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ABSTRACT

In the field of machine learning, disentangled representation learning seeks to map
high-dimensional data into a low-dimensional space where the underlying variational
factors are both disentangled and easily separable. This thesis investigates the
application of such representations, derived from unlabelled data to tasks where only
limited labelled data is available. Specifically, | explore the domain of audio modelling,
where the absence of supervision in learning representations from unlabelled data
often results in representations that may not be optimally useful for downstream tasks,
leading to potential resource wastage. To address this issue, | introduce the Guided
Generative Adversarial Neural Network (GGAN), a novel model that utilises a modest
amount of labelled data to guide the learning of relevant disentangled representations
from a larger corpus of unlabelled data. While the representation learned through
GGAN proves beneficial for the task at hand, its generalisation capabilities are limited,
restricting the model's application to tasks similar to or closely related to the original
one. To overcome this limitation, | propose a second model, the Guided Generative
Adversarial Autoencoder (GAAE), which not only learns representations tailored to a
specific downstream task but also captures the general attributes of the data, thereby
being independent of the particular task. Both GGAN and GAAE are founded on the
Generative Adversarial Network (GAN) architecture, leveraging the audio
generalisation prowess of GANSs for representation learning. Nevertheless, the models
eschew working with 1D raw audio waveforms directly, instead utilising 2D
spectrograms, a practice that recent research suggests may curtail the models'
ultimate performance capabilities, representing a significant gap in the literature. This
thesis confronts this issue head-on. Convolutional Neural Networks (CNNSs), forming
the structural backbone of both GGAN and GAAE, have historically faced challenges
in generating raw audio waveforms via adversarial training. A foundational step in
surmounting this hurdle involves a thorough examination of CNNs' ability to model raw
audio waveforms, such as classification tasks. Moving strategically in this direction, |
have proposed two cosine filter-based CNN models: the Cosine Convolution Neural
Network (CosCovNN) and the Vector Quantised Cosine Convolutional Neural Network
with Memory (VQCCM). These models have not only outclassed traditional CNN
architectures but have also set a new benchmark in the field of audio classification.
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CHAPTER 1: INTRODUCTION

1.1.Background

Feature extraction and data representation are essential components that
significantly impact the performance of machine learning models. How data is
represented significantly affects how well models can recognise patterns, make
predictions, and apply these predictions to new data [1]. In the past, machine learning
researchers heavily focused on creating models to improve data representation
techniques [2]. However, with the advent of deep learning, the focus has shifted. Deep
learning can independently learn representations from raw data, eliminating the need
for manually crafted features, which has contributed to its success, especially in
supervised learning tasks [3].

Nonetheless, deep learning based supervised algorithms rely heavily on
extensive labelled datasets, which can be expensive, time-consuming, and sometimes
impossible to obtain. In the present age of the Internet of Things (IoT), there is an
abundance of data accessible on the Internet, with organisations continuously
generating substantial data volumes. However, supervised learning systems
encounter challenges in harnessing these extensive datasets due to their lack of
labelling [4].

Unsupervised representation learning, a subfield of unsupervised learning,
offers a promising solution to these challenges. It involves creating a machine learning
model that can learn data representations without the need for labelled data. During
this process, the model transforms high-dimensional data into a lower-dimensional
representation space, where the inherent data features are separated, making them
easier to separate using basic machine learning models. The process of learning these
separated features is referred to as the "disentangled representation learning” [5, 6].

When the model can learn disentangled representation from any unlabelled
data, this learning can be applied to related supervised tasks where limited labelled
data is available. This approach, known as transfer learning, allows us to utilise the
vast amount of unlabelled big data effectively [7]. Convolutional deep belief networks
for scalable unsupervised learning of hierarchical representations, for instance,
consider an emotion classification task based on audio data, where only a small

amount of labelled dataset is available. Training a machine learning algorithm on such



a limited dataset poses significant challenges in accurately learning emotion-related
information. However, with an abundance of unlabelled audio data, such as related
open-sourced YouTube audio content, where emotion-related information is
embedded and entangled, a model capable of learning disentangled representations
from this vast dataset can effectively learn to disentangle emotion-related information.
When this trained model is used to extract features from that limited labelled dataset,
it is expected to substantially improve the emotion classification accuracy.

Unsupervised representation learning looks intriguing as it can utilise an
enormous amount of unlabelled data. However, it's important to note that learning
representations in an unsupervised manner doesn't necessarily ensure their post-use
case scenario [8]. Recent research by Locatello et al. has demonstrated that achieving
entirely unsupervised representation learning is not feasible without some form of
supervised signal [9].

In this thesis, | align with the approach of unsupervised representation learning
using supervised signals within the domain of audio processing. My research was
initially motivated by existing literature, where researchers [10-12] have introduced
models based on Generative Adversarial Neural Networks (GANs) [13] to guide
unsupervised representation learning with the supervision of a limited amount of
labelled data. A GAN typically comprises two neural networks: the Generator and the
Discriminator. These networks undergo training through an alternating minimax-game
optimisation process. In this training setup, the Discriminator's objective is to
differentiate between real samples obtained from a data distribution and counterfeit
samples generated by the Generator. Conversely, the Generator aims to deceive the
Discriminator by generating samples that closely resemble real ones. During this
process of generating real-like samples Generator learns to capture disentangled
representation in its latent variable [14-17].

The effectiveness of GAN-based models in representation learning hinges on
the quality of the generated samples. In the domain of audio generation, GAN-based
models encounter difficulties when attempting to generate raw audio waveforms
directly. Therefore, researchers have directed their efforts towards strategies for
generating low-dimensional acoustic features or representations, such as audio
spectrograms (2D image-like representation of audio), instead of attempting to
generate the raw waveform itself. Subsequently, these spectrograms are transformed

back into the audio format [18, 19]. In my research, | follow this direction by converting



audio data into 2D image-like log-magnitude spectrograms using the short-time
Fourier Transform. The generated log-magnitude spectrograms of the models are then
transformed into audio using the PGHI algorithm [20]. In the rest of the research, |
refer to the log-magnitude spectrogram as the spectrogram.

In this thesis, | introduced a novel model called the Guided Generative
Adversarial Neural Network (GGAN). GGAN excels at generating high-quality
spectrograms and acquiring task-specific disentangled representations from
unlabelled data with guidance from a limited, related labelled dataset. Through
extensive experimentation, | have demonstrated that GGAN enhances audio
classification tasks, even when provided with a very small subset (approximately 5%)
of data while training along with a substantial amount of related unlabelled data. This
is a joint training approach, where both the labelled and unlabelled datasets are used
together during the training.  Nevertheless, it's essential to note that the
representations learned with GGAN are highly task-specific and may not generalise
well for unrelated tasks.

In many cases, it is desirable to learn representation in a manner so that it can
be used for any particular downstream task as well as can be used for any future tasks
independent of the downstream task at hand [21]. It is a challenging problem for GGAN
to learn both generalised and guided representations in the same latent space.
Therefore, | also address this issue in this thesis by proposing a novel autoencoder-
based model named Guided Adversarial Autoencoder (GAAE). GAAE can generate
high-quality audio samples that capture different modes of the training data, guided by
a small, labelled dataset. Through the power of audio generation, GAAE can learn
guided representations tailored to the labelled dataset used during training, as well as
general representations that are not tied to any specific task.

Here, both GGAN and GAEE work with the spectrogram of the audio as GAN-
based models struggle with the complex audio waveform generation as it requires
modelling higher-order temporal scale [19]. However, Ravanelli and Bengio, argued in
their research [22] that the optimality of the hand-crafted features such as spectrogram
is not guaranteed as they are designed with perceptual evidence only. Moreover,
models working with these manually extracted features might not be able to utilise the
data to its full potential [23]. Therefore, using spectrograms as input to GGAN and
GAAE models may limit their full potential. Since Convolutional Neural Networks

(CNNs) serve as the core components of the proposed models and CNNs encounter



challenges when it comes to directly modelling audio waveforms, there is a need to
enhance the CNN model's capabilities for raw audio waveform generation within
GGAN and GAAE. To embark on this path, the initial step involves improving CNN

models for the modelling of raw audio, particularly in tasks like audio classification.

In this thesis, | further explore this avenue and introduce two novel CNN-based
models designed for the direct classification of audio from raw waveforms. The first
model, known as the Cosine Convolutional Neural Network (CosCovNN),
distinguishes itself by replacing the conventional CNN filter with a cosine-based filter,
achieving superior performance with approximately 77% fewer parameters compared
to similar CNN models. Furthermore, | present an enhanced version of CosCovNN,
named Vector Quantised Cosine Convolutional Neural Network with Memory
(VQCCM), which incorporates vector quantisation and memory modules. My
extensive investigations into VQCCM's performance on various audio classification
tasks, using diverse audio datasets, have resulted in setting new benchmarks for most
of the studies. These models collectively open up exciting avenues for future research,

exploring their potential to generate raw audio within the GGAN and GAAE framework.

1.2.Research Aim and Objectives

The primary aim of this research is to develop new machine learning models
that can learn distinct and meaningful patterns (disentangled representations) from
large amounts of audio data that do not have labels. This is particularly useful for
improving tasks that follow, like classifying emotions in audio clips. The models are
specifically designed to work with visual representations of audio, such as
spectrograms.

In addition to the primary aim, this research also has a secondary aim: to create
models capable of directly processing raw audio waveforms, reducing the dependency
on spectrogram representations. To achieve these aims, three specific objectives have
been identified:

1. Create a model that can learn useful patterns from unlabelled audio data with
the help of a small amount of labelled data. This approach focuses on learning
patterns that are specific to a particular task, such as recognising emotions in

audio.



2. Develop a model that not only learns patterns specific to one task but also
learns patterns that can be useful for other tasks. This helps in making the
model more versatile and applicable to different types of problems, even those
it was not originally trained for.

3. Create a model that can work directly with raw audio data instead of relying on
visual representations like spectrograms. This reduces the need for complex
data processing and allows the model to work with audio in its original form.
The first two objectives align with the primary aim of disentangled

representation learning by acquiring task-specific and transferable representations
from unlabelled audio data. Furthermore, the third objective aligns with the secondary
aim of reducing dependence on spectrogram representations by enabling direct

processing of raw audio waveforms.

1.3.Contributions and Outline

This research significantly contributes to machine learning and audio
processing by addressing the challenge of extracting clear and useful patterns from
large sets of unlabelled audio data. It also explores new methods for working directly
with raw audio, avoiding the need for complex data transformations. The main
contributions and outline of this thesis are as follows:

Chapter 3: | present a new model that uses a technique called Generative
Adversarial Networks (GANSs) to learn specific patterns from unlabelled audio data.
This model helps improve the performance of related tasks, such as classifying
emotions in audio, by using a small amount of labelled data to guide the learning
process.

Chapter 4: | introduce a model that combines learning for both specific and
general purposes. It learns detailed patterns useful for a particular task, as well as
broader patterns that can be applied to different tasks, all by using a small amount of
labelled data to guide the process.

Chapter 5: | propose a new approach for classifying raw audio data that
improves on traditional methods. This model uses special filters that perform better
than regular CNN models and require fewer resources. | also introduce an advanced

version that includes additional features to further enhance its performance.



These models collectively contribute to the fields of machine learning and audio
processing by providing versatile tools that enhance the ability to leverage unlabelled
data, streamline model development, and address complex challenges effectively.
The implications of this research extend beyond audio processing, offering

opportunities to simplify and advance artificial intelligence across various domains.

1.4.Outcomes and Implications

The results of this research hold significant implications for the fields of machine
learning and audio processing. One key outcome is the ability to leverage vast
amounts of unlabelled data effectively. This empowers machine learning practitioners
to enhance models, even when labelled data is scarce. The models, initially designed
for audio, are adaptable and can be applied to 2D audio representations, expanding
their utility to domains like computer vision.

Another crucial outcome is the development of models designed to process raw
audio waveforms directly. This contrasts with traditional methods, which rely heavily
on manual feature engineering and complex data preparation. The models reduce
computational demands and simplify the research process, accelerating scientific
progress.

In summary, this research represents a significant step forward in deep
representation learning. The models provide versatile tools for researchers across
various fields, enhancing their ability to address complex challenges effectively and
push the boundaries of artificial intelligence. The implications of this research extend
far beyond audio processing, offering opportunities to leverage unlabelled data,
streamline model development, and advance artificial intelligence across diverse

domains.



CHAPTER 2: LITERATURE REVIEW

2.1.Introduction
This chapter is dedicated to discussing the relevant literature to provide
background knowledge and set the stage for this research. Subsequent chapters will

each conduct their own literature review, focusing on their specific domain.

2.2.Deep Learning

Deep learning has significantly impacted the field of machine learning in recent
years, primarily due to advancements in computational power that enable the training
of complex neural networks for a variety of tasks [24]. The interest in deep learning -
surged among researchers particularly after 2012, when a team led by Geoffrey Hinton
achieved a breakthrough by winning the ImageNet competition, showcasing the
potential of Convolutional Neural Networks (CNNs) in computer vision tasks [25]. This
victory underscored the efficiency of deep learning models over traditional machine
learning approaches in analysing visual data.

The success of deep learning extends beyond computer vision; it has
revolutionised several other domains. In machine translation, deep learning algorithms
have enhanced the quality and efficiency of translating text between languages,
achieving remarkable fluency and accuracy [26-28]. Speech recognition and speech-
to-text conversion have also seen substantial improvements, making interactions with
voice-activated systems more seamless and natural [29-31]. Deep learning has
enabled the creation of models in natural language processing that generate realistic
text [32, 33] and descriptive image captions [34-36], merging visual content
understanding with language comprehension. Furthermore, deep learning has made
strides in areas like video understanding [37-39], enabling more sophisticated analysis
of video content for applications such as content categorisation and activity
recognition. Recently, Vision Transformers (ViTs) have emerged as a powerful
alternative to CNNs, achieving superior performance on various computer vision tasks
and showing potential in audio representation learning. The hierarchical structure of
models like the Swin Transformer enables efficient processing of complex data, paving

the way for further exploration in domains beyond vision [40-43].



It has also been applied to generate and synthesize images and videos [12, 16,
44-46], creating realistic and high-quality outputs that can be used in various
applications, from entertainment to educational content creation. The application of
deep learning has also extended to more specialized fields such as medical
diagnostics [47-49], where it assists in identifying patterns in imaging data that are
indicative of specific diseases, and biotechnology, where it aids in analysing complex
biological data. In addition, deep learning has been utilised in creative domains,
enabling the generation of art [50], music [51-53], and even writing code [54, 55],
showcasing its versatility and adaptability across different creative processes.

Given the broad application of deep learning across various sectors, it has
become a cornerstone of modern Al research and development. Its ability to
outperform traditional models in a wide range of tasks has made it an indispensable
tool in pushing the boundaries of what machines can learn and accomplish. As
computational resources continue to evolve and become more accessible, the
potential for deep learning to drive innovation and solve complex problems grows

exponentially, making it a dynamic and continually evolving field of study.

2.3.Supervised Transfer Learning

The advent of deep neural networks has ushered in significant advancements
in supervised learning. Among these, supervised transfer learning has garnered
attention for its efficacy and versatility [7]. At its core, transfer learning involves the
process of pretraining a neural network on a source task before fine-tuning it on a
target task, which may involve either classification or regression. This methodology is
particularly beneficial as the weights obtained during pretraining facilitate
generalisation, allowing for the fine-tuning phase to effectively utilise limited label
information to adjust the weights for the target task. Transfer learning is predicated on
the notion that, although the training datasets for the source and target tasks may differ
in their statistics, the representation learned from the source dataset can enhance
performance on the target task [56]. This is evident in applications such as object
detection [57], scene classification [58], semantic segmentation [59], image captioning
[60], and Audio Classification [31, 61-63], where networks pretrained on large datasets
exhibit remarkable adaptability to new tasks. Yosinski et al. highlighted the potential
of transferred features from pretrained networks to improve generalisation and

performance on subsequent tasks [64].



The concept of transfer learning extends beyond visual tasks, finding
applications in natural language processing (NLP) as well. For instance, cross-lingual
document classification benefits from transfer learning by utilizing classifiers trained
on data in one language to perform tasks in another [65]. Gouws et al. demonstrated
that effective word representations can be learned from monolingual text and a limited
amount of parallel data, setting new benchmarks in English-German cross-lingual
classification without the need for word alignments or dictionaries [66].

Transfer learning also encompasses more challenging paradigms such as one-
shot and zero-shot learning. In one-shot learning, the model is trained with a single
example per class, whereas zero-shot learning involves classes that are not present
in the training data at all. These approaches highlight the potential of transfer learning
to generalise from minimal data, offering solutions for tasks with scarce labelled data
[7, 67, 68].

While supervised transfer learning has proven effective in leveraging labelled
data across different tasks, its reliance on labelled data constitutes a limitation.
Specifically, it lacks the capability to utilise unlabelled data, which is abundantly
available and potentially useful for learning. This gap underscores the necessity for
exploring alternative approaches that can incorporate both labelled and unlabelled
data to enhance learning efficacy and model performance. Recent advances in
contrastive learning have significantly enhanced transfer learning by enabling models
to learn more robust and generalizable representations from unlabelled data.
Approaches like CLIP leverage natural language supervision to achieve cross-domain

adaptability, including applications in audio [69-72].

2.4.Unsupervised Representation Learning

In addressing the challenges posed by the necessity for large volumes of
labelled data in supervised transfer learning, the focus has shifted towards
Unsupervised Representation Learning [8, 73, 74]. This method is distinguished by its
ability to utilise unlabelled data to learn comprehensive representations of the
underlying data distribution. Such representations prove extremely useful when
applied to tasks where labelled data is scarce, enabling models to perform effectively
with minimal supervision [75].

Unsupervised Representation Learning is defined by its methodology of

extracting features and patterns from data without any labels guiding the process. This



approach allows the model to capture the intrinsic properties of the dataset, facilitating
a deeper understanding of its structure. These learned representations are then
applicable to a variety of tasks, demonstrating the versatility of unsupervised learning
in leveraging unlabelled data [4].

A prime example of this methodology's success is seen in the domain of Large
Language Models (LLMs) [76, 77]. These models undergo a process of unsupervised
pretraining on extensive text corpora, during which they learn rich linguistic
representations. The beauty of this approach lies in its next step: fine-tuning the pre-
trained models on smaller, task-specific labelled datasets. This two-phase process
showcases the efficiency of unsupervised representation learning in making the most
of the abundant unlabelled data available, subsequently applying this knowledge to
enhance performance on tasks with limited labelled examples.

This paradigm shifts towards unsupervised pretraining followed by task-specific
fine-tuning has not only mitigated the reliance on large, labelled datasets but has also
broadened the scope of machine learning applications. By effectively utilising
unlabelled data, unsupervised representation learning paves the way for models to
achieve high levels of performance across a wide array of tasks, even when faced with
the challenge of limited supervision. The rise of self-supervised learning has further
bridged the gap between supervised and unsupervised learning, particularly in the
realm of audio and language models. Methods like Bootstrap Your Own Latent (BYOL)
and Data2vec demonstrate the power of self-supervised learning in extracting useful
representations from unlabelled data [78-81].

2.4.1. Traditional Methods

Unsupervised representation learning, a key area of focus within machine
learning, has its roots deeply embedded in the field's history. The theoretical benefits
of this approach were first articulated by Hinton in 1986, marking a pivotal moment in
understanding the potential of learning representations without direct supervision [82].
This foundational concept found practical application through the training of neural
networks, where early successes underscored the viability and importance of
unsupervised pretraining [7]. The strategy of Greedy layer-wise pretraining, in
particular, proved instrumental in the development of deep belief networks [83] and in
optimizing deep autoencoder networks to learn compact, low-dimensional

representations [84].
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The significance of pretraining extends beyond the mere initialisation of network
weights; it introduces robustness to deep neural networks, protecting against the
entrapment in suboptimal local minima—a frequent obstacle in neural network training
[85]. Furthermore, the qualitative differences in features produced by pretrained
networks as opposed to those without pretraining highlight the transformative impact
of this approach on the network's ability to capture and represent complex data
structures [86]. This methodology has also been successfully applied to Deep
Boltzmann Machines, where sequential layer-by-layer pretraining enhances the
efficiency of variational inference [87] demonstrating the effectiveness of unsupervised
pretraining in leveraging the wealth of unlabelled data.

The exploration of unsupervised representation learning is not limited to neural
networks but extends to classical machine learning models. Principal Component
Analysis (PCA), proposed by Pearson in 1901, stands as a foundational method for
learning low-dimensional representations of data [88] , its simplicity making it a go-to
technique for dimensionality reduction [89]. While Linear Discriminant Analysis (LDA)
was initially introduced as a supervised method [90], the field has seen the emergence
of nonlinear approaches such as kernel PCA [91] and Generalised Discriminant
Analysis (GDA) [92], each contributing to the nuanced understanding of data
representation.

Further advancements in representation learning techniques have included the
development of Marginal Fisher Analysis (MFA) by Yan et al., which emphasizes the
distinction between intraclass compactness and interclass separability through graph
embeddings, positioning MFA as a versatile algorithm for discriminant analysis [93].
Comparative analyses have highlighted the superior recognition accuracy of MFA
amidst its higher complexity, whereas methods like LDA, despite their efficiency, may
not always yield optimal results [94].

The field has also benefited from clustering approaches, as demonstrated by
Coates et al., who achieved state-of-the-art results by employing K-means clustering
alongside pre-identified network parameters for efficient representation learning [95] ,
and further advancements in hierarchical clustering for image patches [96]. However,
the scalability of these traditional methods remains a challenge, particularly as they
are generally more applicable to smaller datasets, underscoring a critical area for

further research and development in unsupervised representation learning [97].
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This journey from the early theoretical propositions to the diverse array of
techniques available today illustrates the continuous evolution and growing complexity
of unsupervised representation learning. The field stands on the brink of further
discoveries, with each method contributing to the overarching goal of harnessing the

vast potential of unlabelled data in learning meaningful and efficient representations.

2.4.2. Autoencoders and Generative Adversarial Neural Networks

Autoencoders have played a pivotal role in advancing unsupervised
representation learning, with Hinton demonstrating that through the use of log-linear
activation functions and a reduction in code size, autoencoders could learn valuable
features in an unsupervised manner [84]. Denoising autoencoders, which are trained
to remove noise from corrupted inputs, further improved the ability to capture higher-
level representations, aiding in various supervised tasks such as sentiment analysis
[98-100]. The introduction of stacked denoising autoencoders and the integration of
convolutional networks as encoders and deconvolutional networks as decoders
marked significant improvements in representation learning [101, 102]. Variants like
the Contractive Autoencoder and Split-Brain Autoencoder have also demonstrated
their utility in initializing deep architectures and achieving state-of-the-art performance
in transfer learning benchmarks, respectively [103, 104].

The advent of Variational Autoencoders (VAES) brought a generative aspect to
autoencoders, with researchers focusing on VAEs for their ability to model posterior
distributions and conditional log-likelihoods in a probabilistic framework [105].
Improvements to VAES aimed at learning more expressive posterior distributions have
been proposed, addressing limitations such as the tendency of VAEs to ignore the
latent code [106, 107]. Furthermore, the introduction of Adversarial Autoencoders and
PixelGANs, which incorporate adversarial training, has led to breakthroughs in semi-
supervised classification, unsupervised clustering, and more [108-110].

Generative Adversarial Networks (GANs) have emerged as a cornerstone in
the field of unsupervised representation learning due to their success in generating
high-quality, diverse images and their potential in learning disentangled
representations[5, 7, 16]. Radford et al. highlighted GANs as a promising candidate
for unsupervised learning, capable of vector arithmetic in latent spaces previously only
seen in natural language processing [5]. Recent innovations have addressed GANS'

initial limitations in generating large images and capturing entire data distributions,
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with Nvidia's progressive training methodology allowing for the creation of realistic
images [14, 15]. Despite these advancements, capturing the full data distribution
remains a challenge, with recent work by Yoshua Bengio's team proposing methods
to better capture this distribution [111, 112].

GANs have also begun to make inroads in the audio domain, overcoming
challenges in generating raw audio to achieve significant successes in voice cloning
tasks [113]. This opens up new avenues for research into GAN applications beyond
computer vision, including audio representation learning, where there is substantial
potential for innovation [114, 115]. Recently, diffusion models have emerged as a
promising alternative to GANs, achieving state-of-the-art results in generative tasks,
including audio synthesis. These models offer a robust approach to overcoming some
of the limitations associated with GANs, such as mode collapse and training instability
[116-118]. Inspired by breakthroughs in voice cloning and representation learning from
raw audio, our work contributes to this growing field by developing a model that
effectively learns representations from audio data through GANSs, building on the

successes of pioneers in the field [119].

2.5.Links and Implications

This exploration of unsupervised representation learning reveals a promising
avenue for leveraging the vast reserves of unlabelled data to enhance performance in
downstream tasks, particularly those constrained by limited labelled data. This
methodology stands as a testament to the ingenuity of utilising inherent data structures
to pre-train models, thereby circumventing the traditional reliance on extensive
annotated datasets. Such an approach not only democratises the accessibility of
advanced machine learning techniques across varied domains but also amplifies the
potential for discoveries in fields where labelled data is scarce or expensive to procure.

However, the journey through unsupervised representation learning unveils a
significant caveat—the bifurcated process of initially training on unlabelled data
followed by fine-tuning on a smaller, labelled dataset. This two-step procedure
introduces a layer of complexity, as the success of pre-training does not inherently
guarantee efficacy in downstream applications. The performance of the model in the
pre-training phase is not always indicative of its adaptability or effectiveness in

subsequent tasks, presenting a challenge in predictive evaluation and optimization.
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The critical evaluation of these methodologies underscores a pivotal concern:
without prior insight into the specific requirements of the downstream task, there is a
risk that the model may not learn the necessary features. This disconnect posits a
barrier to the universal applicability of unsupervised representation learning,
emphasising the need for targeted innovations that bridge this gap.

In response to these challenges, this thesis proposes novel models that
harness the capabilities of generative adversarial neural networks and adversarial
autoencoders. These models are designed to mitigate the limitations associated with
the two-step training process, aiming to enhance the model's ability to learn relevant
features with some guidance from the downstream task. By integrating adversarial
mechanisms, these models strive to generate more robust and versatile
representations, potentially increasing the efficacy and reliability of unsupervised
learning in diverse applications.

The implications of these advancements extend far beyond the technical realm,
offering a glimpse into the future of machine learning where data's intrinsic value is
fully harnessed. By refining and expanding upon these unsupervised learning models,
there is an opportunity to significantly reduce the barrier to entry for sophisticated data
analysis, opening new pathways for innovation across scientific research, technology
development, and beyond. Furthermore, the adoption of these models could catalyse
a shift towards more efficient and adaptable machine learning frameworks, promising
to reshape the landscape of data-driven inquiry and application.

As we advance, the continual refinement and validation of these proposed
models will be paramount. The journey through unsupervised representation learning,
with its trials and triumphs, not only enriches our understanding of the potential within
unlabelled data but also sets the stage for future explorations that may one day render
the scarcity of labelled data a negligible concern in the pursuit of knowledge and

innovation.

14



CHAPTER 3: PAPER 1 — Guided Generative Adversarial
Neural Network for Representation Learning and Audio

Generation using Fewer Labelled Audio Data

3.1.Introduction

This chapter primarily addresses objective 1 and introduces a novel GAN-
based model called the Guided Generative Adversarial Neural Network (GGAN).
GGAN is designed to generate high-quality conditional audio samples using unlabelled
audio datasets, guided by a limited number of labelled datasets. Throughout the
conditional generation process, the model learns to disentangle the latent space based
on the classification signal provided by the accompanying labelled dataset, thereby
enhancing its performance on this labelled dataset. | evaluated the model based on
both speech and nonspeech datasets and proved that using only 5% of labelled data
as guidance, GGAN learns significantly better representations than the state-of-the-
art models.

3.2.Published paper
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3.3.Links and implications

This chapter demonstrated that GGAN can achieve good accuracy in audio
tasks when limited labelled data is available, thanks to its utilisation of a substantial
amount of related unlabelled audio data. GGAN leverages unlabelled data to acquire
task-specific representations, but these representations are primarily suited for
specific downstream tasks or closely related tasks. Despite its promising performance,
GGAN faces limitations in scaling to unfamiliar tasks that are not related to the labelled
data used during training. To address this issue, the following chapter presents an
alternative model capable of simultaneously learning both task-specific and

generalised representations, thus bridging this gap.
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CHAPTER 4: PAPER 2 - High-Fidelity Audio Generation
and Representation Learning with Guided Adversarial

Autoencoder

4.1.Introduction

In this chapter, | delve into the second objective of the research and present
the innovative Guided Adversarial Autoencoder (GAAE) model. GAAE is structured
around an encoder and decoder architecture. The decoder's role is to learn and
generate high-quality audio samples that effectively capture the diverse mode within
the training data distribution. It achieves this by incorporating guidance from a limited
subset of labelled data, either from the same dataset or a closely related one.

The key strength of GAAE lies in its ability to produce high-fidelity audio
samples, empowering the encoder to disentangle specific data attributes within the
learned latent or representation space according to the provided guidance. This
acquired representation proves valuable for enhancing any related downstream task
at hand. Additionally, | demonstrate that GAAE extends beyond guided representation
learning, uncovering, and disentangling additional data attributes that remain
independent of the provided guidance. As a result, GAAE excels in simultaneously
learning task-specific representations tailored to the immediate downstream task,
while also acquiring generalised representations capable of accommodating

unforeseen, unrelated tasks in the future.

4.2.Published paper
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© ABSTRACT Generating high-fidelity conditional audio samples and learning representation from unlabelled
audio data are two challenging problems in machine learning research. Recent advances in the Generative
Adversarial Neural Networks (GAN) architectures show great promise in addressing these challenges.
To learn powerful representation using GAN architecture, it requires superior sample generation quality,
which requires an enormous amount of labelled data. In this paper, we address this issue by proposing Guided
Adversarial Autoencoder (GAAE), which can generate superior conditional audio samples from unlabelled
audio data using a small percentage of labelled data as guidance. Representation learned from unlabelled
data without any supervision does not guarantee its’ usability for any downstream task. On the other hand,
during the representation learning, if the model is highly biased towards the downstream task, it losses its
generalisation capability. This makes the learned representation hardly useful for any other tasks that are not
related to that downstream task. The proposed GAAE model also address these issues. Using this superior
conditional generation, GAAE can learn representation specific to the downstream task. Furthermore, GAAE
learns another type of representation capturing the general attributes of the data, which is independent of the
downstream task at hand. Experimental results involving the S09 and the NSynth dataset attest the superior
performance of GAAE compared to the state-of-the-art alternatives.

¢ INDEX TERMS Audio generation, representation learning, generative adversarial neural network, guided

generative adversarial autoencoder.

I. INTRODUCTION
Representation learning aims to map higher-dimensional data
into a lower-dimensional representation space where the vari-
ational factors of the data are disentangled. Learning a disen-
tangled representation from an unlabelled dataset opens a
window of opportunity for researchers to utilise the vastly
available unlabelled data for any downstream tasks [1]. Such
as, a representation learnt from freely available YouTube
audios (movie, news etc.) can be used to improve a task such
as emotion recognition from audio where a large labelled
dataset is unavailable.

Generative Adversarial Neural Network (GAN) [2] has
shown great promise for learning powerful representation.

The associate editor coordinating the review of this manuscript and
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GAN is comprised of a Generator network and a Discrim-
inator network, where these networks are trained to defeat
each other based on a minimax game. During training,
the Generator tries to fool the Discriminator by generating
real-like samples from a random noise/latent distribution,
and the Discriminator tries to defeat the Generator by differ-
entiating the generated sample from the real samples [2].
During this game-play, the Generator disentangles the under-
lying attributes of the data in the given random latent
distribution [3]. This helps in learning powerful representa-
tions [3]-[9] in a unsupervised manner. GAN based models
pose great promise in audio research where limited or no
labelled data is available.

The representation learning performance of the GANs
usually improves along with its’ sample generation quality.
Intuitively, GAN models that can generate high-quality
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samples, intrinsically learns powerful representation [6].
GAN-based models are successful at generating high-fidelity
images, however, they fail to perform likewise for the
complex audio waveform generation as it requires modelling
higher-order temporal scales [10]. To successfully generate
audio with GANs, many researchers have worked with the
spectrogram of the audio which can be converted back to the
audio with minimal loss [10]-[12]. Recently proposed high
performing GAN architectures such as BigGAN [13] and
StyleGAN [9] are not well explored in the audio field, leaving
aroom to explore the compatibility of these models for audio
data.

A representation learnt with GANs in a completely unsu-
pervised manner does not guarantee the usability of the learnt
representation for any particular downstream task. This is
because it can ignore the important characteristics of the data
during the training which is important for succeeding in the
downstream task [14]. So, some bias towards the downstream
task is necessary during the unsupervised training to succeed
in that downstream task [1].

GAN models perform better for conditional generation
using labelled data. The labels add useful side information
during the training, which helps the GAN models to decom-
pose overall sample generation tasks into sub-tasks according
to the conditioned labels. Though the conditional generation
helps to improve performance significantly, it requires an
enormous amount of labelled data [15], which is costly and/or
error-prone. Using the GAN models to generate high-quality
samples with a minimum amount of labelled data therefore
remains a crucial challenge [14].

In our previous work, we propose a BigGAN based
architecture called “Guided Generative Adversarial Neural
Network (GGAN),” which can generate state-of-the-art
(SOTA) conditional audio with fewer labelled data. This
labelled data is used as a guidance to force GGAN to learn
guided representation for any downstream task at hand. Note
that, the learned representation for any particular downstream
task makes it less useful for any other task that is unrelated
to the downstream task [14]. In many cases, it is desirable
to learn representation in a manner so that it can be used for
any particular downstream task as well as can be used for any
future tasks independent of the downstream task at hand [16].
It is a challenging problem to learn both generalised and
guided representation at the same time with conditional GAN
architectures. During the training of any conditional GAN,
the latent noise/samples are independent of the given condi-
tion. So, GAN learns to map the general characteristics of
the training data from the latent samples, which is indepen-
dent of the condition. On the other hand, if the condition is
imposed on the latent samples/noise like GGAN, the latent
cannot learn general characteristics as it is biased towards the
conditioned attributes. In this paper, we address this problem.
Our contributions are as follows:

« We propose a novel autoencoder based GAN model

GAAE, which can generate high-fidelity audio samples
capturing the diverse modes of the training data
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distribution leveraging the guidance from a fewer
labelled data samples from that dataset or a related
dataset.

« We evaluate the conditional sample generation quality
of the proposed model based on two audio datasets:
the Speech Command dataset (S09) and the Musical
Instrument Sound dataset (Nsyth). We demonstrate that
the GAAE model performs significantly better than the
SOTA models.

« We achieve generalised and guided representation
in our GAAE model. Evaluation results on three
different datasets: the Speech Command dataset (S09),
the Audio Book Speech dataset (Librispeech), and the
Musical Instrument Sound dataset (Nsyth) show that
the proposed GAAE model performs better than SOTA
models.

Il. BACKGROUND AND RELATED WORK

A. AUDIO REPRESENTATION LEARNING

While there is a rich literature of supervised representa-
tion learning, due to our focus on unsupervised represen-
tation learning we will only discuss the related literature
here. In the field of unsupervised representation learning,
the self-supervised learning has become very popular recently
due to its unprecedented success in the field of computer
vision [17]-[23] and natural language processing [24]-[27].
Self-supervised learning uses information presents in the
unlabelled data to create an alternative supervised signal to
train the model for learning feature/representation. For an
example, learning representation through predicting the rota-
tion angel of images where rotation angel serves as supervised
signal and this learned representation can be used to improve
other related image classification tasks [28].

Likewise, in the audio field, researchers have achieved
good performances using self-supervised representation
learning. In their work, DeepMind [29] have proposed a
model to learn a useful representation from unsupervised
speech data through predicting a future observation in the
latent space. In another work from Google [30], the repre-
sentation is learnt by predicting the instantaneous frequency
based on the magnitude of the Fourier transform. Further-
more, Arshaetral. (2020) [31] proposed a cross-modal
self-supervised learning method to learn speech representa-
tion from the co-relationship between the face and the audio
in the video. Other efforts have been made by researchers to
learn a general representation by predicting the contextual
frames of any particular audio frame like wav2vec [32],
speech2vec [33], and audio word2vec [34]. Likewise,
there are other successful implementations [35]-[38] of the
self-supervised representation learning in the field of audio.

Though self-supervised learning is good for learning
representations from unlabelled datasets, it requires manual
endeavour to design the supervision signal [39]. To avoid
this, researchers have focused on fully unsupervised repre-
sentation learning mainly using autoencoders [40]-[42].
In [43], the authors learnt representations with an autoencoder
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from a large unlabelled dataset, which improved the
emotion recognition from speech audio. Similarly, in another
work, the authors used a denoising autoencoder to
improve affect recognition from speech data [44]. Several
works [5], [45], [46] have utilised Variational Autoencoders
(VAEs) [47] to learn an efficient speech representation from
an unlabelled dataset. Recently, given the popularity of
adversarial training, different works have been conducted
by researchers to learn a robust representation with
GAN:S [48], [49] and Adversarial Autoencoders [50], [51].

Though learning a representation from prodigiously avail-
able unlabelled datasets is very intriguing, the recent work
from Google Al has proved that completely unsupervised
representation learning is not possible without any form of
supervision [1]. Also, representation learnt from an unsu-
pervised method does not guarantee the usability of this
learnt representation for any post use case scenario. Thus,
as outlined, we proposed the Guided Generative Adversarial
Neural Network (GGAN) [14], which can learn a powerful
representation from an unlabelled audio dataset according
to the supervision given from a fewer amount of labelled
data. Therefore, in the learnt representation space, the GGAN
disentangles attributes of the data according to the given cate-
gories from the labelled dataset, which benefits the related
post-use case scenario.

B. AUDIO GENERATION

Most of the audios are periodic, and high-fidelity audio gener-
ation requires modelling a higher order magnitude of the
temporal scales, which makes it a challenging problem [10].
Most of the research works related to audio generation are
based on the audio synthesis viz; Aaron and et al. (2016)
have proposed a powerful autoregressive model named
“Wavenet,” which works very well on text to speech (TTS)
synthesis for both English and Mandarin. Later, the authors
have improved this work by proposing ‘“‘Parallel Wavenet,”
which is 20 times faster than the original Wavenet. Other
researchers have utilised the seq2seq model for TTS such
as Char2Wav [52] and TACOTRON [53]. However, these
audio generation methods are conditioned on the text data and
mainly focused on speech generation. Thus, these methods
cannot be generalised to all other audio domains, even for
speech data where transcripts are not available.

In the context of generating audio without any condi-
tion on the text data, the GANs are very promising due to
their massive success in the field of computer vision [6],
[9], [54]-[56]. However, porting these GAN architectures
directly to the audio domain does not offer similar perfor-
mance as the audio waveform is mostly more complex than
an image [10], [11]. Therefore, researchers have focused on
generating spectrogram (2D image-like representation of
audio) rather than generating directly a waveform. Then,
the generated spectrogram is converted back to audio.
Chris et al. (2019) [11] have trained a GAN-based model to
generate spectrograms and successfully converted them back
to the audio domain with the Griffin-Lim algorithm [57].
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In their TiIFGAN paper [12], the authors have proposed a
phase-gradient heap integration (PGHI) [58] algorithm for
better reconstruction of the audio from the spectrogram with
minimal loss. As the PGHI algorithm is good at recon-
structing audio from the spectrogram, now the challenge is
to generate a realistic spectrogram. As the spectrogram is—
as outlined—an image-like representation of the audio, any
GAN based framework from the image domain should be
compatible. Hence, the BigGAN architecture [13] has shown
promising performance at generating conditional high reso-
lution/fidelity images, but it was not well explored for audio
generation. In this paper we address this gap.

C. CLOSELY RELATED ARCHITECTURES

The proposed GAAE model is a semi-supervised model,
as we leverage a small amount of labelled data during the
training. In [59], the authors proposed a semi-supervised
version of the InfoGAN model [4] to capture a specific repre-
sentation and generation according to the supervision which
comes from a small number of labelled data. But, the success
of this model in terms of the complex data distribution
is not evident. Other researchers have explored the scope
of semi-supervision in GAN architectures [15], [60], [61] to
improve the conditional generation, but most of these works
are not explored in the audio domain which leaves a major
gap for the researchers to address. The GAAE model is
based on an Adversarial Autoencoder (AAE) [8], where we
have extended the AAE model to learn both guided and
generalise/style representation from an unlabelled dataset in
a semi-supervised fashion. Furthermore, in the GAAE model,
we have implemented a unique way to leverage the small
amount of labelled data for conditional audio generation.
Here, we have also proposed a way to utilise the gener-
ated conditional samples for improving the representation
learning during the training. Moreover, the building block
for our GAAE model is a BigGAN architecture; thus,
we further contribute by exploring the use of a BigGAN in
an autoencoder-based model for audio data.

D. AUDIO REPRESENTATION LEARNING
While there is a rich literature of supervised representa-
tion learning, due to our focus on unsupervised represen-
tation learning we will only discuss the related literature
here. In the field of unsupervised representation learning,
the self-supervised learning has become very popular recently
due to its unprecedented success in the field of computer
vision [17]-[23] and natural language processing [24]-[27].
Self-supervised learning uses information presents in the
unlabelled data to create an alternative supervised signal to
train the model for learning feature/representation. For an
example, learning representation through predicting the rota-
tion angel of images where rotation angel serves as supervised
signal and this learned representation can be used to improve
other related image classification tasks [28].

Likewise, in the audio field, researchers have achieved
good performances using self-supervised representation
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learning. In their work, DeepMind [29] have proposed
a model to learn a useful representation from unsuper-
vised speech data through predicting a future observation
in the latent space. In another work from Google [30],
the representation is learnt by predicting the instanta-
neous frequency based on the magnitude of the Fourier
transform. Furthermore, Arsha et al. (2020) [31] proposed
a cross-modal self-supervised learning method to learn
speech representation from the co-relationship between
the face and the audio in the video. Other efforts have
been made by researchers to learn a general representa-
tion by predicting the contextual frames of any partic-
ular audio frame like wav2vec [32], speech2vec [33], and
audio word2vec [34]. Likewise, there are other successful
implementations [35]-[38] of the self-supervised representa-
tion learning in the field of audio.

Though self-supervised learning is good for learning
representations from unlabelled datasets, it requires manual
endeavour to design the supervision signal [39]. To avoid
this, researchers have focused on fully unsupervised repre-
sentation learning mainly using autoencoders [40]-[42].
In [43], the authors learnt representations with an autoencoder
from a large unlabelled dataset, which improved the
emotion recognition from speech audio. Similarly, in another
work, the authors used a denoising autoencoder to
improve affect recognition from speech data [44]. Several
works [5], [45], [46] have utilised Variational Autoencoders
(VAEs) [47] to learn an efficient speech representation
from an unlabelled dataset. Recently, given the popu-
larity of adversarial training, different works have been
conducted by researchers to learn a robust representation with
GANSs [48], [49] and Adversarial Autoencoders [50], [51].

Though learning a representation from prodigiously avail-
able unlabelled datasets is very intriguing, the recent work
from Google Al has proved that completely unsupervised
representation learning is not possible without any form of
supervision [1]. Also, representation learnt from an unsu-
pervised method does not guarantee the usability of this
learnt representation for any post use case scenario. Thus,
as outlined, we proposed the Guided Generative Adversarial
Neural Network (GGAN) [14], which can learn a powerful
representation from an unlabelled audio dataset according
to the supervision given from a fewer amount of labelled
data. Therefore, in the learnt representation space, the GGAN
disentangles attributes of the data according to the given cate-
gories from the labelled dataset, which benefits the related
post-use case scenario.

E. AUDIO GENERATION

Most of the audios are periodic, and high-fidelity audio gener-
ation requires modelling a higher order magnitude of the
temporal scales, which makes it a challenging problem [10].
Most of the research works related to audio generation are
based on the audio synthesis viz; Aaron and et al. (2016)
have proposed a powerful autoregressive model named
“Wavenet,” which works very well on text to speech (TTS)
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synthesis for both English and Mandarin. Later, the authors
have improved this work by proposing “Parallel Wavenet,”
which is 20 times faster than the original Wavenet. Other
researchers have utilised the seq2seq model for TTS such
as Char2Wav [52] and TACOTRON ([53]. However, these
audio generation methods are conditioned on the text data and
mainly focused on speech generation. Thus, these methods
cannot be generalised to all other audio domains, even for
speech data where transcripts are not available.

In the context of generating audio without any condi-
tion on the text data, the GANs are very promising due to
their massive success in the field of computer vision [6],
[9], [54]-[56]. However, porting these GAN architectures
directly to the audio domain does not offer similar perfor-
mance as the audio waveform is mostly more complex than
an image [10], [11]. Therefore, researchers have focused on
generating spectrogram (2D image-like representation of
audio) rather than generating directly a waveform. Then,
the generated spectrogram is converted back to audio.
Chris et al. (2019) [11] have trained a GAN-based model to
generate spectrograms and successfully converted them back
to the audio domain with the Griffin-Lim algorithm [57].
In their TIFGAN paper [12], the authors have proposed a
phase-gradient heap integration (PGHI) [58] algorithm for
better reconstruction of the audio from the spectrogram with
minimal loss. As the PGHI algorithm is good at recon-
structing audio from the spectrogram, now the challenge is
to generate a realistic spectrogram. As the spectrogram is—
as outlined—an image-like representation of the audio, any
GAN based framework from the image domain should be
compatible. Hence, the BigGAN architecture [13] has shown
promising performance at generating conditional high reso-
lution/fidelity images, but it was not well explored for audio
generation. In this paper we address this gap.

F. CLOSELY RELATED ARCHITECTURES

The proposed GAAE model is a semi-supervised model,
as we leverage a small amount of labelled data during the
training. In [59], the authors proposed a semi-supervised
version of the InfoGAN model [4] to capture a specific
representation and generation according to the supervision
which comes from a small number of labelled data. But,
the success of this model in terms of the complex data
distribution is not evident. Other researchers have explored
the scope of semi-supervision in GAN architectures [15],
[60], [61] to improve the conditional generation, but most
of these works are not explored in the audio domain which
leaves a major gap for the researchers to address. The GAAE
model is based on an Adversarial Autoencoder (AAE) [8],
where we have extended the AAE model to learn both
guided and generalise/style representation from an unla-
belled dataset in a semi-supervised fashion. Furthermore,
in the GAAE model, we have implemented a unique way
to leverage the small amount of labelled data for condi-
tional audio generation. Here, we have also proposed a way
to utilise the generated conditional samples for improving
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the representation learning during the training. Moreover,
the building block for our GAAE model is a BigGAN archi-
tecture; thus, we further contribute by exploring the use of a
BigGAN in an autoencoder-based model for audio data.

Iil. PROPOSED RESEARCH METHOD

A. ARCHITECTURE OF THE GAAE

The GAAE consists of five neural networks: the Encoder E,
the Decoder D, the Classifier C, the Latent Discriminator L
and the Sample Discriminator S. Let the parameters for these
networks be 6., 04, 6, 01, and 6s respectively. Figure 1 shows
the whole architecture of the model and the description is as
follows.

1) ENCODER

The Encoder E takes any unlabelled data sample x, ~ pgasa
and outputs two latent samples zy, ~ u; and zZ, ~ ¢,
where pgaq is the true unlabelled data distribution, and u;,g;
are two different continuous distributions learned by the E.
We require the latent z,, to capture the post-task-specific
attributes/characteristics of the data and the latent z; to
capture the general/style attributes of the data.

2) CLASSIFIER

We have a classifier network C which is trained with limited
labelled data x; ~ pigaas Where piiaq is the labelled data
distribution and not necessarily pidaa C Pdara- Here, with this
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Pldata, the whole model gets guidance—thus, we call this data
as “‘guidance data.” Now, the C network takes any latent
sample and predicts the category class for that latent sample.
To train C, we pass x; through the E network and get two
latent vectors {zy,,2;, } = E(x1; 6,). Then, we only forward z,
through C to get the predicted label y,, = C(zy; 6c) and train
C against the true label y; ~ Cat(y;, k = n) of the sample
x1, where Cat(y;, k = n) is the categorical distribution with n
numbers of categories/labels. These labels are used as one-hot
vector. For now, lets consider that C can classify the label of
any sample correctly.

3) DECODER

The Decoder D maps any latent and categorical class/label
variable to the data sample. Now, to get the reconstructed
sample of x,, we pass the latent z;, and the label of x,
through the D network. As x,, is an unlabelled data sample,
we get the label 3, = C(zy,, 6.) through the network C and
obtain the reconstructed sample %, = D(z, , Jx,; 6a) from the
D network. Here, we also want to use the D network for gener-
ating samples according to the given condition along with the
reconstruction. Therefore, the same latent z; is used with
a random categorical variable (one-hot vector) y,, sampled
from categorical distribution Cat(y,, K = n,p = 1), where
n is the number of categories/labels, and the sampling prob-
ability for each category is % Now, we obtain the gener-
ated sample Xg ~ Pedaras Where pgdaa is the generated data
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distribution by the D network, and it is trained to match pggara
with the true data distribution pgq,. Here, the size of n is
the same as of the guided data, and we want the D network
to generate data according to the categories from the guided
data. Therefore, we ensure this with the Discriminator where
the Discriminator receives the labels of the data from the
network C. As we use a small number of labelled data, it is
hard to train C due to the problem of overfitting. Hence,
we use the generated sample X, and train the C network
considering y, as the true label/category, where the predicted
label is &,;.g = C(E(%g, 6e), o).

Here, C depends on the correct conditional generation
from D, and D depends on the classification from the
network C. During the training, the C network starts to
predict the category of some samples from the given labelled
data correctly. Likewise, the Discriminator learns to identify
the correct category for those samples and forces the D
network to generate samples with the attributes related to
these correctly classified samples. These generated samples
bring more characteristics with them, which are not present
in the given labelled data but belong to the data distribution.
Now, as we feed these generated samples again to the C
network with the associated conditional categories as correct
labels, it learns to predict the correct category for more
samples related to that generated samples. Then again, these
new correctly classified samples improve the conditional
generation of the D network. Hence, throughout the training,
the C network and D network improve each other contin-
uously. Meanwhile, during the training, the representation
learning (latent generation) capability of the E network is
also ameliorated via the process of reconstructing sample x,,
which also improves the performance of the C and D network
eventually.

4) DISCRIMINATORS

The GAAE model has two discriminators: the Sample
Discriminator S and the Latent Discriminator L. S makes sure
that the generated sample X, and the reconstructed sample
X, match the sample from the true data distribution pgarg.
We train S with the sample and its label. Now, for the samples
Xg and X,, we have the labels y,.J, respectively. Hence,
the pairs (X, y,) and (X, J,,) are considered fake labels for
the discriminator S. For the true data, both x; and x, are
used together, where we get the label for the sample x,
from C, and, for the sample x; we use the available true labels.
Hence, in terms of distribution perspective, we obtain the data
distribution p,qarq, mixing the distributions pjgare and pyasa-
Accordingly, S is trained with the true sample data x ~ pdara
along with its associated label y if it exists, otherwise with the
predicted label from C.

Here, the network E learns to map the general character-
istics of the data onto the latent distribution g;, excluding
the categories from the guided data. Now, if we can draw
the sample from the ¢; distribution, then, by using the cate-
gorical distribution as condition, we can generate diverse
data for different categories (categories from the guided
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data) from the Decoder D. We can only sample from ¢,
if the distribution is known to us. Therefore, we use another
Discriminator L so that the E network is forced to match ¢;
to any known distribution p;, where p; can be any known
continuous random distribution (e. g., Continuous Normal
Distribution, or Continuous Uniform Distribution). The L
network is trained through differentiating between the true
latent z ~ p; and the fake latent 2y, .

B. LOSSES

1) ENCODER, CLASSIFIER AND DECODER

For the E and D networks, we have the sample generation
loss Gjoss, the sample reconstruction 1oss Ry, and the latent
generation loss Lj,,. To calculate the generation and discrim-
ination loss, we use hinge loss, and for the reconstruction loss
the Mean Squared Error (MSE) loss. For the G5, we take the
average of the generation loss for x;, and x,. Therefore,

1 A o
Glossi= _E(S(Xuv Yxus 05) + S(ng yr): 0). (n
Lipss = _(L(Z_,‘-“; 0r). 2)

N
1 "
Rioss = ﬁ ;(xui = xu,-)z- (3)

Now, for the C network, we calculate the classification loss
Clioss, Cgloss for the labelled data sample x; and the generated
sample X, respectively. Here, X, is used as a constant, so it is
considered like a sample data x;. We only forward propagate
x, through E and D and no gradient is calculated for gener-
ating X, when it is only used for the loss Cgjoss. The model is
implemented with pytorch [62] and we detach the gradient of
xg when Cgjos; is calculated. Therefore,

Cligss = — Z i IOg .{]XI > )

Cgloss = — Z v, log S{Qg i @)

We get the a combined loss EDCyss for E,D and C. The
EDCys;s is calculated as

EDCloss = a - () - Glogs + @2 - (A - Rioss))
o ﬂ . ((1)3 » Cl[()xs + w4 - Cgloxs +ws - LI{)xx)- (6)

Here, the weights of the E,C, and D networks are updated
to minimise the loss EDCjys, Where oy, w2, w3, wa, ws, o, B,
and X are the hyperparameters. The successful training of our
GAEE model depends on these parameters. At the beginning
of the training, we noticed that the value of Ry, falls rapidly
compared to other losses and results in a very small gradient
value. To mitigate this problem, we multiply R with a
hyperparameter A € R and after hyperparameter tuning,
we found 20 as an optimal value for A. The D network of the
model is tuned for both the reconstruction loss R;0ss and the
generation loss Gjoss. Therefore, to balance between these
two losses, the hyperparameter w; and w, is used where wy,
wy € [0, 1] and w; + wy = 1. Here, we can force the model
to focus more on either loss by increasing the hyperparameter
for that particular loss. Likewise, for Cliogs, Cgloss and Lioss,
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we use the hyperparameters w3, wy, ws respectively, where
w3, wyg, w5 € [0, 1] and w3 + wq + ws = 1. In the EDCjygs,
Gioss and Rjyss are responsible for the sample generation
quality, where Cljoss, Cgloss and Ljoss are responsible for
the latent generation quality. So, to balance between sample
generation and latent generation, we use two hyperparameters
«a and B, where o, B € [0, 1], and o + 8 = 1.

2) DISCRIMINATORS' LOSS

For the Discriminators S and L, we use hinge loss. The
discrimination loss for the fake samples are averaged as we
calculate the loss for both %, and X. Let the discrimination
loss for S and L be Sjoqs, Liogs respectively. Therefore,

Stoss = —min(0, —1 + S(x, C(E(x, 6,); 6c); 65))
1
- i(mi"(o‘ -1 — Sy, 5’.\‘“; 0s))

+min(0, =1 — S(Xg, 3r: 65))). (7
Lipss = —min(0, —1 + L(z, 0;)
—min(0, =1 — L(Zy,, 6))). (8)

Here, we update the parameters 6; and 6; to maximise
the loss Siss and Ly respectively. Algorithm 1 shows the
training mechanism for the GAAE model.

IV. DATA AND EVALUATION METRICS

A. DATASETS

The effectiveness of the GAAE model is evaluated on
both speech and non-speech audios. For the speech audio,
we chose the S09 dataset [63] and the Librispeech
dataset [64]. For the non-speech audio, we use the popular
Nsynth dataset [65]. The S09 dataset consists of utter-
ances for different digit categories from zero to nine. This
dataset comprises 23,000 one-second audio samples uttered
by 2618 speakers, where it only contains the labels for the
audio digits [63].

The Librispeech dataset is an English speech dataset with
1000 hours of audio recordings, and there are three subsets
available in the Librispeech dataset containing approximately
100, 300, and 500 hours of recordings, respectively. For our
work, we use the subset with 100 hours of clean recordings.
In this subset, the audios are uttered by 251 speakers where
125 are female, and 126 are male [64]. For our experiment,
we only apply the audios along with the gender labels of the
speakers.

The Nsynth audio dataset contains 305,979 musical notes
of size four seconds from ten different instruments, where
the sources are either acoustic, electronic, or synthetic [65].
We use three acoustic sources: Guitar, Strings, and Mallet
from the Nsynth to test the compatibility of the GAAE model
for a non-speech dataset.

B. DATA PREPROCESSING

We use the audio of length one second and the sampling rate
of 16kHz. For the Librispeech dataset, the one-second audio
is taken randomly from any particular audio clip where for
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Algorithm 1 Minibatch Stochastic Gradient Descent
Training of the Proposed GAAE Model. The Discriminator
Is Updated k& Times in One Iteration. Here, for Our
Experiment, We Use k = 2 for Better Convergence
1: for number of training iterations do
2:  for k steps do
3; Sample the latent/noise samples {z(1) ..., z(m)}
from p,, the conditions (labels) {y,(l), ...,y,(m)}
from Cat(y,), the unlabelled data samples
xP L x™) from pgus and the labelled
data samples {x,1 ,...,x,(m)} from pjgaa. Here,
m is the minibatch size.
4: Update the discriminator S by ascending its
stochastic gradient:

m

ng% 3 [s,,,““"] .

i=1

5: Update the discriminator L by ascending its
stochastic gradient:
] m X
VHI ; Z] [Llass(')] .
i=
6:  end for
7. Repeat step [3].
8:  Update the Encoder E, Decoder D, and Classifier C by
descending its stochastic gradient:
1 m .
V&»ﬁa.ﬂp ;;1 Zl [EDCIoss(’):I .
=

9: end for

the Nsynth dataset, the first one-second is taken from any
audio sample as it holds the majority of the instrument sound
representation.

The audio data is converted to the log-magnitude spectro-
grams with the short-time Fourier Transform, and the gener-
ated log-magnitude spectrograms of the GAAE model are
converted to audio using the PGHI algorithm [58]. In the rest
of the paper, we refer to the log-magnitude spectrogram as
the spectrogram.

To obtain the spectrogram representation of the audio
we followed the procedure from this paper [66]. The
short-time Fourier Transform is calculated with an overlap-
ping Hamming window of size 512ms, and the hopping
length 128 ms. Therefore, we get the size of the spectrogram
as 256 x 128, 1D matrix. We standardise the spectrogram
with the equation X—;—‘i where X is the spectrogram, p is
the mean of the spectrogram, and o is the standard deviation
of the spectrogram. We clip the dynamic range of the spec-
trogram at —r, where, for the S09 and Librispeech dataset,
we determine the suitable value of r to be 10, and for the
Nsynth dataset we determine it 15. Here, the log-magnitude
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spectrograms is a normal distribution and any inappropriate
value of the r can make the distribution skewed, which is not
appropriate for training the GAAE network. We investigate
the histogram of the values combining all the log-magnitude
spectrograms from the whole training dataset to determine the
value of r. After the clipping, we normalise the spectrogram
values between —1 and 1. The spectrogram representation of
the audio is used as the input to the GAAE model, which
then generates spectrograms with values between -1 and 1.
We then convert these spectrograms to audios via the PGHI
algorithm. In this paper we refer to these audios calculated
from generated spectrograms as “‘generated audios.”

C. MEASUREMENT METRICS
We measure the performance of the GAAE model based on
the generated samples and the learnt representations. The
generated samples are evaluated with the Inception Score
(IS) [67] and Fréchet Inception Distance (FID) [68], [69],
which have become a de-facto standard for measuring the
performance of any GAN based model [70].

To evaluate the representation/latent learning, we consider
classification accuracy, latent space visualisation, and latent
interpolation.

1) INCEPTION SCORE (IS)

The IS score is calculated based on the pretrained Inception
Network [71] trained on the ImageNet dataset [72]. The logits
are calculated for the images from the bottleneck layer of the
Inception Network. Then, the score is calculated using

exp(ExKL(p(y|x)||[p(»))). 9)

Here, x is the image sample, KL is the Kullback-Leibler
Divergence (KL-divergence) [73], p(y|x) is the conditional
class distribution for sample x predicted by the Inception
Network, and p(y) is the marginal class distribution. The IS
score computes the KL-divergence between the conditional
label distribution and the marginal label distribution, where
the higher value indicates good generation quality.

2) FRECHET INCEPTION DISTANCE (FID)

The IS score is computed solely on the generated samples;
thus, no comparison is made between the generated and real
samples which is not a good measure for the samples’ diver-
sity (mode) of the generated samples. The FID score solves
this problem by comparing real samples with the gener-
ated samples [70] during the score calculation. The Fréchet
Inception Distance (FID) computes the Fréchet Distance [74]
between two multivariate Gaussian distributions for the
generated and real samples, parameterised by the mean and
the covariance of the features extracted from the intermediate
layer of the pretrained Inception Network. The FID score is
calculated using

ir — gl + TH(E, + B — 22, Z)V/3),  (10)

where, iy, g are the means for the features of the real and
generated samples, respectively, and similarly, ., X, are the
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covariances, respectively. A lower value of the FID score
indicates good generation quality.

The Inception Network is trained on the imagenet dataset,
thus, offering reliable IS and FID scores for a related image
dataset, but the spectrograms of the audios are entirely
different from the imagenet samples. So, the Inception
Network does not offer trustworthy scores for the audio
spectrograms. Hence, instead of using the Inception model,
we train a classifier network based on the audio datasets and
use this trained classifier to calculate the IS and FID scores.
For S09 dataset, we use the pretrained classifier released by
the authors of the paper “Adversarial Audio Synthesis” [11].
For the Nsynth dataset, we train a simple Convolutional
Neural Network (CNN) as the Classifier, as there was no
pre-trained classifier available.

V. EXPERIMENTAL SETUP, RESULTS AND DISCUSSION
For implementing our GGAN model, we follow the network
implementations, optimisation, and hyperparameters from
the BigGAN paper [13]. For the optimisation, we use the
Adam optimiser [75]. Learning rate of 5- 10~ is used for the
networks E, D, and C, where 2 - 10~ is the learning rate for
both S and L. Details of the network architectures are given
in the appendix (Architectural Details).

A. IMPACT OF LABELLED DATA FOR CONDITIONAL
SAMPLE GENERATION

1) SETUP

First, we evaluate the conditional sample generation quality
(measured with IS and FID score) of the GAAE model for
different percentage of labelled data (1% - 5 %, 100%) as
guidance.

The IS and FID scores is calculated based on the
50,000 generated samples [67] for the random latent z, and
the random condition y,. The spectrograms of the samples
are generated using the Decoder D network and converted to
audios. These generated audios are then used to calculate the
IS and FID scores. For all the datasets, we use a continuous
normal distribution of size 128 to sample the latent z ~
N(u = 0, 62 = 1). For the S09 dataset, we use the ten
digit categories (0-9) as the conditions y, ~ Cat(y,, K = 10,
p = 0.1). We use the three instrument categories (1-3) as
conditions y, ~ Cat(y,, K = 3,p = 0.33) for the Nsynth
dataset.

For any percentage of data used as guidance, we train
the GAAE model three times. Each training takes approx-
imately 60,000 iterations with mixed-precision [76] for the
batch size 128. Each time, a dataset is sampled randomly for
guidance. Rest of the data is used as unsupervised manner.
We limited ourselves to three times due to having high
computation time: approximately 21 hours on the two Nvidia
p100 GPUs. The total computation time for the S09 and the
Nsynth dataset is approximately 21 x 3 x 6 (1-5%,100%
data) x 2 (two datasets) = 756 hours or 31.5 days.
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The results of the GAAE model are compared with a Super-
vised BigGAN [77] and an Unsupervised BigGAN [77]. For
the S09 dataset, we take the results from the GGAN publica-
tion [14]. For the Nsynth dataset, we train these models with
a similar setting as was used in the GGAN paper. To calculate
the IS and FID score for the Nsynth dataset, we use our
pretrained supervised CNN classifier (details in the appendix)
trained on three classes: Guitar, Strings, and Mallet.

2) RESULTS AND DISCUSSIONS

The percentage of labelled training data used as guidance
has a significant impact on the IS and FID score, which can
be found from the table 3. The more we feed the labelled
data during the training, the more we boost the performance
of the GAAE model for sample generation and diversity.
However, notably only with 1% labelled data, the GAAE
model achieves acceptable performance. For 5% labelled
data, GAAE achieves scores close to that of using 100%
labelled data. So, we compare the scores for 5% data, with
other models in the literature.

TABLE 1. Comparison bety the ple g quality of the
GAAE model and the other models for the S09 dataset. The generation
quality is measured by IS score and FID scores.

Model Name IS Score FID Score
Real (Train Data) [11] 9.18 £ 0.04 -

Real (Test Data) [11] 8.01 £0.24 | -

TiIFGAN [67] 5.97 26.7
WaveGAN [11] 4.67 + 0.01 -

SpecGAN [11] 6.03 £0.04 | -

Supervised BigGAN 7.33 +£0.01 | 24.40 + 0.50
Unsupervised BigGAN | 6.17 +0.20 | 24.72 + 0.05
GGAN [14] 7.24+0.05 | 25.75 + 0.10
GAAE 7.28 +0.01 22.60 + 0.07

The results for SO9 dataset are summarised in Table 1.
Using only 5 % labelled training data as guidance, the GAAE
model achieves IS score 7.28 +0.01 and FID score of 22.60+
0.07. The IS score of GAAE is close to that produced by
the supervised BigGAN model (7.33 £ 0.01) and better than
other models mentioned in table 1. Even the GAAE model
has outperformed the supervised BigGAN model (FID score:
24.40 + 0.50) in terms of diverse image generation, where
the GAAE has used only 5 % labelled data and the supervised
BigGAN is trained with all available labelled training data.

For the Nsynth dataset, the GAAE model has achieved the
IS score of 2.58 &= 0.03 and the FID score of 141.71 4 0.32
again with 5% labelled training data as guidance. Perfor-
mance of GGAN in terms of IS score is very close to that
of the supervised BigGAN (2.64 + 0.08) and better than that
of the unsupervised BigGAN (2.21£0.11). The performance
in terms of FID score is even better than that of the supervised
BigGAN (148.30 £ 0.23). Table 2 presents the comparisons.

The decoder is trained for both reconstruction and gener-
ation of the training data. During the reconstruction, it tries
to reconstruct all the training samples, which helps it to
learn more modes of the data distribution than the supervised
BigGAN model. Figure 3 and 2 display the spectrogram
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TABLE 2. Comparison bety the ple g ion quality of the
GAAE model and the other models for the Nsynth d The g ti
quality is measured by IS and FID scores.

Model Name IS Score FID Score
Real (Train Data) 2.83+0.02 | -

Real (Test Data) 281 +£0.12 | -

Supervised BigGAN 2.64 +0.08 | 148.30 + 0.23
Unsupervised BigGAN | 221 +0.11 | 172.01 +0.15
GGAN 2.52 £ 0.06 | 149.23 £ 0.09
GAAE 258 +0.03 | 141.71 £ 0.32

of the generated and the real samples of the Nsynth,
S09 datasets, respectively. From these figures, we observe
that the generated samples are visually indistinguishable from
the real samples. This attests the superior generation quality
of the GAAE model. This is also true when we convert
these spectrograms to audios. The audios can be found at:
https://bit.ly/3c0z5q0O.

B. EVALUATION OF CONDITIONAL SAMPLE GENERATION
BASED ON GUIDANCE

1) SETUP

In this section, we evaluate the effectiveness of guidance for
accurate conditional sample generation. It is cumbersome to
check all the generation manually. Therefore, we manually
check only a few audio samples. For large-scale validation,
we use an approach similar to [70]. We train a simple CNN
classifier with the samples generated for different random
conditions/categories and use the random categories asso-
ciated with the generated samples as the true labels. Then,
we evaluate the CNN classifier on the test dataset based on
the classification accuracy. The rationale is that if the GAAE
model does not learn to generate correct samples for any
given category and the generated samples do not match the
training data distribution; the CNN model will not be able to
achieve good accuracy on the test dataset. We compare this
CNN classifier with another CNN classifier which is trained
using all the available training data. For further comparisons,
we train two more CNN models with the generated samples
from the supervised BigGAN and the GGAN model.

2) RESULT AND DISCUSSION: MANUAL TEST

The generated samples for the S09 and Nsynth dataset are
shown in figure 2 and figure 3, respectively. It is not visually
evident that the model was able to generate correct samples
according to the given conditions/categories. However, when
we convert these spectrograms to audios, it is clear that
the model is able to generate audios correctly according to
the categories demonstrating the effectiveness of the guid-
ance data to learn the specific categorical distribution of the
training dataset (cf. under the above link).

3) RESULTS AND DISCUSSIONS: CNN BASED
CLASSIFICATION ACCURACY

For the S09 dataset, the test data classification accuracy
for the CNN model trained with all the available labelled
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TABLE 3. The relationship bety the p ge of the data used as guidance during the training and the ple g tion quality of the GAAE
model, measured with the IS and the FID score. The scores are calculated for the S09 and the Nsynth dataset.

Labelled Data | IS Score (S09) | FID Score (S09) | IS Score (Nsynth) | FID Score(Nsynth)
1% 6.94 £ 0.04 24.21 £ 0.16 2.48 +0.08 145.89 + 1.32
2% 7.06 + 0.03 23.89 £0.11 2.53 £ 0.07 144.21 £ 0.65
3% 7.12 £ 0.04 23.15 £ 0.10 2.56 + 0.05 143.01 £ 0.43
4% 7.194 0.02 2291 £ 0.08 2.57 £0.04 142.46 + 0.38
5% 7.28 + 0.01 22.60 £ 0.07 2.58 + 0.03 141.71 £ 0.32
100% 7.45 + 0.03 19.31 £ 0.01 2.67 + 0.02 137.65 + 0.02
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FIGURE 2. A. IlI ion of the diff: bety the g ted spectrograms and the real spectrograms of the data for the S09 dataset. The top
two rows show the randomly ted ples from the GAAE model, and the bottom two rows are the real samples from the training data.
Notice the visual similarity between the generated and the real samples. B. This figure shows the generated spectrograms of the S09 dataset from

the GAAE model according to different digit categories. Each row rep ts the pl ted for a fixed latent variable where the digit
condition is changed from 0 to 9. Furthermore, any column shows the generated spectmgram for a particular digit category.
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FIGURE 3. Difference betv the g d spectrog of the GAAE model and the real spectrograms of the data for the Nsynth
dataset. The top row shows the g ted les, and the bottom row shows the real samples. The first block shows the spectrogram of

the guitar, and the other two illustrate the spectrograms for the strings and mallet.

data is 95.52% =+ 0.50. The accuracy is 91.14% =+ 0.17, With the generated samples from the GAAE model, the CNN
when the CNN model is trained based on the generated model achieves greater classification accuracy than the super-
samples from the GAAE model (trained with 5% labelled vised BigGAN (86.58% =+ 0.56) and the GGAN model
data). The table 4 shows the comparison with other models. (86.72% + 0.47).
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TABLE 4. The comparison between different CNN classifiers based on the
test data classification accuracy from the S09 dataset. The CNN models

are trained with the g ted ples from different models.
Sample for Training | Test Accuracy
Train Data 95.52% =+ 0.50
Supervised BigGAN 86.58% =+ 0.56
GGAN 86.72% =+ 0.47
GAAE 91.14% + 0.17
GAAE + Train Data | 97.33% + 0.19

TABLE 5. The comparison between different CNN classifiers based on the
test data classification accuracy from the Nsynth dataset. The CNN

Is are trained with the g t les from different models.
Sample for Training | Test Accuracy
Train Data 92.01% =+ 0.94
Supervised BigGAN 83.50% + 0.62
GGAN 81.40% + 0.48
GAAE 86.80% + 0.23
GAAE + Train Data | 94.56% = 0.09

‘When we trained the CNN model mixing the train data, and
the generated samples from the GAAE model, the accuracy
of the CNN model increased from 95.52% =+ 0.50 to 97.33%
=+ 0.19. Along with the accuracy, the stability of the CNN
model is also improved significantly. This can be observed
through the standard deviation in the results. We conducted
the same evaluation on the Nsynth dataset and received
similar results which we present in table 5.

These results demonstrate the superior performance of our
GAAE model for generating samples for different categories.
It can potentially be used as a data augmentation model where
the generated samples from the model can be used to augment
any related dataset or same dataset.

C. CONDITIONAL SAMPLE GENERATION USING
GUIDANCE FROM A DIFFERENT DATASET

In the above two experiments, we used the guidance data from
the same dataset. In this section, we explore the feasibility of
guidance from a completely different dataset.

1) SETUP
In the SO9 dataset, there are both male and female speakers,
but no label is available for the gender of the speakers. We aim
to verify if GAAE can generate samples from S09 dataset
according to the condition on the gender category, where
the guidance comes from a different dataset for gender cate-
gory. To achieve this, we collect ten male and ten female
speakers’ audio data (randomly chosen with labels) from the
Librispeech dataset to use as guidance during the training
with the S09 dataset. During the training of the GAAE model,
the guidance data from Librispeech dataset is also merged
with S09 dataset as unlabelled data. So, GAAE learns to
generate both samples from Librispeech dataset as well as
from SO9 dataset.

The network we used before to calculate the IS and
FID score, is trained on the digit classification tasks for
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S09 dataset, not for the gender classification task thus will
no longer offer a meaningful evaluation. To eradicate this
problem, we train another simple CNN model for the gender
classification to calculate the IS and the FID score. For this
purpose, we randomly select 15 male and 15 female speakers
from Librispeech dataset. We use data from ten male and
ten female speakers for training and data from others for
testing. We achieve an accuracy of 98.3 & 0.50. We use this
model to calculate the IS and FID Score for the generated
samples from different models. Now, the calculated scores
will reflect the quality of the generated samples according to
gender distribution.

We define two GAAE models: one is trained with
gender guidance, and another is trained with digit guidance.
We compare the IS and FID score of these models. Note that
gender information is being collected from a different dataset:
Librispeech. If the gender guided model achieves better score,
then we can establish the feasibility of guidance using an
external dataset. To further validate this, we add results from
other models (Unsupervised BigGAN, Supervised BigGAN
and GGAN) trained based on digit guidance.

We choose a continuous normal distribution of size 128 for
latent z ~ N (i = 0, o> = 1) and two gender categories for
the conditions y, ~ Cat(y,, K =2,p =0.5).

2) RESULTS AND DISCUSSIONS

The calculated scores are presented in table 6. Gender guided
GAAE produces the best FID and IS scores, which establish
that it is feasible to get guidance from a different dataset in
the GAAE model.

ison bety

d. <

TABLE 6. C the perf; of the GAAE model
trained with g g e and the other models on the S09 dataset,
in terms of the quality of the generated samples based on the gender

attrib of the speak d with the IS and the FID score.
Model Name IS Score FID Score
Train Data 1.92 +0.04 | -
Test Data 191 +£0.05 | -
Unsupervised BigGAN 1.13 £ 0.89 | 56.01 +0.85
Supervised BigGAN 1.48 +0.56 | 35.22 4 0.50
GGAN (Digit Guided) 1.58 £ 0.05 | 37.75 £ 0.10
GAAE (Digit Guided) 1.61 £0.17 | 29.84 +0.43
GAAE (Gender Guided) | 1.78 & 0.03 | 20.21 + 0.01

D. GUIDED REPRESENTATION LEARNING

The GAAE model learns two types of representations/latent
spaces: (1) it uses z,, ~ u; to learn guidance specific char-
acteristics of the data (Guided representation) and uses (2)
2, ™~ ¢z to learn general characteristics of the data (General
representation/Style representation).

1) SETUP

In the GAAE model, the Classifier C is built on top of the
latent zy, ~ u; (see Fig. 1). The encoder network E, therefore,
learns this latent variable to disentangle the class categories
according to the guided data. For the S09 dataset, we use digit
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classes as guidance, so, in this latent space (representation
space), the digit category should be disentangled. To observe
this disentanglement, we visualise the higher dimensional
(128) latent space generated for the SO9 test data in the
2D plane with the t-SNE (t-distributed stochastic neighbour
embedding) [78] visualisation method. We use the same visu-
alisation for the Nsynth dataset.

2) RESULTS AND DISCUSSIONS

Figure 4 shows the representation space for S09 test dataset
and figure 5 shows the visualisation for the Nsynth dataset.
From both figures, it is noticeable that the guided cate-
gories are well separated in the representation space, and
data points of the similar categories are clustered together.
So, the encoder E learns to map the data sample to the repre-
sentation space u; ensuring data categories used as guidance
are well separable in the representation space.

FIGURE 4. t-SNE visualisation of the learnt representation of the test data
of the S09 dataset. Here, different colours of points represent different
digit categories. In the rep tation space, the different digit categories
are clustered together and easily separable.

E. GENERAL REPRESENTATION/STYLE REPRESENTATION
LEARNING

1) SETUP

The encoder network E of the GAAE model is trained to
match the ¢; distribution with the known p; distribution. This
allows sampling z, from the g distribution.

Now, it is expected that when Decoder D learns to
generate samples from the latent space ¢, it disentangles the
general characteristics/attributes (independent of the guided
attributes) of the data in the ¢; latent space. To evaluate
this disentanglement in the representation space z; ~ g for
both S09 and Nsynth dataset, we generate audio samples for
different categories/conditions keeping the z; the same.

In our model, Decoder can achieve disentanglement
implies that the pretrained E extracts general attributes in
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FIGURE 5. t-SNE visualisation of the learnt representation of the test data
of the Nsynth dataset. Here, different col of points rep t
different i t categories. In the rep tation space, the different
instrument categories are clustered together and easily separable.

latent z}, from any related dataset, which was not used during
the training. To validate, we pass the test data from S09 and
Nsynth dataset through E to get the general representation 2, .
Then for a fixed z;, and different conditions (digit categories),
we generate samples from the pretrained D network.

As the GAAE model learns general/style attributes in
the 7, latent space, it should disentangle the gender of
the speaker in the latent space for SO9 dataset. To evaluate
this, we use the trained E network from the GAAE model
to extract latent representation z; for an entirely different
Librispeech dataset where gender labels are available. For
5000 randomly sampled data from the Librispeech dataset,
we extract the feature/latent z;, from E and visualise the result
in 2D plain using t-SNE visualisation for exploration.

2) RESULTS AND DISCUSSIONS

After investigating the generated audios of the S09 dataset,
the digit categories are changed according to the given condi-
tion y, and the general characteristics (such as the voice of
the speaker, audio pitch, background noise etc.) of the audio
is changed with the change of z; . So, the D network learns
to capture general attributes of the data in the latent space z;, .
For the Nsynth dataset, we notice a similar behaviour.

We investigate the audio samples generated based on the
extracted feature z; of the input data sample. Exploration
of the audios shows that they preserve some characteristics
(like speaker gender, voice, pitch, tone, background noise
etc. for S09 test data) from the input data sample. We also
notice similar scenarios for the Nsynth dataset. The audios
can be found at: https:/bit.ly/360z9z9. Note that the initial
one second is the input audio data and rest are the generated
audios.

Figure 6 shows the visualisation of the extracted repre-
sentation for the Librispeech dataset. We observe that the
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Female
Male

FIGURE 6. t-SNE visualisation of the learnt representation of the Libri
speech dataset. Here, different colours of points represent the gender of
the speak The rep of the different gender categories are
clustered together.

latent representation for the same gender of the speakers are
clustered together and are easily separable from the latent
space. This exploration exhibits that the GAAE model is
able to learn the gender attributes of the speaker from the
S09 dataset successfully even though gender information of
the speaker was never used during the training.

F. COHERENCE OF THE GENERAL REPRESENTATION/
LATENT SPACE

1) SETUP

It is expected that the D network can learn the latent space ¢
in a way so that it is coherent and if we move in any direction
in the latent space the generated samples should be changed
accordingly. To investigate this, we conduct linear interpola-
tion between two latent points as described in the DCGAN
paper [3]. A particular point z; within two latent points zo and
z; is calculated with the equation z; = z9 + n(zo — z1), where
n is the step size from zo to z;. With this equation, we get
the latent points in between zq and z;. Using this D network,
we obtain the generated samples for these latent points, where
the random categorical condition y, is fixed.

2) RESULTS

Figure 7 shows the generated samples for both the SO09 and
Nsynth datasets based on the interpolated points. We observe
that the transition between two spectrograms generated based
on two fixed latent samples zo and z; is very smooth. More-
over, when we convert the spectrograms to audio, we observe
the same smooth transition, which indicates the disentangle-
ment of the general attributes in the latent space g, The audios
can be found at: https:/bit.ly/2yPcTIE.
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S09 Dataset

Nsynth Dataset

Linear Interpolation

FIGURE 7. Generated spectrograms based on the linear interpolation
betv two latent Zg and z;. The first two rows show the
generated spectrograms for the S09 dataset (one and zero) and th
bottom two rows exhibit the spec for the Nsynth dataset (mall
and string). For any particular row, the first and the last spectrograms are
the generations based on the fixed two latent points and the in-between
P g are the g ion based on the interpolation between
these two fixed points.

VIi. HYPERPARAMETER TUNING

We tune the hyperparameters based on the S09 dataset as
tuning is resource and time-intensive. We then use the hyper-
parameters for other datasets. From equation 6, w;, and w>
are two important hyperparameters for training the GAAE
model, where w; = 1 - w;. When we increase w,, the model
focuses more on the generation loss Gy, and less on the
reconstruction loss Rjss. If we reduce w1, the model increases
the focus for reconstruction and reduces the focus for the
generation. The impact of w; and w; on the IS scores, FID
scores, and classification accuracy are presented in figure 8.
The best value for w; is 0.6 and for w», it is 0.4.

The « and B from equation 6 are two other important
hyperparameters. The value of the o parameter determines
how much the model will focus on generation (Gjss) and
reconstruction 1oss (Rj,ss), where the g parameter determines
the focus for the classification (Clipgss, Cgloss) and latent
generation loss (Ljs,). From figure 8, we observe that 0.5 is
the best value for both of the hyperparameters.

There are three more hyperparameters: w3, w4, and ws
(See equation 6). Here, w3 and w4 control the classification
loss (Clioss, Cgloss) for labelled data. And, ws controls the
latent generation loss (Lj,s). Here, we maintain equal balance
between the classification and the latent generation loss.
Likewise, we use 0.25 for w3,w4 and 0.50 for ws.

VII. CLASSIFIER OF THE GAAE MODEL

The success of the GAAE model is mostly dependent on its
internal Classifier C. In this section, we evaluate the perfor-
mance of C. We benchmark its performance using a super-
vised Classifier, the Classifier from GGAN and the Classifier
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TABLE 7. Relationship bety the p ge of the data used as the guid during the g and the S09 test dataset classification accuracy of
the GAAE model.

Trainin CNN :

Dt | Netwsi BiGAN GGAN GAAE

1% 82.21 + 1.2 73.01 +1.02 | 84.21 +2.24 | 90.21 £ 0.16

2% 83.04 + 0.34 | 75.56 £ 0.41 | 8539+ 1.24 | 91.45+0.12

3% 83.78 £ 0.23 | 78.33 £0.07 | 88.25+0.10 | 92.67 £ 0.06

4% 84.11 4 0.34 | 80.03 £0.01 | 91.02 + 0.50 | 93.70 £ 0.05

5% 84.50 + 1.02 | 80.84 £ 1.72 | 92.00 + 0.87 | 94.59 £ 0.03

100% 95.52 + 0.50 | 86.77 & 2.61 | 96.51+ 0.07 | 97.68 + 0.01
TABLE 8. Relationship bety the per ge of the data used as the guid during the g and the h test d classification accuracy of
the GAAE model.

Trainin, CNN s

Data Sife Network BIGAN GGAN GAAE

1% 85.76 £ 1.10 | 82.21 +0.84 | 88.52 4 0.32 90.26 £ 0.09

2% 89.79 £ 0.51 | 86.65 £ 0.57 | 91.69 +0.24 | 92.96 + 0.07

3% 89.83 +0.49 | 87.21 £ 0.46 | 91.95 4 0.20 93.12 £ 0.05

4% 90.52 +£0.25 | 87.59 +£0.41 | 92.16 £0.19 | 93.73 &+ 0.02

5% 91.07 £ 031 | 87.95+0.39 | 9245+ 0.14 94.23 £+ 0.02

100% 92.01 £ 0.94 | 88.09 4 0.24 | 93.56 + 0.09 | 94.89 + 0.01

from BiGAN [55]. For the supervised Classifier, we train a
simple CNN classifier using 1% - 5%, 100 %, of training
data, where the data is heavily augmented using techniques
like adding random noise, rotation of the spectrogram, multi-
plication with random zero patches, etc. ( [79]). We train
a BiGAN model on top of the unsupervised BigGAN and
extract BIGANS’ feature network after the training. We then
train another feed-forward classifier network on BiGANSs’
feature network using similar percentages of labelled data.
We keep the weights for the feature network fixed during
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the training. We evaluate all these Classifiers using the test
dataset. As the Classifier C of the GAAE model is trained
with fewer labelled data along with the generated samples
from the decoder D, it will only perform better if generation is
accurate according to the different categories and the quality
of the generated samples is close to the real samples.

The relationship between the percentage of the data used
as guidance and the test data classification accuracy is
shown in table 7, 8 for SO9 and Nsyth dataset, respectively.
Results from both tables demonstrate that the GAEE model

VOLUME 8, 2020

47



K. N. Haque et al.: High-Fidelity Audio Generation and Representation Learning With GAAE

IEEE Access

outperforms other models in terms of classification accuracy
leveraging the minimal amount of labelled data (average
5%-8% percent improvement for both datasets while using
1% labelled data).

VIII. CONCLUSION AND LESSON LEARNT

In this paper, we propose the Guided Adversarial Autoen-
coder (GAAE), which is capable of generating high-quality
audio samples using very few labelled data as guidance.
After evaluating the GAAE model using two audio datasets:
S09 and Nsynth, we show that the GAAE model can outper-
form the existing models with respect to sample gener-
ation quality and mode diversity. Harnessing the power
of high-fidelity audio generation, the GAAE model can
disentangle the specific attributes of the data in the learnt
latent/representation space according to the guidance. This
learnt representation can be beneficial to any related down-
stream task at hand. We also show that besides the guided
representation learning, the GAAE model learns to disen-
tangle other attributes of the data independent of the
given guidance. Hence, the GAAE model learns a repre-
sentation for the specific downstream task at hand and
a generalised representation for future unknown related
tasks.

We evaluate the GAAE model based on the audio of size
one second; thus, it remains a challenge to make this model
work for longer audio sample generation. In representation
learning, the GAAE model can be used efficiently for any
long audio sample by dividing it into one-second chunks.
GAAE model successfully learns generation and representa-
tion using a minimum of 1 % labelled data. We believe this
will encourage other researchers to explore the GAAE model
further for few-shot learning.

Furthermore, we built the GAAE model based on
BigGAN architecture. This leaves an excellent opportunity
for studying other high performing GAN architectures such
as progressive GAN [80] or the Style GAN [9].

APPENDIX

ARCHITECTURAL DETAILS

This section presents the details of the neural networks used in
this paper. We follow the abbreviations and description style
from the original work of Mario et al. [15].

A. SUPERVISED BigGAN

We use the exact implementation of the Supervised BigGAN
from our former GGAN paper [14]. Therefore, for the imple-
mentation of both the Generator and the Discriminator,
we apply a Resnet architecture from the BigGAN work [13].
The layers are shown tables 10 and 11. The Generator and
Discriminator architectures are shown in Tables 12 and 13,
respectively. We use a learning rate of 0.00005 and 0.0002 for
the Generator and the Discriminator, respectively. We set the
number of channels (ch) to 16 to minimise the computational
expenses, as the higher number of channels such as 64 and
32 only offer negligible improvements.
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TABLE 9. Abbreviati for defining the architect
Full Name Abbreviation
Resample RS
Batch normalisation BN
Conditional batch normalisation | ¢cBN
Downscale D
Upscale U
Spectral normalisation SN
Input height h
Input width w
True label y
Input channels ci
Output channels co
Number of channels ch
TABLE 10. Architecture of the ResBlock g tor with up pling for

the supervised BigGAN.

Layer Kernal RS Output

Name Size Size

Shortcut [1,1,1] U 2h X 2w X c_{o}

¢BN, ReLU - - h x w x c_{i}

Convolution | [3,3,1] U 2h x 2w x c_{o

¢BN, ReLU - - 2h x 2w x c_{o

Convolution | [3,3,1] U 2h x 2w X c_{o

Addition - - 2h x 2w X c_{o
TABLE 11. Architecture of the ResBlock di with d pling
for the supervised BigGAN.

Layer Kernal RS Output

Name Size Size

Shortcut [1,1,1] D h/2 x w/2 x c¢_{o}

ReLU - - h x w x c_{i}

Convolution | [3,3,1] - h x w x c_{o}

RelLU - - h xw xc_{o}

Convolution | [3,3,1] D h/2 x w/2 x c_{o}

Addition - - h/2 x w/2 x c_{o}

TABLE 12. Architecture of the g tor for the sup d BigGAN.
Layer RS | SN Qutput
Name Size
Input z - - 128
Dense - - 4 x 2 x 16.ch
ResBlock U SN | 8 x4 x 16.ch
ResBlock U SN | 16 x 8 x 16.ch
ResBlock U SN | 32 x 16 x 16.ch
ResBlock U SN | 64 x 32 x 16.ch
ResBlock U SN | 128 x 64 x 16.ch
Non-local block | - - 128 x 64 x 16.ch
ResBlock U SN | 256 x 128 x l.ch
BN, ReLU - - 256 x 128 x 1
Conv [3,3, 1] - - 256 x 128 x 1
Tanh - - 256 x 128 x 1

B. UNSUPERVISED BigGAN

Similarly, for the unsupervised BigGAN, follow the same
implementation from the original GGAN work [14].
Tables 14 and 15 show the upsampling and downsampling
layers, respectively. The architectures of the Generator and
Discriminator are shown in the tables 16 and 17, respectively.
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TABLE 13. Archit of the discriminator for the sup d BigGAN.
Layer Output
Name RS Size
S - | 256x128x 1
pectrogram
ResBlock 128 x 64 x 1.ch
Non-local block - 128 x 64 x 1.ch
ResBlock - 64 x 32 x 1.ch
ResBlock D 32 X 16 x 2.ch
ResBlock D 16 x 8 x 4.ch
ResBlock D 8 x 4 x 8.ch
ResBlock D 4 x 2 x 16.ch
ResBlock
(No Shortcut) - 4 x2x 16.ch
ReL.U - 4 x 2 x 16.ch
Global sum pooling - 1 x1x16.ch
Sum(embed(y)-h)+(dense — 1) | - 1
TABLE 14. Architecture of the ResBlock g tor with up pling for
the unsupervised BigGAN.
Layer Kernal RS Output
Name Size Size
Shortcut [1,1,1] U 2h x 2w x c_{o}
BN, ReLU - - h xw x c_{i}
Convolution | [3,3,1] U 2h x 2w x c_{o
BN, ReLLU - - 2h x 2w X c_{o
Convolution | [3,3,1] U 2h x 2w X ¢_{o
Addition - - 2h x 2w x c_{o

The learning rate and channels are the same as for the
supervised BigGAN.

C. BiGAN

For the BiGAN model, we train a Feature Extractor and
Discriminator network on top of the unsupervised BigGAN.
The Feature Extractor network creates the features for real
samples, and the Discriminator tries to differentiate between
the generated features and the random noise. The detail
is exactly followed from the original BIGAN work [55].
The downsampling layer is the same as the unsupervised
BigGAN and can be found in table 15. The architecture of the
Feature Extractor network is shown in table 18. Furthermore,
the architecture of the Discriminator is given in table 19.

TABLE 15. Architecture of the ResBlock discriminator with d lii
for the unsupervised BigGAN.

Layer Kernal RS Output

Name Size Size

Shortcut [1,1,1] D h/2 x w/2 x c_{o}

ReLU - - h x w x c_{i}

Convolution | [3.3,1] - h x w x c_{o}

ReLU - - h x w x c_{o}

Convolution | [3,3,1] D h/2 x w/2 x c_{o}

Addition - - h/2 x w/2 x c_{o}
D. GAAE

In the GAAE model, the downsampling and upsampling
layers are the same as those shown in table 10 and 11,
respectively.
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TABLE 16. Archi of the g for the pervised BigGAN.
Layer Output
Name RS | SN Size
Input z - - 128
Dense - - 4 x 2 x 16.ch
ResBlock U SN | 8 x4 x 16.ch
ResBlock U SN | 16 x 8 x 16.ch
ResBlock U SN | 32 x 16 x 16.ch
ResBlock U SN | 64 x 32 x 16.ch
ResBlock U SN | 128 x 64 x 16.ch
Non-local block | - - 128 x 64 x 16.ch
ResBlock U SN | 256 x 128 x l.ch
BN, ReLU - - 256 x 128 x 1
Conv [3,3, 1] - - 256 x 128 x 1
Tanh - - 256 x 128 x 1

TABLE 17. Architecture of the discriminator for the unsupervised BigGAN.

Layer Output

Name RS Size

iput - 256 x 128 % 1
Spectrogram

ResBlock 128 x 64 x 1.ch
Non-local block - 128 x 64 x 1.ch
ResBlock - 64 x 32 x 1.ch
ResBlock D 32 x 16 x 2.ch
ResBlock D 16 x 8 x 4.ch
ResBlock D 8 x4 x8.ch
ResBlock D 4 x 2 x 16.ch
ResBlock

(No Shortcut) - 4 x2x 16.ch
ReLU - 4 x 2 x 16.ch
Global sum pooling | - 1 x 1 x16.ch
Dense - 1

TABLE 18. Architecture of the Feature Extractor Network for the BiGAN.

Layer Output

Name RS Size

o - | 256 x 128 x 1
pectrogram

ResBlock 128 x 64 X 1.ch

Non-local block - 128 x 64 x 1.ch

ResBlock - 64 x 32 x 1.ch

ResBlock D 32 x 16 x 2.ch

ResBlock D 16 x 8 x 4.ch

ResBlock D 8 x4 x 8.ch

ResBlock D 4 x 2 x 16.ch

ResBlock

(No Shortcut) = | #%2ix 16:dh

ReLU - 4 x 2 x 16.ch

Global sum pooling | - 1 x 1 x16.ch

Dense - 128

The Encoder architecture is given in table 20, where we
use two dense layers to obtain z, and z;, from a global sum
pooling layer. For the Decoder, the conditional vector y, or
Vx, is given through the conditional Batch Normaliser (cBN)
from the upsampling layer. The classifier network is built
upon some dense layer, and the architecture is given in
table 22. For the Sample Discriminator, we exactly follow
the implementation in table 13. Here, in the table 13, y is
the conditional vector, and & is the output from the global
sum pooling layer. For the Latent Discriminator, we have
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TABLE 19. Architecture of the imil for the BiGAN.
Layer Output
Name RS Size
oput - | 256x128x 1

pectrogram

ResBlock 128 x 64 x 1.ch
Non-local block - 128 x 64 x 1.ch
ResBlock - 64 x 32 x 1.ch
ResBlock D 32 %16'x2.¢ch
ResBlock D 16 x 8 x 4.ch
ResBlock D 8 x 4 x 8.ch
ResBlock D 4 x 2 x 16.ch
ResBlock
(No Shorteut) - 4 x 2 x 16.ch
ReLU - 4 x 2 x 16.ch
Global sum pooling - 1 x1x16.ch
Concat with input feature | - 256+128=384
Dense - 128
ReLU - 128
Dense - 1

TABLE 20. Architecture of the Encoder for the GAAE.

Layer Output

Name RS Size

oo - | 2s6x 128 %1
Spectrogram

ResBlock 128 x 64 x 1.ch
Non-local block - 128 x 64 x 1.ch
ResBlock - 64 x 32 x 1.ch
ResBlock D 32 x 16 x 2.ch
ResBlock D 16 x 8 x 4.ch
ResBlock D 8 x 4 x 8.ch
ResBlock D 4 x2x16.ch
ResBlock

(No Shortcut) - 4 x2x16.ch
ReLU - 4 x 2 x 16.ch
Global sum pooling - 1 x 1 X 16.ch
Dense (zz,, ), Dense (z;.“) - 128, 128

TABLE 21. Architecture of the Decoder for the GAAE.

Layer Output

Name RS [ SN Size

Input latent vector | - - 128

Dense - - 4 x 2 x 16.ch
ResBlock U SN | 8 x4 x 16.ch
ResBlock U SN | 16 x 8 x 16.ch
ResBlock U SN | 32 x 16 x 16.ch
ResBlock U SN | 64 x 32 x 16.ch
ResBlock U SN | 128 x 64 x 16.ch
Non-local block - - 128 x 64 x 16.ch
ResBlock U SN | 256 x 128 x 1.ch
BN, ReLU - - 256 x 128 x 1
Conv [3,3, 1] - - 256 x 128 x 1
Tanh - - 256 x 128 x 1

use multi dense layers,

table 23.

and the architecture is given in

The learning rates for both Discriminators are 0.0002, and
for other networks, the learning rate is 0.00005. We set the
number of channels to 16 for all the experiment carried out

with the GAAE.
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TABLE 22. Architecture of the Classifier for the GGAN.

Layer Output
Name Size
Input latent vector | 128
Dense 128
ReLLU 128
Dense 10

TABLE 23. Architecture of the Latent Discriminator for the GGAN.

Layer Output
Name Size
Input latent vector | 128
Dense 128
ReLU 128
Dense 128
ReL.U 128
Dense 1

TABLE 24. Architecture of the Simple Spectrogram Classifier.

Layer Output

Name Size

put 256 x 128 x 1
Spectrogram

Convolution [3, 3, 32] 256 x 128 x 32
Maxpool [2, 2] 128 x 64 x 32
Convolution [3, 3, 64] 128 x 64 x 64
Maxpool [2, 2] 64 x 32 x 64
Convolution [3, 3, 128] | 64 x 32 x 128
Maxpool [2, 2] 32 x 16 x 128
Convolution [3, 3, 256] | 32 x 16 x 256
Maxpool [2, 2] 16 x 8 x 256
Dense [

E. SIMPLE CLASSIFIER

For many classification tasks, we mention a Simple Classifier
throughout the paper. The architecture of these classifiers are
as in table 24. Here, c¢ is the number of outputs according
to the classification categories. The learning rates is used as

0.0001 for this classifier network.
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4.3.Links and implications

In this chapter, | have demonstrated the capabilities of the Guided Adversarial
Autoencoder (GAAE) model to simultaneously acquire both guided and generalised
representations from unlabelled audio data. Guided representation learning enhances
performance in related tasks where labelled audio data is limited, while the generalised
representation can be applied to entirely unrelated tasks. This research introduces a
significant opportunity for researchers to harness unlabelled audio data for enhancing
various audio-related tasks.

However, it's worth noting that both the proposed GGAN and GAAE models
rely on manually extracted spectrograms, which may limit their full potential. These
models are built upon a Convolutional Neural Network (CNN) architecture. To address
this limitation and reduce the dependency on spectrograms, | have presented an
enhanced version of the CNN model in the next chapter. This improved model is
designed to directly model audio from raw waveforms and holds the potential for
integration within the GAAE and GGAN frameworks.
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CHAPTER 5: PAPER 3 — Raw Audio Classification with

Cosine Convolutional Neural Network (CosCovNN)

5.1.Introduction

In this chapter, | introduce the Cosine Convolutional Neural Network
(CosCovNN) as an innovative alternative to the traditional CNN model for the direct
classification of audio from raw waveforms. CosCovNN offers the potential to replace
the core CNN architecture of GGAN and GAAE, thereby eliminating their reliance on
handcrafted features. This development aligns precisely with the third objective of the
research work.

CosCovNN can significantly reduce the parameter count by 77%, while
consistently outperforming similar CNN models in audio classification tasks across five
different datasets. While CosCovNN excels, it does not surpass the performance of
complex models found in the existing literature. To further emphasise the potential of
CosCovNN, | propose the Vector Quantised Cosine Convolutional Neural Network
with Memory (VQCCM). Through rigorous evaluation and benchmarking against
existing literature, | demonstrate that VQCCM achieves state-of-the-art performance
across various audio classification tasks, often surpassing the performance of existing
models found in the literature.

5.2.Published paper
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¢ ABSTRACT

This study explores the field of audio classification from raw waveform using Convolutional Neural
Networks (CNNs), a method that eliminates the need for extracting specialised features in the pre-processing
step. Unlike recent trends in literature, which often focuses on designing frontends or filters for only the
initial layers of CNNs, our research introduces the Cosine Convolutional Neural Network (CosCovNN)
replacing the traditional CNN filters with Cosine filters. The CosCovNN surpasses the accuracy of the
equivalent CNN architectures with approximately 77% less parameters. Our research further progresses
with the development of an augmented CosCovNN named Vector Quantised Cosine Convolutional Neural
Network with Memory (VQCCM), incorporating a memory and vector quantisation layer. VQCCM
achieves state-of-the-art (SOTA) performance across five different datasets in comparison with existing
literature. Our findings show that cosine filters can greatly improve the efficiency and accuracy of CNNs in
raw audio classification.

INDEX TERMS Audio Classification, Convolutional Neural Network, Cosine Filter, Vector Quantisation,

CNN with Memory

. INTRODUCTION

Convolutional Neural Networks have been remarkably suc-
cessful in computer vision for modelling directly from raw
data, eliminating the need for handcrafted features [I]]. Sim-
ilarly, in audio classification, there is a growing interest in
direct raw waveform modelling. This approach is particularly
challenging due to the high dimensionality and complex
temporal dependencies inherent in audio data, necessitating
advanced and computationally robust CNN architectures [2]].
Directly modelling from raw waveform eliminates prepro-
cessing and reduces manual intervention, aligning with the
data-driven characteristics of deep learning [3]. Unlike tradi-
tional spectrogram-based CNNs, which are limited to certain
frequencies, CNNs processing raw waveforms can identify a
wider range of frequency responses, becoming more effective
as more data becomes available. [4].

Responding to the evolving field, researchers have ex-
plored various modifications of CNN architectures to effec-
tively handle audio waveforms [5]—[8]. Much of this research
has been centred on developing front-end modules and fil-
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ters, particularly enhancing the initial layers of waveform-
based CNNs. This is based on the understanding that the
first layer is crucial as it directly interacts with the data.
Notable contributions in this area include the SincNet filter
by Ravanelli et al. [9]], designed for the initial layers of the
CNN, and Zeghidour et al.’s [I0] LEAF, a learnable front-
end adaptable to various neural networks. The key concept
of these advancements is the replacement of handcrafted
features with learnable filters or frontends in the early stages
of the processing, but they still rely on traditional CNN
architecture beyond the initial layers.

Building on this direction, we propose a new approach,
CosCovNN, which integrates a cosine filter into the CNN
framework. This filter, designed to replace traditional CNN
kernels, draws its inspiration from the principles of the
Discrete Cosine Transform (DCT) and the real parts of
the Fourier Transform. The DCT, known for its ability to
represent signals through a summation of cosine functions
at various frequencies, efficiently captures the spectral char-
acteristics inherent in audio signals [TT]-[13]. At the same
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time, the real parts of the Fourier Transform, which are made
up of cosine elements, play a crucial role in highlighting
the symmetrical parts of a signal’s frequency range. These
elements are fundamental in audio processing, particularly in
identifying rhythmic and harmonic structures [14]]-[16]). Our
choice of a cosine-based filter aligns with traditional signal
processing methods, enhancing the CNN’s ability to interpret
complex audio patterns.

To enhance CosCovNN'’s capabilities, we’ve added a Vec-
tor Quantisation layer after the first convolutional layer,
encouraging the model to focus on extracting significant
features from audio waveform [I7)]. Moreover, we have
added a memory module which allows the initial layers of
the network to propagate important information of the data
directly to the final layers improving its performance in the
task of raw audio modelling [[18]-[20].

In this paper, we make the following key contributions:

« The development of CosCovNN (Cosine Convolutional
Neural Network), a novel CNN based architecture that
introduces learnable cosine filters. CosCovNN not only
surpasses traditional CNN models in performance but
also achieves this with approximately 77% fewer pa-
rameters.

« The introduction of the Vector Quantised Cosine Con-
volutional Neural Network with Memory (VQCCM), an
advanced version of CosCovNN. We conduct thorough
evaluations of both CosCovNN and VQCCM for clas-
sification tasks using five different datasets. This allows
us to compare our results directly with recent studies in
the field. The VQCCM achieves state-of-the-art (SOTA)
performance and sets new benchmarks in several cases.
This highlights the effectiveness and potential of our
cosine filter-based CNN models in the field of raw audio
classification.

Il. BACKGROUND AND RELATED WORK
The domain of audio classification has been revolutionised
by deep learning, transitioning from traditional signal pro-
cessing methods such as Support Vector Machine (SVM), K-
Nearest Neighbors (KNN), Hidden Markov Models (HMM)
[21]-[23] to more sophisticated neural network models [24]]—
[26]. Early approaches relied heavily on hand-crafted fea-
tures, but the advent of deep learning, particularly Convo-
lutional Neural Networks (CNNs) [27]-[29] and Recurrent
Neural Networks (RNNs) [30]-[32], ushered in a new era
of audio classification. This shift was motivated by the need
to capture more complex patterns in audio signals, a task at
which deep learning models excel due to their ability to learn
powerful representations directly from raw data [33].
Despite the advancements brought by deep learning in
audio classification, a significant portion of these models still
primarily rely on 2D representations of audio data, such as
MFCC coefficients, FBANK, and spectrograms [34]-[37].
However, Ravanelli and Bengio, argue [9] that the optimality
of these features, developed based on perceptual evidence,
is not guaranteed. To addressing the above challenge, they
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introduced SincNet, a model employing parameterised sine
functions to learn band-pass filters in its initial convolutional
layer. This innovation allows SincNet to directly learn the
filters’ cutoff frequencies, leading to more efficient learning
and faster model convergence. This approach exemplifies
the shift towards learnable filters and frontends capable of
directly working with raw waveforms [2]]. Loweimi et al. pro-
posed an improved SincNet by introducing more flexible and
interpretable kernel-based filters, such as triangular, gamma-
tone, and Gaussian. These filters allow for a better alignment
with perceptual and statistical audio features compared to
SincNet’s rectangular filters [38].

In the study "CGCNN," Noé et al. [39] proposed an
advancement of SincNet by incorporating complex Gabor fil-
ters and managing the resulting complex-valued signals with
Complex-Valued Convolutional Neural Networks (CVCNN).
This method capitalises on the superior time-frequency lo-
calisation properties of Gabor filters, tailoring them for spe-
cialised applications in audio processing.

In the progression of audio front-end development, Sainath
et al. [39] marked a notable advancement by introducing a
Convolutional Long Short-Term Memory Deep Neural Net-
work (CLDNN) model trained on raw waveform data. This
study demonstrated that raw waveform features, when used
with a sophisticated CLDNN acoustic model, could match
the performance of traditional log-mel filterbank energies.
The CLDNN architecture’s effectiveness, particularly its time
convolution layer in reducing temporal variations and LSTM
layers for temporal modelling, was a significant break-
through. Following this trend, the study by Zeghidour et al.
introduced time-domain filterbanks (TD-filterbanks), a
set of complex filters operating directly on the raw waveform.
This approach deviated from the traditional mel-filterbank-
based models, showing that TD-filterbanks, when fine-tuned
within a convolutional neural network, consistently outper-
formed their mel-filterbank counterparts across various ar-
chitectures. Furthering this trajectory, Zeghidour et al.
introduced "LEAF: A Learnable Frontend for Audio Classi-
fication" representing another significant step in this evolving
field. LEAF introduced a fully learnable frontend that excels
across various audio classification tasks, including speech,
music, and environmental sounds. By deconstructing mel-
filterbanks into filtering, pooling, compression, and normali-
sation components, LEAF offers a lightweight, adaptable ar-
chitecture with far fewer parameters. It outperforms both tra-
ditional mel-filterbanks and previous learnable alternatives,
demonstrating its effectiveness in multi-task settings and on
large-scale benchmarks like Audioset [41]. EfficientLEAF, as
proposed in a subsequent study by Schliiter and Gutenbrun-
ner [42]), addresses some of the computational inefficiencies
of LEAF, particularly for long input sequences, without
sacrificing accuracy on downstream tasks. This version of
LEAF incorporates inhomogeneous convolution kernel sizes
and strides and replaces Per-Channel Energy Normalisation
(PCEN) with more parallelizable operations like logarith-
mic compression, temporal median subtraction, and temporal
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batch normalisation. These modifications significantly im-
prove computational performance, offering similar results to
the original LEAF but at a fraction of the computational cost.
However, it’s important to note that neither EfficientLEAF
nor LEAF consistently outperforms fixed mel filterbanks
in all scenarios, suggesting that the quest for the optimal
learnable audio frontend is still ongoing.

Embracing the fundamental principle of deep learning,
which emphasises learning directly from raw data, a grow-
ing area of research is shifting away from using traditional
features or frontends. Instead, this new direction involves
directly inputting raw waveform data into neural network
models, such as 1D Convolutional Neural Networks (CNNs).
This approach aligns with the deep learning ethos of mini-
mal preprocessing and reliance on the model’s capability to
extract relevant features autonomously. This research avenue
explores various modifications and adaptations of CNN ar-
chitectures [5], [43]-[45]], specifically designed to effectively
process and learn from 1D audio signals in their raw form
[33]. Building on this approach Kim et al. [2]] delve deeper
into this concept by examining the SampleCNN model, an
end-to-end architecture uniquely designed for processing
raw waveform data. SampleCNN stands out for its use of
very small filter sizes, which are particularly effective in
handling various audio classification tasks, including music
auto-tagging, keyword spotting, and acoustic scene tagging.
The study not only demonstrates the efficacy of SampleCNN
but also extends it with elements from residual and squeeze-
and-excitation networks, enhancing its discriminative power
and computational efficiency. This research underscores the
potential of finely tuned CNN architectures in directly har-
nessing the nuances of raw audio data, paving the way for
more sophisticated and efficient audio processing techniques.

Advancing the application of raw audio waveforms in
CNN architectures, and drawing inspiration from existing
research on the development of learnable filters, this study in-
troduces CosCovNN, an innovative cosine filter-based CNN
model. The design of CosCovNN was influenced by the natu-
ral compatibility of cosine functions with the periodic nature
of audio signals, an idea deeply entrenched in Fourier anal-
ysis principles [46]. Motivated by this concept, we took the
pioneering step of substituting traditional CNN kernels with
learnable cosine filters. This key decision aligns perfectly
with the inherent properties of audio waveforms and leads
to a significant reduction in the model’s complexity, cutting
down its parameter count by approximately 77% compared
to conventional CNNs. As a result, CosCovNN not only
simplifies the architecture but also enhances performance,
surpassing typical CNN architectures in various datasets.

Although the CosCovNN model initially outperformed
standard CNNgs, it encountered limitations when compared to
more advanced models in contemporary research. To address
this, we further improve CosCovNN by integrating Vector
Quantisation and Memory modules, significantly enhancing
its performance. This strategic improvement, combined with
the inherent efficiency of cosine filters in processing audio

VOLUME XXX, 2020

signals, elevated CosCovNN to a new level of effectiveness.
As a result, CosCovNN achieved state-of-the-art results, es-
tablishing it as a highly capable model for complex audio
classification tasks.

. PROPOSED RESEARCH METHOD

A. BACKGROUND KNOWLEDGE

This section presents a detailed overview of the Cosine Con-
volutional Neural Network architecture and its integration
into the Vector Quantised Cosine Convolutional Neural Net-
work with Memory (VQCCM) model. The VQCCM model
is constructed using the CosCovNN layer as a fundamental
building block.

1) Convolution in Convolutional Neural Network

1D convolutional neural networks usually consist of con-
volutional layers, maxpool, and fully connected layers. For
any particular layer, if the input is [n], the convolutional
operation can be defined as follows,

L1
o[n] = z[n] * h[n] = Zm[l] ~h[n—1] (1)
=0

where, h[n] is the filter with length L and o[n] is the
output of that layer. During training, the aim is to learn the
L parameters of the filters. Each layer of the convolutional
neural network is comprised of multiple filters. We learn
these filters through back-propagation from the training data

during the training.

2) Vector Quantisation

The idea behind vector quantisation (V' Q) is to represent n
set of vectors, V' € {v1,vs,...v,} by a finite set of m rep-
resentative vectors from a codebook, C' € {c1,¢ca,...cm}.
Here, each vector v; and ¢; has an equal dimension of D
where i € {1,2,3...n} and j € {1,2,3...m} [47]. The
goal of V@ is to find the closest representative vector of v;
in C' and represent v; as c; through the mapping function G,
which can be formulated as follows,

G(v;) = argminj||v; — ¢jl|2 2)

where ||v; — ¢;|2 represents the squared Euclidean distance
between the input vector point v; and the representative
vector ¢;.

V@ representation can be a very powerful layer in neural
networks; however, the challenge lies in the computation
of the gradient for argminj||v; — cj||2. In the VQ-VAE
paper [47], authors have addressed this issue by using the
gradient of V. L to update the vector v;, where L is the
loss of any neural network. In this paper, the authors have
used the V'@ layer in their Autoencoder Network to learn the
discrete representation ¢; for v; = E(x;), where E is the
Encoder, and «; is the input data. Decoder, D takes the VQ
representation c¢; to reconstruct z;. Here, the reconstruction
objective is log D(#; ~ w;|c;). As the dimension of ¢; is
equal to v;, the gradient calculated for the ¢; can be used to

3
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Architecture of Cosine Convolutional Neural Network (CosCovNN)
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FIGURE 1. The present figure depicts an exposition of the intricate architecture of the CosCovNN model, which is designed to process a one-second audio signal
with a sampling rate of 16KHz. The convolutional layer is illustrated with the number of filters denoted by the symbol @ on the left-hand side, while the filter size is

indicated on the right-hand side.

update the weights of E. This way, the Autoencoder is trained
end-to-end with the back-propagation algorithm. Here, the
authors have the following loss function to train the VQ-VAE,

L =log D(; = wilcj) + |lsglvi] — ¢;13 + Bllvi — Sg[cj]|(|§)’
Where, stop gradient, sg stops the flow of gradient during
the back-propagation through a particular layer in a neural
network and 3 is the hyperparameter. Here, 3||v; — sg[c;]|[3
part forces the Encoder, E to learn v; close to ¢; and ||sg[v;] —
c;j||3 part makes sure that ¢; does not deviate much from v;.

B. ARCHITECTURE OF THE COSCOVNN

The 1D Convolutional Neural Network (CNN) and 1D Co-
sine Convolutional Neural Network (CosCovNN) differ pri-
marily in the filter of their convolutional layers. A CNN
requires learning L parameters for each particular filter of
size L, whereas a CosCovNN only requires learning two
parameters for a filter of the same size L. Thus, for any
given filter, the CosCovNN effectively reduces the number
of parameters by L — 2, where L > 2, relative to the CNN
architecture. A visual comparison of the convolutional layers
of the two architectures is presented in figure [2] Important
components of the architecture are discussed as follows,

1) Convolutional Layer

For the convolutional layer, we generate the filter from a pe-
riodic cosine function. A cosine function can be represented
as follows,

4

yln] = Acos(2Zn) 4

A
where, A is the Amplitude, A is the wave length and n is
the step. As, 27 is a constant, let 2X = 05 and A = 6.
Therefore, we can represent the equation as follows,

g[n, 01, 605] = 6y cos(6an) (5)

Here, for any particular convolutional layer of the CosCov-
Net, if the input is z[n], the convolutional operation can be
defined as follows,

o[n] = z[n] x g[n, 01, 0] (6)

Here, o[n] is the output, 6;, 0> are the learn-able parameters
of the filter.

2) Pooling Layer

We have used 1D max-pooling layer for down-sampling
between layers. This layer selects the most salient features
within a window of size k, thereby enhancing the significance
of the features obtained from the convolutional layer.

3) Activation Layer

The activation function employed in CosCovNN is a crucial
component of the network’s architecture. As the values of the
filters in CosCovNN are periodic, ranging from —1 to 1, it is
imperative to maintain this range throughout the output of
each layer of the network. To ensure consistency in the range
of output values, we utilise the tanh activation function.
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FIGURE 2. The figure illustrates a comparative analysis between the convolutional layer of a standard convolutional neural network (CNN) and that of the Cosine
Convolutional Neural Network (CosCovNN). The symbols f, z, o, 6, and a denote the filter, input, output, learnable parameters, and filter values, respectively, for
both models. Notably, the CosCovNN architecture has only two parameters, 6, for any given filter of size L, whereas the CNN model requires L parameters for each

filter of size L.

4) Classification Layer

In classification tasks involving Z classes, the conventional
approach is to employ a fully connected layer of size Z at
the end of the network. However, this results in a substantial
increase in the number of model parameters. To address this
issue, we propose utilising Z Cosine Convolutional Layers
with global average pooling [49] in the classification layer,
which enables us to significantly reduce the parameter count.

5) Dropout

To enhance the resilience of the network and prevent over-
fitting, we incorporate 1D spatial dropout [50]. Unlike con-
ventional dropout methods that randomly discard individual
elements, spatial dropout removes entire 1D feature maps,
thereby enabling the network to learn more robust and gener-
alised features.

C. ARCHITECTURE OF THE vQcCM

The VQCCM model is an extension of the CosCovNN that
incorporates Vector Quantization (VQ) and Memory Layers
to improve its performance. Figure [3] illustrates the detailed
architecture of the VQCCM model. In this model, the VQ
layer is used in the first layer, and every layer has a memory
writer and reader. During training, we learn the memory
layer, as well as the reader and writer.

In the first layer, only a memory writer is present, which
takes the feature from the preceding layer and writes impor-
tant information to carry it to the next layer. The memory
readers read the information from memory and merge it with
the feature. The memory writer writes information in the
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memory from each layer on top of the memory obtained from
the preceding layer. This allows the important information
to pass from direct audio input to the output layer and in
between.

1) Vector Quantisation Layer

In the VQ layer, an embedding matrix or codebook E € R%:*
is used, where k represents the number of embedding vectors
and d is the sequence length of the vector. It is noteworthy
that d is identical to the sequence length of the incoming
feature.

During the forward pass, the audio is passed through
the Cosine Convolutional Neural Network (CosCovNN) and
max-pooling layer, yielding a feature representation denoted
as F' € R»*?, where b and ¢ denote the number of batches
and channels, respectively. Specifically, for each batch and
channel, the Euclidean Distance between the feature, F;j,
where i € {1,2,...b x ¢} and the embedding vectors E;,
where j € {1,2,... k} from the codebook F, is computed.
The closest vector F; is then selected from the codebook,
replacing the original F; feature and passing it to the next
layer of the model. This operation can be expressed as
follows,

F, = F, = By, where, k = argmin;||Fi — Ej|l» (7

During the backward pass, the gradient of Fis copied
to F; as their shapes are equal, and the training process
continues as usual. Fi gure@shows the architecture of the VQ
layer.
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FIGURE 3. The diagram presents the structure of the VQCCM model. In this architecture, the Vector Quantisation Layer is stratt

lly positioned right after the

initial CosCovNN layer. This placement compels the model to transmit only crucial information to subsequent layers, thereby ensuring that the first layer extracts
significant features due to its direct interaction with the input. On the left side of the illustration, the memory layer is depicted. This layer is connected to every other

layer in the model, facilitating the transfer of information throughout the entire network, from the initial layers to the final ones.
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FIGURE 4. The architectural details of the VQ layer are shown in this figure. Here, the ir ing feature is rep d with the nearest embedding from the codebook
E. This replacement operation with argmin does not have any gradient. Therefore, the gradient is copied from the replaced feature to the original feature.
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2) Memory Layer

The memory layer is composed of three key components:
Memory (M EM), Memory Writer (MW), and Reader
(M R). The Memory vector M EM is a vector with dimen-
sions R'*M_ where M represents the size of the Memory
vector. During each layer, the Reader, M R reads the Memory
vector M E'M and multiplies it by the current layers feature
vector f; to get f,, where [ refers to the index of the layer of
the VQCCM. Now, the Memory Writer, M W takes the fea-
ture vector f,’ and sums its intermediate representation with
M EM to produce a new Memory vector, which is utilised by
the subsequent layers Reading operation. By utilising these
distinct components, the memory layer facilitates the efficient
flow of information across the VQCCM network. Rather than
initiating the memory with zero, we learn the M EM during
the training and used this learned memory during the test time
as the start memory. Figure 5] portrays the architecture of the
Memory reader and writer blocks.

a: Memory Reader

The MR takes the memory, M EM € REM repeated over
the batch of size B. The initial read operation is conducted by
a Feed Forward Network, Fz. The output size of F' is equal
to the sequence length, S of the current layer feature f; €
RB:5:C where C is the number of channels. Then the output
is passed through C' number of CosCovNN layers (Cosine
Convolutional Layer, CCL) to get the memory, M EM €
RE:5:C Now, the M EM is multiplied with the feature f;
to get the feature f,' to pass through the next layer and the
Memory Writer. After both Fir and C'C'L layers, we use the
activation function tanh. The whole read operation can be
summarised as follows,

fi = fi ® tanh(CC L(tanh(Fr(MEM)))) ®)

b: Memory Writer

The Memory Writer, MW takes the feature f,' and passes it
through the CCL layer. Then the output is passed through
Global Average Pooling, GAP to remove the dimension
C from f,' . Now, this is passed through the Feed Forward
Network Fy to get the intermediate feature of size (B, M).
Finally, to write and create a new memory, the intermediate
feature is added with the memory, M EM. This M EM is
used in the subsequent layers read operation. Similar to M R,
we use tanh activation after each layer. The whole write
operation can be expressed as follows,

MEM = MEM + tanh(Fy (GAP(tanh(CCL(f,)))))
&)

3) Training Objective

As both of the networks are evaluated on classification tasks,
we used cross-entropy loss during the training. However, for
VQCCM, we have an extra loss for the VQ layer. The total
loss, L is computed as follows,
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zZ
L==" yilog(yi) + Isg[F:] — Ej3 + Bll FisglE;]ll3

i=1
(10)
Where Z is the number of classes in the classification task.

IV. DATASET

CosCovNN and VQCCM are evaluated on five datasets from
both speech and non-speech audio domains. The datasets
used in this study are as follows:

A. SPEECH COMMAND CLASSIFICATION

Speech Command Dataset is consisted of 105,829 utterances
of length one second and there are 35 words from 2,618
speakers [5T]. An audio digit classification dataset named
S09, is created from this speech command dataset where it
consists of utterances for different digit categories from zero
to nine. Specifically, we have used this dataset for expensive
experiments.

B. SPEECH EMOTION CLASSIFICATION

In our study, we utilised the IEMOCAP dataset for emotion
classification. This dataset comprises a total of 12 hours of
audio data, consisting of five sessions featuring two dis-
tinct speakers (one male and one female) for each session.
To ensure consistency with prior research, we focused on
four primary emotional states - namely angry, neutral, sad,
and happy (with the excitement category consolidated with

happy) [52].

C. SPEAKER IDENTIFICATION

We employed the VoxCeleb dataset [53] for the task of
speaker identification/classification. This dataset consists of
over 100,000 utterances (1000 hours of audio recordings)
from 1251 speakers.

D. ACOUSTIC SCENES CLASSIFICATION

We have chosen the TUT Urban Acoustic Scenes 2018
dataset for our acoustic scenes classification task. The dataset
comprises 24 hours of audio, which is divided into 8640
segments of 10 seconds each. The audio belongs to ten dif-
ferent classes, including ’Airport’, *Shopping mall’, *"Metro
station’, "Pedestrian street’, ’Street with medium level of traf-
fic’, "Travelling by a tram’, "Travelling by a bus’, "Travelling
by an underground metro’, and ’Urban park’. [54]

E. MUSICAL INSTRUMENT CLASSIFICATION

We utilised The Nsynth audio dataset to evaluate our models
for the musical instrument classification task. This dataset
comprises of 305,979 musical notes with a duration of
four seconds, representing ten different instruments such as
“brass’, "flute’, "keyboard’, ’guitar’, *mallet’, *organ’, ‘reed’,
’string’, and synth lead’, along with one vocal class [55].
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FIGURE 5. The figure provides a detailed view of the Memory Reader and Writer components within the VQCCM architecture. The Memory, labeled as M, is
situated centrally between the two blocks. The Reader block accesses the memory, integrating it through a series of feed forward networks and a CosCovNN layer.
This processed information is then relayed to the Writer block, where it merges the existing memory with the current layer’s features, subsequently generating a new
memory state. This updated memory state supersedes the previous one and is passed on to the subsequent layer for further processing

V. EXPERIMENTAL SETUP, RESULTS AND DISCUSSION
We performed experiments to assess the effectiveness of both
CosCovNN and VQCCM. Our evaluation of CosCovNN
involved identifying an appropriate baseline architecture to
compare its performance with similar CNN architectures.
Additionally, we established an experimental setup to anal-
yse the performance of VQCCM relative to state-of-the-art
literature.

A. MODEL ARCHITECTURE SEARCH FOR COSCOVNN

To evaluate the performance of cosine convolutional filters,
we need to first find a benchmark architecture for the model.
This will allow us to evaluate its performance and computa-
tional complexity with similar CNN architecture.

1) Experimental Setup

Like any typical CNN model, finding a suitable architec-
ture for CosCovNN is the most challenging part. It is very
common to tune the architecture (eg. change the size of
kernels, number of layers, and number of filters) of any
CNN model according to the datasets. However, tuning the
proposed CosCovNN for different datasets is out of the scope
of this research work. Therefore, we want to search for an
optimal architecture for any single dataset, then measure
its performance on different datasets by changing only the
number of filters and layers. To find this architecture, we
experiment with the S09 dataset.

8

First, we fix a backbone network and then change different
settings to find the optimal architecture. For the backbone
network (BBN), we choose five layers for the CosCovNN
with filter size 12 and incremental number of filters as 32, 64,
128, 256 and 10 (number of class for S09 is 10) respectively
from layer 1 to 5. For the activation function we use tanh
function and maxpool at each layer of size 2 where Dropout
is 50 percent.

To find suitable filter size for each layer, we follow the
following strategy,

« Step 1: choose layer 1 from the BBN.

« Step 2: get classification accuracy changing the size of
the filter F, to 3, 6, 12, 25, 50, 100, 200, 300 (while rest
of the layers are unchanged in the BBN).

« Step 3: choose the filter Fi.s¢, with highest accuracy and
replace the filter F' of the layer with Fj. s (while rest of
the layers are unchanged in the BBN).

« Step 4: choose next layer from the BBN.

« Step 5: Go back to step 2 if this not the last layer.

After we find the optimal filter size for each of the layers,
we follow a similar strategy for the max-pooling layer. We
explored 2, 4, 6, 8, 10, 20 window sizes for each layer. Here,
every experiment is conducted five times and the maximum
accuracy is recorded for comparison. This approach allowed
us to identify the maximum accuracy achievable for any
given setting.
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TABLE 1. Classification Accuracy of CosCovNN on the S09 dataset for
different filter size

Filter Size | Layer1 | Layer2 | Layer3 | Layer4 | LayerS5
3 78.64 79.54 83.67 84.16 85.22
6 81.34 81.93 84.16 84.24 84.52
12 81.89 82.12 84.20 84.20 84.24
25 82.00 83.54 84.12 83.50 84.05
50 82.09 84.20 83.10 82.09 83.77
100 82.12 83.97 81.97 81.77 83.65
200 82.05 83.14 81.85 81.62 83.58
300 82.01 81.81 81.30 81.58 83.54

TABLE 2. Classification Accuracy of CosCovNN on the S09 dataset for
different window size of the Maxpool

Pool Size Layer 1 | Layer2 | Layer3 | Layer4

2 85.22 93.81 95.37 95.53

4 89.53 94.43 95.53 96.32

8 92.71 95.37 95.22 96.00

10 93.81 92.98 94.86 95.69

20 93.57 91.77 94.43 95.34
2) Results

The results presented in tables[T] we observed that a gradual
reduction in filter size from layer 1 to 5 yielded better
performance. This is likely due to a decrease in feature size
resulting from maxpooling at each layer, which allows for
better capturing of key features with smaller filter sizes.

For maxpooling window sizes, we identified optimal val-
ues of 10, 8, 4, and 4 for layers 1 to 4, respectively. Our analy-
sis indicates that larger pooling sizes can lead to significantly
improved accuracy. However, balancing pooling sizes across
different layers is essential to avoid performance degradation.
These results provide valuable insights into optimising the
architecture of the CosCovNN model for improved accuracy.

B. COMPARISON BETWEEN COSCOVNN AND CNN

1) Experimental Setup

We have evaluated the CosCovNN on the five datasets, where
all of these datasets comes with test data except IEMOCAP
data. For IEMOCAP, we have calculated the accuracy based
on the five fold cross validation (each fold is a session). To
get a fare comparison of the performance of CosCovNN,
we have used CNN with similar architecture and assessed
the number of parameters for both models. Moreover, we
have also compared the results with related literature Time-
Domain Filterbanks (TD-filterbank) [40], SincNet and
LEAF [10]. Our objective is to surpass the accuracy of the
CNN with our CosCovNN model while achieving accuracy
levels close to those of the related literature. Additionally,
visualise the filters for comparison.

To accommodate audio signals of varying lengths, an
additional layer has been incorporated at the beginning of
the architecture. This layer serves to adjust the feature size
to match that of a 16KHz sample rate audio signal with a
duration of one second. For instance, to process audio signals
with a duration of 10 seconds, a layer with a pooling size of
10 has been added. We collected the accuracy of the TD-
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filterbank and SincNet from the research work of Neil et
al. [40], and to keep the experiment fair, we have followed
the exact experimental setup from this research work. In this
work, IEMOCAP and S09 dataset was not used; therefore,
we have trained time-domain filterbanks, SincNet and LEAF
on these datasets to collect the accuracy.

2) Results

The results of our experiments are presented in Table [3] It
is observed that CosCovNN outperforms CNN for all the
tasks. Moreover, CosCovNN performs better than TD-fbanks
and SincNet for all the tasks except for Acoustic Scenes and
Speaker Id classification, respectively. For Acoustic Scenes
classification, TD-fbanks outperforms CosCovNN. Since
SincNet is explicitly designed for speaker classification, it
is reasonable that it achieves better classification accuracy
than CosCovNN in this regard. However, CosCovNN could
not outperform LEAF in any of the tasks. This suggests that
CosCovNN needs some architectural changes to surpass the
best-performing model, but it can still achieve close to SOTA
results.

Now, we can calculate the number of parameters for the
CosCovNN as (1 x 32 x 2) + (32 x 64 x 2) + (64 x 128 x
2)+(128%256x2)+(256x 10x 2) = 91, 200 and for CNN as
(132X 100)+(32x 64 x50)+(64x 128 x 12)+ (128 X 256 x
6) + (256 x 10 x 3) = 4,08, 192. Notably, the CosCovNN
architecture has 77.66% fewer parameters than the CNN ar-
chitecture, yet it outperforms the CNN. These results suggest
that the cosine filters used in CosCovNN are both effective
and more computationally efficient than the CNN filters in
the case of audio data modelling. The fundamental difference
between CosCovNN and CNN filters is illustrated in figure
Cosine filters are periodic, capturing critical frequency
information in audio signals and are less impacted by noise.
On the other hand, CNN filters try to capture the shape of the
audio signal. Therefore filters are more susceptible to noise
in the audio signal and less periodic.

C. COMPARISON OF vQCCM WITH LITERATURE
1) Experimental Setup

Based on our previous experiments, we found that the
CosCovNN architecture with cosine filters is more efficient
than raw CNN filters. However, it is still being determined
whether this approach can be used to develop a robust model
that can achieve or beat SOTA performance in the literature.
To address this question, we augmented the CosCovNN
architecture with Memory and VQ layers to create VQCCM.
We trained VQCCM with similar datasets and aimed to sur-
pass the performance of LEAF, the best-performing model.
We aim to demonstrate that the CosCovNN architecture with
Memory and VQ layers can be a powerful model for audio
classification tasks and achieve or surpass SOTA perfor-
mance.
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TABLE 3. Comparison of CosCovNN and VQCCM with the literature based on the test classification accuracy for different tasks

Classification Task TD-fbanks | SincNet CNN CosCovNN | LEAF VQCCM
Speech C d 873+04 [ 89.2+04 | 83.1£05 | 91.5+0.2 934 +0.3 | 95.6 0.1
Spoken Digit 94.6+03 | 954+02 | 91.4£02 | 96.3+0.1 96.7+0.2 | 97.1 +0.2
Speech Emotion 587+14 | 595+32 | 542+12 | 63.1£28 668+ 1.8 | 71.2+ 1.4
Acoustic Scenes 995+04 | 96.7+09 | 95.6+0.7 | 98.3£0.6 99.1 £0.5 | 99.1 £0.3
Musical Instrument | 70.0 £ 0.6 703 £06 | 683+09 | 71.5+£0.2 720£0.6 | 73.1£0.1
Speaker Id 253+£07 | 435+08 | 174£34 | 31.4+0.9 33.14+0.7 | 47.7 £ 0.6
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FIGURE 6. The figure presents a comparative visualization of the trained filter outputs from CosCovNN and traditional CNNs. On the left, the CNN filters appear
irregular, reflecting their adaptation to the intricate patterns within the audio waveform through the training process. On the right, the CosCovNN filters exhibit a
smoother contour, suggesting that during training, these filters have emphasised on the periodic characteristics or frequency aspects of the waveform.

2) Results

As shown in Table 3] VQCCM has outperformed LEAF
for all tasks. However, neither LEAF nor VQCCM could
exceed TD-Fbanks performance in acoustic scene classifi-
cation. VQCCM and LEAF achieved similar accuracy of
99.1%, but VQCCM has a lower standard deviation than
LEAF. Furthermore, as we have only tuned VQCCM with the
S09 dataset, there is an opportunity for researchers to explore
and fine-tune VQCCM for each problem separately. These
results demonstrate that the Cosine Convolution filter can be
a solid alternative to CNN filters for raw audio classification.

D. IMPACT OF MEMORY AND VQ SIZE
1) Experimental Setup

The VQCCM model is designed to enhance information
propagation from the lower layers to the classifier layer
by utilising its memory component, where the VQ layer is
responsible for learning representations from specific em-

10

bedding vectors. The number of vectors in the VQ layer
and the size of the memory layer are two crucial factors
that significantly influence the performance of VQCCM. To
identify the appropriate memory size and VQ embedding
numbers, we conducted separate training experiments by
integrating the memory and VQ layer into the CosCovNN
architecture. Initially, we planned to utilise the S09 dataset
for this experimentation. However, as the performance of
VQCCM and CosCovNN was found to be very similar on
this dataset, the impact of the memory and VQ layer might
be clear from the comparison. As a result, we expanded
our experiments to include the IEMOCAP dataset. Here,
we assessed the maximum accuracy based on five runs and
plotted it on a graph to gain insights into its behaviour.

2) Results

The experimental outcomes are illustrated in Figure [7} Our
results demonstrate that the model’s performance can be sig-
nificantly enhanced by integrating memory into it. However,
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FIGURE 7. This figure shows the impact of the Memory and VQ layer of the VQCCM model for the S09 and IEMOCAP datasets.

it is imperative to note that an excessive increase in memory
size can lead to overfitting, thereby causing a decline in
performance. Conversely, setting the memory size too small,
such as 10, may impair the performance of VQCCM by
inadequately representing vital information from previous
layers. In such cases, the multiplication of memory with
the learned features in each layer negatively affects the
VQCCM'’s performance. Prior to integrating either memory
or VQ layers, our previous experiments on the S09 and
IEMOCAP datasets revealed maximum accuracies of 96.4%
and 65.9%, respectively, for CosCovNN. After the inclusion
of the memory layer, we achieved a maximum accuracy of
96.7% for the S09 dataset with a memory size of 100 and
a maximum accuracy of 66.8% for the IEMOCAP dataset
with a memory size of 500. Similarly, we obtained accuracies
of 96.2% and 67.0% for the S09 and IEMOCAP datasets,
respectively, with embedding sizes of 256 and 512. We
observed that using a lower number of embeddings can result
in underfitting while increasing the embedding size beyond
a certain threshold does not cause significant degradation in
performance. Unlike memory layers, overfitting the VQ layer
depends on the number of feature layers, and a higher number
of embeddings does not lead to overfitting.

E. ABLATION STUDY FOR VQCCM

In order to investigate the role of the Memory and VQ
layer in the VQCCM model, we conducted an ablation
study. This involved adding each component separately to the
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CosCovNN and observing the impact on model performance.
The ablation study is equivalent to removing each component
from VQCCM individually. Specifically, we performed two
experiments: the first involved adding the Memory layer to
the CosCovNN, resulting in a model referred to as VQCCM
- VQ, and the second involved adding the VQ layer to the
CosCovNN, resulting in a model referred to as VQCCM -
Memory. The results of these experiments are presented in
Table

Our findings indicate that adding the Memory layer to the
CosCovNN results in improved performance and stability
compared to CosCovNN. However, when only the VQ layer
is added to the CosCovNN, improvements are not consis-
tently observed across all experiments. While Memory is a
valuable addition to CosCovNN, it is even more effective
when combined with the VQ layer. The VQ layer enforces
the use of a fixed number of vectors, making it difficult for
the model to learn an effective representation. However, by
adding the Memory layer, the model is forced to use its
memory to pass important information that cannot be learned
through the VQ layer alone. As a result, the presence of the
VQ layer compels the model to utilise the Memory layer,
leading to better results.

VI. CONCLUSION

In this research, we introduced the concept of using cosine
filters as a replacement for conventional filters in Convo-
lutional Neural Network models to classify audio directly

11
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TABLE 4. Ablation study of the VQCCM (CosCovNN + Memory + VQ)

Classification Task CosCovNN | CosCovNN + Memory | CosCovNN + VQ | CosCovNN + Memory + VQ
Speech C d 91.5+0.2 94.2 £ 0.1 92.9 £ 0.5 95.6 = 0.1
Spoken Digit 96.3 £ 0.1 96.5 £ 0.1 96.1 £0.2 97.1+ 0.2
Speech Emotion 63.1 £2.8 68.1 + 0.7 64.1 £29 71.2+ 14
Acoustic Scenes 98.3 + 0.6 98.7 + 0.3 98.1 + 0.4 99.1 £ 0.3
Musical Instrument | 71.5 +0.2 71.9 £ 0.1 709 £ 0.8 73.1 £ 0.1
Speaker Id 31.4+£09 382404 30.6 = 1.6 47.7 £ 0.6
from raw waveforms. A major benefit of cosine filters is their REFERENCES

computational simplicity, as any particular filter requires
learning only two parameters. This contrasts with traditional
CNN filters, where the number of parameters varies and
is typically higher. To implement this approach, we devel-
oped the CosCovNN model, which integrates cosine filters
into the CNN framework. Through comparative analyses of
CosCovNN and similar CNN architectures, conducted on
both Speech and NonSpeech datasets, we have demonstrated
that CosCovNN is an effective alternative for audio classi-
fication directly from raw waveforms. Our study details the
necessary modifications for incorporating cosine filters into
Convolutional Neural Network (CNN) models. This provides
a clear pathway for researchers to adapt existing CNN archi-
tectures, as found in the literature, to include cosine filters. By
implementing the changes we suggest, these modified CNN
models could potentially benefit from a reduced number of
parameters and enhanced performance. This aspect of our
research opens up promising opportunities for future inves-
tigations, especially developing different CNN architecture
based on cosine filters to model audio from raw waveform.

Morevoer, in this study we proposed The VQCCM model,
which is an enhancement of the CosCovNN framework,
incorporating a Vector Quantisation (VQ) layer and a Mem-
ory Layer. We evaluated the classification performance of
VQCCM across five different datasets (Speech Command,
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Speaker Id), where we achieved state-of-the-art results and
outperform benchmarks in certain instances. The integration
of the VQ layer and memory module in VQCCM signifi-
cantly enhances the performance of the CosCovNN model.
This innovative approach paves the way for researchers to
apply these combined elements in various CNN architectures
found in the literature. While VQCCM has demonstrated
promising results in our datasets, its potential for broader
application and exploration in other domains remains an
exciting prospect for future research.
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5.3.Links and implications
In this final chapter, | introduced two novel models, Cosine Convolutional
Neural Network (CosCovNN) and Vector Quantised Cosine Convolutional Neural
Network with Memory (VQCCM). These models are designed to classify audio data
directly from its waveform, eliminating the need for manual feature engineering.
Results, based on diverse datasets, confirm that the cosine filter can serve as a viable
alternative to the traditional CNN filter for raw audio waveform classification. With the

completion of this chapter, the third research objective is achieved.

In the concluding section, | will summarize the key findings and contributions of
this thesis. Additionally, | will outline potential future directions and areas for further

research in the domain of audio processing and machine learning.
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CHAPTER 6: DISCUSSION AND CONCLUSION

This study makes a significant contribution to the domain of unsupervised
disentangled representation learning, a fundamental area in machine learning. The
primary objective of this research is to learn disentangled representations from
unlabelled audio data. These learned representations hold the potential to enhance
the performance of machine learning models in audio-related tasks, particularly in
scenarios where labelled data is limited. To attain this goal, | have devised innovative
models tailored to operate with audio spectrogram representations. It is worth noting
that manually crafted features, such as spectrograms, have been criticised for
potentially limiting the performance of machine learning models. Hence, this research
also has a secondary aim to address this limitation by creating models capable of
directly processing raw audio waveforms. To accomplish both the primary and
secondary objectives of this research, three core objectives have been formulated.

Next, | will conclude my findings based on these objectives.

6.1. Guided Representation Learning from unlabelled audio data

The first core objective of this research focused on developing models capable
of learning task-specific representations from unlabelled audio data while leveraging
guidance from a small amount of labelled data. This approach aimed to enhance the
performance of machine learning models on related tasks with limited labelled data.
The Guided Generative Adversarial Neural Network (GGAN) was introduced as a
solution to this objective. Even though GGAN was primarily designed for
representation learning, it has also made a significant contribution to the field of audio
generation. GGAN has introduced an innovative approach to guiding a GAN model to
generate high-quality conditional audio based on a small set of labelled samples. The
effectiveness of GGAN has been demonstrated through experiments conducted on
both speech and non-speech datasets.

One of the core contributions of GGAN lies in the concept of partitioning the
latent space of the GAN model based on the supervision given from a limited set of
labelled data. This novel approach has implications beyond audio processing and
represents a valuable contribution to machine learning theory. Researchers across
various domains can leverage this idea to develop other GAN-based models capable
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of learning guided representations from unlabelled datasets. This contribution
transcends the audio field and can be applied to a wide range of research areas where

GAN-based models play a role.

6.2. Guided and Generalised Representation Learning from unlabelled audio
data

Indeed, GGAN has demonstrated its ability to disentangle specific
characteristics of the data distribution in its latent space, guided by the provided
supervision. This capability enhances its performance in the task at hand, particularly
when that task is closely related to the supervised signal. However, this specialised
partitioning of the latent space comes at a cost — it limits the capacity of GGAN to
capture other variational factors of the data that are unrelated to the provided
supervision signal. While GGAN's design was intentional and serves its primary
purpose effectively, it also means that it may miss out on the opportunity to be used in
a more generalised manner across a broader range of tasks.

Recognising this untapped potential, | introduced objective 2 as a means to
complement the primary aim of this research. Nevertheless, it posed a substantial
challenge to design a model based on GGAN architecture capable of simultaneously
achieving both guided and generalised representation learning. In the initial stages of
this research, the incorporation of both these objectives into the GGAN design proved
counterproductive, resulting in a model that was ineffective for either task. To address
this challenge, | transitioned to an autoencoder-based model and developed the
Guided Adversarial Autoencoder (GAAE). In the GAAE architecture, the encoder
learns to project high-dimensional data distributions into two distinct latent or
representation spaces. Within these latent spaces, one representation captures the
specific characteristics of the data guided by the provided signal, while the other
focuses on capturing the generalised characteristics of the data distribution.
Subsequently, the decoder can effectively reconstruct the input data distribution from
these dual representations. An interesting aspect of the GAAE model is that by
manipulating the values within these two representation spaces, the decoder can be
repurposed as a high-fidelity audio generation model. This dual functionality highlights
the versatility and potential of GAAE in both representation learning and audio

generation tasks.
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| conducted extensive evaluations of GAAE using three distinct datasets, and
the results demonstrated its superior performance compared to existing models in the
literature. GAAE exhibited the capability to generate high-fidelity conditional audio
samples and simultaneously learn both guided and generalised representations, all
while utilising supervision from just 1% of labelled data. Furthermore, | highlighted an
additional practical application of GAAE, where it can serve as a valuable data
augmentation tool by leveraging the high-quality samples it generates. Beyond its
specific applications in audio processing, GAAE contributes to the foundational
autoencoder theory in the field of machine learning, opening up possibilities for its
utilisation in various domains where autoencoders are relevant. This versatility
underscores the broader significance and potential of GAAE beyond the scope of this

research.

6.3. Direct modelling of audio from raw waveform

My proposed models, GGAN and GAAE, undeniably contribute to the
advancement of representation learning and audio generation in the field of machine
learning. During the design of these models, | drew inspiration from the success of
using spectrograms as input features for deep learning models in the existing
literature. Both GGAN and GAAE are tailored to work with the spectrogram
representation of audio and do not directly interact with the raw audio waveform.
However, it's important to note that spectrogram-like features are designed based on
perceptual evidence and may not capture all the variational factors present in audio
data. This reliance on spectrograms could potentially limit the full potential of GGAN
and GAAE. To address this limitation, | established objective 3, aligning with the
secondary aim of this research.

To fulfill objective 3, | introduced two models: CosCovNN and VQCCM. These
models can classify audio directly from raw waveform data and have the potential to
replace the foundational CNN architecture of GGAN and GAAE. This would enable
these models to operate directly on raw audio data. | leave this possibility open for
future researchers to explore and extend this research.

I introduced CosCovNN, which incorporates learnable Cosine filters, resulting
in a remarkable 77% reduction in parameters. Through extensive comparisons on
Speech and Nonspeech datasets, | demonstrated CosCovNN's effectiveness in

directly classifying audio from raw waveforms. Furthermore, | provided clear guidelines
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for integrating cosine filters into existing CNN models, facilitating enhanced
performance and reduced complexity. These insights open up promising avenues for
future research, allowing for the exploration of diverse CNN architectures tailored for

audio modelling.

Additionally, 1 proposed VQCCM, an advanced iteration of CosCovNN,
featuring Vector Quantisation (VQ) and Memory layers. In evaluations across a range
of datasets, including Speech Command, Speech Emotion, Acoustic Scenes, Musical
Instrument, and Speaker ID, VQCCM consistently achieved state-of-the-art results
and outperformed benchmarks in specific instances. The integration of VQ and
memory layers substantially enhanced CosCovNN's performance. This innovation
offers potential for broader application and exploration within various CNN
architectures found in the existing literature. Future research endeavours can delve

into these promising outcomes further.

In summary, this research has advanced the field of unsupervised disentangled
representation learning and audio modelling. It has introduced innovative models,
shed light on new avenues for research, and contributed to the broader landscape of
machine learning. The potential and versatility of these models extend beyond the
scope of this study, offering exciting opportunities for future investigations and
applications.

6.4. Synthesis of Findings Across Models
This thesis introduced three primary models: Guided Generative Adversarial
Neural Network (GGAN), Guided Adversarial Autoencoder (GAAE), and Cosine
Convolutional Neural Network (CosCovNN)/Vector Quantised Cosine Convolutional
Neural Network with Memory (VQCCM), each offering unique strengths and

addressing specific aspects of representation learning and audio generation.

e Comparison on Similar Datasets: The performance of both GGAN and
GAAE was thoroughly evaluated on speech and non-speech datasets,
illustrating their capabilities in extracting disentangled representations from
unlabelled audio data. GGAN excels in scenarios requiring task-specific
representations, showing high accuracy even with minimal labelled data. Its
focus on guided learning enables the partitioning of the latent space in a

way that enhances model performance for specific tasks. However, GAAE
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expands on GGAN's capabilities by offering broader applicability through its
dual representation approach, which allows it to learn both task-specific and
general representations. This dual functionality makes GAAE versatile,
providing utility across a wider range of tasks, not limited to the conditions

of the supervised signal.

Strengths and Limitations: GGAN's primary strength lies in its efficient
use of limited labelled data to guide the learning process, making it
particularly useful in cases where acquiring labelled data is challenging.
However, its reliance on guided learning within a specific latent space
restricts its ability to generalise to unrelated tasks. GAAE addresses this
limitation by learning generalised representations alongside task-specific
ones, but this comes at the cost of increased computational demands due
to the complexity of managing dual latent spaces. On the other hand,
CosCovNN and VQCCM are tailored for direct audio classification from raw
waveforms, bypassing the need for manually crafted features like
spectrograms. This direct approach not only reduces dependency on
feature engineering but also significantly enhances parameter efficiency.
VQCCM, in particular, demonstrates superior performance across diverse
audio datasets, setting new benchmarks in audio classification accuracy

and robustness.

Insights: Collectively, these findings highlight the complementary strengths
of the proposed models. GGAN and GAAE excel in disentangled
representation learning, making them ideal for tasks that benefit from
understanding and utilising latent structure in the data. Meanwhile, the
introduction of CosCovNN and VQCCM provides a critical advancement by
directly processing raw waveforms, thus reducing the dependency on
spectrograms and other hand-crafted features. This integration of direct
waveform processing into the broader framework of representation learning
offers a more streamlined and potentially more powerful approach to
handling audio data. By bridging the gap between task-specific and general-
purpose representations, these models contribute to a more holistic
understanding and application of unsupervised learning techniques in audio

processing.
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6.5. Limitations of the Proposed Methods

Despite their strengths, the models presented in this thesis have limitations that

must be acknowledged:

GGAN: While GGAN is effective in learning task-specific representations
from unlabelled data with minimal labelled supervision, its ability to
generalise across unrelated tasks is constrained due to its focused
partitioning of the latent space based on the specific guidance provided.
This limitation restricts its applicability when the goal is to develop models

that can handle a broader range of tasks without retraining.

GAAE: GAAE addresses the generalisation challenge by introducing a dual
representation space for both guided and general features. However, this
dual approach necessitates more complex training procedures and
significantly increases computational requirements. The need for higher
computational resources could pose challenges for deploying GAAE in

large-scale or real-time applications, where efficiency is a critical factor.

CosCovNN and VQCCM: These models, designed for direct waveform
processing, are efficient in terms of parameter usage and demonstrate
strong performance in classification tasks. However, as relatively new
approaches, they still require further validation across a broader spectrum
of audio types and conditions, such as those involving environmental noise,
diverse audio sources, or varying recording qualities. Establishing their
robustness and versatility across different audio scenarios remains an

essential step in their development.

6.6.Future Research Directions

To further advance the field of disentangled representation learning and audio

processing, future research could explore:

Hybrid Approaches: One promising avenue involves integrating GGAN
and GAAE with more advanced generative models like diffusion models or
leveraging transformer-based architectures. These hybrids could enhance
the models' capacity to learn high-quality representations with reduced
reliance on labelled data, potentially improving both the quality and flexibility

of the representations learned.
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Scalability Improvements: Optimising the architecture of GAAE to reduce
its computational footprint could make it more accessible for real-world
applications. This might involve exploring more efficient training algorithms,
incorporating techniques such as model pruning or quantisation, or even
developing lightweight variants that retain the core strengths of the model.
Application to Broader Audio Types: Expanding the evaluation of
CosCovNN and VQCCM to include a wider variety of audio types, including
challenging conditions like environmental noise or overlapping sound
sources, could help validate their robustness. Understanding how these
models perform under less controlled conditions would provide valuable
insights into their potential real-world applications and guide further
refinements.

Cross-Modal Representation Learning: Extending these models to
cross-modal tasks, such as linking audio to text or image data,
could open new interdisciplinary research opportunities. This
direction would involve adapting the models to handle and
integrate multi-modal data, potentially leading to new applications
in areas like multimedia analysis, content creation, and human-

computer interaction.
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