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Abstract. Mapping of peanut crops is essential in supporting peanut production, yield predic-
tion, and commodity forecasting. While ground-based surveys can be used over small areas, the
development of remote-sensing technologies could provide rapid and inexpensive crop area esti-
mates with high accuracy over large regions. Some of these recent earth observation satellite
systems, such as the Project for On-Board Autonomy Vegetation (PROBA-V), have the advan-
tage of increased spatial and temporal resolution. With a study area located in the South Burnett
region, Queensland, Australia, the primary aim of this study was to assess the ability of time-
series PROBA-V 100-m normalized difference vegetation index (NDVI) for peanut crop
mapping. Two datasets, i.e., PROBA-V NDVI time-series imagery and the corresponding phe-
nological parameters generated from TIMESAT data analysis technique, were classified using
maximum likelihood classification, spectral angle mapper, and minimum distance classification
algorithms. The results show that among all methods used, the application of MLC in PROBA-V
NDVI time series produced very good overall accuracy, i.e., 92.75%, with producer and user
accuracy of each class ≥78.79%. For all algorithms tested, the mapping of peanut cropping areas
produced satisfactory classification results, i.e., 75.95% to 100%. Our study confirmed that the
use of finer resolution 100 m of PROBA-V imagery (i.e., relative to MODIS 250-m data) has
contributed to the success of mapping peanut and other crops in the study area. © 2018 Society of
Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.12.036005]
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1 Introduction

Peanut or groundnut (Arachis hypogea L.) is one of the most important legume crops, as it is an
important source of protein and oil,1 and it has 26% protein higher than eggs, dairy products,
meat, and fish.2 Generally, peanut-growing countries use their production output to meet their
domestic market.2 In Australia, peanut production is about 40,000 tons per year, which is <0.2%
of the world’s peanut production. The crop area planted in Australia is about 15,000 ha, and
more than 90% is located in Queensland.3 In Queensland, the peanut industry contributed to
gross value production of 15.2 million dollars in 2014/2015.4 In general, Australian peanut
production can meet domestic demand, except when a severe drought occurs. However, efforts
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have been made to develop and supply an export market.2 Therefore, there is a need to increase
the industry’s capabilities in producing peanut using more effective and efficient methods to
meet production demands and profitability.

Crop area estimation and crop yield estimation are the two main components of crop
production.5,6 Compared to crop area estimation, more studies have been conducted on crop
yield estimation.6,7 For years, crop area estimation has been collected by censuses, which is
accurate but expensive and time consuming, or by samples, which is cheap but not always
accurate.6 Remote sensing offers great help in crop area estimation by providing opportunities
to increase the accuracy of the estimate and to reduce associated time and cost of mapping.
It has distinct benefits pertaining to rapid objective assessment and longitudinal assessment,
i.e., capturing changes over time at the same area.8 Utilizing remote sensing may allow crop area
estimates to be conducted several months before harvest, including in the early season. This will
be beneficial in making decisions such as supply, staff requirements, and import needs.9

However, studies on peanut crop mapping using satellite imagery are limited.
Schultz et al.10 studied crop mapping of several crops, including peanut, in a subtropical

region, Brazil, using Landsat imagery and employing a combination of segmentation and ran-
dom forest (RF) classification algorithm. It was found that using Landsat imagery is not enough
to separate peanut and cassava due to similarity in spectral behavior and the high variabilities
within the class. In Australia, Robson et al.9 employed a single-date high-resolution QuickBird
imagery in one area of the South Burnett to identify spatial variability in peanut fields. This study
also mapped peanut crops within the area with accurate results. However, this study was con-
ducted in small areas (64 km2) and used a high spatial resolution satellite imagery. In Senegal, a
study on peanut crop yield estimation has been done in a peanut-growing region (peanut basin),11

but peanut crop area mapping has not been conducted.
Crop mapping using satellite imagery can be done using multispectral, radar, and hyperspec-

tral sensors. Having many narrow spectral bands, hyperspectral satellite data provide the oppor-
tunity to collect more detailed spectral information than the few broad spectral bands of
multispectral sensors.12 Therefore, hyperspectral data can adequately discriminate crops’ proper-
ties and can perform well in crop mapping.13 Nevertheless, fewer hyperspectral sensors are
mounted in satellites (i.e., Hyperion EO-1),14 which results in limited data availability. In regard
to multispectral sensors, it is often difficult to classify different crop types using a single image,15

since crops frequently demonstrate very similar spectral behavior.16 However, different physio-
logical growth phases of each crop exhibit different spectral behavior; thus, the use of multi-
spectral time-series imagery provides an opportunity to capture these temporal differences.16

This intra-annual multispectral time-series imagery can produce average phenology of individual
land cover types,17 which is an indirect estimation of physiological crop growth phases.18 As a
result, crops with similar spectral behavior can be classified easily using this time-series data.16

In a study of crop classification in Kansas, the VI time-series profile of a crop was found to be
similar with its phenology attributes, such as timing of green-up, peak greenness, and senescence.19

Several mathematical functions have been used to smooth time-series vegetation indices from
various satellite sensors.20,21 These include principal component analysis,22 harmonic analysis,23

harmonic analysis of time series,24 Savitzky–Golay filter,25 double logistic function fitting,26 and
asymmetric Gaussian function fitting.27 Some tools have been developed to analyze time-series
data, such as TIMESAT, TIMESTATS, TiSeG, BFAST, and STARFM.28 TIMESAT is a free
software program that uses a curve fitting approach to smooth noisy time-series imagery to gen-
erate phenological parameters and map them.27,29,30 Using phenological parameters of MODIS
enhanced vegetation index imagery produced from the TIMESAT program, Yang et al.31 suc-
cessfully mapped paddy rice in China. However, the use of a TIMESAT program in mapping
land use and land cover in a semihumid tropical region of Zimbabwe using time-series MODIS
has failed to distinguish rainfed agriculture from grassland.32

Mapping agricultural land use requires the consideration of spatial resolution, temporal
resolution, coverage, availability/quality (such as cloud cover), imagery costs, and classification
methods.33 The definition of spatial resolution of satellite imagery may be divided into
four:34 (1) coarse- or low-resolution imagery has a ground sampling distance (GSD) ≥30 m;
(2) medium resolution is defined as resolution with a GSD between 2 and 30 m; (3) high-
resolution imagery has a GSD in the range of 0.5 to 2.0 m; and (4) very high resolution
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has a GSD <0.5 m. Fundamentally, the trade-off in mapping crops is focused on temporal versus
spatial resolutions.35 Higher-resolution (high spatial) data provide an opportunity to capture
in-depth local information,33,36 which is appropriate to map cropping areas on a small scale.37

The use of decametric sensors, such as Landsat (30 m), ASTER (15 m), Sentinel-2 (10 m), and
Resourcesat-2 (5.8 m), will be useful in mapping crop areas with paddocks of a few hectares.10

However, most of these sensors usually have insufficient temporal resolution to generate
crop phenology stages,38 e.g., Landsat and ASTER have a temporal resolution of 16 days.
Another disadvantage of using these sensors is the possibility of having noise, due to cloud
cover.39 Coarse-resolution (low spatial) sensors, e.g., MODIS (250 m), AVHRR (1 km), and
SPOT-Vegetation (1 km), have become the main sources of data for mapping large areas,
for example in the United States.40 These sensors typically have wider swaths, which lead
to high temporal resolution data;35 for example, MODIS and AVHRR have a resolution of
1 to 2 days and <1 day, respectively. Nevertheless, in mapping small paddock sizes, inaccurate
estimates may result from these sensors due to their coarse spatial resolution.35 To compensate
for the trade-off, some studies composite imagery data using different sensors; for example, Liu
et al.41 incorporated high and low spatial resolution image in their crop mapping study.
Nevertheless, with their frequent temporal resolution, coarse-resolution sensors are more feasible
to get cloud-free imagery and are suitable for gaining time-series data,33,36 which can facilitate
the derivation of phenology phases.38

Many agricultural fields are characterized by small farm size (i.e., <1 ha). Thus, to accurately
map crops, a medium-to-high spatial resolution imagery, with a pixel size of 5 to 100 m, is
required.41 A recent earth observation satellite, namely Project for On-Board Autonomy
Vegetation (PROBA-V), could satisfy this requirement, since it has a spatial resolution of
100 m. Moreover, derived normalized difference vegetation index (NDVI) products are also
available from PROBA-V,42 which could be very useful in mapping crops. This satellite has
finer spatial resolution than the commonly used coarse-resolution satellite data, i.e., MODIS,
which has 250-m resolution, although both satellites have similar temporal resolution, i.e.,
daily (PROBA-V) and 1 to 2 days (MODIS). The increasing resolution of PROBA-V can poten-
tially generate better accuracy, since the number of spectral mixtures can be eliminated.43 For
instance, Zhang et al.39 compared the use of MODIS and PROBA-V to map crops in complex
cropping systems in Hongxing, China, and revealed that PROBA-V generated better accuracy
(73.29%) compared to MODIS (46.81%). In addition, crop mapping studies using PROBA-V
imagery are limited since this remote-sensing satellite was launched in recent years.44 For in-
stance, Lambert et al.45 have recently mapped cropland in Sahelian and Sudanian regions using
100-m PROBA-V time series. Moreover, the successful study of crop area mapping with
PROBA-V in Belgium, Russia, Ukraine, and Brazil provides the possibility of using this
remote-sensing system to map crop areas around different regions in the world.44 Thus, the
use of PROBA-V time-series satellite imagery in mapping peanut crops over regional areas
in Australia has been examined in this study.

The primary aim of this study was to assess the effectiveness of time-series PROBA-V 100-m
NDVI imagery for peanut crop mapping in the South Burnett region of Queensland, Australia.
The following are the specific objectives: (1) to map peanut crops using PROBA-V 100-m NDVI
images and test the value of crop phenology as an alternative to traditional approach and (2) to
determine the most appropriate classification method(s) in mapping peanut crops in the study
area. This study attempted to contribute knowledge on the application of a relatively finer
(100 m) remote-sensing data product, including the assessment of multitemporal data analysis
techniques, to peanut crop mapping and monitoring. This is particularly true for mapping crops
during the summer season where cloud cover is a major issue.

2 Materials and Methods

2.1 Study Area

The region selected for this study is located in the South Burnett region, Queensland, Australia,
covering an area of 8381.70 km2 (Fig. 1).46 The climate in the study site is temperate,47 with the
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average mean maximum temperature between 19.4°C in July and 30.8°C in January, while the
average minimum temperature is between 3.4°C in July and 18.0°C in January.48 It falls within
the summer rainfall zones,47 with mean annual rainfall of 662.6 mm, while the wettest month
(108.1 mm) is recorded in December.48 These temperature and rainfall ranges are suited for
peanut crops, i.e., 25°C to 30°C during vegetative growth and 22°C to 24°C during generative
growth, with 500 to 600 mm well distributed rainfall.2 The region has a soil dominated by red
ferrosols, which is suitable for growing peanut crops.49 Summer and winter crops, such as pea-
nuts, navy bean, wheat, and sorghum, are often planted in this region.50 These summer crops are
typically sowed in September to early January and usually harvested in February to May.51

2.2 Image Data Acquisition and Preprocessing

PROBA-Voffers an intermediary spatial resolution between medium spatial resolution imagery,
such as Landsat and HJ-1 A/B (30-m resolution), and low spatial resolution datasets, such as
MODIS, SPOT-Vegetation, and AVHRR (250-m to 1-km resolution).39 It was specifically
designed as a “gap-filler mission” between SPOT-Vegetation, which was terminated in 2014,
and ESA Sentinel-3 satellite, to ensure the continuation of vegetation time-series data.52,53

The end-user products include daily synthesis (S1) collections, which are available for

Fig. 1 Study area in the South Burnett region, Queensland.

Table 1 Summary of imagery used in this study.

Imagery Characteristics

Product End-user product (level 3) of S1TOC NDVI

Spatial resolution 100 m

Swath 517 km

Global coverage 5 days

Date/period June 3, 2015, to June 28, 2016

Number of imagery 24 cloud-free imagery

Tile X33Y10

File format HDF5
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100-m, 300-m, and 1-km resolution, and 5-day synthesis (S5) with 100-m resolution top-of-
atmosphere reflectance. In addition, top-of-canopy (TOC) (atmospherically corrected) products
are also available, including a 10-day synthesis (S10) with 300-m and 1-km resolution. NDVI
collections are available for S1 and S5 products with 100-m resolution, as well as S10 datasets
with 300-m and 1-km resolution TOC.

In this study, PROBA-V S1TOC (daily synthesis atmospherically corrected) 100-m NDVI
products were selected in mapping peanut crops (Table 1). Since the growing season of peanut
crops in this region is between October and June, images were collected during the period of
June 2015 to June 2016 to adequately cover the entire season. A total of 163 images covering the
study area from X33Y10 PROBA-V tile were available. However, only cloud-free images were
selected and processed for this study, which resulted in 24 images. A coverage of one-year time-
series data was used, since multiple years’ data can generate inaccurate phenological features54

and may cause confusion due to land cover changes.18 Afterward, the 24 images were subset into
a study area and reprojected into a Universal Transverse Mercator projection. Last, the original
NDVI values for each image were rescaled (0 to 255) using a linear function to enable software
compatibility, better data handling, and data standardization.

2.3 Field Data Gathering

In March 2016, a field survey of various locations throughout the study area was conducted to
collect training areas or region of interest (ROI) for classification and accuracy assessment.
Using a Global Positioning System, the reference data collection was conducted by capturing
crops or land feature types (i.e., peanut, corn, sorghum, mung bean, woody vegetation, pasture,
and water) on the main, secondary, and farm roads. It was done by randomly selecting large
paddocks, water bodies, pasture lands, and forest vegetation areas to avoid mixed pixels,
and ensuring geographical representativeness of the reference data. In addition, high-resolution
images from Landsat 8 satellite captured on March 25, 2016, and from Google Earth captured in
March 2015 were also used to determine ROIs using visual interpretation techniques.55 Typical
appearances of crop classes examined in this study taken from TIMESAT output of crop
phenology, a Landsat image, and field work photos were shown in Fig. 2. Based on study area
observation during the field work, there were eight8 classes selected for this study with a total
number of reference data of 1690 pixels (Table 2). The original pixel size of 100 × 100 m was
retained for the training samples.

Fig. 2 Example images of peanut, corn, mung bean, and sorghum classes were taken from crop
phenology layers of TIMESAT program, a Landsat image, and field work photos. The yellow lines
indicate the boundary of paddocks for each class. The Landsat image, particularly corn, may not
represent the actual cover due to the date of data captured (i.e., during harvesting time).
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2.4 Extracting Time-Series Profiles and Separability Test

The time-series profiles of NDVI datasets were generated and displayed by extracting the aver-
age spectral value of selected sample pixels from each date/layer of 24 NDVI image data for
each class. Field data and high-resolution image from Google Earth were used as references in
determining pixel samples, where only “pure pixels” were selected. Pure pixels ensure that the
chosen pixels were indeed the pixels of the representative class. In this case, pixels in the middle
of paddock or class area were chosen. Spectral profiles were used to observe the reflectance
pattern and differences between classes, including the examination of temporal separability.
Especially for crop classes, such profiles were also used to examine the ability of PROBA-
V NDVI imagery in presenting crop phenology cycles and aging.56 In addition, a separability
test, namely Jeffries–Matusita (JM) distance, was performed to avoid or reduce potential mis-
classification due to using similar classes in classification.57 Beyer et al.16 have demonstrated
the effectiveness of JM as a pretesting method in finding the best layer stack combination for
spectral separation of different land cover classes. This test can be used to determine the
spectral distance between any pair of layers before conducting classification. If the distance is
insignificant, the layers can be eliminated from the classification to ensure the best result.58 JM
distance measures the separability between a pair of two classes based on the average distance
between their spectral means. Its output value ranges from 0 to 2, where a good separability is
indicated by a larger value.19 The JM distance between a pair of probability distributions is
calculated as

EQ-TARGET;temp:intralink-;e001;116;255Jij ¼
Z
x

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðx∕ωiÞ

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pðx∕ωjÞ

q �
2

dx: (1)

In this study, x represents the span of NDVI time-series values, while i and j represent crop
and/or other land cover classes under consideration. In a normally distributed assumption,
Eq. (1) becomes

EQ-TARGET;temp:intralink-;e002;116;176Jij ¼ 2ð1 − e−BÞ; (2)

where

EQ-TARGET;temp:intralink-;e003;116;133B ¼ 1∕8D2 þ 1∕2 ln
h����X iþ

X
j
���2�∕����X i

���1∕2���X j
���1∕2�i (3)

and

EQ-TARGET;temp:intralink-;e004;116;87D2 ¼ ðmi −mjÞt
h�X

iþ
X

j
�
∕2

i
−1ðmi −mjÞ: (4)

Table 2 Total number of reference data for each class.

Class Training data

Peanut 263

Mung bean 63

Corn 198

Sorghum 63

Pasture 368

Bare soil 161

Woody vegetation 412

Water 162

Total 1690
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2.5 Time-Series Image Analysis

PROBA-V NDVI imagery was used to map peanut crops, other crops, and additional land cover
classes by stacking the 24 image data and generating phenological parameters imagery using a
TIMESAT software program.27,29 The entire workflow to map these land cover features is shown
in Fig. 3. TIMESATanalyzes time-series data in relation to its seasonality, such as phenology and
temporal development.30 It is a user-friendly software with advanced algorithms.59 The program
generates 11 phenological parameters of a growing season, such as start and end seasons (Table 3
and Fig. 4).30

The TIMESAT program iteratively fits mathematical functions to smooth noisy time-series
data, in which the phenological parameters are extracted from each imagery pixel.60

Theoretically, as long as the growing season peaks in the middle of a year, the phenological
parameters could be generated from each year of time-series data. However, TIMESAT is
not based on this. In TIMESAT, for a time-series spanning n years, the number of years of
phenological parameters produced will be n − 1 center-most seasons.30 Therefore, for one-year
time-series data, i.e., the case for our study, Eklundh and Jönsson30 recommend the creation of
artificial time-series data for the dataset of first and third years, since the phenological parameters
will be calculated from the center of time-series data, i.e., our original year data. The artificial
time-series data were created by duplicating our one-year time-series data.

Three fitting methods to the upper envelope of time-series data are available in the TIMESAT
program, i.e., Savitzky–Golay filter, asymmetric Gaussian, and double logistic.29 In this study,
the asymmetric Gaussian (local polynomial function) was used, since this method is less sensi-
tive to time-series noise and provides better results for the season start and season end
parameters.29 The TIMESAT program comprises various processing aspects, such as choosing

Fig. 3 Flowchart of data and key processing tasks employed in the study.
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the best-fitting method and fine-tuning the program parameter settings. The parameter settings
for running the program in this study were summarized in Table 4.

2.6 Image Classification and Accuracy Assessment

Image classification techniques were performed for two datasets, i.e., stack of PROBA-V NDVI
imagery and stack of phenological parameters of PROBA-V NDVI imagery derived from the

Table 3 Eleven phenological parameters of the TIMESAT software program.

Phenological parameters Label Description

Start of the season a Similar to green-up period

End of the season b Harvesting period

Length of the season c Growing period

Base value d The average of minimum value of left and right of
the season

Middle season e The mean value of the times, where the left edge has
increased to the 80% level and the right edge has
decreased to the 80% level

Maximum value f Phenology peak where time-series hit its highest data
value

Seasonal amplitude g The difference between the maximum value and
the base level

Left derivative (i.e., rate of
increase at the beginning of
the season)

— The ratio of the difference between the left 20% and
80% levels of the fitted function

Right derivative (i.e., rate of
decrease at the end of the season)

— The absolute value of the ratio of the difference between
the right 20% and 80% levels of the fitted function

Small integral h The area between start and end of the season, and
between base value and maximum value

Large integral h + i The area under fitting curve, between start and
end of the season

Fig. 4 Some of the phenological parameters generated from the TIMESAT program: (a) beginning
of season, (b) end of season, (c) length of season, (d) base value, (e) time of middle of season,
(f) maximum value, (g) amplitude, (h) small integrated value, and (h + i) large integrated value. The
blue line represents the original time-series data, while the red line represents filtered data.30
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TIMESAT program. In this study, a supervised classification algorithm, i.e., maximum likeli-
hood classification (MLC), was used to map peanut crops, other crops, and additional land cover
classes using ENVI 5.0 software.61 In previous studies, the classification accuracy produced
from MLC was found to be comparable with machine learning algorithms, such as support vec-
tor machine and RF.16,62,63 To compare the results gained by MLC, this study also used other
supervised classification algorithms, namely minimum distance classification (Min) and spectral
angle mapper (SAM). In MLC, an inadequate training pixel number can produce poor classi-
fication results, while the Min method can handle limited pixel counts. The reference data of
1690 pixels were divided into two groups, i.e., training and test samples (Table 5). The accuracy
assessment of classification results was conducted using an error matrix to calculate the overall
accuracy, kappa coefficient, producer accuracy (PA), and user accuracy (UA).64

3 Results

3.1 Time-Series Profiles and Separability Test

Time-series profiles characterized the reflectance pattern of each classified class, which then can
be used to observe their differences. The mean value of PROBA-V NDVI time series during the

Table 4 TIMESAT parameter settings used in this study.

Parameters Value Description

Amplitude value 0 0 = include all pixels in the processing

Spike method 1 To detect and remove outliners and spike

1 = median filter method

Spike value 2 To determine the removing degree

Low value will remove more spike and outliners

Seasonal parameter 0.5 To determine the number of season

Value is between 0 and 1, where 0 = dual seasons and
1 = single season

Envelope iterations 3 3 = two additional fits

Function fits to approach the upper envelope of time-series
imagery

Adaptation strength 2 To indicate the strength of upper envelope adaptation.
Value is a number between 1 and 10.

Start of season method 1 To determine start/end of the season

1 = amplitude (start/end where the fitted curve reaches
a proportion of seasonal amplitude)

Season start 0.2 The proportion of left minimum value

Season stop 0.2 The proportion of right minimum value

Table 5 Reference data division into training and test samples.

Samples The number of pixels Percentage (%)

Training 1221 72.25

Test 469 27.75

Total 1690 100
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period of June 22, 2015, to June 9, 2016 (Fig. 5) for each feature class showed distinct profiles,
especially between crop and noncrop classes. Noncrop classes, i.e., woody vegetation, bare soil,
water, and pasture, showed more even profiles, since these objects tend to be static throughout
time. On the other hand, crop classes experienced a dynamic life-cycle growth, starting from
planting, peak season, and senescence, which was then reflected in their time-series profiles.
The crop profiles formed a curved shape, which started from a planting season, then increased
until reaching a maximum reflectance value (peak), and finally decreased to a period of sen-
escence where the crops were harvested. In addition, each crop grows in a specific period
depending on its characteristics, climate, and water availability. As a result, different crops
may have different or similar time-series profiles. In this study, mung bean and corn profiles
were almost similar, with the difference apparent in planting time (start of the season).
Mung bean was planted at the beginning of January 2016, whereas corn was planted in the
middle of December 2015. The profile of peanut crops was slightly different from those two
previously mentioned crops. Due to its longer growing period, i.e., 110 to 170 days (16 to
24 weeks),2 peanut planting and harvesting (end of the season) times were totally different
from other crops, i.e., November 2015 and May 2016, respectively. Among all crops, sorghum
presented a different profile, with significant difference in its peak NDVI value, which was the
lowest among others. The peak NDVI value for the other three crops was almost similar. The
harvesting times for mung bean, sorghum, and corn were relatively similar; however, the NDVI
value of mung bean was different from the other two crops. The figure also illustrated that during
crop-growing seasons, there was a limited number of NDVI imagery. It was also observed that
spectral responses outside of the crop growth period, i.e., June to October 2015, tend to be static,
indicating that crops were not planted during this time.

Good separability of values among all classes was found for both the 24-layer PROBA-V
NDVI imagery and the corresponding phenological parameters. The results of JM distance cal-
culations between class pairs in PROBA-V NDVI imagery were dominated by 2.00 (Table 6),
which is the highest measure of class separation. This is slightly better than JM distance in
phenological parameters, in which two class pairs resulted in 1.88 JM (sorghum and pasture)
and 1.92 JM (water and bare soil). The dominant JM distance for phenological parameters was
1.99 (Table 7).

Fig. 5 Mean NDVI profiles of different crops and land cover classes extracted from PROBA-V
NDVI time-series imagery.
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3.2 TIMESAT Features

Time-series profiles resulting from image data processing using the TIMESAT program also
showed distinctive profiles between crop and noncrop classes (Fig. 6). The profiles were selected
from a sample pixel of each class, which in general represent the group pixel values. Since
TIMESAT requires at least three years of time-series data (as previously indicated), one-year
time-series data of 24 imagery employed in this study were replicated into 72 imagery (the
axis in the profiles) as recommended by the software. However, the analysis in this study
only focused on the original time-series data, i.e., the center data, from 25 to 48.

In the time-series profiles from TIMESAT, noncrop classes showed generally constant NDVI
values. Bare soil and water had low NDVI values (around 35 and 50, respectively), while pasture
and woody vegetation had high NDVI value (around 135 and 210, respectively). Profiles of four
crop classes (i.e., peanut, corn, sorghum, and mung bean) represent its phenological phases,
which depict the start, peak, and end of seasons. Among all crop classes, peanut showed
the longest growing period, while the other three crops presented almost similar length of grow-
ing period.

In the second phase of analysis, the phenological parameters output of PROBA-V NDVI
imagery resulted from the TIMESAT program was used to map peanut crops. To achieve higher
classification accuracy, imagery layers with small discrimination information for class separabil-
ity were avoided by carrying out dataset dimensionality reduction.56 Thus, in this study, only
parameters that had most useful information to separate eight classified classes were selected.
Two out of 11 phenological parameters, i.e., “maximum value” and “season start,” failed in

Table 7 Separability of phenological parameters of PROBA-V NDVI.

Classes Peanut Corn Mung bean Sorghum Woody vegetation Pasture Water Bare soil

Peanut — 1.99 1.99 1.99 2.00 1.99 1.99 2.00

Corn 1.99 — 1.99 1.99 1.99 1.99 1.98 1.99

Mung bean 1.99 1.99 — 1.98 1.99 1.99 1.99 1.99

Sorghum 1.99 1.99 1.98 — 1.99 1.88 1.98 1.99

Woody vegetation 2.00 1.99 1.99 1.99 — 1.99 1.99 1.99

Pasture 1.99 1.99 1.99 1.88 1.99 — 1.99 2.00

Water 1.99 1.98 1.99 1.98 1.99 1.99 — 1.92

Bare soil 2.00 1.99 1.99 1.99 1.99 2.00 1.92 —

Table 6 Separability of time-series PROBA-V NDVI imagery.

Classes Peanut Corn Mung bean Sorghum Woody vegetation Pasture Water Bare soil

Peanut — 1.99 2.00 1.99 2.00 1.99 2.00 2.00

Corn 1.99 — 2.00 1.99 2.00 1.99 2.00 2.00

Mung bean 2.00 2.00 — 2.00 2.00 1.99 2.00 2.00

Sorghum 1.99 1.99 2.00 — 2.00 1.99 2.00 2.00

Woody vegetation 2.00 2.00 2.00 2.00 — 1.99 2.00 2.00

Pasture 1.99 1.99 1.99 1.99 1.99 — 2.00 2.00

Water 2.00 2.00 2.00 2.00 2.00 2.00 — 2.00

Bare soil 2.00 2.00 2.00 2.00 2.00 2.00 2.00 —
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Fig. 6 Time-series profiles from the TIMESAT program: blue line represents original time-
series data, while the red line represents fitted time-series data using asymmetric Gaussian
method.
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performing the separability test, while including the “small integral” parameter has reduced the
classification accuracy. Therefore, only eight phenological parameters were used in the classi-
fication process, namely amplitude, position middle, base value, large integral, left derivative,
right derivative, season end, and season length (Fig. 7).

3.3 Classification Result

The classification results of MLC, Min, and SAM for both PROBA-V NDVI imagery and its
phenological parameters derived from the TIMESAT program are shown in Fig. 8. In conducting
classifications, the process involved choosing the most suitable parameter for each classification
algorithm to achieve the best and the most appropriate classified imagery. Visual analysis
through comparison of different land cover classes, i.e., woody vegetation, water, bare soil,
and pasture, in classified imagery and Landsat 8 imagery showed similar distribution.
Classification results of the MLC algorithm for both NDVI and phenological parameters showed
better outcomes than Min and SAM classifier, even though parameter adjustment of these two
latter classifiers had been repeatedly tested several times.

Fig. 7 Phenological parameters used in mapping peanut crops and other crop/land cover classes.

Haerani, Apan, and Basnet: Mapping of peanut crops in Queensland, Australia. . .

Journal of Applied Remote Sensing 036005-13 Jul–Sep 2018 • Vol. 12(3)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Applied-Remote-Sensing on 7/24/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Fig. 8 Classified image outputs from MLC, Min, and SAM classifiers (the unclassified pixels
occurred due to the threshold values applied in MLC).
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3.4 Accuracy Assessment

The classification performance was analyzed based on error matrix and kappa coefficient (k)
value for the three classification methods, i.e., MLC, Min, and SAM, for both phenological
parameters and NDVI imagery. In general, NDVI imagery provided better classification perfor-
mance than phenological parameters for all classification methods (Table 8). Comparing the
three classification methods, MLC was the best classification method in this study, for both
phenological parameters and NDVI imagery. Looking in closer detail, the overall accuracy
of the MLC classifier for the NDVI imagery was the highest, i.e., 92.75%, compared to
79.53% of the MLC classifier for the phenological parameters. The lowest overall accuracy
was 62.26%, which resulted from the Min classifier of phenological parameters. The kappa coef-
ficients (k) for NDVI imagery classification varied between 0.73 and 0.9, which is considered to
be very good (0.61 < k ≤ 0.80) and excellent (k > 0.81).65 On the other hand, the k values for
phenological parameters classification were 0.55 to 0.76, which can be considered as moderate
(0.41 < k ≤ 0.60) and very good.65

Table 8 Overall accuracy and Kappa coefficient of classified images.

Classification

NDVI imagery Phenological parameters

Overall accuracy (%) Kappa coefficient Overall accuracy (%) Kappa coefficient

MLC 92.75 0.91 79.53 0.76

Min 85.29 0.82 62.26 0.55

SAM 77.83 0.73 66.74 0.60

Table 9 Classic contingency matrix of NDVI imagery dataset.

Reference test data (number of pixels)

Peanut Corn
Mung
bean Sorghum

Woody
vegetation Pasture Water

Bare
soil Total

UA
(%)

MLC of NDVI

Peanut 52 10 0 0 0 0 0 0 62 83.87

Corn 0 41 0 0 0 0 0 0 41 100

Mung bean 0 0 16 0 0 0 0 0 16 100

Sorghum 0 0 0 12 0 2 0 0 14 85.71

Woody vegetation 0 0 0 1 129 0 0 0 130 99.23

Pasture 0 0 0 0 0 95 0 0 95 100

Water 0 0 0 0 0 0 48 0 48 100

Bare soil 0 0 0 0 0 0 0 42 42 100

Unclassified 14 0 1 0 6 0 0 0 21 —

Total 66 51 17 13 135 97 48 42 469 —

PA (%) 78.79 80.39 94.12 92.31 95.56 97.94 100 100 — —

Overall accuracy = 92.75% and kappa coefficient = 0.91
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The PA and UA of the image classified using MLC of NDVI imagery presented the best
result, i.e., ≥78% (Table 9), which indicated a good classification performance. The MLC
of phenological parameters also gave a good result for the PA and UA, except for the mung
bean class which had PA of 52%, indicating that many pixels belonging to this class were

Table 9 (Continued).

Reference test data (number of pixels)

Peanut Corn
Mung
bean Sorghum

Woody
vegetation Pasture Water

Bare
soil Total

UA
(%)

SAM of NDVI

Peanut 51 0 0 0 0 0 0 0 51 100

Corn 1 51 3 5 0 0 0 0 60 85

Mung bean 0 0 8 0 0 0 0 0 8 100

Sorghum 0 0 2 5 0 8 0 0 15 33.33

Woody vegetation 0 0 1 0 128 19 0 30 178 71.91

Pasture 0 0 0 3 1 70 0 0 74 94.59

Water 4 0 1 0 0 0 41 0 46 89.13

Bare soil 0 0 0 0 6 0 0 11 17 64.71

Unclassified 10 0 2 0 0 0 7 1 20 —

Total 66 51 17 13 135 97 48 42 469 —

PA (%) 77.27 100 47.06 38.46 94.81 72.16 85.42 26.19 — —

Overall accuracy = 77.83% and kappa coefficient = 0.73

Min of NDVI

Peanut 39 1 0 2 0 0 0 0 42 92.86

Corn 13 50 0 1 0 0 0 0 64 78.13

Mung bean 0 0 1 0 0 0 0 0 1 100

Sorghum 0 0 0 3 0 0 0 0 3 100

Woody vegetation 0 0 3 0 121 0 0 0 124 97.58

Pasture 0 0 4 3 8 97 0 0 112 86.61

Water 0 0 0 0 0 0 48 1 49 97.96

Bare soil 0 0 0 0 0 0 0 41 41 100

Unclassified 14 0 9 4 6 0 0 0 33 —

Total 66 51 17 13 135 97 48 42 469 —

PA (%) 59.09 98.04 5.88 23.08 89.63 100 100 97.62 — —

Overall accuracy = 85.29% and kappa coefficient = 0.82
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omitted. Compared to phenological parameters, the SAM of NDVI imagery provided better
results, where the UA was slightly better than PA. On the other hand, the application of
Min in phenological parameters resulted in low PA and UA, which indicated the high inclusion
(omission error) and exclusion (commission error) of pixels to the targeted class. In relation to
the peanut class, all classification methods gave good results in PA and UA for both the NDVI
imagery and the phenological parameters, i.e., >75%, except for PA of the Min algorithm which
accounted for 59%. Interestingly, the SAM algorithm provided the best result in the peanut class
for UA of NDVI imagery and PA of phenological parameters, i.e., 100% and 90%, respectively.
However, the MLC algorithm still presented the best results for PA of NDVI imagery and UA of
phenological parameters, i.e., 79% and 88%, respectively.

4 Discussion

Our study demonstrates the ability of using imagery from a recent satellite mission, PROBA-V,
in mapping the peanut cropping area in the South Burnett region of Queensland, Australia.
It successfully differentiated and mapped eight classes of crops and other land cover features
using time-series PROBA-V NDVI 100-m imagery and its phenological parameters. The good
performance of PROBA-V data could be attributed to its improvement in spatial resolution com-
pared to traditional time-series data, such as the commonly used MODIS 250-m data. The choice
of 100-m spatial resolution contributed to desirable outcomes of this study, as Roumenina et al.66

found that PROBA-V 100 m achieved better results than PROBA-V 300 m in mapping crops in
Bulgaria. In addition, the compact design of PROBA-V platform and payload, which is equipped
with vegetation sensors, enables the application of high-performance operation to achieve its
specific objective in providing time-series vegetation data.52

The PROBA-V NDVI mean time-series profiles in this study indicated that this satellite
sensor has successfully captured temporal separability between eight crops and other land
cover classes examined. In addition, it showed the ability of PROBA-V NDVI time series
in presenting phenological stages of crop classes included in this study. This time-series
imagery was also analyzed further using the TIMESAT program which smoothed the time-
series data and generated phenological parameter maps. It was found that the phenology pro-
files of eight classes from the TIMESAT program closely resemble the mean NDVI time-series
profiles.

Comparing two datasets, i.e., PROBA-V NDVI imagery and its phenological parameters
derived from the TIMESAT program, the former produced better overall accuracy in all clas-
sification methods. However, not all phenological parameters were included in the classifica-
tion efforts. Phenological parameters of “maximum value” and “season start” failed in the
separability test, while including the “small integral” parameter in the classification has
decreased the classification accuracy. It was suggested that the limited number of NDVI
imagery during the crop growth period, especially in the peak of the season, has contributed
to the exclusion of these three parameters. Moreover, the better outcomes from the separability
test of JM distance in NDVI imagery (dominated by 2.00) than the phenological parameters
(dominated by 1.99) have predicted the better accuracy results of NDVI imagery. Additionally,
in a study of crop mapping in Bulgaria, it was sufficient to utilize only three to four PROBA-V
imageries distributed along the crop growth period, to acquire good classification accuracy.66

Since this study used 24 stacked imagery of the PROBA-V NDVI dataset, it would be expected
that this number was more than enough to achieve good classification results. It should be
noted that the ROI development for classification and accuracy assessment was performed
in the phenological parameters stack. This study recognizes that the distinct spectral
differences between classes in the phenological parameters stack, compared to NDVI imagery,
were useful in guiding and locating ROIs. Different results could be generated from this study
if the phenological parameters stack was not used in determining ROI. In this case, it would be
expected that if NDVI imagery was used to locate ROI, different ROI datasets would
take place.

The MLC algorithm performed better than the SAM and the Min, with an accuracy of
92.75%. This result agrees with Beyer et al.16 in evaluating eight classification algorithms

Haerani, Apan, and Basnet: Mapping of peanut crops in Queensland, Australia. . .

Journal of Applied Remote Sensing 036005-17 Jul–Sep 2018 • Vol. 12(3)

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Applied-Remote-Sensing on 7/24/2018
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



(including MLC, SAM, and Min) to map agricultural crops in Israel, which resulted in the supe-
rior performance of MLC compared to most of the classification algorithms. A comparison of
the three classification algorithms (i.e., MLC, SAM, and Min) was also carried out by Fontanelli
et al.67 in mapping crops in Italy, which found MLC to be the best algorithm. Moreover, the
classification accuracy achieved in this work was comparable to the accuracy results of previous
crop mapping studies using PROBA-V imagery. Lambert et al.45 mapped crops in the Sahelian
and Sudan region using PROBA-V 100 m and attained an accuracy of 84%. High accuracy
between 65% and 86% was also achieved in using this satellite data to map crops globally
in Belgium, Russia, Ukraine, and Brazil.44 Furthermore, PROBA-V data have been successfully
used to map crops with similar phenology profiles (i.e., corn and soybean) in China with accu-
racy of 73.29%.39 It is important to realize that even though the number of classes used in our
study was relatively large, i.e., eight classes in total, the application of MLC in NDVI imagery
produced very good overall accuracy with PA and UA of each class ≥78%. Interestingly, this
result was achieved without masking out noncropping areas (e.g., using land use maps), which
could further improve the accuracy, as achieved by Potgieter et al.24 Conversely, masking out
land use cover could also generate some problems related to the currency of data and accuracy of
land use map employed.

Peanutcropmaps resulting fromthis studywillbevaluable insupportingpeanutproduction,yield
prediction, and commodity forecasting, especially as focused work on peanut crop mapping is
limited. Combining with yield per unit area, an estimation of peanut production can be calculated,
which then can be used to support decisions for planning andmanagement purposes.Moreover, this
studyutilizedremote-sensing technologythatcouldovercomesignificant shortcomingsof traditional
survey methods. The use of multiband data, such as vegetation indices, and time-series imagery as
employed in this study has offered great benefits in peanut crop mapping.

5 Conclusion

The use of imagery from a recently launched satellite, PROBA-V, was successful in mapping
peanut crops in the South Burnett region in Queensland, Australia, using two datasets, i.e.,
PROBA-V 100-m NDVI imagery and its derived phenological parameters. In general, the
overall accuracy of NDVI imagery outweighs phenological parameters, but specifically
for peanut crops, both datasets have performed very well. The best classification method
for both datasets involving all classes was the MLC approach, i.e., 92.75% for NDVI
imagery and 79.53% for phenological parameters. However, in classifying peanut crops,
all classification methods performed well for PA and UA, with the best results provided
by MLC and SAM classifiers. It is recommended that sufficient number of imagery during
the crop growth period is available to enable modeling of phenological parameters.
Furthermore, the use of machine learning algorithms has not been considered in this
study but can be explored in further work. To the best of our knowledge, this is the first
study that used PROBA-V imagery in crop mapping in Australia. Our study confirmed that
the PROBA-V satellite has great potential in crop area mapping and can fulfill its mission to
support vegetation-user communities. The findings in this study reinforce the necessity to
continue the PROBA-V mission, which was originally designed as a “gap-filler mission,”
by launching its second-generation satellite.
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