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ABSTRACT 

 

In the field of machine learning, disentangled representation learning seeks to map 

high-dimensional data into a low-dimensional space where the underlying variational 

factors are both disentangled and easily separable. This thesis investigates the 

application of such representations, derived from unlabelled data to tasks where only 

limited labelled data is available. Specifically, I explore the domain of audio modelling, 

where the absence of supervision in learning representations from unlabelled data 

often results in representations that may not be optimally useful for downstream tasks, 

leading to potential resource wastage. To address this issue, I introduce the Guided 

Generative Adversarial Neural Network (GGAN), a novel model that utilises a modest 

amount of labelled data to guide the learning of relevant disentangled representations 

from a larger corpus of unlabelled data. While the representation learned through 

GGAN proves beneficial for the task at hand, its generalisation capabilities are limited, 

restricting the model's application to tasks similar to or closely related to the original 

one. To overcome this limitation, I propose a second model, the Guided Generative 

Adversarial Autoencoder (GAAE), which not only learns representations tailored to a 

specific downstream task but also captures the general attributes of the data, thereby 

being independent of the particular task. Both GGAN and GAAE are founded on the 

Generative Adversarial Network (GAN) architecture, leveraging the audio 

generalisation prowess of GANs for representation learning. Nevertheless, the models 

eschew working with 1D raw audio waveforms directly, instead utilising 2D 

spectrograms, a practice that recent research suggests may curtail the models' 

ultimate performance capabilities, representing a significant gap in the literature. This 

thesis confronts this issue head-on. Convolutional Neural Networks (CNNs), forming 

the structural backbone of both GGAN and GAAE, have historically faced challenges 

in generating raw audio waveforms via adversarial training. A foundational step in 

surmounting this hurdle involves a thorough examination of CNNs' ability to model raw 

audio waveforms, such as classification tasks. Moving strategically in this direction, I 

have proposed two cosine filter-based CNN models: the Cosine Convolution Neural 

Network (CosCovNN) and the Vector Quantised Cosine Convolutional Neural Network 

with Memory (VQCCM). These models have not only outclassed traditional CNN 

architectures but have also set a new benchmark in the field of audio classification.  
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CHAPTER 1: INTRODUCTION 

 

1.1. Background 

Feature extraction and data representation are essential components that 

significantly impact the performance of machine learning models. How data is 

represented significantly affects how well models can recognise patterns, make 

predictions, and apply these predictions to new data [1]. In the past, machine learning 

researchers heavily focused on creating models to improve data representation 

techniques [2]. However, with the advent of deep learning, the focus has shifted. Deep 

learning can independently learn representations from raw data, eliminating the need 

for manually crafted features, which has contributed to its success, especially in 

supervised learning tasks [3]. 

Nonetheless, deep learning based supervised algorithms rely heavily on 

extensive labelled datasets, which can be expensive, time-consuming, and sometimes 

impossible to obtain. In the present age of the Internet of Things (IoT), there is an 

abundance of data accessible on the Internet, with organisations continuously 

generating substantial data volumes. However, supervised learning systems 

encounter challenges in harnessing these extensive datasets due to their lack of 

labelling [4]. 

Unsupervised representation learning, a subfield of unsupervised learning, 

offers a promising solution to these challenges. It involves creating a machine learning 

model that can learn data representations without the need for labelled data. During 

this process, the model transforms high-dimensional data into a lower-dimensional 

representation space, where the inherent data features are separated, making them 

easier to separate using basic machine learning models. The process of learning these 

separated features is referred to as the "disentangled representation learning” [5, 6]. 

When the model can learn disentangled representation from any unlabelled 

data, this learning can be applied to related supervised tasks where limited labelled 

data is available. This approach, known as transfer learning, allows us to utilise the 

vast amount of unlabelled big data effectively [7]. Convolutional deep belief networks 

for scalable unsupervised learning of hierarchical representations, for instance, 

consider an emotion classification task based on audio data, where only a small 

amount of labelled dataset is available. Training a machine learning algorithm on such 
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a limited dataset poses significant challenges in accurately learning emotion-related 

information. However, with an abundance of unlabelled audio data, such as related 

open-sourced YouTube audio content, where emotion-related information is 

embedded and entangled, a model capable of learning disentangled representations 

from this vast dataset can effectively learn to disentangle emotion-related information. 

When this trained model is used to extract features from that limited labelled dataset, 

it is expected to substantially improve the emotion classification accuracy. 

Unsupervised representation learning looks intriguing as it can utilise an 

enormous amount of unlabelled data. However, it's important to note that learning 

representations in an unsupervised manner doesn't necessarily ensure their post-use 

case scenario [8]. Recent research by Locatello et al. has demonstrated that achieving 

entirely unsupervised representation learning is not feasible without some form of 

supervised signal [9]. 

In this thesis, I align with the approach of unsupervised representation learning 

using supervised signals within the domain of audio processing. My research was 

initially motivated by existing literature, where researchers [10-12] have introduced 

models based on Generative Adversarial Neural Networks (GANs) [13] to guide 

unsupervised representation learning with the supervision of a limited amount of 

labelled data.  A GAN typically comprises two neural networks: the Generator and the 

Discriminator. These networks undergo training through an alternating minimax-game 

optimisation process. In this training setup, the Discriminator's objective is to 

differentiate between real samples obtained from a data distribution and counterfeit 

samples generated by the Generator. Conversely, the Generator aims to deceive the 

Discriminator by generating samples that closely resemble real ones. During this 

process of generating real-like samples Generator learns to capture disentangled 

representation in its latent variable [14-17].  

The effectiveness of GAN-based models in representation learning hinges on 

the quality of the generated samples. In the domain of audio generation, GAN-based 

models encounter difficulties when attempting to generate raw audio waveforms 

directly. Therefore, researchers have directed their efforts towards strategies for 

generating low-dimensional acoustic features or representations, such as audio 

spectrograms (2D image-like representation of audio), instead of attempting to 

generate the raw waveform itself. Subsequently, these spectrograms are transformed 

back into the audio format [18, 19]. In my research, I follow this direction by converting 
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audio data into 2D image-like log-magnitude spectrograms using the short-time 

Fourier Transform. The generated log-magnitude spectrograms of the models are then 

transformed into audio using the PGHI algorithm [20]. In the rest of the research, I 

refer to the log-magnitude spectrogram as the spectrogram.  

In this thesis, I introduced a novel model called the Guided Generative 

Adversarial Neural Network (GGAN). GGAN excels at generating high-quality 

spectrograms and acquiring task-specific disentangled representations from 

unlabelled data with guidance from a limited, related labelled dataset. Through 

extensive experimentation, I have demonstrated that GGAN enhances audio 

classification tasks, even when provided with a very small subset (approximately 5%) 

of data while training along with a substantial amount of related unlabelled data. This 

is a joint training approach, where both the labelled and unlabelled datasets are used 

together during the training.  Nevertheless, it's essential to note that the 

representations learned with GGAN are highly task-specific and may not generalise 

well for unrelated tasks. 

In many cases, it is desirable to learn representation in a manner so that it can 

be used for any particular downstream task as well as can be used for any future tasks 

independent of the downstream task at hand [21]. It is a challenging problem for GGAN 

to learn both generalised and guided representations in the same latent space. 

Therefore, I also address this issue in this thesis by proposing a novel autoencoder-

based model named Guided Adversarial Autoencoder (GAAE). GAAE can generate 

high-quality audio samples that capture different modes of the training data, guided by 

a small, labelled dataset. Through the power of audio generation, GAAE can learn 

guided representations tailored to the labelled dataset used during training, as well as 

general representations that are not tied to any specific task. 

 Here, both GGAN and GAEE work with the spectrogram of the audio as GAN-

based models struggle with the complex audio waveform generation as it requires 

modelling higher-order temporal scale [19]. However, Ravanelli and Bengio, argued in 

their research [22] that the optimality of the hand-crafted features such as spectrogram 

is not guaranteed as they are designed with perceptual evidence only. Moreover, 

models working with these manually extracted features might not be able to utilise the 

data to its full potential [23]. Therefore, using spectrograms as input to GGAN and 

GAAE models may limit their full potential. Since Convolutional Neural Networks 

(CNNs) serve as the core components of the proposed models and CNNs encounter 
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challenges when it comes to directly modelling audio waveforms, there is a need to 

enhance the CNN model's capabilities for raw audio waveform generation within 

GGAN and GAAE. To embark on this path, the initial step involves improving CNN 

models for the modelling of raw audio, particularly in tasks like audio classification. 

 In this thesis, I further explore this avenue and introduce two novel CNN-based 

models designed for the direct classification of audio from raw waveforms. The first 

model, known as the Cosine Convolutional Neural Network (CosCovNN), 

distinguishes itself by replacing the conventional CNN filter with a cosine-based filter, 

achieving superior performance with approximately 77% fewer parameters compared 

to similar CNN models. Furthermore, I present an enhanced version of CosCovNN, 

named Vector Quantised Cosine Convolutional Neural Network with Memory 

(VQCCM), which incorporates vector quantisation and memory modules. My 

extensive investigations into VQCCM's performance on various audio classification 

tasks, using diverse audio datasets, have resulted in setting new benchmarks for most 

of the studies. These models collectively open up exciting avenues for future research, 

exploring their potential to generate raw audio within the GGAN and GAAE framework. 

 

1.2. Research Aim and Objectives 

The primary aim of this research is to develop new machine learning models 

that can learn distinct and meaningful patterns (disentangled representations) from 

large amounts of audio data that do not have labels. This is particularly useful for 

improving tasks that follow, like classifying emotions in audio clips. The models are 

specifically designed to work with visual representations of audio, such as 

spectrograms. 

In addition to the primary aim, this research also has a secondary aim: to create 

models capable of directly processing raw audio waveforms, reducing the dependency 

on spectrogram representations. To achieve these aims, three specific objectives have 

been identified:  

1. Create a model that can learn useful patterns from unlabelled audio data with 

the help of a small amount of labelled data. This approach focuses on learning 

patterns that are specific to a particular task, such as recognising emotions in 

audio. 



 

5 

2. Develop a model that not only learns patterns specific to one task but also 

learns patterns that can be useful for other tasks. This helps in making the 

model more versatile and applicable to different types of problems, even those 

it was not originally trained for. 

3. Create a model that can work directly with raw audio data instead of relying on 

visual representations like spectrograms. This reduces the need for complex 

data processing and allows the model to work with audio in its original form. 

The first two objectives align with the primary aim of disentangled 

representation learning by acquiring task-specific and transferable representations 

from unlabelled audio data. Furthermore, the third objective aligns with the secondary 

aim of reducing dependence on spectrogram representations by enabling direct 

processing of raw audio waveforms. 

 

1.3. Contributions and Outline 

This research significantly contributes to machine learning and audio 

processing by addressing the challenge of extracting clear and useful patterns from 

large sets of unlabelled audio data. It also explores new methods for working directly 

with raw audio, avoiding the need for complex data transformations. The main 

contributions and outline of this thesis are as follows: 

Chapter 3: I present a new model that uses a technique called Generative 

Adversarial Networks (GANs) to learn specific patterns from unlabelled audio data. 

This model helps improve the performance of related tasks, such as classifying 

emotions in audio, by using a small amount of labelled data to guide the learning 

process. 

Chapter 4: I introduce a model that combines learning for both specific and 

general purposes. It learns detailed patterns useful for a particular task, as well as 

broader patterns that can be applied to different tasks, all by using a small amount of 

labelled data to guide the process. 

Chapter 5: I propose a new approach for classifying raw audio data that 

improves on traditional methods. This model uses special filters that perform better 

than regular CNN models and require fewer resources. I also introduce an advanced 

version that includes additional features to further enhance its performance. 

 



 

6 

These models collectively contribute to the fields of machine learning and audio 

processing by providing versatile tools that enhance the ability to leverage unlabelled 

data, streamline model development, and address complex challenges effectively. 

The implications of this research extend beyond audio processing, offering 

opportunities to simplify and advance artificial intelligence across various domains. 

 

1.4. Outcomes and Implications 

The results of this research hold significant implications for the fields of machine 

learning and audio processing. One key outcome is the ability to leverage vast 

amounts of unlabelled data effectively. This empowers machine learning practitioners 

to enhance models, even when labelled data is scarce. The models, initially designed 

for audio, are adaptable and can be applied to 2D audio representations, expanding 

their utility to domains like computer vision. 

Another crucial outcome is the development of models designed to process raw 

audio waveforms directly. This contrasts with traditional methods, which rely heavily 

on manual feature engineering and complex data preparation. The models reduce 

computational demands and simplify the research process, accelerating scientific 

progress. 

In summary, this research represents a significant step forward in deep 

representation learning. The models provide versatile tools for researchers across 

various fields, enhancing their ability to address complex challenges effectively and 

push the boundaries of artificial intelligence. The implications of this research extend 

far beyond audio processing, offering opportunities to leverage unlabelled data, 

streamline model development, and advance artificial intelligence across diverse 

domains. 
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CHAPTER 2: LITERATURE REVIEW 

 

2.1. Introduction 

This chapter is dedicated to discussing the relevant literature to provide 

background knowledge and set the stage for this research. Subsequent chapters will 

each conduct their own literature review, focusing on their specific domain. 

 

2.2. Deep Learning 

Deep learning has significantly impacted the field of machine learning in recent 

years, primarily due to advancements in computational power that enable the training 

of complex neural networks for a variety of tasks [24]. The interest in deep learning -

surged among researchers particularly after 2012, when a team led by Geoffrey Hinton 

achieved a breakthrough by winning the ImageNet competition, showcasing the 

potential of Convolutional Neural Networks (CNNs) in computer vision tasks [25]. This 

victory underscored the efficiency of deep learning models over traditional machine 

learning approaches in analysing visual data. 

The success of deep learning extends beyond computer vision; it has 

revolutionised several other domains. In machine translation, deep learning algorithms 

have enhanced the quality and efficiency of translating text between languages, 

achieving remarkable fluency and accuracy [26-28]. Speech recognition and speech-

to-text conversion have also seen substantial improvements, making interactions with 

voice-activated systems more seamless and natural [29-31]. Deep learning has 

enabled the creation of models in natural language processing that generate realistic 

text [32, 33] and descriptive image captions [34-36], merging visual content 

understanding with language comprehension. Furthermore, deep learning has made 

strides in areas like video understanding [37-39], enabling more sophisticated analysis 

of video content for applications such as content categorisation and activity 

recognition. Recently, Vision Transformers (ViTs) have emerged as a powerful 

alternative to CNNs, achieving superior performance on various computer vision tasks 

and showing potential in audio representation learning. The hierarchical structure of 

models like the Swin Transformer enables efficient processing of complex data, paving 

the way for further exploration in domains beyond vision [40-43]. 
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It has also been applied to generate and synthesize images and videos [12, 16, 

44-46], creating realistic and high-quality outputs that can be used in various 

applications, from entertainment to educational content creation. The application of 

deep learning has also extended to more specialized fields such as medical 

diagnostics [47-49], where it assists in identifying patterns in imaging data that are 

indicative of specific diseases, and biotechnology, where it aids in analysing complex 

biological data. In addition, deep learning has been utilised in creative domains, 

enabling the generation of art [50], music [51-53], and even writing code [54, 55], 

showcasing its versatility and adaptability across different creative processes.  

Given the broad application of deep learning across various sectors, it has 

become a cornerstone of modern AI research and development. Its ability to 

outperform traditional models in a wide range of tasks has made it an indispensable 

tool in pushing the boundaries of what machines can learn and accomplish. As 

computational resources continue to evolve and become more accessible, the 

potential for deep learning to drive innovation and solve complex problems grows 

exponentially, making it a dynamic and continually evolving field of study. 

 

2.3. Supervised Transfer Learning 

The advent of deep neural networks has ushered in significant advancements 

in supervised learning. Among these, supervised transfer learning has garnered 

attention for its efficacy and versatility [7]. At its core, transfer learning involves the 

process of pretraining a neural network on a source task before fine-tuning it on a 

target task, which may involve either classification or regression. This methodology is 

particularly beneficial as the weights obtained during pretraining facilitate 

generalisation, allowing for the fine-tuning phase to effectively utilise limited label 

information to adjust the weights for the target task. Transfer learning is predicated on 

the notion that, although the training datasets for the source and target tasks may differ 

in their statistics, the representation learned from the source dataset can enhance 

performance on the target task [56]. This is evident in applications such as object 

detection [57], scene classification [58], semantic segmentation [59], image captioning 

[60], and Audio Classification [31, 61-63], where networks pretrained on large datasets 

exhibit remarkable adaptability to new tasks. Yosinski et al. highlighted the potential 

of transferred features from pretrained networks to improve generalisation and 

performance on subsequent tasks [64]. 
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The concept of transfer learning extends beyond visual tasks, finding 

applications in natural language processing (NLP) as well. For instance, cross-lingual 

document classification benefits from transfer learning by utilizing classifiers trained 

on data in one language to perform tasks in another [65]. Gouws et al. demonstrated 

that effective word representations can be learned from monolingual text and a limited 

amount of parallel data, setting new benchmarks in English-German cross-lingual 

classification without the need for word alignments or dictionaries [66]. 

Transfer learning also encompasses more challenging paradigms such as one-

shot and zero-shot learning. In one-shot learning, the model is trained with a single 

example per class, whereas zero-shot learning involves classes that are not present 

in the training data at all. These approaches highlight the potential of transfer learning 

to generalise from minimal data, offering solutions for tasks with scarce labelled data 

[7, 67, 68]. 

While supervised transfer learning has proven effective in leveraging labelled 

data across different tasks, its reliance on labelled data constitutes a limitation. 

Specifically, it lacks the capability to utilise unlabelled data, which is abundantly 

available and potentially useful for learning. This gap underscores the necessity for 

exploring alternative approaches that can incorporate both labelled and unlabelled 

data to enhance learning efficacy and model performance. Recent advances in 

contrastive learning have significantly enhanced transfer learning by enabling models 

to learn more robust and generalizable representations from unlabelled data. 

Approaches like CLIP leverage natural language supervision to achieve cross-domain 

adaptability, including applications in audio [69-72]. 

 

2.4. Unsupervised Representation Learning 

In addressing the challenges posed by the necessity for large volumes of 

labelled data in supervised transfer learning, the focus has shifted towards 

Unsupervised Representation Learning [8, 73, 74]. This method is distinguished by its 

ability to utilise unlabelled data to learn comprehensive representations of the 

underlying data distribution. Such representations prove extremely useful when 

applied to tasks where labelled data is scarce, enabling models to perform effectively 

with minimal supervision [75]. 

Unsupervised Representation Learning is defined by its methodology of 

extracting features and patterns from data without any labels guiding the process. This 
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approach allows the model to capture the intrinsic properties of the dataset, facilitating 

a deeper understanding of its structure. These learned representations are then 

applicable to a variety of tasks, demonstrating the versatility of unsupervised learning 

in leveraging unlabelled data [4]. 

A prime example of this methodology's success is seen in the domain of Large 

Language Models (LLMs) [76, 77]. These models undergo a process of unsupervised 

pretraining on extensive text corpora, during which they learn rich linguistic 

representations. The beauty of this approach lies in its next step: fine-tuning the pre-

trained models on smaller, task-specific labelled datasets. This two-phase process 

showcases the efficiency of unsupervised representation learning in making the most 

of the abundant unlabelled data available, subsequently applying this knowledge to 

enhance performance on tasks with limited labelled examples. 

This paradigm shifts towards unsupervised pretraining followed by task-specific 

fine-tuning has not only mitigated the reliance on large, labelled datasets but has also 

broadened the scope of machine learning applications. By effectively utilising 

unlabelled data, unsupervised representation learning paves the way for models to 

achieve high levels of performance across a wide array of tasks, even when faced with 

the challenge of limited supervision. The rise of self-supervised learning has further 

bridged the gap between supervised and unsupervised learning, particularly in the 

realm of audio and language models. Methods like Bootstrap Your Own Latent (BYOL) 

and Data2vec demonstrate the power of self-supervised learning in extracting useful 

representations from unlabelled data [78-81]. 

 

2.4.1. Traditional Methods 

Unsupervised representation learning, a key area of focus within machine 

learning, has its roots deeply embedded in the field's history. The theoretical benefits 

of this approach were first articulated by Hinton in 1986, marking a pivotal moment in 

understanding the potential of learning representations without direct supervision [82]. 

This foundational concept found practical application through the training of neural 

networks, where early successes underscored the viability and importance of 

unsupervised pretraining [7]. The strategy of Greedy layer-wise pretraining, in 

particular, proved instrumental in the development of deep belief networks [83] and in 

optimizing deep autoencoder networks to learn compact, low-dimensional 

representations [84]. 
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The significance of pretraining extends beyond the mere initialisation of network 

weights; it introduces robustness to deep neural networks, protecting against the 

entrapment in suboptimal local minima—a frequent obstacle in neural network training 

[85]. Furthermore, the qualitative differences in features produced by pretrained 

networks as opposed to those without pretraining highlight the transformative impact 

of this approach on the network's ability to capture and represent complex data 

structures [86]. This methodology has also been successfully applied to Deep 

Boltzmann Machines, where sequential layer-by-layer pretraining enhances the 

efficiency of variational inference [87] demonstrating the effectiveness of unsupervised 

pretraining in leveraging the wealth of unlabelled data. 

The exploration of unsupervised representation learning is not limited to neural 

networks but extends to classical machine learning models. Principal Component 

Analysis (PCA), proposed by Pearson in 1901, stands as a foundational method for 

learning low-dimensional representations of data [88] , its simplicity making it a go-to 

technique for dimensionality reduction [89]. While Linear Discriminant Analysis (LDA) 

was initially introduced as a supervised method [90], the field has seen the emergence 

of nonlinear approaches such as kernel PCA [91] and Generalised Discriminant 

Analysis (GDA) [92], each contributing to the nuanced understanding of data 

representation. 

Further advancements in representation learning techniques have included the 

development of Marginal Fisher Analysis (MFA) by Yan et al., which emphasizes the 

distinction between intraclass compactness and interclass separability through graph 

embeddings, positioning MFA as a versatile algorithm for discriminant analysis [93]. 

Comparative analyses have highlighted the superior recognition accuracy of MFA 

amidst its higher complexity, whereas methods like LDA, despite their efficiency, may 

not always yield optimal results [94]. 

The field has also benefited from clustering approaches, as demonstrated by 

Coates et al., who achieved state-of-the-art results by employing K-means clustering 

alongside pre-identified network parameters for efficient representation learning [95] , 

and further advancements in hierarchical clustering for image patches [96]. However, 

the scalability of these traditional methods remains a challenge, particularly as they 

are generally more applicable to smaller datasets, underscoring a critical area for 

further research and development in unsupervised representation learning [97]. 
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This journey from the early theoretical propositions to the diverse array of 

techniques available today illustrates the continuous evolution and growing complexity 

of unsupervised representation learning. The field stands on the brink of further 

discoveries, with each method contributing to the overarching goal of harnessing the 

vast potential of unlabelled data in learning meaningful and efficient representations. 

 

2.4.2. Autoencoders and Generative Adversarial Neural Networks 

Autoencoders have played a pivotal role in advancing unsupervised 

representation learning, with Hinton demonstrating that through the use of log-linear 

activation functions and a reduction in code size, autoencoders could learn valuable 

features in an unsupervised manner [84]. Denoising autoencoders, which are trained 

to remove noise from corrupted inputs, further improved the ability to capture higher-

level representations, aiding in various supervised tasks such as sentiment analysis 

[98-100]. The introduction of stacked denoising autoencoders and the integration of 

convolutional networks as encoders and deconvolutional networks as decoders 

marked significant improvements in representation learning [101, 102]. Variants like 

the Contractive Autoencoder and Split-Brain Autoencoder have also demonstrated 

their utility in initializing deep architectures and achieving state-of-the-art performance 

in transfer learning benchmarks, respectively [103, 104]. 

The advent of Variational Autoencoders (VAEs) brought a generative aspect to 

autoencoders, with researchers focusing on VAEs for their ability to model posterior 

distributions and conditional log-likelihoods in a probabilistic framework [105]. 

Improvements to VAEs aimed at learning more expressive posterior distributions have 

been proposed, addressing limitations such as the tendency of VAEs to ignore the 

latent code [106, 107]. Furthermore, the introduction of Adversarial Autoencoders and 

PixelGANs, which incorporate adversarial training, has led to breakthroughs in semi-

supervised classification, unsupervised clustering, and more [108-110]. 

Generative Adversarial Networks (GANs) have emerged as a cornerstone in 

the field of unsupervised representation learning due to their success in generating 

high-quality, diverse images and their potential in learning disentangled 

representations[5, 7, 16]. Radford et al. highlighted GANs as a promising candidate 

for unsupervised learning, capable of vector arithmetic in latent spaces previously only 

seen in natural language processing [5]. Recent innovations have addressed GANs' 

initial limitations in generating large images and capturing entire data distributions, 
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with Nvidia's progressive training methodology allowing for the creation of realistic 

images [14, 15]. Despite these advancements, capturing the full data distribution 

remains a challenge, with recent work by Yoshua Bengio's team proposing methods 

to better capture this distribution [111, 112]. 

GANs have also begun to make inroads in the audio domain, overcoming 

challenges in generating raw audio to achieve significant successes in voice cloning 

tasks [113]. This opens up new avenues for research into GAN applications beyond 

computer vision, including audio representation learning, where there is substantial 

potential for innovation [114, 115].  Recently, diffusion models have emerged as a 

promising alternative to GANs, achieving state-of-the-art results in generative tasks, 

including audio synthesis. These models offer a robust approach to overcoming some 

of the limitations associated with GANs, such as mode collapse and training instability 

[116-118]. Inspired by breakthroughs in voice cloning and representation learning from 

raw audio, our work contributes to this growing field by developing a model that 

effectively learns representations from audio data through GANs, building on the 

successes of pioneers in the field [119]. 

 

2.5. Links and Implications 

This exploration of unsupervised representation learning reveals a promising 

avenue for leveraging the vast reserves of unlabelled data to enhance performance in 

downstream tasks, particularly those constrained by limited labelled data. This 

methodology stands as a testament to the ingenuity of utilising inherent data structures 

to pre-train models, thereby circumventing the traditional reliance on extensive 

annotated datasets. Such an approach not only democratises the accessibility of 

advanced machine learning techniques across varied domains but also amplifies the 

potential for discoveries in fields where labelled data is scarce or expensive to procure. 

However, the journey through unsupervised representation learning unveils a 

significant caveat—the bifurcated process of initially training on unlabelled data 

followed by fine-tuning on a smaller, labelled dataset. This two-step procedure 

introduces a layer of complexity, as the success of pre-training does not inherently 

guarantee efficacy in downstream applications. The performance of the model in the 

pre-training phase is not always indicative of its adaptability or effectiveness in 

subsequent tasks, presenting a challenge in predictive evaluation and optimization. 
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The critical evaluation of these methodologies underscores a pivotal concern: 

without prior insight into the specific requirements of the downstream task, there is a 

risk that the model may not learn the necessary features. This disconnect posits a 

barrier to the universal applicability of unsupervised representation learning, 

emphasising the need for targeted innovations that bridge this gap. 

In response to these challenges, this thesis proposes novel models that 

harness the capabilities of generative adversarial neural networks and adversarial 

autoencoders. These models are designed to mitigate the limitations associated with 

the two-step training process, aiming to enhance the model's ability to learn relevant 

features with some guidance from the downstream task. By integrating adversarial 

mechanisms, these models strive to generate more robust and versatile 

representations, potentially increasing the efficacy and reliability of unsupervised 

learning in diverse applications. 

The implications of these advancements extend far beyond the technical realm, 

offering a glimpse into the future of machine learning where data's intrinsic value is 

fully harnessed. By refining and expanding upon these unsupervised learning models, 

there is an opportunity to significantly reduce the barrier to entry for sophisticated data 

analysis, opening new pathways for innovation across scientific research, technology 

development, and beyond. Furthermore, the adoption of these models could catalyse 

a shift towards more efficient and adaptable machine learning frameworks, promising 

to reshape the landscape of data-driven inquiry and application. 

As we advance, the continual refinement and validation of these proposed 

models will be paramount. The journey through unsupervised representation learning, 

with its trials and triumphs, not only enriches our understanding of the potential within 

unlabelled data but also sets the stage for future explorations that may one day render 

the scarcity of labelled data a negligible concern in the pursuit of knowledge and 

innovation. 
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CHAPTER 3: PAPER 1 – Guided Generative Adversarial 

Neural Network for Representation Learning and Audio 

Generation using Fewer Labelled Audio Data 

 

3.1. Introduction 

This chapter primarily addresses objective 1 and introduces a novel GAN-

based model called the Guided Generative Adversarial Neural Network (GGAN). 

GGAN is designed to generate high-quality conditional audio samples using unlabelled 

audio datasets, guided by a limited number of labelled datasets. Throughout the 

conditional generation process, the model learns to disentangle the latent space based 

on the classification signal provided by the accompanying labelled dataset, thereby 

enhancing its performance on this labelled dataset. I evaluated the model based on 

both speech and nonspeech datasets and proved that using only 5% of labelled data 

as guidance, GGAN learns significantly better representations than the state-of-the-

art models.  

 

3.2. Published paper 

 

  



This article cannot be displayed due to copyright restrictions. See the article link in the Related 

Outputs field on the item record for possible access. 
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3.3. Links and implications 

This chapter demonstrated that GGAN can achieve good accuracy in audio 

tasks when limited labelled data is available, thanks to its utilisation of a substantial 

amount of related unlabelled audio data. GGAN leverages unlabelled data to acquire 

task-specific representations, but these representations are primarily suited for 

specific downstream tasks or closely related tasks. Despite its promising performance, 

GGAN faces limitations in scaling to unfamiliar tasks that are not related to the labelled 

data used during training. To address this issue, the following chapter presents an 

alternative model capable of simultaneously learning both task-specific and 

generalised representations, thus bridging this gap. 
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CHAPTER 4: PAPER 2 - High-Fidelity Audio Generation 

and Representation Learning with Guided Adversarial 

Autoencoder 

4.1. Introduction 

In this chapter, I delve into the second objective of the research and present 

the innovative Guided Adversarial Autoencoder (GAAE) model. GAAE is structured 

around an encoder and decoder architecture. The decoder's role is to learn and 

generate high-quality audio samples that effectively capture the diverse mode within 

the training data distribution. It achieves this by incorporating guidance from a limited 

subset of labelled data, either from the same dataset or a closely related one. 

The key strength of GAAE lies in its ability to produce high-fidelity audio 

samples, empowering the encoder to disentangle specific data attributes within the 

learned latent or representation space according to the provided guidance. This 

acquired representation proves valuable for enhancing any related downstream task 

at hand. Additionally, I demonstrate that GAAE extends beyond guided representation 

learning, uncovering, and disentangling additional data attributes that remain 

independent of the provided guidance. As a result, GAAE excels in simultaneously 

learning task-specific representations tailored to the immediate downstream task, 

while also acquiring generalised representations capable of accommodating 

unforeseen, unrelated tasks in the future. 

 

4.2. Published paper 
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4.3. Links and implications 

In this chapter, I have demonstrated the capabilities of the Guided Adversarial 

Autoencoder (GAAE) model to simultaneously acquire both guided and generalised 

representations from unlabelled audio data. Guided representation learning enhances 

performance in related tasks where labelled audio data is limited, while the generalised 

representation can be applied to entirely unrelated tasks. This research introduces a 

significant opportunity for researchers to harness unlabelled audio data for enhancing 

various audio-related tasks. 

However, it's worth noting that both the proposed GGAN and GAAE models 

rely on manually extracted spectrograms, which may limit their full potential. These 

models are built upon a Convolutional Neural Network (CNN) architecture. To address 

this limitation and reduce the dependency on spectrograms, I have presented an 

enhanced version of the CNN model in the next chapter. This improved model is 

designed to directly model audio from raw waveforms and holds the potential for 

integration within the GAAE and GGAN frameworks. 
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CHAPTER 5: PAPER 3 – Raw Audio Classification with 

Cosine Convolutional Neural Network (CosCovNN) 

 

5.1. Introduction 

In this chapter, I introduce the Cosine Convolutional Neural Network 

(CosCovNN) as an innovative alternative to the traditional CNN model for the direct 

classification of audio from raw waveforms. CosCovNN offers the potential to replace 

the core CNN architecture of GGAN and GAAE, thereby eliminating their reliance on 

handcrafted features. This development aligns precisely with the third objective of the 

research work. 

CosCovNN can significantly reduce the parameter count by 77%, while 

consistently outperforming similar CNN models in audio classification tasks across five 

different datasets. While CosCovNN excels, it does not surpass the performance of 

complex models found in the existing literature. To further emphasise the potential of 

CosCovNN, I propose the Vector Quantised Cosine Convolutional Neural Network 

with Memory (VQCCM). Through rigorous evaluation and benchmarking against 

existing literature, I demonstrate that VQCCM achieves state-of-the-art performance 

across various audio classification tasks, often surpassing the performance of existing 

models found in the literature. 

 

5.2. Published paper 
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5.3. Links and implications 

In this final chapter, I introduced two novel models, Cosine Convolutional 

Neural Network (CosCovNN) and Vector Quantised Cosine Convolutional Neural 

Network with Memory (VQCCM). These models are designed to classify audio data 

directly from its waveform, eliminating the need for manual feature engineering. 

Results, based on diverse datasets, confirm that the cosine filter can serve as a viable 

alternative to the traditional CNN filter for raw audio waveform classification. With the 

completion of this chapter, the third research objective is achieved. 

In the concluding section, I will summarize the key findings and contributions of 

this thesis. Additionally, I will outline potential future directions and areas for further 

research in the domain of audio processing and machine learning. 
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CHAPTER 6: DISCUSSION AND CONCLUSION 

 

This study makes a significant contribution to the domain of unsupervised 

disentangled representation learning, a fundamental area in machine learning. The 

primary objective of this research is to learn disentangled representations from 

unlabelled audio data. These learned representations hold the potential to enhance 

the performance of machine learning models in audio-related tasks, particularly in 

scenarios where labelled data is limited. To attain this goal, I have devised innovative 

models tailored to operate with audio spectrogram representations. It is worth noting 

that manually crafted features, such as spectrograms, have been criticised for 

potentially limiting the performance of machine learning models. Hence, this research 

also has a secondary aim to address this limitation by creating models capable of 

directly processing raw audio waveforms. To accomplish both the primary and 

secondary objectives of this research, three core objectives have been formulated. 

Next, I will conclude my findings based on these objectives. 

 

6.1.  Guided Representation Learning from unlabelled audio data 

The first core objective of this research focused on developing models capable 

of learning task-specific representations from unlabelled audio data while leveraging 

guidance from a small amount of labelled data. This approach aimed to enhance the 

performance of machine learning models on related tasks with limited labelled data. 

The Guided Generative Adversarial Neural Network (GGAN) was introduced as a 

solution to this objective. Even though GGAN was primarily designed for 

representation learning, it has also made a significant contribution to the field of audio 

generation. GGAN has introduced an innovative approach to guiding a GAN model to 

generate high-quality conditional audio based on a small set of labelled samples. The 

effectiveness of GGAN has been demonstrated through experiments conducted on 

both speech and non-speech datasets. 

One of the core contributions of GGAN lies in the concept of partitioning the 

latent space of the GAN model based on the supervision given from a limited set of 

labelled data. This novel approach has implications beyond audio processing and 

represents a valuable contribution to machine learning theory. Researchers across 

various domains can leverage this idea to develop other GAN-based models capable 
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of learning guided representations from unlabelled datasets. This contribution 

transcends the audio field and can be applied to a wide range of research areas where 

GAN-based models play a role. 

 
6.2.  Guided and Generalised Representation Learning from unlabelled audio 

data 

Indeed, GGAN has demonstrated its ability to disentangle specific 

characteristics of the data distribution in its latent space, guided by the provided 

supervision. This capability enhances its performance in the task at hand, particularly 

when that task is closely related to the supervised signal. However, this specialised 

partitioning of the latent space comes at a cost – it limits the capacity of GGAN to 

capture other variational factors of the data that are unrelated to the provided 

supervision signal. While GGAN's design was intentional and serves its primary 

purpose effectively, it also means that it may miss out on the opportunity to be used in 

a more generalised manner across a broader range of tasks.  

Recognising this untapped potential, I introduced objective 2 as a means to 

complement the primary aim of this research. Nevertheless, it posed a substantial 

challenge to design a model based on GGAN architecture capable of simultaneously 

achieving both guided and generalised representation learning. In the initial stages of 

this research, the incorporation of both these objectives into the GGAN design proved 

counterproductive, resulting in a model that was ineffective for either task. To address 

this challenge, I transitioned to an autoencoder-based model and developed the 

Guided Adversarial Autoencoder (GAAE). In the GAAE architecture, the encoder 

learns to project high-dimensional data distributions into two distinct latent or 

representation spaces. Within these latent spaces, one representation captures the 

specific characteristics of the data guided by the provided signal, while the other 

focuses on capturing the generalised characteristics of the data distribution. 

Subsequently, the decoder can effectively reconstruct the input data distribution from 

these dual representations. An interesting aspect of the GAAE model is that by 

manipulating the values within these two representation spaces, the decoder can be 

repurposed as a high-fidelity audio generation model. This dual functionality highlights 

the versatility and potential of GAAE in both representation learning and audio 

generation tasks. 
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 I conducted extensive evaluations of GAAE using three distinct datasets, and 

the results demonstrated its superior performance compared to existing models in the 

literature. GAAE exhibited the capability to generate high-fidelity conditional audio 

samples and simultaneously learn both guided and generalised representations, all 

while utilising supervision from just 1% of labelled data. Furthermore, I highlighted an 

additional practical application of GAAE, where it can serve as a valuable data 

augmentation tool by leveraging the high-quality samples it generates. Beyond its 

specific applications in audio processing, GAAE contributes to the foundational 

autoencoder theory in the field of machine learning, opening up possibilities for its 

utilisation in various domains where autoencoders are relevant. This versatility 

underscores the broader significance and potential of GAAE beyond the scope of this 

research. 

 
6.3.  Direct modelling of audio from raw waveform 

My proposed models, GGAN and GAAE, undeniably contribute to the 

advancement of representation learning and audio generation in the field of machine 

learning. During the design of these models, I drew inspiration from the success of 

using spectrograms as input features for deep learning models in the existing 

literature. Both GGAN and GAAE are tailored to work with the spectrogram 

representation of audio and do not directly interact with the raw audio waveform. 

However, it's important to note that spectrogram-like features are designed based on 

perceptual evidence and may not capture all the variational factors present in audio 

data. This reliance on spectrograms could potentially limit the full potential of GGAN 

and GAAE. To address this limitation, I established objective 3, aligning with the 

secondary aim of this research. 

To fulfill objective 3, I introduced two models: CosCovNN and VQCCM. These 

models can classify audio directly from raw waveform data and have the potential to 

replace the foundational CNN architecture of GGAN and GAAE. This would enable 

these models to operate directly on raw audio data. I leave this possibility open for 

future researchers to explore and extend this research. 

I introduced CosCovNN, which incorporates learnable Cosine filters, resulting 

in a remarkable 77% reduction in parameters. Through extensive comparisons on 

Speech and Nonspeech datasets, I demonstrated CosCovNN's effectiveness in 

directly classifying audio from raw waveforms. Furthermore, I provided clear guidelines 
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for integrating cosine filters into existing CNN models, facilitating enhanced 

performance and reduced complexity. These insights open up promising avenues for 

future research, allowing for the exploration of diverse CNN architectures tailored for 

audio modelling. 

Additionally, I proposed VQCCM, an advanced iteration of CosCovNN, 

featuring Vector Quantisation (VQ) and Memory layers. In evaluations across a range 

of datasets, including Speech Command, Speech Emotion, Acoustic Scenes, Musical 

Instrument, and Speaker ID, VQCCM consistently achieved state-of-the-art results 

and outperformed benchmarks in specific instances. The integration of VQ and 

memory layers substantially enhanced CosCovNN's performance. This innovation 

offers potential for broader application and exploration within various CNN 

architectures found in the existing literature. Future research endeavours can delve 

into these promising outcomes further. 

In summary, this research has advanced the field of unsupervised disentangled 

representation learning and audio modelling. It has introduced innovative models, 

shed light on new avenues for research, and contributed to the broader landscape of 

machine learning. The potential and versatility of these models extend beyond the 

scope of this study, offering exciting opportunities for future investigations and 

applications. 

6.4.  Synthesis of Findings Across Models 

This thesis introduced three primary models: Guided Generative Adversarial 

Neural Network (GGAN), Guided Adversarial Autoencoder (GAAE), and Cosine 

Convolutional Neural Network (CosCovNN)/Vector Quantised Cosine Convolutional 

Neural Network with Memory (VQCCM), each offering unique strengths and 

addressing specific aspects of representation learning and audio generation. 

• Comparison on Similar Datasets: The performance of both GGAN and 

GAAE was thoroughly evaluated on speech and non-speech datasets, 

illustrating their capabilities in extracting disentangled representations from 

unlabelled audio data. GGAN excels in scenarios requiring task-specific 

representations, showing high accuracy even with minimal labelled data. Its 

focus on guided learning enables the partitioning of the latent space in a 

way that enhances model performance for specific tasks. However, GAAE 
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expands on GGAN's capabilities by offering broader applicability through its 

dual representation approach, which allows it to learn both task-specific and 

general representations. This dual functionality makes GAAE versatile, 

providing utility across a wider range of tasks, not limited to the conditions 

of the supervised signal. 

• Strengths and Limitations: GGAN's primary strength lies in its efficient 

use of limited labelled data to guide the learning process, making it 

particularly useful in cases where acquiring labelled data is challenging. 

However, its reliance on guided learning within a specific latent space 

restricts its ability to generalise to unrelated tasks. GAAE addresses this 

limitation by learning generalised representations alongside task-specific 

ones, but this comes at the cost of increased computational demands due 

to the complexity of managing dual latent spaces. On the other hand, 

CosCovNN and VQCCM are tailored for direct audio classification from raw 

waveforms, bypassing the need for manually crafted features like 

spectrograms. This direct approach not only reduces dependency on 

feature engineering but also significantly enhances parameter efficiency. 

VQCCM, in particular, demonstrates superior performance across diverse 

audio datasets, setting new benchmarks in audio classification accuracy 

and robustness. 

• Insights: Collectively, these findings highlight the complementary strengths 

of the proposed models. GGAN and GAAE excel in disentangled 

representation learning, making them ideal for tasks that benefit from 

understanding and utilising latent structure in the data. Meanwhile, the 

introduction of CosCovNN and VQCCM provides a critical advancement by 

directly processing raw waveforms, thus reducing the dependency on 

spectrograms and other hand-crafted features. This integration of direct 

waveform processing into the broader framework of representation learning 

offers a more streamlined and potentially more powerful approach to 

handling audio data. By bridging the gap between task-specific and general-

purpose representations, these models contribute to a more holistic 

understanding and application of unsupervised learning techniques in audio 

processing. 
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6.5.  Limitations of the Proposed Methods 

Despite their strengths, the models presented in this thesis have limitations that 

must be acknowledged: 

• GGAN: While GGAN is effective in learning task-specific representations 

from unlabelled data with minimal labelled supervision, its ability to 

generalise across unrelated tasks is constrained due to its focused 

partitioning of the latent space based on the specific guidance provided. 

This limitation restricts its applicability when the goal is to develop models 

that can handle a broader range of tasks without retraining. 

• GAAE: GAAE addresses the generalisation challenge by introducing a dual 

representation space for both guided and general features. However, this 

dual approach necessitates more complex training procedures and 

significantly increases computational requirements. The need for higher 

computational resources could pose challenges for deploying GAAE in 

large-scale or real-time applications, where efficiency is a critical factor. 

• CosCovNN and VQCCM: These models, designed for direct waveform 

processing, are efficient in terms of parameter usage and demonstrate 

strong performance in classification tasks. However, as relatively new 

approaches, they still require further validation across a broader spectrum 

of audio types and conditions, such as those involving environmental noise, 

diverse audio sources, or varying recording qualities. Establishing their 

robustness and versatility across different audio scenarios remains an 

essential step in their development. 

6.6. Future Research Directions 

To further advance the field of disentangled representation learning and audio 

processing, future research could explore: 

• Hybrid Approaches: One promising avenue involves integrating GGAN 

and GAAE with more advanced generative models like diffusion models or 

leveraging transformer-based architectures. These hybrids could enhance 

the models' capacity to learn high-quality representations with reduced 

reliance on labelled data, potentially improving both the quality and flexibility 

of the representations learned. 
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• Scalability Improvements: Optimising the architecture of GAAE to reduce 

its computational footprint could make it more accessible for real-world 

applications. This might involve exploring more efficient training algorithms, 

incorporating techniques such as model pruning or quantisation, or even 

developing lightweight variants that retain the core strengths of the model. 

• Application to Broader Audio Types: Expanding the evaluation of 

CosCovNN and VQCCM to include a wider variety of audio types, including 

challenging conditions like environmental noise or overlapping sound 

sources, could help validate their robustness. Understanding how these 

models perform under less controlled conditions would provide valuable 

insights into their potential real-world applications and guide further 

refinements. 

• Cross-Modal Representation Learning: Extending these models to 

cross-modal tasks, such as linking audio to text or image data, 

could open new interdisciplinary research opportunities. This 

direction would involve adapting the models to handle and 

integrate multi-modal data, potentially leading to new applications 

in areas like multimedia analysis, content creation, and human-

computer interaction. 
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