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A B S T R A C T

Green transitions are crucial strategies for mitigating environmental degradation and are aligned with the 
Sustainable Development Goals (SDGs) of the United Nations such as SDG 7, SDG 11 and SDG 13. This study used 
an expanded STIRPAT framework to investigate the adaptation, mitigation, and synergistic effects of green 
transition variables, namely, Renewable Energy Transition (RES), Green Finance (GFC) and Green Technology 
(GT). Ecological Footprint (EF) and Load Capacity Factor (LF) indicators were integrated to overcome the lim
itations of CO₂-centric indicators towards environmental degradation. Empirical analysis employs structured 
methods, including heteroskedasticity-robust panel unit root tests, long-run estimation (FMOLS), asymmetric 
effects (MMQR), and robustness checks (panel EGLS and D-H causality tests). The FMOLS results indicate that 
RES, GFC and GT create a synergistic governance framework that amplifies their individual impacts. GFC sup
ports the R&D and deployment of GT, while GT optimizes the performance of RES projects. RES accelerates the 
adoption of renewables, enhancing energy efficiency and further reducing environmental degradation. MMQR 
results show that RES consistently reduces EF and increases LF across all quantiles, highlighting its key role in 
mitigating degradation. GFC exhibits varied effects across quantiles, while GT has significant positive effects on 
LF in lower to middle quantiles and reduces EF in higher quantiles. However, its impact on both LF and EF is less 
pronounced compared to that of RES and GFC. The insights gained here from the G-6 countries serve as a 
valuable guide or emerging economies, such as those of the BRICS, in developing adaptation and mitigation 
strategies to navigate the trade-offs between socio-economic developments and ecological thresholds.

1. Introduction

The green transition involves shifting to a sustainable, resource- 
efficient economy to address climate change and environmental degra
dation. Transition strategies, such as the European Green Deal, aim for 
climate neutrality to ensure a just and inclusive transformation (EU, 
2020). However, deep-rooted structural interdependencies within the 
economy, resource depletion, and population dynamics, pose substan
tial barriers to effective green transition. These interdependencies, 
embedded in economic systems and patterns of resource use, potentially 
hinder rapid changes. This necessitates integrated adaptation and 
mitigation strategies for combating environmental degradation, 
improving quality of life and facilitating sound transition (Sakariyahu 

et al., 2024). Both strategies are interdependent, with inherent synergies 
and trade-offs, and must be implemented within the broader framework 
of green growth (Qin et al., 2023).

While the global community is increasingly aware of the challenges 
posed by environmental degradation, economic expansion often leads to 
ecological deficits and reduces the Earth’s capacity to sustain human life 
(Anu et al., 2023; Gu et al., 2024). As shown in Fig. 1a, the Ecological 
Footprint (EF) exceeds the Earth’s biocapacity in most of the G7 coun
tries (excluding Canada) and also the BRICS countries, resulting in sig
nificant ecological deficits. This growing urgency calls for robust 
environmental and natural resource management frameworks, particu
larly for countries whose economies rely heavily on non-renewable re
sources. The management practices in these countries significantly 
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impact both global populations and environmental sustainability 
(Sakariyahu et al., 2024).

Furthermore, the EF has emerged as a comprehensive ecological 
indicator that goes beyond CO2, drawing increasing attention in recent 
research (Dam and Sarkodie, 2023; Kish and Miller, 2025; Sarwar et al., 
2024). Recent studies further highlight the significance of the Load 
Capacity Factor (LF) as a key ecological indicator, emphasizing its utility 
in capturing the complexities of environmental degradation (Han and 
Sun, 2024; Musah et al., 2024; Uche et al., 2024; Sun et al., 2024a). The 
LF offers a more comprehensive perspective by incorporating both de
mand and supply aspects (Adebayo and Samour, 2024), enabling a 
clearer evaluation of environmental security by distinguishing between 
EF and biocapacity (Mehmood et al., 2023). However, it does not 
adequately address the situation in countries facing ecological deficits 

(Dam and Sarkodie, 2023). As a result, this work is motivated by inte
grating both EF and LF. Researchers and policymakers can accurately 
assess environmental sustainability of national practices and develop 
strategies to ensure long-term environmental management.

As shown in Fig. 1b, Canada is classified as a biocapacity reserve 
country, with a biocapacity of 8 gha per person in 2000 and 7.5 gha per 
person in 2022. In contrast, the other G7 countries are categorized as 
biocapacity deficit countries. Thus, this study focuses on countries with 
comparably high levels of industrialization, energy consumption, and 
ecological deficits, excluding Canada. Moreover, Fig. 2 compares the 
BRICS countries with the G-6 countries across indicators such as eco
nomic development, natural resource depletion, population density, and 
biocapacity deficit (defined as biocapacity minus EF), revealing signif
icant disparity in both economic and environmental metrics. While the 

Fig. 1. a. Global distribution of ecological indicators showing countries with biocapacity deficit (− ) and reserves (+) (Datasource: Global Footprint Network). 
b. The biocapacity deficit values for G-7 countries in 2000 and 2022. Canada’s exclusion is justified due to its distinctive biocapacity reserve (6.8 gha per person in 
2022), resulting in the analysis focusing on the G-6 countries (Datasource: Global Footprint Network).
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BRICS countries exhibit lower GDP per capita and higher population 
density than the G-6 countries, BRICS countries rely more heavily on 
natural resources use, increasing the vulnerability to market fluctua
tions. Additionally, Fig. 3 illustrates that the G-6 countries have ach
ieved notable environmental improvements, as evidenced by the trend 

of both EF and LF. These analysis emphasizes the significance of the 
green transition strategies deployed by the G-6 countries, providing 
potential insights for developing countries or emerging economies such 
as the BRICS countries.

The Stochastic Impacts by Regression on Population, Affluence, and 

Fig. 2. BRICS vs. G-6 countries across key indicators (Data source: Global Footprint Network, World Bank, OECD).

Fig. 3. Time-varying evolution of EF and LF in past 3 decades for G-6 countries (Data source: Global Footprint Network).
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Technology (STIRPAT) model provides a systematic framework for 
evaluating the influence of demographic, economic, and technological 
factors on the environment, providing valuable scientific evidence and 
policy recommendations (Quan et al., 2024). The results of the extended 
STIRPAT models can demonstrate environmental health by incorpo
rating the supply and demand aspects of the nature (Sun et al., 2024b). 
However, empirical findings may vary due to differences in model 
specifications, control variables, and proxies for key concepts 
(Schneider, 2022). This study seeks to extend the STIRPAT framework to 
address these discrepancies, thereby clarifying the complex interactions 
between human activities and environmental impacts.

This work makes significant contributions to address gaps in the 
following ways: (i) By employing an expanded STRIPAT model, we 
provide novel insights into the dynamic relationship between the green 
transition and environmental degradation. The analysis integrates key 
socio-economic variables such as GDP, natural resource depletion, and 
population density. Focusing on G-6 countries with comparable indus
trialization, energy consumption, and biocapacity deficits allows for a 
comprehensive understanding of how green transitions impact envi
ronmental degradation. (ii) This study fills existing research gaps by 
examining the adaptation, mitigation, and synergistic effects of renew
able energy transition (RES), green finance (GFC), and green technology 
(GT) in reducing environmental degradation. The findings offer valuable 
lessons for sustainable development strategies and environmental 
impact mitigation, particularly for developing countries (e.g., BRICS). 
(iii) This study incorporates both EF and LF as indicators of environ
mental degradation, revealing dynamic performance of ecological sus
tainability in G-6 countries. The insights inform targeted green 
transition strategies and policy interventions aligned with the Sustain
able Development Goals (SDGs) of the United Nations. (iv) The study 
uses advanced econometric techniques, including heteroskedasticity- 
robust panel unit root tests, Method of Moments Quantile Regression 
(MMQR), Fully Modified Ordinary Least Squares (FMOLS), and panel 
Estimated Generalized Least Squares (panel EGLS), to systematically 
display how green transitions drive dynamic trends in environmental 
degradation.

The remainder of the paper is structured as follows: Section 2 pro
vides a comprehensive literature review. Section 3 outlines the theo
retical model in this study. Section 4 details the econometric 
methodology and data description. Section 5 presents the empirical re
sults and discussion. Section 6 conducts a robustness analysis. Finally, 
Section 7 shows the conclusions, policy implications, and limitations of 
the study.

2. Literature review

Ambitious climate policies, alongside economic expansion, techno
logical progress and the promotion of less resource-intensive lifestyles, 
are essential elements for advancing the UN SDGs (Soergel et al., 2021). 
This global imperative to combat climate change and environmental 
degradation has driven the growing prominence of green transition 
strategies. This brief literature review extracts insights from previous 
analyses in environmental economics, which have focused on environ
mental degradation indicators and the dynamics among economies, 
resources and populations. Furthermore, it presents the findings and 
highlights the critical role of RES, GFC and GT in facilitating the tran
sition, as identified in prior studies.

2.1. Conceptualizing environmental degradation: Multiple key indicators

Environmental degradation is a complex process involving negative 
impacts on the natural environment, such as deforestation, pollution, 
ecosystem disruption, biodiversity loss, and resource depletion. These 
challenges are primarily driven by anthropogenic activities such as 
urban waste, inadequate recycling, and unsustainable economic growth 
(Koengkan et al., 2023). The diverse indicators of environmental 

degradation, alongside the inclusion of other key variables and eco
nomic expansion as factors in environmental degradation, have sparked 
debate among policymakers (Villanthenkodath et al., 2024a). As the 
effects of environmental degradation and climate change intensify, 
analyzing the interactions of key variables, such as clean energy use, 
eco-technological innovation, and other critical factors, becomes 
increasingly critical (Ul-Durar et al., 2024).

CO2 emissions have been frequently considered a primary indicator 
of ecological degradation. For example, Li et al. (2024) explored how 
financial technologies, digitalization, natural resources, and human re
sources affect degradation indicators (CO2 emissions) across G20 
countries from 2000 to 2021. However, Mehmood et al. (2023) claimed 
that relying on CO2 emissions alone does not fully account for the 
broader impacts of human activities on various environmental di
mensions, such as water, land, and biodiversity. Recent studies have 
highlighted the need for more comprehensive indicators, such as the 
ecological footprint and load capacity factor, to capture the full scope of 
environmental degradation. Villanthenkodath and Pal (2024) incorpo
rated EF, CO2, and LF to create a more comprehensive econometric 
framework for assessing environmental degradation in India. CO2 
emissions are widely regarded as a key indicator of environmental 
degradation. For instance, Li et al. (2024) investigated how financial 
technologies, digitalization, natural resources, and human capital 
influenced CO2 in G20 countries between 2000 and 2021. Mehmood 
et al. (2023) argued that relying on CO2 as the main indicator fails to 
account for broader environmental degradation impacts (e.g., water, 
land, and biodiversity). Recent studies have emphasized the importance 
of using EF and LF to better capture the border metrics of environmental 
degradation. For example, Hakkak et al. (2023) analyzed the effects of 
nuclear and renewable energy consumption on environmental degra
dation in Russia, using EF and LF as indicators of environmental 
degradation. Dam et al. (2024) utilized CO2, EF and inverted LF to 
represent degradation indicators.

This shift towards indicators like EF and LF improves the assessment 
of environmental impacts, including air and water pollution, soil 
erosion, desertification, and ecological disruptions, thereby supporting 
the effective adaptation and mitigation strategies.

2.2. Analyzing drivers of degradation: STIRPAT frameworks

The STIRPAT model has been regarded as a robust analytical 
framework for displaying the complex dynamics between population, 
affluence, technological advancements, and environmental impacts 
(Schneider, 2022). The framework provides an indispensable tool in 
environmental economics by estimating elasticities (Schneider, 2022). 
For instance, Touati and Ben-Salha (2024) used the STIRPAT model to 
investigate the dynamic interaction between resource abundance, en
ergy demand, economic openness, population growth, urbanization and 
environmental degradation.

Debates persist regarding the magnitude and significance of popu
lation, affluence and technology elasticities in the STIRPAT models. For 
example, Xing et al. (2023) highlighted the role of technological inno
vation in sustainable development in Asian economies using advanced 
econometric techniques from 1990 to 2017. Similarly, Touati and Ben- 
Salha (2024) analyzed the impacts of digitalization, industrialization, 
and financial development on environmental sustainability in Gulf 
Cooperation Council (GCC) countries between 2000 and 2021. Shazhad 
and Aruga (2024) identified an Environmental Kuznets Curve (EKC) in 
Asia through spatial econometric analysis, showing a turning point in 
environmental degradation. Wang and Taghvaee (2023) explored how 
economic complexity and technology can influence pollution and 
growth in both developed and developing regions from 1971 to 2017.

STIRPAT-related studies reveal disparities in the estimated elastici
ties, primarily due to differences in model specifications, variables, time 
periods, and econometric approaches. Key econometric challenges 
include model specification heterogeneity, data non-stationarity, 
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uncontrolled cross-sectional dependence, heterogeneous slopes, and 
non-standardized coefficients (Schneider, 2022). Schneider (2022) em
phasizes the need for standardized methodologies, robust unit root tests, 
and using spatial and temporal heterogeneities to address the limita
tions. As a result, expanding STIRPAT frameworks and strengthening 
theoretical hypotheses using country-specific panel dataset is crucial for 
revealing the dynamic elasticities of key drivers, and ensuring reliable 
policy recommendations.

2.3. Transitioning towards environmental sustainability: The roles of 
renewables, green technology, green finance

Recent studies highlight the importance of collective action in 
transitioning towards environmental sustainability, particularly 
emphasizing equitable treatment, climate justice, and global coopera
tion in mitigating global warming and addressing energy crises 
(Doumon, 2024).

Empirical studies highlight the pivotal role of renewable energy and 
green technologies for ecological sustainability through their synergistic 
effects. Environmental policy significantly decreases EF by promoting 
renewables and innovation (Sohag et al., 2024). Javed et al. (2024)
investigated the interactions among green technology, environmental 
policy, and renewables, economic growth, trade openness, and urbani
zation on the EF of the G7 economies. Sharif et al. (2024) examined the 
combined impact of green technology, renewable energy, and global
ization on environmental sustainability in countries most affected by 
ecological challenges. Ul-Durar et al. (2024) reinforced the importance 
of renewable energy and green technology in mitigating ecological risks 
and supporting indispensable roles in global environmental strategies. 
Pal et al. (2025) found that renewable energy production can lead to 
increased CO2 emissions in emerging economies but significantly re
duces CO2 emissions in OECD countries. Notably, technology-moderated 
renewable energy production effectively lowers CO2 emissions across 
both groups. The mechanism by which renewable energy reduces the 
reliance on fossil fuels helps to mitigate environmental degradation, 

thereby emphasizing the need for ongoing technological innovation in 
renewable energy development to further reduce the EF 
(Villanthenkodath and Pal, 2024). Ma et al. (2024) investigated the 
dynamics between natural resource rents, ecological policies, technol
ogy, economic growth, and the EF in the top and least green growth 
countries, revealing a negative relationship between EF and renewables, 
technological change.

Furthermore, growing global concerns regarding environmental 
degradation have heightened interests in sustainable financial support, 
generating increasing advocacy for eco-friendly financing initiatives as 
viable solutions for achieving ecological sustainability (Sun and Rasool, 
2024). Wang et al. (2024) investigated the influence of fintech and green 
finance on the environment of mineral-rich developing nations, 
employing three distinct regression models to assess the effects on CO₂-, 
NO₂-emissions and the EF. The findings highlight the necessity for 
enhanced fintech development, prioritization of green finance, and 
commitment to balanced economic growth as essential pathways to
wards sustainable and eco-conscious development in resource- 
dependent economies. Delving into the nexus of green finance and 
ecological sustainability, Sun and Rasool (2024) analyzed the asym
metric relationship between green finance and EF in ten leading Euro
pean countries with significant green finance investments, confirming a 
negative association. In the context of China, Zhang and Chen (2023)
examined the role of green finance on EF from the first quarter of 1998 
to the fourth quarter of 2020, revealing that green finance initiatives 
substantially contribute to reduce EF over time. Villanthenkodath et al. 
(2024b) emphasized the critical role of monetary policy in integrating 
the renewables into policy frameworks to achieve sustainability. This 
work also highlights the importance of implementing other policy in
terventions that prioritize ecological conservation alongside economic 
development, ensuring a balanced and comprehensive approach to 
addressing both environmental and economic challenges.

In general, green transitions pose distinct challenges for developed 
and developing economies. Developed countries typically possess 
greater access to financial resources, technological innovation, and 
institutional frameworks, enabling more rapid decarbonization. In 
contrast, developing economies require financing and technology 
transfers to bridge biocapacity deficit. Achieving sustainable futures 
necessitates collective action, climate justice, and context-specific 
policies.

2.4. Research gaps

This study was designed to address the following underexplored 
areas in the existing literature. (i) To the best of our knowledge, prior 
studies have not extended the STIRPAT model to include environmental 
degradation indicators (EF and LF) alongside drivers such as socio- 
economic variables (GDP, NRS, POP) and green transition indicators 
(RES, GF, GT) in panel data analyses. (ii) Previous studies have not 
adequately examined the long-run cointegration relationships and 
quantile-specific dynamics between green transition variables and 
environmental degradation within the STIRPAT framework. This limi
tation restricts using advanced econometric techniques (e.g., FMOLS 
and MMQR) to reveal the adaptive, mitigating, and synergistic effects of 
green transition initiatives in promoting environmental sustainability. 
(iii) While existing studies often focuses on the OECD or G7, there is a 
significant gap in analyzing green transition strategies of G-6 countries. 
These economies share comparable socio-economic and environmental 
contexts, creating a homogeneous panel for transition pathways. (iv) 
Prior studies seldom provide implications for aligning green transition 
initiatives with SDGs targets. Moreover, there is limited discussion of 
practical, flexible, and scalable transition pathways, particularly in 
designing inclusive, replicable pathways to both developed and devel
oping economies.

Fig. 4. A flow chart illustrating the theoretical hypothesis based on the STIR
PAT model.

B. Li et al.                                                                                                                                                                                                                                        Environmental Impact Assessment Review 115 (2025) 107993 

5 



3. Theoretical model

Introduced by Dietz and Rosa (1997), the STIRPAT model breaks 
down the total environmental impact (I) into the impact of population 
(P), affluence or increased use of natural resources (A), and technology 
(T). The original STIRPAT model can be expressed as shown in Eq. (1): 

Iit = aPb
itA

c
itT

d
iteit (1) 

To align with econometric practices and make the parameters easier 
to interpret, Eq. (1) is transformed into logarithmic form (Eq. (2)). In this 
form, the original exponents b, c, and d are redefined as elasticity pa
rameters β, γ and φ. 

lnIit = α + βlnPit + γlnAit + φlnTit + εit (2) 

Here, i indexes the cross-sectional units (G-6 countries) and t denotes 
the time period.

Motivated by Dam et al. (2024), this study seeks to expand the 
traditional STIRPAT model by incorporating key variables, including 
GDP, NRS, POP and indicators related to green transitions, such as GF, 
RES and GF. By integrating these variables, the study aims to investigate 
the impact of various drivers on environmental degradation, with a 
specific focus on EF and LF. This analysis is conducted by eqs. (3) and 
(4), which show the consumption and supply dimensions of environ
mental degradation, respectively.  

Where α represents the intercept term, φ1~φ6are long-run co
efficients, and εit denotes error terms.

As depicted in Fig. 4, the visual hypothesis helps clarify how different 
factors influence environmental degradation, providing a basis for 
further econometric analysis and policy implications.

4. Econometric strategies and data

Fig. 5 presents the econometric strategies utilized in this study, along 
with the rationale behind these methods. This structured framework 
ensures robustness, systematicity, and reliability in the analysis.

4.1. Heteroskedasticity-robust panel unit root tests

Panel datasets often exhibit cross-sectional heteroskedasticity, which 
may violate the homoskedasticity assumption underlying traditional 
unit root tests. In addition, the Cauchy estimator employs the sign of the 
first lag as an instrumental variable in autoregressions, avoiding 
nonstandard asymptotic in traditional unit root tests (e.g., ADF) (Matei 
and Christoph, 2010). Motivated by Herwartz et al. (2018), this study 
uses panel unit root tests (PURTs) that integrate the Cauchy estimator. 
PURTs maintain reliability while reducing potential biases associated 
with the heteroskedasticity. The procedure can be articulated as follows:

A first-order panel autoregression model can be formulated without 
or with μ term, as represented in eqs. (5) and (6), respectively. 

yt = (1 − ρ)μ + ρyt− 1 + εt (5) 

yt = μ + (1 − ρ)δt + ρyt− 1 + εt (6) 

Where yt = (y1t ,…, yNt )́
 and yt− 1 =

(
y1,t− 1,…, yN,t− 1

)ʹ
, which both 

are represented as a N × 1 vectors, and error term εt is heterogeneously 
distributed with a mean of zero. In the context of panel data models, the 
null hypothesis H0 suggests a driftless random walk, whereas H1 in
dicates a stationary process.

The white-type test, denoted by Eq. (7) as tHS is robust to hetero
skedasticity. Additionally, by utilizing a White-type covariance analysis, 
a PURT can be robust to cross-sectional dependence. 

tHS =

∑T

t=1
yʹ

t− 1Δyt
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑T

t=1
yʹ

t− 1 êt ê
ʹ
tyt− 1

√ → dN(0, 1) (7) 

The White-type Cauchy test, denoted by tDH in Eq. (8), employs a 
heteroskedasticity-robust technique that uses the “Cauchy” estimator. 
This estimator incorporates the sign function sgn(⋅) for the lagged level 
series. 

tDH =

∑T

t=1
sgn(yt− 1 )́ Δyt

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑T

t=1
sgn(yt− 1 )́ êt ê

ʹ
tsgn(yt− 1)

√ →d N(0, 1) (8) 

4.2. Cross-sectional dependence (CD) test and slope homogeneity test

Grossman and Krueger (1995) argue that ignoring cross-sectional 
dependence in panel data analysis can result in inconsistent parameter 
estimates, while Breitung (2005) emphasizes that assuming slope ho
mogeneity in the presence of heterogeneity may lead to biased 
estimation.

The heterogeneous panel data model is represented by Eq. (9): 

yit = xʹ
itβi + uit , for i = 1,…, n; t = 1,…,T (9) 

where yit denotes the dependent variable for cross-sectional unit i at time 
t. x́it represents the exogenous regressors, and βi are the slope parame
ters. The error term uitis assumed to exhibit cross-sectional dependence 
but remains uncorrelated with the regressors x́it . The fixed effects ho
mogeneous model with the idiosyncratic error of vit is shown in Eq. (10): 

yit = α + xʹ
itβ + μi + vit, for i = 1,…, n; t = 1,…,T (10) 

Baltagi et al. (2012) proposes a simple asymptotic bias correction for 

lnEFit = α + φ1lnGDPit + φ2lnNRSit + φ3lnPOPit + φ4lnGTit + φ5lnRESit + φ6lnGFit + εit (3) 

lnLFit = α + φ1lnGDPit + φ2lnNRSit + φ3lnPOPit + φ4lnGTit + φ5lnRESit + φ6lnGFit + εit (4) 
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the scaled Lagrange multiplier (LM) test, as shown in Eq. (11): 

LMBC = LMP −
n

2(T − 1)

=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

n(n − 1)

√
∑n− 1

i=1

∑n

j=i+1

(
Tρ̂2

ij − 1
)
−

n
2(T − 1)

(11) 

Furthermore, the slope homogeneity test relies on the delta tildes (Δ̃) 
and adjusted delta tildes (Δ̃adj) 

Δ̃ = (N)
1
2(2K)−

1
2

(
1
N

S̃ − K
)

(12) 

Δ̃adj = (N)
1
2

(
2K(T − K − 1)

T + 1

)−
1
2
(

1
N

S̃ − 2K
)

(13) 

Blomquist and Westerlund (2013) introduce a heteroskedasticity- 
robust function of ΔHAC, which is given by Eqs. (14) and (15). 

ΔHAC =
̅̅̅̅
N

√
(

N− 1SHAC − k
̅̅̅̅̅̅
2k

√

)

, (14) 

Where,

SHAC =
∑N

T(β̂ i − β̂)́
(

Q̂i,T V̂
− 1
i,T Q̂i,T

)
(β̂ i − β̂) (15) 

4.3. Fully modified ordinary least squares (FMOLS)

The FMOLS estimation process involves a comprehensive asymptotic 
ordinary mix. This process enables the use of standard Wald tests by 
leveraging the asymptotic inference derived from the Chi-square dis
tribution. The estimator, denoted as θ̂, is presented in Eq. (16). 

Fig. 5. The procedures of econometric strategies.
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θ̂ =

[
β

γ̂1

]

=

(
∑T

t=2
ZtZʹ

t

)− 1
⎛

⎝
∑T

t=2
Ztϑ+

t − T

⎡

⎣
X+

12

0

⎤

⎦

⎞

⎠ (16) 

Where the symbol ϑ is followed by the regressors X, while Ω̂ and λ̂ 
represent covariance matrices. These matrices are constructed using 
residuals, which can be shown by eqs. (17)–(19): 

ϑ+
t = ϑt − ω̂12 Ω̂

− 1
22 û2 (17) 

λ̂
+

12 = λ̂12 − ω̂12 Ω̂
− 1
22 λ22 (18) 

Zt =
(
Xʹ

t ,D
ʹ
t
)

(19) 

Then, Eq. (20) provides the specific formula or method for calcu
lating the estimator ω̂1.2 

ω̂1.2 = ω̂11 − ω̂12 Ω̂
− 1
22 ω̂21 (20) 

Nguyen et al. (2021) emphasized the capacity of FMOLS to address 
dynamic heterogeneity inherent in heterogeneous cross-sectional 
dimensions.

4.4. Method of moments quantile regression (MMQR)

This work uses the MMQR proposed by Machado and Silva (2019) to 
investigate heterogeneity and asymmetric effects across quantiles. This 
approach involves utilizing generalized median regression estimation, 
which takes into account different quantiles. Given Xit, the conditional 
quantile of Yit is expressed in Eq. (21): 

Yit = αi + Xit + (λi + ZiΨ)Uiti = 1, 2,….n (21) 

Here, λi + ZiΨ > 0 indicates the probability, and {αi, λi,Ψ} represents 
the parameters to be estimated for the fixed effects. Zi is a k-vector, and 
Uit is identically distributed. Eq. (22) is formulated with fixed-effects 
specifications. 

Qy(δ|Xit) = (αi + λiq(δ) ) + XitΦ + ZitΨq(δ) (22) 

In this equation, Xit denotes the independent variables employed in 
this work, Qy represents the quantiles of Yit, and αi + λiq(δ) indicates the 
fixed effect across quantiles of q(δ).

Following Machado and Silva (2019), q(τ) = F− 1
U (τ) is used to 

address optimization issues from the quantiles, and this process is given 
by Eq. (23): 

Min q = ΣiΣtη
[
Rit −

(
λi + Ziγ

)
q
]

(23) 

Here, ηδRit = (δ − 1)RI{R ≤ 0} + TRI{R > 0} indicates the analyzed 
check function.

In this study, the dependent variables are EF and LF. Equations for 

quantiles such as 25th, 50th, 75th and 95th are provided in Eqs. (24) to 
(27). 

Q0.25

(
EF
LFit

)

= &λ0.25 + β1,0.25GDPit + β2,0.25NRSit + β3,0.25POPit 

+ β4,0.25GTit + β5,0.25RESit + β6,0.25GFCit + μ0.25,it (24) 

Q0.5

(
EF
LFit

)

= &λ0.5 + β1,0.5GDPit + β2,0.5NRSit + β3,0.5POPit 

+ β4,0.5GTit + β5,0.5RESit + β6,0.5GFCit + μ0.5,it (25) 

Q0.75

(
EF
LFit

)

= &λ0.75 + β1,0.75GDPit + β2,0.75NRSit + β3,0.75POPit 

+ β4,0.75GTit + β5,0.75RESit + β6,0.75GFCit + μ0.75,it (26) 

Q0.95

(
EF
LFit

)

= &λ0.95 + β1,0.95GDPit + β2,0.95NRSit + β3,0.95POPit 

+ β4,0.95GTit + β5,0.95RESit + β6,0.95GFCit + μ0.95,it (27) 

4.5. Data

Table 1 presents the data sources, measurement methods, and 
multidimensional indicators used to capture the complexity of the G-6 
countries’ green transitions and the economy-resources-population 
dynamics.

Formal normality tests, including the Shapiro-Wilk test and the Lil
liefors test (an enhanced method of the Kolmogorov-Smirnov test), were 
conducted on the log-transformed variables. However, the tests failed to 
validate normal distribution (see Table 2). Fig. 6 presents Q-Q plots to 
assess the normality of the first-lag difference variables. The quantiles of 
the observed variables are plotted against the theoretical quantiles of a 
normal distribution. The Q-Q plots indicate that the data points largely 
align with a diagonal line, suggesting an approximate normal distribu
tion. These results validate the suitability of the MMQR method, which 
is particularly well-suited for the panel dataset (Zhang et al., 2024; 
Shayanmehr et al., 2023).

Fig. 7a and b use chord graphs to visualize how variables interact 
differently across the six countries analyzed here. Thicker chords signify 
stronger correlations, whereas thinner chords represent weaker corre
lations. GDP and NRS are closely connected, particularly in countries 
with higher population density (e.g., the USA). POP significantly im
pacts NRS, emphasizing how demographic pressures affect sustainabil
ity. The graphs also reveal strong linkages between RES, GFC, and GT, 
with a notable correlation between RES and GFC. Environmental 
degradation is closely linked to GT, GFC, and RES, suggesting that green 
transitions play a key role in improving environmental sustainability.

The chord graphs display significant heterogeneity among variables 
and emphasize the importance of conducting multicollinearity tests 
when using long-run cointegration models to ensure the robustness of 
the empirical analysis.

Table 1 
Data measurements and sources.

Variables Measurement Source

EF Ecological footprint (gha per person) Global Footprint 
Network

LF Load capacity factor (Global hectares per capita) Global Footprint 
Network

GDP GDP per capita (GDP per capita (constant 2017 
international $)

WDI

RES Renewable energy consumption (% of total final 
energy consumption)

WDI

POP Population density(Inhabitants per square 
kilometer)

OECD

NRS Natural resources rents (% of gdp) WDI
GF Green finance (Percentage of government 

allocations for environmental R&D)
OECD

GT Development of environment-related 
technologies, % all technologies

OECD

Table 2 
The results of normality tests.

Variables Shapiro-Wilk test Lilliefors Test

Statistics P-value Statistics P-value

LNLF 0.923 0.000 0.129 0.001
LNEF 0.796 0.000 0.261 0.000
LNGDP 0.943 0.000 0.131 0.000
LNNRS 0.747 0.000 0.291 0.000
LNRES 0.913 0.000 0.143 0.000
LNGFC 0.938 0.000 0.128 0.000
LNGT 0.851 0.000 0.151 0.000
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5. Empirical results and discussion

5.1. Panel unit root, CD and slope heterogeneity test results

In this empirical investigation, we begin the analysis by examining 
the stationarity properties of the first difference of the natural logarithm- 
transformed variables for the G6 economies, and the results of which are 
reported in Table 3. The estimates of t_hs and t_dh reveal the presence of a 
unit root in all variables, suggesting that the variables are non-stationary 
in their level form but achieve stationarity in the first difference. Thus, 
the variables are categorized as integrated of order 1. These empirical 
outcomes establish the foundation for the application of panel cointe
gration techniques in subsequent analyses.

After confirming the stationarity properties of the variables, we 
proceed to investigate the presence of CD utilizing four diagnostic tests. 
The results are shown in Table 4, demonstrating that CD is confirmed for 
all variables at a 1 % significance level. Notably, the results reveal the 
presence of cross-sectional fixed effects for model 1 and 2, as evidenced 
by the LM test proposed by Baltagi et al. (2012). This evidence serves as 
critical evidence for interpreting the subsequent regression estimation. 
Specifically, it is important to recognize that ignoring CD in estimation 
could lead to several consequences, including a potential loss in esti
mator efficiency due to unaccounted residual dependence. Therefore, 
the cointegration methods employed in this analysis are chosen to 
mitigate biased results based on these test results.

After conducting the CD test, the results of the Blomquist and 
Westerlund, 2013 test for slope heterogeneity are presented in Table 5, 
revealing that the slope parameters exhibit standardization and homo
geneity. We further use a bootstrap-based test that accounts for heter
oscedastic and autocorrelation consistent (HAC) standard errors. The 
results provide evidence against the null hypothesis of homogeneous 

slope coefficients at the 5 % significance level, indicating that the slope 
parameters are heterogeneous across the panel.

5.2. Panel cointegration test

After confirming that panel data series are integrated of order 1 and 
stationary, strong evidence was found to validate the results of CD and 
slope homogeneity tests. Two notable panel cointegration tests are 
applied: the Pedroni Residual Cointegration Test (Table 6 panel a) and 
the KAO Residual Cointegration Test (Table 6 panel b). The results 
provide insights into the cointegration properties of the panel data. 
Additionally, we conducted the Johansen Fisher Panel Cointegration 
Test to provide individual cross-section results for each country 
(Table 3c), enhancing the novel insights of this study and reducing the 
risk of biased results. The outcomes indicate that the panel data series 
converge in the long run, leading to the rejection of the null hypothesis 
of no long-term convergence among the series.

5.3. FMOLS results

After conducting tests for non-stationarity, cross-sectional depen
dence, slope heterogeneity, and panel cointegration for model 1 and 
model 2, we could confirm that the long-run coefficients estimate, which 
sever the synergistic effects in this study, are robust and reliable. Table 7
panel a presents the long-run impact of GDP, NRS, POP, RES, GFC, and 
GT on LF (model 1) and EF (model2).

5.3.1. GDP, NRS, POP and environmental degradation
Economic expansion and natural resource depletion are significant 

drivers of ecological degradation. Specifically, a 1 % increase in real 
income correlates with a 0.558 % reduction in LF and a 0.726 % increase 

Fig. 6. Q-Q plots.
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in EF, indicating that economic growth tends to reduce ecological sus
tainability. This finding aligns with Sun et al. (2024b), which confirm 
that economic growth intensifies the pressure on both renewable and 
non-renewable energy use, thereby stressing environmental impacts. In 
G6 countries, a 1 % increase in NRS results in a 0.032 % decline in LF 
and a 0.022 % increase in EF. These findings are consistent with the 
findings of Uche et al. (2024), which indicate that both resource utili
zation and economic expansion contribute substantially to environ
mental degradation. Finally, a 1 % increase in POP leads to a 1.648 % 
decrease in EF and a 0.648 % increase in LF. The result is consistent with 

Sarkodie (2021), which suggested that higher POP can increase natural 
resource demands through extraction or imports while promoting sus
tainable urban practices and efficient resource use.

5.3.2. Green transition and environmental degradation
The elasticity coefficients of RES are the highest among the three key 

indicators analyzed, at 0.117 % and 0.139 %, highlighting the sub
stantial influence on both LF and EF. The coefficients indicate that 
increasing the share of renewables in the energy mix has contributed to 
improving LF and reducing EF in G-6 countries. GFC also plays an 

Fig. 7. a. Chord graph showing correlations between LF and its drivers for G-6 economies. 
b. Chord graph showing correlations between EF and its drivers for G-6 economies.
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essential role in reducing ecological degradation. A 1 % increase leads to 
a 0.041 % improvement in LF and a 0.055 % reduction in EF. This 
reaffirms its importance in advancing environmental sustainability in 
developed countries (Deng et al., 2024). GFC accelerates the transition 
by funding sustainable projects such as renewable energy and energy 
efficiency initiatives. GT exhibits a positive long-term impact on LF. A 1 
% increase in GT corresponds to a 0.018 % rise in LF and a 0.035 % 
reduction in EF. The results demonstrate the critical role of GT in pro
moting cleaner production and combating environmental degradation. 
The widespread adoption of eco-technologies is closely linked to the 
international environmental treaties and protocols, especially post- 
1990, which marks the starting point of this study (Sun et al., 2024b). 
As proposed by Montenegro et al. (2021), the development of GT cor
relates with the distinct technological pathways. GT mitigates environ
mental risks by improving pollution control and waste management, 
thus reducing ecosystem impacts.

The interaction of RES, GFC and GT creates a synergistic governance 
framework that amplifies their individual impacts. GFC supports the 
development and deployment of GT, while GT optimizes the perfor
mance of RES projects. The RES accelerates the adoption of renewables, 
enhancing energy efficiency and further reducing ecological degrada
tion. This synergy could promote sustained ecological recovery, 
decreased degradation, and long-term ecological sustainability.

5.4. MMQR results

Fig. 8a and b visualize the empirical results derived from the MMQR 
estimation, examining the dynamics between LF (model 1), EF (model 
2), and impact factors in G6 countries over the past three decades.

5.4.1. GDP, NRS, POP and environmental degradation
GDP and NRS exert significant negative effects on LF in G6 econo

mies. Specifically, GDP strongly reduces LF. For instance, at the 
analyzed location coefficient, a 1 % increase in GDP growth corresponds 
to a 0.543 % decline in LF, while increasing the EF by 0.72 %. Across all 
quantiles, the negative effect of GDP on LF ranges from − 0.52 % to 
− 0.57 %, and its effect on EF varies from − 0.71 % to − 0.73 %. This 
progression across quantiles indicates that the impacts of environmental 
degradation intensify with higher GDP, reinforcing prior findings that 
identify economic expansion as a consistent contributor to degradation. 
Regarding NRS, a 1 % increase in NRS results in a 0.035 % decline in LF. 
This negative effect is more pronounced at lower quantiles (qtile_5 to 
qtile_30). In contrast, EF rises by 0.024 % with a 1 % increase in NRS. 
This positive effect amplifies at higher quantiles, especially between the 
qtile_80 and qtile_95th. For example, at the qtile_95, a 1 % increase in 
NRS leads to a 0.046 % rise in EF, while a 0.007 % decrease in LF. POP 
presents the positive effects on environmental degradation peak at the 
qtile_95, where a 1 % increase in POP is associated with a 1.05 % 
improvement in LF, while decreasing EF by 1.239 %.

5.4.2. Green transition and environmental degradation
Table 8 presents RES positively influence LF and negatively impact 

EF across the entire quantile distribution. Specifically, the positive effect 
of RES on LF remains consistent at approximately 0.12 % across all 
quantiles, while the negative impact on EF ranges from − 0.13 % to 
− 0.15 %. This consistency reveals the role of RES in fostering a reliable 
and adaptable energy system, increasingly critical because of intensi
fying climate crisis. From an adaptation perspective, RES enhances en
ergy security and resilience. GFC also demonstrates positive and 
statistically significant effect on both LF and EF across the location co
efficient and quantiles ranging from the 5th to the 95th quantile (see 
Fig. 8 and Table 8). Specifically, at the location coefficient, a 1 % in
crease in GFC is associated with a 0.039 % improvement in LF. The most 
substantial positive effects are observed at the 95th percentile, where 
GFC improves LF by 0.078 %. In contrast, the minimal effects are 
observed at the 5th percentile (0.006 %). EF improves by 0.039 % with a 
1 % rise in GFC, peaking at 0.078 % at the qtile_95 and decreasing to 
0.006 % at the qtile_5.

GT is identified as a positive driver of LF across most quantiles, 
though the effect is generally less pronounced compared to RES and 
GFC. Specifically, GT exhibits significant positive effects in lower to 
middle quantiles (qtile_5 to qtile_40), with coefficients ranging from 
0.02 to 0.06. In the higher quantiles (qtile_80 to qtile_95), GT demon
strates a negative effect on LF, though this effect is not statistically 
significant. GT significantly reduces the EF in the higher quantiles 
(qtile_70 to qtile_95). For instance, at the qtile_95 of model 2, a 1 % 
increase in GT corresponds to a 0.072 % reduction in EF. This weak 
effect evolution may stem from the relatively immature stage of GT 
development in some countries (Uche et al., 2024).

The integrated results validate the reliable expansion of the STIRPAT 
framework, facilitating a comprehensive analysis of adaptation strate
gies and mitigation efforts, particularly in nonlinear and heterogeneous 
systems. The long-run elasticity coefficients derived from FMOLS align 
with STIRPAT’s hypotheses regarding the interactions between drivers 
and environmental degradation. Specifically, the coefficients capture 
the long-term dynamics between green transition initiatives and envi
ronmental degradation. Meanwhile, MMQR enhances the explanatory 
power of the STIRPAT framework by revealing quantile-specific effects. 
The findings support the development of country-specific adaptation 
and mitigation strategies, while highlighting the potential of green 

Table 3 
Panel unit root tests test.

Variables Name Statistic p-value constant

EF t_hs − 2.495 0.006 constant
t_dh − 2.740 0.003

LF t_hs − 2.082 0.019 no constant
t_dh − 1.849 0.032

GDP t_hs − 2.462 0.007 no constant
t_dh − 2.359 0.009

NRS t_hs − 2.244 0.012 constant
t_dh − 2.068 0.019

POP t_hs − 2.189 0.014 no constant
t_dh − 1.444 0.074

RES t_hs − 1.917 0.028 constant
t_dh − 2.056 0.020

GFC t_hs − 3.102 0.001 constant
t_dh − 2.799 0.003

GT t_hs − 2.656 0.004 no constant
t_dh − 1.295 0.098

Table 4 
CD dependence test results.

Test Statistic Prob. Statistic Prob.

Model1 Model2

Breusch-Pagan LM 66.705 0.000 123.112 0.000
Pesaran scaled 9.440 0.000 19.738 0.000
Baltagi et al. (2012) LM 9.343 0.000 19.642 0.000
Pesaran CD 4.631 0.000 8.069 0.000

Table 5 
Results of slope heterogeneity test (Blomquist and Westerlund (2013)).

H0: slope coefficients are homogenous

model1 Delta p-value

Δ̃ − 2.335 0.02

Δ̃adj. − 2.791 0.005
model 2 Delta p-value
Δ̃ − 2.522 0.012

Δ̃adj. − 3.014 0.003
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transitions to synergistically reduce environmental degradation and 
promote actionable solutions.

6. Robustness analysis

6.1. Panel estimated generalized least squares (EGLS) regression

This study uses an alternative regression method, which proposed by 
Khan et al. (2022) and Mance et al. (2020). This method is effective in 
addressing issues commonly encountered in panel data analyses, 
including heteroskedasticity and autocorrelation. As shown in Table 9, 
the coefficients obtained from the panel EGLS regression are closely 
similar with the results from the FMOLS and MMQR location coefficient 
results. This consistency not only supports the robustness of the prior 
analyses but also strengthens the reliability of our conclusions. 
Furthermore, the results of panel EGLS enhances a deeper understanding 
of the underlying dynamics within the panel data, effectively validating 
the empirical estimates. Through this robustness analysis, we emphasize 
the importance of using different regression methods to ensure the 
empirical evidence is robust and withstands scrutiny. This validation 
process provides a solid foundation for policy recommendations and 

future research.

6.2. Heterogeneous panel causality analysis

In contrast to conventional long-term panel estimators, which only 
capture long-term coefficients, this section further uses the D-H panel 
causality method to display the causal relationships among green tran
sition indicators, GDP, NRS, and POP on LF and EF. D-H test uses the 
Wald test statistic to test the causality hypothesis, with the null and 
alternative hypotheses defined in Eqs. (28) and (29), respectively. 

Xit = αi +
∑J

j− 1
βj

iXi(t− j) +
∑J

j− 1
γj

iZi(t− j) + μit (28) 

H0 : μi = 0 for∀i

H1 :

{
μi = 0 for all i = 1, 2,3, 4⋯⋯⋯⋯,N1

μi ∕= 0 for all i = N1 + 1,2, 3,4,⋯⋯N 

WHNC
N.T = N− 1

∑N

i=1
Wi,T (29) 

Table 6 
Panel cointegration test results.

model1 model2

Panel a: Pedroni Residual Cointegration Test

Weighted Weighted

Statistic Prob. Statistic Prob. Statistic Prob. Statistic Prob.

Panel v-Statistic 0.179 0.429 0.170 0.433 − 0.027 0.511 − 0.957 0.831
Panel rho-Statistic − 0.100 0.460 0.026 0.510 0.151 0.560 0.036 0.514
Panel PP-Statistic − 4.165 0.000 − 3.731 0.000 − 3.619 0.000 − 3.917 0.000
Panel ADF-Statistic − 4.257 0.000 − 3.855 0.000 − 3.707 0.000 − 3.990 0.000

Statistic Prob. Statistic Prob.
Group rho-Statistic 0.811 0.791 1.185 0.882
Group PP-Statistic − 3.757 0.000 − 3.356 0.000
Group ADF-Statistic − 3.804 0.000 − 0.896 0.185

Panel b: KAO Residual Cointegration Test
t-Stat. Prob. t-Stat. Prob.

ADF − 2.546 0.005 − 1.302 0.096
Residual variance 0.000 0.049
HAC variance 0.000 0.042

Panel c: Johansen Fisher Panel Cointegration Test: Individual cross section results 
Hypothesis of no cointegration

Trace Test Max-Eign Test Trace Test Max-Eign Test
Cross Section Statistics Prob. Statistics Prob. Statistics Prob. Statistics Prob.
JPN 169.576 0.000 54.489 0.005 166.233 0.000 55.179 0.004
DEU 240.168 0.000 86.324 0.000 243.439 0.000 80.216 0.000
USA 174.177 0.000 62.042 0.001 179.289 0.000 61.139 0.001
FRA 231.401 0.000 71.859 0.000 203.574 0.000 62.970 0.000
GBR 220.336 0.000 76.549 0.000 209.157 0.000 72.854 0.000
ITA 190.290 0.000 62.766 0.000 219.355 0.000 68.417 0.000

Table 7 
FMOLS results.

Panel a. Model1: dependent variable = LF Panel b Model2: dependent variable = EF

Variable Coef. Std. Error Prob. VIFa Coef. Std. Error Prob. VIF

GDP − 0.558 0.044 0.000 0.000 0.726 0.047 0.000 0.000
NRS − 0.032 0.006 0.000 0.002 0.022 0.006 0.001 0.002
POP 0.684 0.101 0.000 0.010 − 1.648 0.109 0.000 0.012
GT 0.018 0.01 0.059 0.000 − 0.035 0.010 0.001 0.000
RES 0.117 0.005 0.000 0.000 − 0.139 0.005 0.000 0.000
GFC 0.041 0.007 0.000 0.000 − 0.055 0.008 0.000 0.000
R-squared 0.986 S.E. of reg. 0.056 0.947 S.E. of reg. 0.060

a Coefficient variance value.
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Where XitandZit represent the dependent and independent variables, 
respectively. The long-run elasticity and autoregressive parameters are 
denoted by βj

i and γj
i.

As shown in Fig. 9 and Table 10, D-H robustness check reinforces the 
reliability and validity of the results. The detection of both bidirectional 
and unidirectional causalities across different variables strengthens the 
argument that the observed interactions are not spurious but rather 
reflect the dynamics within the system. Moreover, the unidirectional 
causality from GDP, GFC, and RES towards both LF and EF provides 
additional confirmation of the robustness of the results. The consistent 
causal effects of these variables on both LF and EF reconfirms the 
importance in shaping the energy system’s capacity to meet demand and 
the environmental sustainability of economic activities. Finally, the 
bidirectional causality between GT, NRS, and POP on both LF and EF 
adds another argument of the robustness. The persistence of these causal 
relationships, even under varying conditions and potential confounding 
factors, indicating that the observed interactions are robust and should 
be considered in policy formulation.

7. Conclusions, implications and limitations

7.1. Conclusions

This study integrates EF and LF to address the limitations of CO₂- 
centric analyses of environmental degradation, providing empirical 
frameworks to reveal adaptation, mitigation, and synergistic effects of 
green transition initiatives in G-6 economies. From this work, several 
specific conclusions can be obtained: (i) The long-term dynamics of 
economic expansion, resource depletion, and population density are 
characterized by complex interactions that contribute to environmental 
degradation. Addressing these challenges requires adaptive and miti
gation strategies that navigate the trade-offs between socio-economic 
development and ecological thresholds. (ii) The synergistic effects of 
RES, GFC, and GT are suggested as actionable, adaptable, and scalable 
policy pathways to mitigate environmental degradation. The combined 
effect of components amplifies their cumulative impact, accelerating 
progress towards green transition. (iii) MMQR reveals asymmetric dy
namics between environmental degradation and green transitions. RES 
consistently mitigate environmental degradation across all quantiles. A 

Fig. 8. a. MMQR results for model 1. 
b. MMQR results for model 2.
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1 % increase in RES reduces the EF by 0.13–0.15 % and improves the LF 
by 0.12 %, establishing energy transition as a critical cornerstone of 
effective mitigation and adaption. GFC presents escalating benefits at 
higher percentiles (qtile_95). The scalability limitations of GT at upper 
quantiles and the diminishing marginal returns in ecological restoration 
suggest a threshold beyond which the effectiveness of GT may decline. 
(iv) The robustness check of alternative regression of Panel EGLS and D- 
H causality tests validate empirical findings, ensuring conclusions reli
ably capture the complex interactions among variables influencing 
environmental degradation.

7.2. Implications

The study emphasizes the alignment of green transition initiatives 

with the SDGs, particularly SDG 7 (Affordable and Clean Energy), SDG 
11 (Sustainable Cities and Communities), and SDG 13 (Climate Action). 
It also provides insights into advancing environmental sustainability 
through green transitions. 

(i) Policymakers can leverage an expanded STIRPAT framework to 
demonstrate the long-term impacts of green transition policies, 
ensuring environmental and economic growth goals are achieved 
in tandem. The study also highlights the need to integrate broader 
environmental metrics (e.g., resource efficiency, waste manage
ment, and land use) to advance SDG 12 (Responsible Consump
tion and Production). These findings offer a foundation for 
policies that embed sustainable practices into development stra
tegies, fostering environmental sustainability.

(ii) This work emphasizes the importance of designing green transi
tion policies as actionable, adaptable, and scalable tools capable 
of supporting environmental sustainability and resource security. 
For example, policies promoting green innovation and renewable 
energy adoption directly advance SDG 7, while measures tar
geting emissions reductions and climate resilience align with SDG 
13. Synergies between these initiatives can further amplify 
progress across multiple SDGs.

(iii) High-income nations, particularly the G-6 have the opportunity 
to promote clean technology transfers and global clean energy 
adoption to support SDGs 7 and 13. Emerging economies can 
address local challenges like energy infrastructure gaps and 
market inefficiencies to ensure equitable transitions. Addition
ally, financial tools (e.g., green bonds, tax incentives, and 
Renewable Energy Investment Trusts) should be embedded in 
policies to attract private capital and scale green projects.

(iv) Countries like the BRICS should prioritize investments in 
renewable infrastructure, green innovation, and sustainable 
resource management. Policymakers in these nations can develop 
strategies to reduce fossil fuel dependency while promoting 
resource stewardship. In this context, platforms like the UNFCCC 

Table 8 
MMQR results.

Model1 Quantile Grids

variables location qtile_15 qtile_35 qtile_55 qtile_75 qtile_95

coef. p-value coef. p-value coef. p-value coef. p-value coef. p-value coef. p-value

GDP − 0.543 0.000 − 0.527 0.000 − 0.538 0.000 − 0.544 0.000 − 0.553 0.000 − 0.570 0.000
NRS − 0.035 0.003 − 0.052 0.000 − 0.041 0.000 − 0.034 0.004 − 0.024 0.113 − 0.007 0.781
POP 0.589 0.002 0.309 0.123 0.489 0.006 0.598 0.002 0.767 0.001 1.052 0.005
RES 0.119 0.000 0.119 0.000 0.119 0.000 0.119 0.000 0.119 0.000 0.119 0.000
GFC 0.039 0.007 0.016 0.312 0.031 0.025 0.040 0.007 0.054 0.004 0.078 0.008
GT 0.021 0.265 0.048 0.016 0.030 0.082 0.020 0.292 0.003 0.885 − 0.024 0.517
_cons 1.311 0.245 2.581 0.032 1.766 0.096 1.272 0.266 0.509 0.726 − 0.780 0.729

Quantile Grids
Model2 location qtile_15 qtile_35 qtile_55 qtile_75 qtile_95

coef. p-value coef. p-value coef. p-value coef. p-value coef. p-value coef. p-value
GDP 0.720 0.000 0.724 0.000 0.722 0.000 0.719 0.000 0.718 0.000 0.715 0.000
NRS 0.024 0.045 0.008 0.659 0.017 0.213 0.028 0.014 0.035 0.002 0.046 0.001
POP − 1.532 0.000 − 1.753 0.000 − 1.624 0.000 − 1.474 0.000 − 1.381 0.000 − 1.239 0.000
RES − 0.140 0.000 − 0.145 0.000 − 0.142 0.000 − 0.138 0.000 − 0.136 0.000 − 0.133 0.000
GFC − 0.050 0.001 − 0.070 0.002 − 0.058 0.001 − 0.044 0.003 − 0.036 0.016 − 0.023 0.200
GT − 0.040 0.036 − 0.017 0.555 − 0.030 0.170 − 0.047 0.011 − 0.057 0.002 − 0.072 0.001
_cons 1.939 0.076 3.031 0.055 2.395 0.057 1.652 0.114 1.190 0.255 0.488 0.697

Table 9 
The results of panel EGLS.

Panel a. Model1

Variable Coef. Std. t-Stat. Prob.

GDP − 0.479 0.081 − 5.908 0.000
NRS − 0.032 0.011 − 2.951 0.004
POP 0.347 0.168 2.066 0.040
GT 0.046 0.019 2.425 0.016
RES 0.097 0.009 10.771 0.000
GFC 0.029 0.012 2.348 0.020
C 1.990 1.000 1.990 0.048

Panel b. Model2
Variable Coef. Std. t-Stat. Prob.
GDP 0.599 0.082 7.279 0.000
NRS 0.020 0.011 1.770 0.078
POP − 1.091 0.166 − 6.562 0.000
GT − 0.084 0.020 − 4.190 0.000
RES − 0.098 0.009 − 10.660 0.000
GFC − 0.030 0.012 − 2.503 0.013
C 0.739 1.002 0.738 0.462

Fig. 9. Results of D-H panel causality test.
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and the One Belt One Road Initiative can foster global collabo
ration and resource-sharing, accelerating renewable energy 
deployment and technological innovation. These efforts will 
mitigate environmental degradation, drive green growth, and 
accelerate SDGs achievement.

These implications offer policymakers a cohesive roadmap to inte
grate energy, urban development, and climate goals, accelerating 
climate action and environmental sustainability.

7.3. Limitations

The study has several limitations, primarily due to the availability of 
recent datasets, which may affect the estimation results. There is also an 
urgent need to establish standardized green transition indicators for 
better international comparisons and coordinate global efforts. Addi
tionally, the panel regression results may be influenced by socio- 
economic and environmental contexts across countries. Future studies 
can discuss specific challenges of green transition by each country. 
Finally, issues such as omitted variable bias and endogeneity may not 
have been fully addressed.
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