e±ktD(α)D1−α

(
e∓kt∂

2n

∂x2

)
± kn (60)

We note in passing that we can use Leibniz’s formula extended to fractional derivatives [40]

to re-write the above equation as

∂n

∂t
= e±ktD(α)

∞∑

j=0


 1 − α

j


[Dje∓kt

] [
D1−α−j ∂

2n

∂x2

]
± kn (61)

or equivalently

∂n

∂t
= D(α)

[
D1−α∂

2n

∂x2

]
± kn

+D(α)

∞∑

j=0

Γ(2 − α)

Γ(1 − α− j)(j + 1)!
(∓k)j+1

[
D−α−j ∂

2n

∂x2

]
. (62)
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IV. CONTINUOUS TIME RANDOM WALKS WITH SUB-DIFFUSION AND

GENERAL REACTION KINETICS

A. Instantaneous creation and annihilation processes

In this subsection we consider arbitrary reaction kinetics coupled with the CTRW model

to include the instantaneous addition or removal of walkers at the start of the waiting times

between steps. The general equation for the density for walkers to arrive at position x at

time t at the end of their (n+ 1)th step in this case can be written

qn+1(x, t) =

∫ t

0

∑

x′

(qn(x′, t′) + sn(x′, t′))ψ(t− t′)λ(x− x′) dt′. (63)

where sn(x, t) is the density for walkers that are added and/or removed at the start of the

waiting time for the (n + 1)th step.

If we identify s(x, t) =
∑∞

n=0 sn(x, t) then the arrival density is given by

q(x, t) =
∑

x′

∫ t

0

ψ(t− t′)λ(x− x′) (q(x′, t′) + s(x′, t′)) dt′ + δ(t)δx,x0
. (64)

The density for a random walker to be at x at time t is now

p(x, t) =

∫ t

0

Φ(t− t′) (q(x, t′) + s(x, t′)) dt′ (65)

and the balance equation for the concentration of walkers at x and t becomes

n(x, t) = Φ(t)n(x0, t) +
∑

x′

∫ t

0

ψ(t− t′)λ(x− x′)n(x′, t′) dt′ +

∫ t

0

Φ(t− t′)s(x, t′) dt′. (66)

The asymptotic long time behaviour is then governed by the non-homogeneous fractional

diffusion equation
∂n

∂t
= D(α)D1−α

[
∂2n

∂x2

]
+ s(x, t) (67)

The above balance equation, Eq.(66), leading to the non-homogeneous fractional diffusion

equation, Eq.(67), was motivated by heuristic arguments in [11]. We could consider these

equations with any source or sink term for s(x, t) including reaction terms

s(x, t) = f(n(x, t)) (68)

but the physical interpretation of this is not clear. For example in the case of linear reaction

dynamics f(n(x, t) = ±kn(x, t) we have

∂n

∂t
= D(α)D1−α

[
∂2n

∂x2

]
± kn(x, t), (69)
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but this does not equate with the fractional reaction diffusion equation, Eq.(43), correspond-

ing to the CTRW model with linear reaction dynamics s(x, t) =
∑∞

n=0 ±kqn(x, t) = ±kq(x, t)
that we considered in section IIIA. To further highlight the difference between the two

models it is useful to compare the balance equations directly. Note that we can re-write the

balance equation, Eq.(33), as

n(x, t) = Φ(t)n(x, 0) +
∑

x′

∫ t

0

ψ(t− t′)λ(x− x′)n(x′, t′) dt′ +
r − 1

r
n(x, t). (70)

Thus the source term s(x, t) in the general balance equation, Eq.(66), corresponding to this

model is given by equating

∫ t

0

Φ(t− t′)s(x, t′) dt′ =
r − 1

r
n(x, t). (71)

It is a simple matter to solve this equation for s(x, t) by the method of Laplace transforms.

Explicitly we have

ŝ(x, u) =
r − 1

r

n̂(x, u)

Φ̂(u)
(72)

and then after using the asymptotic results in, Eqs.(35),(40) we have

s(x, t) =
r − 1

r

α

κΓ(1 − α)τα
D

D1−αn, (73)

so that Eq.(43) is again seen as a special case of Eq.(67).

B. Non-instantaneous creation and annihilation processes

In this subsection we consider arbitrary time dependent creation and annihilation pro-

cesses coupled with the CTRW model to include the non-instantaneous addition or removal

of walkers during the waiting times between steps. There are two generalizations as follows:

1. General linear model

In the preceding model for non-instantaneous reactions the proportion of particles/density

surviving each step was modeled by the exponential function arising from constant per capita

creation and annihilation processes. Here we consider a more general balance equation in

which the proportion surviving in each step is any non-negative function f(t). In this case

17



the balance equation can be written as

n(x, t) = Φ(t)f(t)n(x, 0) +
∑

x′

t∫

0

n(x′, t′)ψ(t− t′)λ(x− x′)f(t− t′)dt′. (74)

Taking the Fourier-Laplace transform of Eq. (74) and using Eq. (36) we find

̂̂n(q, u) (1 − L{ψ(t)f(t)} (u)) = L{Φ(t)f(t)} (u) n̂(q, 0)

− q2σ
2

2
L{ψ(t)f(t)} (u) ̂̂n(q, u). (75)

This equation can be simplified by exploiting relationships between the transforms

L{Φ(t)f(t)} (u) and L{ψ(t)f(t)} (u). First we note

d

dt
(Φ(t)f(t)) = −ψ(t)f(t) + f ′(t)Φ(t) (76)

where we have used the identity

dΦ

dt
=

d

dt




∞∫

t

ψ(t′)dt′


 = −ψ(t). (77)

Now taking the Laplace transform of Eq. (76) we find

uL{Φ(t)f(t)} (u) − Φ(0)f(0) = −L{ψ(t)f(t)} (u) + L{Φ(t)f ′(t)} (u) (78)

or

−L{ψ(t)f(t)} (u) = uL{Φ(t)f(t)} (u) − f(0) − L{Φ(t)f ′(t)} (u) (79)

noting Φ(0) = 1. Eq. (75) then becomes after some manipulation and inverting the Fourier

transform

L
{
∂n

∂t

}
(u) =

σ2

2

L{ψ(t)f(t)} (u)

L{Φ(t)f(t)} (u)

∂2n̂

∂x2
+

L{Φ(t)f ′(t)} (u) + f(0) − 1

L{Φ(t)f(t)} (u)
n̂. (80)

To simplify further requires detailed information about the small u behaviour of the

three transforms L{Φ(t)f(t)} (u), L{ψ(t)f(t)} (u), and L{Φ(t)f ′(t)} (u). In the case of

f(t) = ekt, the coefficient of n̂ simplifies to k and the ratio L{ψ(t)f(t)} (u) /L{Φ(t)f(t)} (u)

simplifies to L{ψ(t)} (u− k) /L{Φ(t)} (u− k) which can be further simplified given the

form of ψ(t).
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2. General reaction-kinetics model

We finally consider the extension of the CTRW model for general reaction-kinetic equa-

tions for reactions between the end of the nth step and the end of the (n + 1)th step,

i.e.,
∂qn
∂t

= f(qn). (81)

In this general case we can integrate over the time interval t− t′ to write the arrival density

after the (n + 1)th step as

qn+1(x, t) =

∫ t

0

∑

x′

F−1 (F (qn(x, t′)) + (t− t′))ψ(t− t′)λ(x− x′) dt′ (82)

where

F ′(qn) =
1

f(qn)
. (83)

We can also write

p(x, t) =

∫ t

0

Φ(t− t′)F−1 (F (q(x, t′)) + (t− t′)) dt′ (84)

where q(x, t) =
∑∞

n=0 qn(x, t) but it is not clear how to obtain the balance equation from

Eqs.(82),(84) except in the special linear case f(qn) = ±kqn.

V. COMPARISON OF FRACTIONAL REACTION-DIFFUSION EQUATION

MODELS

In this section we present solutions to the three model systems:

Model I
∂n

∂t
= D(α)D1−α

[
∂2n

∂x2

]
± kn (85)

Model II
∂n

∂t
= D(α)D1−α

[
∂2n

∂x2

]
± k

1 ± k

(
α

κΓ(1 − α)τα
D

)
D1−αn (86)

Model III
∂n

∂t
= D(α)e±ktD1−α

(
e∓kt∂

2n

∂x2

)
± kn (87)
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In the infinite domain (Greens solution) the initial condition is taken to be the delta

function i.e. n(x, 0) = δ(x). It is convenient to re-write the Model I and II equations, Eqs.

(85) and (86), in the form

∂n

∂t
= D (α)D1−α∂

2n

∂x2
+KD1−βn (88)

where β = 1 and K = ±k in Model I and β = α and K = ± k
(1±k)

(
α

κΓ(1−α)τκ
D

)
in Model II.

The solutions to the two models can thus be constructed as special cases of Eq.(88). As a

further simplification we also write Model III, Eq. (87), as

∂n

∂t
= eKtD (α)D1−α

(
e−Kt∂

2n

∂x2

)
+Kn (89)

where K = ±k.

A. Solution Model I and II

From Appendix B we have the infinite domain (Green’s solution) of Eq. (88) given by

n(x, t) =
1√

4πDtα

∞∑

j=0

(
Ktβ

)j

j!
H2,0

1,2


 x2

4Dtα

∣∣∣∣∣∣

(
1 − α

2
+ βj, α

)

(0, 1)
(

1
2

+ j, 1
)


 . (90)

For Model I we set β = 1 and K = ±k to give

n(x, t) =
1√

4πDtα

∞∑

j=0

(±kt)j

j!
H2,0

1,2


 x2

4Dtα

∣∣∣∣∣∣

(
1 − α

2
+ j, α

)

(0, 1)
(

1
2

+ j, 1
)


 . (91)

and for Model II we set β = α and K = ±k∗ to give

n(x, t) =
1√

4πDtα

∞∑

j=0

(±k∗tα)j

j!
H2,0

1,2


 x2

4Dtα

∣∣∣∣∣∣

(
1 − α

2
+ αj, α

)

(0, 1)
(

1
2

+ j, 1
)


 , (92)

where

±k∗ =
±k

1 ± k

α

Γ(1 − α)
. (93)

B. Solution Model III

To find the solution to Eq. (89) we first make the substitution

n(x, t) = eKty(x, t) (94)
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noting that n and y have the same initial condition. Eq. (89 ) then becomes after simplifing

∂y

∂t
= DD1−α ∂

2y

∂x2
(95)

which is the fractional diffusion equation. Eq. (95) has the solution in the infinite domain

[3]

y(x, t) =
1√

4πDtα
H2,0

1,2


 x2

4Dtα

∣∣∣∣∣∣

(
1 − α

2
, α
)

(0, 1)
(

1
2
, 1
)


 . (96)

The solution of Model III in the infinite domain then is (with K = ±k)

n(x, t) =
e±kt

√
4πDtα

H2,0
1,2


 x2

4Dtα

∣∣∣∣∣∣

(
1 − α

2
, α
)

(0, 1)
(

1
2
, 1
)


 . (97)

C. Particular Results and Moments

In Figs. 1-3 the infinite domain solution of the equations of Models I, II, and III (Eqs.

(88) and (89)) are shown at various times in the case α = 1/2, K = −1, and D = 1.

Note that in the case of Model I the solution has become negative and hence is physically

unrealistic at t ≈ 5 (Figs. 1 and 4). The reason for this is simply that the reaction term

in this model is attempting to remove more walkers than there are available to jump. The

solution (Figs. 2 and 3) in the case of the other two models is always positive because we

only ever attempt to remove a fraction of the walkers that are available. The solution in the

case of Model III decays to zero more rapidly than in the case of Model II.

In Figs. 5 and 6, the zeroth order and second order moments are given for each model

which are

〈
x(0)(t)

〉
=




eKt, Models I, III

Eα,1 (Ktα) , Model II
(98)

and

〈
x(2)(t)

〉
=





2DtαE1,α (Kt) Model I

2DtαEα,1 (Ktα) , Model II
2Dtα

Γ (1 + α)
eKt, Model III

(99)

where Eα,β(z) is the generalized Mittag-Leffler function (see Appendix B).
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FIG. 1: (Color online) The infinite solution for Model I at the dimensionless times t=0.1 (red),

1.0 (blue), and 5.0 (black) with K = −1, D = 1, and α = 1/2. The peak height decreases with

increasing time.

In Figs. 7-9 the infinite domain solution of the equations of Models I, II, and III (Eqs.

(88) and (89)) are shown at various times in the case α = 1/2, K = 1, and D = 1. Note

that in the case of Model I the solution does not become negative as it did previously (Figs.

7).
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FIG. 2: (Color online) The infinite solution for Model II at the dimensionless times t=0.1 (red),

1.0 (blue), and 5.0 (black) with K = −1, D = 1, and α = 1/2. The peak height decreases with

increasing time.

VI. SUMMARY AND DISCUSSION

In this paper we revisited the CTRW model for anomalously diffusing particles to incor-

porate linear reaction dynamics in a mesoscopic level description. The primary motivation

for this work was to relate the reaction terms in fractional order reaction-diffusion equations

to physical processes in a mesoscopic description and where possible to elucidate different

solutions characteristic of these different physical processes. Three different model systems

were explored in detail: Model I was based on an earlier CTRW balance equation that we
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FIG. 3: (Color online) The infinite solution for Model III at the dimensionless times t=0.1 (red),

1.0 (blue), and 5.0 (black) with K = −1, D = 1, and α = 1/2. The peak height decreases with

increasing time. The profile at t = 5.0 lies along the x axis.

originally motivated with heuristic arguments in [11]. In this model a fraction of the walk-

ers are added or removed at a constant rate in time, independent of the diffusion process.

This leads to a fractional reaction-diffusion equation with linear reaction dynamics added to

a standard fractional diffusion term, i.e., a fractional order temporal differential operator,

D1−α, operating on the Laplacian diffusion term. If the reaction term is negative in this

model then the solution becomes negative (so that the model breaks down). This compares

with the standard reaction diffusion equation with negative linear reaction kinetics where

the solution remains positive for all times. This is a clear demonstration that in anomalous
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FIG. 4: (Color online) The infinite solution for Model I at the dimensionless time t=5.0 with

K = −1, D = 1, and α = 1/2.

sub-diffusion with reactions the removal of walkers cannot be performed independent of the

diffusion process.

In Model II a constant proportion of the available walkers are added or removed instan-

taneously at the start of each jump. In this case the CTRW model leads to a fractional

reaction diffusion equation with a fractional order temporal differential operator, D1−α, op-

erating on both the Laplacian diffusion term and a linear reaction dynamics term. This

model is special case of the fractional reaction-diffusion model proposed by Yuste, Acedi

and Lindenberg [19] for general (possibly nonlinear) reaction kinetics. The model does not

yield unphysical negative solutions but it does not recover the mean field reaction kinetics

equation for homogeneous concentrations.
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FIG. 5: (Color online) The zeroth order moments of the infinite solution for Models I and III (red),

and Model II (blue) with K = −1, D = 1, and α = 1/2. The result for Model II is the upper curve

at t = 5.

In Model III the available walkers are added or removed at a constant rate during the time

interval between steps. A similar CTRW model was formulated recently for monomolecular

reactions [25]. The resultant fractional reaction-diffusion equation that we derived from the

CTRW model in this case has a linear reaction dynamics term added to a non standard

fractional diffusion term, explicitly, e±ktD(α)D1−α

(
e∓kt∂

2n

∂x2

)
. This model equation does

not lead to unphysical negative solutions and it recovers the mean field reaction kinetics

equation for homogeneous concentrations.

The development of fractional reaction diffusion equations as models for anomalous sub-

diffusion with nonlinear reaction kinetics remains an open problem. While it is a simple
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FIG. 6: (Color online) The second order moments of the infinite solution for Models I (red), II

(blue), and III (black) with K = −1, D = 1, and α = 1/2. At t = 5 the result for Model II is the

upper curve and the result for Model I is the lower curve.

matter to generalize the above fractional reaction-diffusion equations by replacing the linear

reaction dynamics term in each case by a nonlinear reaction term the physical meaning of this

is not clear and it may lead to unphysical behaviour. This is because the simplification in the

CTRW models that results from replacing
∑

n f(qn) with f(
∑

n qn) does not apply if f(qn)

is a nonlinear function. The explicit linear solutions and the physical interpretation of the

linear models in this paper provides a useful guide for future theoretical and computational

studies.
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FIG. 7: (Color online) The infinite solution for Model I at the dimensionless times t=0.1 (red),

1.0 (blue), and 5.0 (black) with K = 1, D = 1, and α = 1/2. The peak height increases with

increasing time.
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FIG. 8: (Color online) The infinite solution for Model II at the dimensionless times t=0.1 (red),

1.0 (blue), and 2.0 (black) with K = 1, D = 1, and α = 1/2. The peak height increases with

increasing time.

APPENDIX A: RIEMANN-LIOUVILLE FRACTIONAL OPERATORS

The Riemann-Liouville fractional integral is given by

∂−α

∂t−α
y(x, t) =

1

Γ(α)

∫ t

0

y(x, t)

(t− s)1−α
ds, α > 0. (A1)

and the Riemann-Liouville fractional derivative is given by

∂1−α

∂t1−α
y(x, t) =

∂

∂t

1

Γ(α)

∫ t

0

y(x, t)

(t− s)1−α
ds, (A2)
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FIG. 9: (Color online) The infinite solution for Model III at the dimensionless times t=0.1 (red),

1.0 (blue), and 2.0 (black) with K = 1, D = 1, and α = 1/2. The peak height increases with

increasing time.

for 0 < α < 1. In the paper we have introduced the related operators for 0 < α < 1,

D1−α [y(x, t)] =
∂1−α

∂t1−α
y(x, t) + L−1{ ∂

−α

∂t−α
y(x, t)|t=0}, (A3)

and

D−α =
∂−α

∂t−α
y(x, t). (A4)
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APPENDIX B: SOLUTION OF LINEAR FRACTIONAL REACTION DIFFU-

SION EQUATIONS

In this appendix we consider the infinite domain (Green’s solution) for the general linear

fractional reaction-diffusion equation given by

∂n

∂t
= D (α)D1−α∂

2n

∂x2
+KD1−βn (B1)

where the fractional order temporal differential operator D1−α is defined in the paper in

Eq.(45).

To solve Models I and II we use an approach similar to that recently described by Lang-

lands for modified fractional diffusion equations [41]. First we take the Fourier-Laplace

Transform of Eq. (88)

û̂n− n̂ (q, 0) = −D (α) q2u1−α̂̂n +Ku1−β̂̂n (B2)

which upon solving for ̂̂n gives

̂̂n(q, u) =
uα−1n̂ (q, 0)

uα +Dq2 −Kuα−β
. (B3)

This can be rewritten in the form (taking into account the initial condition)

̂̂n(q, u) =
∞∑

j=0

Kj

j!

j! uα−(1+(β−α)j)

(uα +Dq2)j+1 . (B4)

Now from Podlubny [42] we have the Laplace transform of involving the derivative of the

Mittag-Leffler function is

L
{
tαj+β−1E

(j)
α,β (−atα)

}
(u) =

j! uα−β

(uα + a)j+1 (B5)

where the derivative of the Mittag-Leffler function is given by

E
(j)
α,β(y) =

djEα,β(y)

dyj
=

∞∑

n=0

(j + n)! yn

n! Γ (α (j + n) + β)
. (B6)

Setting a = q2, and β = 1 + (β − α)j in Eq. (B5) we can then invert the Laplace transform

in Eq. (B4) to give

n̂(q, t) =
∞∑

j=0

(
Ktβ

)j

j!
E

(j)
α,1+(β−α)j

(
−q2Dtα

)
. (B7)
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To invert the Fourier transform we note that the derivative of the Mittag-Leffler function in

Eq. (B6) can be written as a Fox function (see e.g., [3])

E
(j)
α,β(y) = H1,1

1,2


−y

∣∣∣∣∣∣
(−j, 1)

(0, 1) (1 − (αj + β) , α)


 . (B8)

So to invert the transform in Eq. (B7) we need only to invert, for each j, the term

ĥj(q, t) = E
(j)
α,1+(β−α)j

(
−Dq2tα

)
= H1,1

1,2


Dq2tα

∣∣∣∣∣∣
(−j, 1)

(0, 1) (−βj, α)


 . (B9)

To invert the Fourier transform we use the following relation between the Mellin transform

of a Fourier transformed function and its Mellin transform in the case of an even function

f(x)

M{F [f (x)] (q)} (z) = 2 Γ (z) cos
(πz

2

)
M{f (x)} (1 − z) . (B10)

So to invert the Fourier transform, ĥj(q, t), in Eq. (B9) we need to first evaluate its Mellin

transform to find the Mellin transform of hj(x, t) using Eq. (B10). The Mellin transform

then need only be inverted to find the Fourier inverse, hj(x, t).

Taking the Mellin transform of Eq. (B9) using the Mellin transform of a Fox function

[43], the identity [44]

M{φ(axp)} (z) =
1

p
a−

z
pM{φ(x)}

(
z

p

)
p > 0, a > 0 (B11)

and Eq. (B10) we find

M{hj(x, t)} (z) =
1

2

1√
4πDtα

(
1√

4Dtα

)−z Γ
(

z
2

)
Γ
(

1
2

+ j + z
2

)

Γ
(
1 − α

2
+ βj + αz

2

) . (B12)

Inverting the Mellin transform Eq. (B12) and noting x = |x| we find

hj(x, t) =
1

2

1√
4πDtα

H2,0
1,2


 |x|√

4Dtα

∣∣∣∣∣∣

(
1 − α

2
+ βj, α

2

)
(
0, 1

2

) (
1
2

+ j, 1
2

)


 . (B13)

Using the identity

Hm,n
p,q


x

∣∣∣∣∣∣
(ap, αp)

(bq, βq)


 = cHm,n

p,q


xc

∣∣∣∣∣∣
(ap, cαp)

(bq, cβq)


 (B14)

with c = 1
2

we arrive at the expression for hj(x, t):

hj(x, t) =
1√

4πDtα
H2,0

1,2


 x2

4Dtα

∣∣∣∣∣∣

(
1 − α

2
+ βj, α

)

(0, 1)
(

1
2

+ j, 1
)


 . (B15)
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The infinite domain (Green’s solution) of Eq. (88) by Eqs (B7) and (B15),

n(x, t) =
1√

4πDtα

∞∑

j=0

(
Ktβ

)j

j!
H2,0

1,2


 x2

4Dtα

∣∣∣∣∣∣

(
1 − α

2
+ βj, α

)

(0, 1)
(

1
2

+ j, 1
)


 . (B16)
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