
 

 

FORECASTING SEASONAL RAINFALL WITH COPULA MODELLING 

APPROACH FOR AGRICULTURAL STATIONS IN PAPUA NEW 

GUINEA 

 

 

A Thesis Submitted by 

Kingsten Okka 

BSc 

 

 

 

 

For the award of  

Master of Science Research (MSCR) 

2019  



i 
 

ABSTRACT 

Developing innovative forecasting tools is important to address issues related to climate 

change, agriculture, and economy of small Pacific Island nations. Papua New Guinea, PNG is 

a developing nation that is vulnerable to the imminent threats of climate change and influences 

agricultural sector that supports a majority of its citizens. Accurate modeling and forecasting 

methods for both monthly and seasonal rainfall (that influences agricultural and other human 

activities) by employing large-scale climate mode indices (linked to rainfall events) are 

significant predictive tools for developing climate resilience and productivity in agricultural 

activities.  

Copula statistical models, developed in this Master’s study, are considered as viable alternative 

tools to fulfill this objective. This Masters by Research Thesis utilizes the D-vine copula-based 

quantile regression methods that are developed to create a model between statistically 

significant lagged relationships and joint influences of large-scale climate mode indices such 

as the El-Niño Southern Oscillation (ENSO) and Indian Ocean Dipole- on seasonal rainfall 

data across four major agricultural-based weather stations.  Copula techniques allow the 

respective model to fully capture the dependence structure between input(s) and the target 

variable regardless of the marginal distribution of each variable. The D-vine copula-based 

quantile approach, used in this study, through Akaike information criterion (AIC)-corrected 

conditional log-likelihood (cllAIC) can also enable researchers to identify the most influent 

predictor variables for seasonal rainfall forecasting.  

To forecast the monthly and the respective seasonal rainfall for PNG, an agricultural-reliant 

nation, the statistically significant lagged correlations between ENSO indicators (e.g., SOI, 

Nino3.0, etc.) and the IOD indicator (i.e., DMI) with a three-monthly total rainfall were 

established for up to 7 months ahead time. For example, in a 'lead-0' timescale case study for 

seasonal rainfall forecasting, this study has utilized the January to March average SOI (as a 

model input) relative to the April to June total rainfall (as the target variable) deduced by the 

Kendall rank correlation coefficients established between the input and the target variable.  

In terms of the results of this study, a correlation analysis performed between the most optimal 

lead times considering climate mode indices and the three-monthly total rainfall were found to 

be consistent with the most influent predictor variables identified from the D-vine copula-based 

quantile model (as a basis to generate bivariate models that captured ENSO impacts on 

rainfall). To further explore any improvements in rainfall forecast model accuracy, particularly, 
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the extreme rainfall events, the study has also considered the impact of Indian Ocean Dipole 

(IOD) index by embedding the DMI into the bivariate model to finally construct a trivariate 

forecast models that accounts for compound effects of ENSO and IOD on extreme rainfall 

events.  

To ascertain the versatility of the proposed copula-based forecast models as a major 

contribution of this study, a number of statistical score metrics based on the Willmott's Index 

(d), Nash–Sutcliffe Efficiency (ENS), Legates-McCabe’s Index (L), root-mean-square-error 

(RMSE), and mean absolute error (MAE), including the Relative Root Mean Square Error 

(RRMSE) and Mean Absolute Percentage Error (MAPE) are computed from forecasted and 

observed rainfall data in the testing phase. It was evident that the station Aiyura attained the 

best result for both the bivariate and the trivariate model, exhibiting r = 0.63, RMSE = 105.99, 

MAE = 89.75, ENS = 0.63, d = 0.38, L=0.20 with, the RRMSE =15.39% for the bivariate study, 

whereas the trivariate model evaluations generated a score metric of 0.68, 0.42, 0.28 and 

14.84%, respectively.  

In summary, the copula statistical modelling approaches contributed by this study, can be 

enabling mechanisms for climate change resilience, measuring and implementing risk 

management strategies. These predictive tools can have significant implications for 

applications in many socioeconomic sectors such as water resources management, better 

farming practices for crop health, and other agricultural management not only in the present 

study region but also in the other agricultural-reliant nations where rainfall prediction is often 

challenging task. 
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CHAPTER 1:  INTRODUCTION 

1.1 Background 

The synoptic (large-scale) climate drivers, such as El Niño–Southern Oscillation (ENSO) and 

Indian Ocean Dipole (IOD) events, are important phenomena that have a profound impact on 

precipitation around the world (McBride & Nicholls 1983; Walsh et al. 2001; Smith, I. et al. 

2013; Khedun et al. 2014; Ubilava & Abdolrahimi 2019) as well as other documented natural 

and social disasters (Schmidt et al. 2001). Papua New Guinea, the present study region, is no 

exception.  

It is well known that ENSO, as defined by Dogar et al. (2019), is an inter-annual climate pattern 

linked with the ocean-atmospheric system with a random, periodic fluctuation in the wind, 

pressure, and sea surface temperatures (SST) over the tropical Pacific Ocean. ENSO is linked 

with the warmer than usual (termed El Niño) or, the colder than usual (termed La Niña) water 

in the central and eastern Pacific Ocean and is often associated with the lower (higher) than 

normal rainfalls respectively (Cobon et al. 2016). The two most extreme El Nino events 

recorded in recent times is the 1997-98 and 2015-16 event (Paek et al. 2017). 

The Southern Oscillation Index (SOI) is the most commonly used indicator of the ENSO event 

(Ropelewski & Jones 1987), which gives an indication of the intensity El (La) events in the 

Pacific Ocean and, is calculated using the atmospheric pressure difference between Darwin , 

Australia (12.4ºS, 130.9ºE) and Tahiti (17.5ºS, 149.6ºW) (Wolter & Timlin 1998; Khedun et 

al. 2014). The opportunity to generate rainfall predictions based on the behavior of ENSO 

events is an exhilarating problem of investigation. 

In addition to the SOI, four other naturally occurring large-scale phenomena  including the sea 

surface temperatures (SST) fluctuations, has been recognized as an essential component of the 

ENSO behavior, and as such, SSTs  have  been used in the tropical Pacific to study rainfall 

(Rasmusson & Carpenter 1982; Nalley et al. 2019). The Niño1+2 covers the South American 

coastal SST while Niño3 and Niño4 are located in the eastern and central equatorial Pacific 

and covers a broader region with, Niño3.4 (most recent) overlapping and located between 

Niño3 and Niño4 (Barros et al. 1997) have been linked to seasonal rainfall anomalies in 

different regions globally (Drosdowsky & Chambers 2001; Walsh et al. 2001; Smith, I. et al. 

2013; Zhao et al. 2019).   

The occurrence of different types ENSO teleconnections has led to a large number of studies 

separating these into two types known as canonical ENSO and ENSO Modoki (Ashok et al. 
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2007; Yuan & Yang 2012; Dogar et al. 2019). These ENSO Modoki events have had a 

profound influence on the temperature and precipitation globally as well (Ashok et al. 2007; 

Feng et al. 2011; Wang & Wang 2013). The large-scale SST which have above-normal SST 

characterizes the El Niño Modoki in the central equatorial Pacific and below normal SST in 

both east and west and is quantified by an El Niño Modoki Index (EMI) (Ashok et al. 2007) 

which capture the zonal SST gradients in the Pacific (eastern and western). These indicate that 

a model to forecast rainfall must include the behavior of SST including the ENSO Modoki 

index, together with SOI discussed earlier. 

The long-lived El Niño like pattern in the Pacific is described as the Pacific Decadal Oscillation 

and is one of the dominant modes of climate variability in the North Pacific Ocean (Zhang et 

al. 1997; Vishnu et al. 2018). The positive (negative) phases during the El Niño (La Niño) 

phases of PDO modulates climate unpredictability globally and is linked to precipitation 

patterns especially when both are in the same phase (Khedun et al. 2014). The warm and cold 

phases of PDO can last up to 30 years and has an influence on precipitation like ENSO 

(Goodrich 2007) which have been studied in the USA (Goodrich 2007; Khedun et al. 2014) 

and China (Chan & Zhou 2005; Lyu et al. 2019) to name a few. 

IOD also influences rainfall and affects climates of countries like Australia, Indonesia, and 

other countries which surround the Indian Ocean (Ashok, Karumuri et al. 2003; Nur’utami & 

Hidayat 2016).  IOD is defined as the difference in low sea surface temperatures of Sumatra 

and high sea surface temperature in the western Indian Ocean. IOD accompanying wind and 

precipitation anomalies play a vital role in Australia’s climate, mainly its agriculture as it 

happens together with the winter crop-growing season (Ashok, Karumuri et al. 2003; Yuan, 

Chaoxia & Yamagata, Toshio 2015).   

This Master of Science Research thesis is focussed on monthly rainfall forecasting, one of the 

most important climatic factors that influence the success (or failures) of the agricultural 

activities of any nation.  

Rainfall is very vital in certain critical stages of agricultural crop productions, and a shortfall 

of rain can have a profound impact on crop production (Lobell & Burke 2008).  It is also a vital 

source of drinking water for countries who have annual rainfalls of less than 500 mm (Howard 

& Bartram 2010; Danladi et al. 2018). Extreme climate events such as the El Niño Southern 

Oscillation (ENSO) are projected to cause widespread drought and extensive flooding in 

different areas (Wara et al. 2005; Marengo 2015) hindering accessibility to cleaner water 

(Connor 2015) as well as causing havoc to infrastructures (Ball et al. 2016) in developing 
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countries. Rainfall forecasting is very useful for agricultural reliant countries as it will 

significantly assist in making informed and strategic planning of resources (Htike & Khalifa 

2010) especially in the context of climate change (Black & Thompson 1978; Drake 1994; 

Rosenzweig et al. 2001).  

The most stable and dominant climate driver that influences the rainfall of PNG is the El Niño 

Southern Oscillation (ENSO) with the Inter-Tropical Convergence Zone (ITCZ) and Madden 

Julian Oscillation (MJO)(Madden & Julian 1971) also exerting some influence in PNG climate 

(Smith, I. et al. 2013). Studies conducted on the effects of ENSO driven El Niño drought in 

1997 have had a profound impact on agriculture production as well as natural resource 

management in many parts of PNG (Allen & Bourke 2001; Hombunaka & von Enden 2001; 

Cobon et al. 2016).  

Advancing new tools for the forecasting of rainfall using large-scale climate indices, which 

have recently been seen to be linked to rainfall events (Khedun et al. 2014; Nguyen-Huy et al. 

2017), is very vital to PNG’s agriculture and other sectors as it would help facilitate decisions 

and policy-making in the sector. Investigations done by Smith, I. et al. (2013) on ENSO related 

rainfall changes in New Guinea, the Southern Oscillation Index (SOI) and Niño 3.4 Sea Surface 

Temperature (SST) had influence over rainfall with Niño 3.4 SST having a better influence 

statistically in terms of spatial influence as well as temporal influence. 

However, studies on rainfall forecasting in PNG remain rather scarce, although the work of 

Smith et al., (2013) is one of the few recent studies demonstrating the need for a rainfall 

forecasting model incorporating large-scale climate indices. The current forecasting technique 

used by the PNGNWS to do rainfall forecasting is the statistical software called SCOPIC 

(Seasonal Climate Outlook for the Pacific Island Countries).  This statistical model (SCOPIC) 

uses discriminant analysis (multiple linear regression) and the relationships of Southern 

Oscillation Index (predictors) or the sea surface temperatures (SST) and monthly rainfall 

(predictands) to predict rainfall at various lead times, however one of SCOPIC limitations to 

using only one predictor (SOI, SST) (Cottrill et al. 2013). Further, the linear discriminant 

analysis assumes that the data follows a normal distribution with each attribute has the same 

variance, i.e. values of each variable vary around the mean by the same amount on average. 

However, it is noted that the relationship between ENSO and rainfall has been indicated to be 

nonlinear in New Guinea regions, as shown in Smith, Ian et al. (2013). 

One prominent approach for capturing the nonlinear relationship between rainfall and climate 

indices without any assumption on the distribution of variables is through a copula-statistical 
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model. Copula models are essential for this area since they can utilize several multivariate 

datasets to develop probabilistic predictions, which can increase the confidence in rainfall 

forecasting (Khedun et al. 2014; Nguyen-Huy et al. 2017). Recently, these studies successfully 

modeled seasonal rainfall in Australia and Texas (USA) and provided a new approach to jointly 

forecast rainfall utilizing large-scale climate mode indices. However, the application of copula 

models for forecasting rainfall in PNG has not been explored.       

This study aims to develop new copula-statistical models to forecast seasonal and annual 

rainfall in PNG given that no such predictive models have so far been developed for this 

important region where rainfall patterns can significantly affect important agricultural crops 

such as coffee, coffee, oil, cocoa, copra, tea, rubber, and sugar and many other important 

commodities.  

 1.2 Research Problem  

The significance of statistical forecasting models, such as copula-based approaches, in 

sustainable agricultural practices is evolving very rapidly in the 21st century.   

Developing highly innovative agricultural and rainfall forecasting tools is very important to 

address the issue of climate threats to agriculture and the economy of PNG.  Forecasting rainfall 

is very vital for policymakers, governments, resource managers, and farmers in decision 

making. A review of previous studies showed that copulas could be used in precision 

agriculture, and countries like Australia (Nguyen-Huy et al. 2017; Nguyen-Huy et al. 2018) 

have used this method for rainfall forecasting. Decision-makers can also adopt a copula-

statistical model for evaluation of uncertainties in water resources and other sectors, and also 

to develop cross-cutting research initiatives in PNG’s coffee and other industries.  However, 

forecast models using copulas have never been explored in PNG.  

Since the behavior and rainfall variability is mostly dependent on multiple large-scale climate 

indicators (e.g., SOI, Niño3.4 SST, Niño3.0 SST, Niño4.0 SST, etc.), which can have a joint 

moderating effect on rainfall received, the use of several input variables to model rainfall 

remains an open problem of interest. Hence, multivariate input-based modeling of rainfall 

considering the contributions from each driver is an essential problem for decision-makers.                                                                                                                                            

Forecast of climate variations with a seasonal lead time is possible as the atmosphere responds 

to the more slowly varying ocean and land surfaces (Nobre et al. 2019).  

This Master of Science Research thesis aims to seek answers to the key research questions, 

which are fundamentally associated with each objective of this study, as follows:   
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1)  Can we develop the most appropriate probabilistic bivariate copula-statistical model to 

forecast seasonal rainfall using synoptic-scale climate mode indices relevant to PNG?  

2)  Can we improve the bivariate models (e.g., rainfall vs. SOI) by the inclusion of 

additional variable – IOD?  

3) What is the performance of bivariate and multivariate models over key regions in 

PNG’s agricultural research stations (Aiyura, Ramu, and Dami) including Port Moresby?  

1.3 Research Aim and Research Question 

The overall research question associated with this Masters’s thesis is connected with the 

following research questions: 

Rainfall is very significant in PNG’s Rain-fed agriculture, and accurate forecasting of rainfall 

is an integral part of PNG’s food security. An important question associated with this study is, 

what is the best copula-based bivariate and trivariate model for forecasting seasonal rainfall 

in  PNG’s agricultural stations, including Port Moresby?  

1.4 Research Objectives   

In this thesis, the influence of ENSO and IOD on rainfall in four rainfall stations in PNG (three 

are agricultural stations) are modeled using multivariate vine copulas functions. The recently 

discovered IOD is a physical entity, and many IOD events are not related to ENSO (Ashok, K. 

et al. 2003) is another important manifestation of the tropical air-sea interaction, which covers 

the sea surface temperature between the tropical western Indian Ocean (50ºE-70ºE, 10ºS-10ºN) 

and the tropical southeastern Indian Ocean (90ºE-110ºE, 10ºS).  

Copulas Sklar (1959) provides a feasible substitute for modeling non-linear dependence 

through the utilization of ranked Spearman or Kendall tau coefficients. Rainfall forecasting is 

essential in addressing the issue of climate threats to agriculture and the economy of PNG.  

The study objectives of this Masters thesis are as follows:  

1) To develop a bivariate probabilistic copula statistical model to forecast rainfall using 

synoptic-scale climate mode indices. 

2) To develop a multivariate copula statistical model to forecast rainfall using synoptic-

scale climate mode indices 

To fulfill these objectives, PNG’s Rain-fed agricultural sites are considered as case study sites.  
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1.5 Organisation of Thesis 

This Master of Science Research thesis is organized into the following chapters: 

Chapter 1 presents the introduction with the background and scientific research gaps, 

including research questions. 

Chapter 2 is the overview of the literature concerning the application of the copula statistical 

forecasting models and their uses in areas such as hydrology and water resources, agriculture, 

and meteorology. 

Chapter 3 describes the data sources and the methodology of the models. It also presents the 

model development, including equations of the models, which have been used in this research. 

Chapter 4 presents the research results for the bivariate models for forecasting rainfall covers 

the first objective of this research. 

Chapter 5 present the research results for the trivariate models and covers the second objective 

of this study. 

Chapter 6 covers the conclusions and also discusses the limitations and the recommendations 

for future research in the field of rainfall forecasting. 
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CHAPTER 2 LITERATURE REVIEW 

 

This chapter focuses on the literature review of large-scale climate mode indices (used as input 

variables in this) and their influences on rainfall, including a discussion on the conventional 

statistical-based rainfall forecasting models and their limitations, copula methods and discusses 

the advantages of using bivariate and trivariate copula statistical methods compared to other 

rainfall forecasting approaches.  

A comprehensive literature review on the application of copula statistical methods is also 

covered in this chapter. 

2.1  Large-scale climate mode indices and its influence on rainfall 

The influence of large-scale climate mode ENSO is one of the most critical climatic process 

affecting rainfall variability in the South Pacific (Kumar et al. 2014). According to Smith, I. et 

al. (2013), ENSO through the phase of SOI and Niño3.4 SST both indices have shown 

influence the rainfall and the climate of PNG, with Niño3.4 SST having a better influence 

statistically in terms of spatial influence as well as temporal influence including a more stable 

influence than SOI. Lagged and extended lead time relationships between climate indices 

(current) and the next seasonal rainfall are essential to forecast future rainfall, and several 

studies have done so (Stone et al. 1996). With the current advancement of climatic models 

using large-scale climate modes indices such as the ENSO, climate information can be 

forecasted accurately at least six months to one year ahead (Jin et al. 2008; Ludescher et al. 

2013). Fiji, for instance, is taking advantage of the strong relationship between SOI and its 

rainfall and have developed seasonal rainfall forecasting scheme using, the three-month mean 

of the SOI to forecast the following three-month total rainfall (Walsh et al. 2001).  

 

Wide range of large-scale climate mode index has also been documented and identified to have 

an influence on the climate variability in Australia across different regions as well as the 

seasons (Ashok, K. et al. 2003; Nguyen-Huy et al. 2017).  The well documented ENSO 

phenomenon has a significant influence on precipitation over the north and east end of the 

continent with El Niño associated with drought conditions, whereas substantial precipitation is 

linked to La Niña events (Yuan, C. & Yamagata, T. 2015). IOD also has a profound influence 

on Australia’s climate variability, and in recent decades it has been identified as the main driver 

behind the major drought which occurred in the southeast of the continent and not ENSO as 
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presumed (Cai et al. 2012). There are three phases in IOD (positive, neutral and negative) with 

the positive phase this results in drier and hotter conditions stirring across southern an 

northeastern Australia during EL Nino while the negative phase of IOD brings in above-

average rainfall including colder conditions during La Niña (Min et al. 2013; Nguyen-Huy et 

al. 2018). Furthermore, as indicated by Ashok et al. (2007), the ENSO Modoki phenomenon, 

have displayed different teleconnection patterns to Australia’s climate compared to ENSO. 

Hence, the finding reinforces the impact of large-scale climate mode indices on the weather. 

 

2.2  Common statistical-based rainfall forecasting models and their 

limitation 

Long-range rainfall forecasting is extremely valuable and can be used as a planning tool to 

mitigate the harmful effects of drought and water resource management. Conventional 

statistical-based rainfall forecast models, including the regression forecast models, have been 

applied in rainfall forecasting as shown by Kim and Kim (2010), who developed an empirical 

statistical model using climate indices (ENSO) as predictors to forecast monthly precipitation 

in China with a two to twelve month lead time, Korecha and Barnston (2007)  applied 

regression forecast models as well to forecast Ethiopia’s June-September rainfall using ENSO. 

Furthermore, in South Australia Rasel et al. (2016) applied multiple regression models to 

investigate the relationship between legged climate predictors ENSO (SOI) and Southern 

Annular Mode with spring precipitation and demonstrated 63% prediction accuracy using 

combined climate predictors.  

However, with regression models as used in these studies, the dependence structure was 

measured using Pearson’s correlation between the rainfall (precipitation) and the predictor 

climate index while assuming Gaussian distribution and linearity of precipitation data, models 

assume the random variable follows the normal distribution which may not always hold in 

practice. Pearson’s correlation assesses how well a linear model fits the data. However, rainfall 

data are generally skewed in distribution, and this invalidates the use of Pearson’s correlation 

while (Schepen et al. 2012).  To overcome these, copula statistical models (Sklar 1996) provide 

a practical alternative for modelling non-linear dependence  by utilizing the Spearman or 

Kendall coefficient and have been applied by forecasting method by employing copula 

statistical models, which are yet to be applied in rainfall forecasting (Khedun et al. 2014; 

Nguyen-Huy et al. 2017). 
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2.4  What are copulas? 

The origin of the word copula is a Latin word copulare, which means ‘to join, link, tie 

together.  

Copula was first introduced as Sklar’s theorem (Sklar. 1959) and was investigated further by 

statisticians like Genest and Mackay (1986), Genest and Rivest (1993), (2003), Christian and 

Anne-Catherine (2007), Czado (2010) and Schepsmeier (2010). Copulas were revitalized in 

the 1980s and have since attracted significant attention in the fields of agricultural science 

(Ribeiro et al. 2019), finance (Nagler et al. 2019), hydrology (Grimaldi et al. 2016), drought 

(Vazifehkhah et al. 2019), flood (Chen & Guo 2019b), and streamflow (Liu et al. 2015). 

Copula statistical models provide a viable alternative for modeling non-linear dependences and 

are based on rank dependence (i.e., Kendall’s tau correlations). Kendall’s measures 

dependence, based on the ranks of the data and provides, arguably, the best alternatives to the 

linear correlation coefficient as a measure of dependence for non-elliptical distributions, for 

which the linear correlation coefficient is unsuitable and often confusing (Manner et al. 2019). 

Copula enables modeling of multivariate data through advanced techniques, which are handy 

in studying scale-free measures of dependence, including constructing families of 

bivariate/multivariate distributions, which have non-linear dependence. Further, the marginal 

distributions (i.e., the distributions of each variable) do not have to follow a normal distribution. 

 

2.5  Copula Theory 

This section outlines necessary steps in defining copulas; additional information can be found 

in the works of Joe (1997) and Nelsen (2007) including Kraus and Czado (2017) and Nguyen-

Huy et al. (2018).  

A copula is a multivariate distribution whose one-dimensional margins, each of which is 

marginally uniformly distributed over (0,1). Copula models capture the dependence structure 

between random variables irrespective of their marginal distributions. Sklar (1959) through 

Sklar’s Theorem revealed that suppose each continuous variable iX  (i.e., the climate mode 

index and the rainfall used in this study) has its own marginal probability density function 

(PDF), and marginal cumulative distribution function (CDF) denoted as ( )k kf x  and ( )k kF x  

respectively. The CDF of a d-dimensional variable 1( ,..., )dX X  can be written as : 

 ( ) ( ) ( ) ( )1 2 1 1 2 2, ,..., , ,...,d d dF x x x C F x F x F x=    , (1) 

with the corresponding joint PDF (Sklar 1996): 



10 
 

 
( ) ( )1 1 1

1

( ,..., ) ( ) ,..., .
d

d i i d d

i

f x x f x c F x F x
=

 
=     
 
  (2) 

The d-variate distribution function associated with the unit hypercube    : 0,1 0,1
d

C →  with 

uniform marginal distribution function is unique, called copula, and the corresponding copula 

density ( )1

1

,...,
...

d

d

d

c C u u


=
 

 were ( )i i iu F x=  with ( )0,1iu   is known as a probability 

integral transform (PIT), (Kraus & Czado 2017). Any copula density c can be decomposed 

into a product of ( )1 / 2d d −  bivariate (conditional) copula densities. It is evident from 

equation (1) that the marginal distribution can be modeled separately from the dependence 

structure, which is an advantage of the copula approach. 

 

2.6 Types of copula functions 

There are many families of copulas, including elliptical, Archimedean, vine, extreme value, 

and other families (Yan et al. 2010). Archimedean copulas have either symmetric or 

asymmetric forms. While the Archimedean (symmetric or asymmetric) and multivariate-

elliptical copulas are two most widely used copula families, however, they do have some 

challenges and constraints. For instance, the elliptical copulas tend to exhibit symmetric 

dependence in their tails (Frahm et al. 2003) while Archimedean copulas have one or two 

dependence parameters (i.e., 3d  ) which can limit their flexibility in higher dimensions. 

Fortunately, these limitations can be overcome through the use of vine copulas by decomposing 

the multivariate copulas and constructing several bivariate copulas (Aas et al. 2009; Fischer et 

al. 2017). 

2.6.1 Elliptical copulas 

Copulas that corresponds to the elliptical distribution are known as the elliptical copulas, and 

one of their advantage over the Archimedean family is, they can specify the correlation between 

each pair of marginals. The Gaussian copula and t-copula are the most commonly used 

elliptical copulas. The Gaussian copula is often used for modeling in finance (Chakrabarti & 

Sen 2019), t-copulas have recently been used for modeling hydrological extremes, like flood 

and drought events (Dodangeh et al. 2019; Vazifehkhah et al. 2019), owing to their ability to 

characterize tails of a distribution. The Gaussian copula, resulting from a multivariate Gaussian 

distribution, is perhaps the most popular. It is expressed as: 
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 ( ) ( ) ( )1 1

1 1,..., ,...,n nC u u u u− −

 
 =      (3) 

where Φ is the distribution function of a standard normal variable ( )0,1N  and Σ is the 

correlation matrix with ( 1) / 2n n −  parameters satisfying the positive semi definiteness 

constraint. ΦΣ is the n-variate standard normal distribution with mean 0 and covariance matrix 

Σ. i.e., ΦΣ ~ Nn (0, Σ). 

The Student’s t copula can be written as (Khedun et al. 2014) 

 ( ) ( ) ( )1 1

1 , 1,..., ,...,n v v nC u u t t u t u− −

 
 =    (4) 

Where ( ) ( ) , : 1, , n nv v =      and vt  represents one variate t  distribution n  degrees 

of freedom. The multivariate Student’s t  distribution is vt   with correlation matrix   and n

degrees of freedom. 

2.6.2 Symmetric Archimedean copulas 

The Archimedean family is the most common copula family employed in hydrological analyses 

because of its ease of construction and a wide range of choices for the strength of dependence. 

Symmetric (or exchangeable) Archimedean copulas refers to one-parameter copulas, and the 

general form of the Archimedean family is expressed as; 

 ( ) ( ) ( )( )1

1,..., ;d dC u C u u u   −= = ,  0,1
d

u  , (5) 

where    : 0,1 0, →   is a strict Archimedean copula generator function and its inverse 
1 −

 

is completely monotonic on [0, ) . The generator is a decreasing function and is termed strict, 

and the resulting copula a strict copula, when ( )0 =   and (1) 0 = . The dependence 

parameter   is embedded in the generating function  (Hofert 2008). Frank, Clayton, and 

Gumbel copulas are the most commonly used one-parameter copulas, where their generator 

and the inverse of generator functions are described in (Yan 2007; Hofert 2008) and shown in 

Table 1 

. 
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Table 1:  Constructors of Clayton, Frank, and Gumbel copulas three one-parameter 

(symmetric) Archimedean copulas 

Family Generator ( )t  Generator Inverse 

Clayton 1t − −  ( )
1/

1 t
−

+  

Frank 1
ln

1

te

e





−

−

−
−

−
 

( )( )1 ln 1 1te e − − −− + −  

Gumbel ( )ln t


−  
1

exp s
 
− 
 

 

 

 2.6.3 Asymmetric Archimedean copulas 

One of the unique characteristics in exchangeable Archimedean copulas is the strong 

restriction, especially with the dependence of larger dimensions. This is because the 

dependence among all components is identical or in other words; all standard marginal 

distribution is of equal dimensions. To allow for asymmetry in exchangeable Archimedean 

copulas, an important property called associativity is utilized (Hofert 2008). 

The asymmetric Archimedean copulas can be recursively structured, called nested (or 

hierarchical) Archimedean copulas, in two common forms including fully nested Archimedean 

copula and partially nested Archimedean copulas.  

Extending the equation introduced in (5) can be written as; 

 ( ) ( ) ( )( )( )1 1

1 0 2 0 0 1 0 2 1 2,..., ; ,..., ,..., ; ,...,d d d dC u u u C u u      − −

− −= +  (6) 

Where 3d  , the joint CDF in equation (16) in three-dimension variables constructed by the 

asymmetric Archimedean, can be is expressed as (Hofert 2008): 

 ( ) ( ) ( ) ( ) 2 1 1 1 2 2 1 3 3 2, ; , ; ,C u C C C u C u C u =     (7) 

Which is also known as the hierarchical Archimedean copula (HAC), were 1C  and 2C  denotes 

the same Archimedean copula family with the corresponding parameters 1 2  . The 

combination of equation (5) and (6) results in the partially nested Archimedean copula and is 

expressed as (Hofert 2008); 

  ( ) ( ) ( )( )
111 1 1 1 0,..., ; ,..., ,..., ; ;d s s sC u C C u u C u sd  =  (8) 
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( ) ( )( )( ) ( ) ( )( )( )( )1

1 1 1 1 1 1

0 0 1 1 11 1 1 0 1... ... ...
sd s s s s sdu u u u        − − − − − −= + + + + + +   

( )1 1

0 0

1 1

ids

i i ij

i j

u   − −

= =

   
=      

   
   

Based on the structures, fully and partially nested Archimedean copulas are referred to as 

nested (or hierarchical) Archimedean copulas. 

2.6.4 Vine copulas 

There are three primary forms of vine copulas: (Drawable) D-vine, (Regular) R-vine, and 

(Canonical) C-vine. The vine copulas were initiated by Joe (1997) which was further evaluated 

and applied more comprehensively by Bedford and Cooke (2001) as graphical reliance models 

using Markov trees for describing multivariate variables and the construction of bivariate 

copulas. A variety of modeling is performed using the vine copulas were asymmetries, and tail 

dependence poses problems when taken into account, as evident in precipitation forecasting 

(AghaKouchak et al. 2010; Nguyen-Huy et al. 2017).  

The application of the vine copulas decomposes the joint PDF in equation (2) into the copula 

densities (bivariate conditional) with its marginal densities expressed as (Fischer et al. 2017; 

Kraus & Czado 2017); 

 
( ) ( ) ( )

1

1 ; 1,..., 1 | 1,..., 1 1,..., 1

1 1 1

,..., | ,
d d d

d k k ij i j i i j i i j

k i j i

f x x f x c F x x x
−

+ − + − + −

= = = +

=
   

                                                                               ( )| 1,..., 1 1,..., 1|j i j j i jF x x x+ − + −



 

(9) 

The bivariate copula densities in this regard, the pair copula is independent of each other with 

the expression called D-vine copula if all marginal distributions are uniform (Nguyen-Huy et 

al. 2018). The various bivariate copula families, which are essential building blocks of the 

models, are shown in Table 2  (Wang et al. 2018).  
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Table 2 :  Detail inference of bivariate copula families   

Copula  ( , *)C u u   
Generator ( )t   Tail Dep.  

(lower, Upper) 

Parameter 

Range 

Gaussian    0 ( )1,1  −   

Student-t   
1

1
2 1

1
vt v




+

 −
− +  + 

  
( )1,1 , 2v  −    

Clayton 

Copula ( )
1

*max 1 ,0u u  
−

− − 
+ − 

 
  ( )

1
1t 



− −   
1

2 ,0
− 

 
 

  
0    

Gumbel 

Copula  ( ) ( )
1

exp ln ln *u u
  

   − − + −  
  

  
( )ln t


−   

1

00, 2 2
 

− 
 

  
1   

Frank 

Copula  
( )( )*1 11

ln 1
1

u ue e

e

 



− −

−

 − −
 − +

−  

  
1

ln
1

te

e





−

−

−
−

−
  

( )0,0    0R    

Joe  ( )ln 1 1 t
 − − −

    
1

0, 2 2
 

− 
 

  
0 1   

Clayton-

Gumbel 

 ( )1t
− −   

1 1

2 , 2 2 
− 

− 
 

  
0, 1     

Joe-

Gumbel 

 
( )( )ln 1 1 t


 − − −

 
  

1

0,2 2
 

− 
 

  
1, 1     

Joe-

Clayton 

 
( )( )1 1 1t




−

− − −   
1 1

2 ,2 2 
 

− 
 

  
1, 0     

Joe-

Frank 

 ( )

( )

1
ln

1

t








 −
−  

−  

  
( )0,0   ( )1, 0,1    

 

2.6.5 Marginal Distribution Models 

Marginal distributions can be modeled using parametric and non-parametric approaches. The 

parametric approaches make assumptions about the parameters of the data to hypothesis 

distributions. Before using the multivariate data for statistical copula modeling, the data is 

fitted individually to their respective marginal distributions to obtain the marginal parameters. 

The parametric method fits the data to a given set of theoretical probability distributions and 

selects the most appropriate distribution function for each variable by applying statistical 

goodness-of-fit tests (GOF) and graphical analysis. There are three famous GOF tests that can 

be applied to either discrete or continuous distribution. The Kolmogorov-Smirnov and 
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Anderson-Darling tests are applied to continuous distributions while Chi-Square goodness of 

fit test can be applied either to discrete or continuous distribution (Ricci 2005). 

The Chi-Square goodness-of-fit test 2( )  is used in order to discriminate between theoretical 

distributions applied to binned data (i.e., data put into classes). The 2( )  test validates the null 

hypothesis by explaining the direction of data distribution. With higher p-values supporting the 

null hypothesis, in other words, the test statistics (Khedun et al. 2014; Nguyen-Huy et al. 2017). 

The chi-squared test is given by: 

 2
2

1

( )k
i i

i i

O E
x

E=

−
=  (10) 

In Equation (9), iO  is observed frequency and iE  is expected frequency, was i  and k  is the 

number of bins according to Sturges formula 2log 1.k N= +  ( ( ) ( ))i a bE N D Y D Y= −  where D 

denotes CDF for the distribution. The upper and lower limits are denoted by aY and bY  class, i

respectively, with N  being the sample size. The test statistics are distributed as 2X a random 

variable with 1k d− −  degrees of freedom, d being the number of estimated parameters.  

The Kolmogorov-Smirnov GOF ( )D test is used to compare the empirical cumulative 

distribution function (ECDF) with the theoretical CDF from the stated distribution and is based 

on the most significant vertical difference between the two functions and is defined as:  

 
( ) ( )

max 1
,

1
i i

i i
D F F

i n n n
 

− 
= − − 

   
 (11) 

Where the empirical CDF denoted as  
1

( ) .nF x Obs x
n

=   with Obs = Number of observations. 

The null hypothesis is rejected (in corresponds to a given significance level ( ) ) if the absolute 

(maximum) value difference between the theoretical CDF and ECDF is more significant than 

the given significance level. D test performs better than the chi-square test provided the sample 

size is not too large (Ricci 2005).  

Finally, the Anderson-Darling GOF test 
2( )A  is a general test to examine whether the data is 

from a given probability distribution and is defined as:   

 
( ) ( ) ( )( )2

1

1

1
2 1 . ln ln 1

n

i n i

i

A n i F X F X
n

− +

=

 = − − − + −   (12) 
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The 2A gives more weight to tails compared to the D  test. The distributions hypothesis is 

rejected from a given significance level ( ) if 2A is higher than the set critical level. The 

hypothesis regarding the distributional form is rejected at the chosen significance level () if the 

test statistic, A2, is higher than the critical value obtained 

 

In addition to the GOF test described above, graphical assessment is also employed to select 

the best fitting distributions, including the PDF, CDF, quantile-quantile (Q-Q), probability-

probability (P-P). Basic classical GOF plots include the density and Cumulative Distribution 

Function (CDF) while the Q-Q and P-P plot reveal how well a specific distribution fits the 

observed data, as shown in Figure 1.  

 

Figure 1:  Four Goodness-of-fit plots. (a) shows the density plots with the histogram of 

the data, (b) Q-Q plot, (c) CDF plot and (d) P-P plot (source: (Nguyen-Huy et 

al. 2017)) 

The non-parametric approach estimates the probability density function using a weighting 

function (a kernel). Kernel estimators have engrained tools for nonparametric density 

estimations and are widely used for data smoothing techniques. Noh et al. (2013) stated that 

modeling the marginals, including the copula parametrically can cause the resulting parametric 

estimator to be inconsistent and biased if one parametric model is misspecified. The kernel 

density estimation is defined by Kraus and Czado (2017); 
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( )
( )

1

1

in

i

x x
F x n K

h

−

=

 −
=   

 
 , x  (13) 

The given sample is ( )( )

1,...,

i

i n
x

=
, were ( ) ( ):

x

K x k t dt
−

=  being the symmetric PDF with ( ).k  

and 0h  the bandwidth parameter (which can be implemented with package ks (Duong 

2007)). This transforms the observed data to pseudo copula data. This non-parametric approach 

is used in this study. 

2.6.6 Copula Models 

There are several methods which can be applied to get the estimates of copula parameters: the 

exact maximum likelihood method, the moment-like method (MOM), which is based on the 

inversion of the nonparametric dependence measure (e.g., Kendall’s tau), and the canonical or 

maximum pseudo-likelihood (MPL) method and exact maximum likelihood (EML) method.  

The MOM approach is based on the reason that the bivariate dependence structure is fully 

defined by the relative ranks of the integral variables. Based on Kendall’s tau   and Spearman’s 

rho s  obtained from Chowdhary et al. (2011) the relationship is given as 

 ( ) ( )
 

2
0,1

4 , ,C u v c u v du =  1dv−  (14) 

 ( )
 

2
0,1

12 ,s C u v du =  3dv−  (15) 

This relationship, including dependence parameters among and s  is specified as  

2

9


 = and 

3
s


 = where 1 1−    which has a restricted dependence for Kendall’s at 

0.22 0.22−    and Spearmen  0.33 0.33s−   . Finally, the moment-based estimate is 

obtained as 
9

2







= and 3 
 

= .  

The other method used to estimate the dependence structure of copulas is the MPL method. 

With this method, the dependence structure is entirely independent of the represented margins 

by scaled ranks non-parametrically. The dependence parameter is obtained by maximizing the 

likelihood function. The real observation data pairs, ( )1,...,
T

k k knx x x= , 1,...,k n=  , will be 

transformed into pseudo-observations, 1
ˆ ˆ ˆ( ,....., )k k knu u u= = , 1,...,k n= , i.e., in the unit 

hypercube (Nguyen-Huy et al. 2017). In this conversion, ˆ (1/ ( 1))kju n= +  rank ,( )k jx  



18 
 

Where: 
,( )k jrank x  is the rank in ascending order between 1 to n  (Khedun et al. 2014).  

For a copula ( )1,..., ;nC u u  , with density ( )1,..., ;nc u u  , the parameter   is deduced to be: 

 
( )1

1

ˆ ˆ ˆarg max log ,..., ;
n

k kn

k

c u u 

=

=   (16) 

 

Finally, for the EML method embraces the log-likelihood function in all parameters are 

simultaneously estimated as reported by Chowdhary et al. (2011) 

 
( ) ( ) ( ) , , log ; , ;

n

i l

l C F x G y    
=

=     (17) 

Where,  is the association parameter while  and  denotes the vector parameter of the 

marginals ( );F x   and ( );G y  .  

2.6.7 Goodness-of-Fit Test 

To select the best copula pair, GOF tests, criterion and graphical assessment can be used in to 

determine the best fitting copula models for variables. The standard statistical GOF tests for 

copula model selections include White and Kendall method.  

 

White method 

The White information matrix equality (White 1982) method was introduced through a study 

by Huang and Prokhorov (2014). The contribution of the study under correct copula 

specification is that the Fisher information can be computed as minus the expected Hessian or 

outer product matrix of the score function ( )0H C − = . The null hypothesis is expressed as 

( ) ( )0 : 0H H C + =  

and the alternative hypothesis as  

( ) ( )0 : 0H H C +  , 

where ( )C  is the expected outer product and ( )H   the expected Hessian matrix of the score 

function. This correction in regard to the covariance matrix enables the uncertainty in margins 

of the test statistics for two-dimensional integrals to be skipped (Huang & Prokhorov 2014).  

 

Kendall method 

The Kendall’s method based on Kendall’s transform process where the  p-values associated 

with the test statistics, are computed through bootstrapping using the Cramer-von Mises and 
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Kolmogorov-Smirnov test statistic (Wang & Wells 2000; Genest et al. 2006) and are expressed 

respectively as shown in Genest et al. (2006) 

 1
2

1

1
, ,

3

v

v v v n

j

v j j j
S v K K K

v v v
 

−

=

 +      
= + −      

      
  

1
2 2

1

1
, ,

v

v v n

j

j j j
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−
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 +      
− −      

      
  

(18) 

and 

 
( )

sup max
| | , .

0 1 0,1;0 1
|v v v v

j j i
T w v K K

w i j n v v
 

 +    
= = −    

  =   −     
 (19) 

Where ( ) ( ) ( ) v v vK w v w w=  − , ( ) ( ) ,v vw P C U V w  =  , and 

( ) ( ) /v vk w d w dw =  . 

 

Criterion 

A quantitative valuation of the performance of various copula families can be made by 

comparing maximized loglikelihood, Akaike information criterion (AIC) and Bayesian 

information criterion (BIC) values. The two popular GOF indices are AIC and BIC. With L 

representing the log-likelihood, 2 2AIC L d= − +  and 2 ln( )BIC L d N= − + . The AIC and BIC 

are used for model selection, i.e., the model with the lowest index is selected (Maydeu-Olivares 

& Garcia-Forero 2010). If the interpretation for log-likelihood is higher, the better were as the 

AIC and BIC should be small on an excellent copula. 

Graphical tools 

Lambda plot can be used to support selecting the best bivariate copula model by comparing the 

empirical and theoretical lambda-function of different copula families (Nguyen-Huy et al. 

2017). Further, the contour plot allows to visualize copula data and compare with overlays of 

density contours or simulated data from different copula families with fitted parameters 

(Schepsmeier et al. 2018). 

2.7 Modelling Rainfall using Copulas-Statistical Models 

Forecasting rainfall with sufficient lead-time with more exceptional skill of reasonable 

accuracy given the large-scale circulation patterns is extremely valuable for modeling of 

whether distributions will allow farmers in PNG to make better decisions to reduce their 

exposures to weather risks or take advantage of the favorable climatic relationship.  
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Copulas have the advantage of modelling independently the dependence structure of the 

marginal distributions of variables compared to linear models correlation-based models and are 

fast becoming a standard tool for multivariate analysis of rainfall and Standard Precipitation 

Index (SPI) (Rauf & Zeephongsekul 2014b, 2014a) including hydro-logical change and human 

activities (Li et al. 2019).  

In the published literature, Nguyen-Huy et al. (2017) investigated the influence of ENSO and 

Inter-decadal Pacific Oscillation (IPO) Tripole Index (TPI) ─ on spring precipitation 

forecasting at agro-ecological zones (AEZs) in Australia’s wheat belt. The study forecasted 

spring precipitation, with a significant seasonal lagged correlation of ENSO and TPI and 

precipitation anomalies in AEZs. Most of the AEZs exhibited statistically significant 

dependence of precipitation and climate indices, hence bivariate, and trivariate copula models 

were applied to capture single (ENSO) and dual predictor (ENSO & TPI) influence, 

respectively, on seasonal forecasting. 

Khedun et al. (2014) explored the influence of two large-scale circulation patterns ENSO and 

the PDO, and the effect of  ENSO on precipitation in the state of Texas by applying copula 

statistical models to inspect the dependence structure through bivariate models for ENSO and 

precipitation, and trivariate models for ENSO, PDO, and precipitation. The study, in general, 

discovered the inclusion of PDO was found to improve simulation results. 

Rainfall forecasting is an essential task for agricultural management of water resources (Deo, 

Kisi, et al. 2017), and most of PNG’s agriculture and food production systems are adapted to 

cope with much soil-water, should the soil dry up, crops will fail.   

2.8 Applications of Copulas-Statistical Model in Other Areas 

Since the advent of copula statistical models many years ago (Sklar 1959), its application in 

the number of fields in recent years has increased. Studies have been conducted in the field of 

hydrology and water resources (Chen & Guo 2019c; Valle & Kaplan 2019), drought and crop 

insurance (Wong et al. 2009; Nguyen-Huy et al. 2019), health (Klein et al. 2018), streamflow 

(Kong et al. 2018) and flood (Chen & Guo 2019a; Moftakhari et al. 2019). Copulas have also 

been applied to economics, agriculture, and climate forecasts (AghaKouchak 2014; Fousekis 

& Grigoriadis 2017; Zhang et al. 2018).  

In agriculture economics, Nguyen-Huy et al. (2018), applied twelve large-scale climate mode 

indices to model their influence on seasonal wheat crop yield in Australia using the vine-based 

copula approach. The study revealed that wheat yield could skillfully forecast 3-6 months lead 

using the IOD and are a fundamental strategy for planning purposes that potentially benefits 
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farmers by informing risk-management processes. In revenue insurance in agriculture, Okhrin 

et al. (2013) modeled the systemic weather risk of agricultural production regions in China by 

using a larger time-series length of data derived from daily weather models. 

2.9 Statement of Gaps in Existing Literature 

A review of the literature shows that the copula statistical models used in this thesis have been 

used in countries like Australia (Nguyen-Huy et al. 2017) and the USA (Khedun et al. 2014) 

to forecast precipitation. Khedun et al. (2014) used Gaussian and Archimedean copulas to 

model the effect of ENSO and PDO on precipitation anomalies in Texas while Nguyen-Huy et 

al. (2017) applied vine copulas to model the joint influence ENSO (SOI) and IPO Tripole Index 

(TPI) to forecast seasonal precipitation in Australia. However, copula-statistical models have 

not been used for probabilistic of forecasting of rainfall in PNG. Therefore, this research study 

primarily focuses on addressing this gap.  
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CHAPTER 3 MATERIALS AND METHOD 

3.1 Study Area  

The study area is in four different regions of PNG; Ramu- Momase, Aiyura- Highlands, Port 

Moresby -Southern and Dami - Islands. The country experiences relatively high annual rainfall 

of around 2500-3500 mm although a few lowland areas such as Port Moresby do receive less 

than 1000 mm and seasonality can be observed in this particular region (McAlpine 1983).  

 

PNG has two main seasons wet and dry seasons with the wet season, encompassing the period 

generally from November to April (Figure 4), and the dry season from May to October. 

Rainfall varies seasonally in most areas, but the degree of seasonality is not high.   

 

Figure 2: Map of PNG showing the locations of the four rainfall stations used in this study 

(Source: James Vuvu). 

 

A brief description of these study area are as follows; 

1) Port Moresby - Weather Office (9.4º S, 147.2 º E); This meteorological station is the 

primary climate station, is located at Jacksons Airport near Port Moresby in PNG’s 

capital city and managed by the Papua New Guinea National Weather Services 
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(PNGNWS), a government institution which provides meteorological and climate 

information the country. 

2) Aiyura (6.3º S, 145.9 º E); This weather station is located in the highlands region of 

PNG and is managed by Coffee Industry Corporation Ltd.’s (CIC) – Research and 

Growers Services Division (R&GSD) – which mainly conducts research and provides 

extension services on coffee in PNG. 

3) Ramu (5.9º S, 145.8 º E); This weather station is in the Ramu Valley sits astride the 

Morobe – Madang provincial boundary and is managed by Ramu Agri Industries (New 

Britain Palm Oil Ltd) and primarily conducts research on Sugarcane including oil palm 

(Elaeis guineensis) 

4) Dami (5.5º S, 150.3 º E); this weather station managed by New Britain Palm Oil Ltd 

(NBPOL) is mainly responsible for oil palm research and provides plantation managers 

with the necessary technical information needed for sustainable management and 

production of oil palm. 

3.2 Data 

3.2.1 Rainfall Pattern and data 

PNGNWS has around 18 weather stations which carry out several multiple observations within 

24 hours: two in the Highlands, four synoptic stations in Momase, six in the New Guinea 

Islands and six in the Southern region. In addition to the multiple observation stations, there 

are18 single observation rainfall stations and three single observation climate stations. The 

main issues with these rainfall stations are the missing data and are mainly attributed to funding 

to replace aging equipment or lack of staffing.  

 

The only reliable primary climate station was Port Moresby Weather Office, located at 

Jacksons International Airport. For the other three agricultural weather stations (AIY, DMI, 

and RMU) used in this study, are from vital agricultural institutions in PNG As shown in 

Figure 2, the study area is situated at different elevations throughout the rugged terrains of 

PNG, with Port Moresby, Aiyura, Ramu, and Dami stations located at an elevation of 50, 1658, 

450 and 30 m above sea level respectively. 

 

The average annual rainfall varies noticeably, as shown in Table 3 is around 98.25 -305.97 

mm, with the median between 62-305.97 mm and a standard deviation between 93.45-221.10 

mm. From the four rainfall stations, two have a positive kurtosis value (POM and DMI) that 
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indicates the distribution of data have heavy tails, including outliers. All the four stations have 

positive skewness which indicates the data distribution is right-skewed with the skewness of 

the distribution curve having tails at a value above the median and mean is on the right of the 

peak value. 

 

Table 3:  Station name and statistics for monthly rainfall station in PNG from 1990-2017 

Station 

Name Mean(mm) Median(mm) 

Standard 

Deviation(mm) Skewness Kurtosis 

POM 98.25 62.00 101.90 1.18 0.70 

AIY 172.09 159.00 93.45 0.48 -0.46 

RMU 169.20 159.35 114.15 0.47 -0.60 

DMI 305.97 232.40 221.10 1.37 1.72 

 

Seasonality is most evident in POM where it is quite dry, but there is no period nil monthly 

rainfall, which is found to be true in ‘monsoon’ climates (McAlpine 1983). This is quite 

noticeable in Figure 3 showing the widest sections of the violin plot representing POM having 

the highest probability of having rainfall between the 60 mm region and shows the median 

monthly rainfall is also lower, this is not the case for the stations. A violin plot is a kernel 

density plot combined with boxplots to show the probability distribution of the data set. 

 

 

Figure 3:  Violin plots of monthly rainfall in each rainfall station used in this study; POM 

(Port Moresby), AIY (Aiyura), RMU (Ramu) and DMI (Dami). The thick blue 
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line and white dot indicate the 25th and 75th percentile range and median, 

respectively, and the thin black line shows the 5th and 95th percentile range. 

The mean monthly rainfall in each station, along with that of the whole study site, is given in 

Figure 4. The rainfall pattern is unimodal with a very distinct unimodal rainfall pattern 

observed in Port Moresby. The average monthly rainfall varies from the lowest of 22 mm to 

the 580 mm of rainfall across the four stations with Dami and Port Moresby receiving the 

highest and lowest, respectively with the wettest months from January to March (although it 

starts around October). 

  

 

Figure 4:  Mean monthly rainfall (mm) for the study sites. The solid black line represents 

the monthly mean rainfall for all the stations based on data for 1990–2017. POM 

(Port Moresby), AIY (Aiyura), RMU (Ramu) and DMI (Dami) 

 

With regards to the quality of the data, these weather stations have engaged whether attendants 

who attend to the daily recordings fulltime, hence as shown in Table 4 the missing day’s data 

percentage is minimal, although Aiyura has 2.39%,  it is still less than 10% (Simolo et al. 2010). 
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Table 4: Meteorological stations with record period, latitude, longitude, altitude and 

missing data details  

Station 

Record 

Period 

Latitude 

S 

Longitude 

W 

Days 

Missing 

Missing 

days (%) 

Ramu 

1990-2017 

5.9 145.8 4 0.04 

Dami 5.5 150.3 9 0.1 

Aiyura 6.3 145.9 244 2.39 

Port Moresby 
 

9.4 147.2 10 0.1 

 

3.2.2 Climate Mode Indices 

The present study will consider previous works of Nguyen-Huy et al. (2017), and Khedun et 

al. (2014) applied for Australia and USA, respectively, who have developed copula models to 

forecast seasonal rainfall. Six climate indices are used to investigate their impacts on rainfall 

(Table 5) in PNG. These climate indices have been identified to have a relationship with 

monthly and seasonal rainfall patterns in PNG and the Pacific (Smith, I. et al. 2013). 

Independent correlation performed for various climate-mode indices were also tested but 

performed poorly.  

Several different climate indices are used to measure and monitor the ENSO phenomena such 

as the EMI (ocean-atmosphere index), SOI (air pressure index) and the sea surface temperature 

indices (Niño-3.0, Niño-3.4, and Niño-4.0). Also included in this study is the IOD indices 

(Dipole Mode Index (DMI)) is used to consider its overall synoptic influence, on rainfall in 

PNG. 
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Table 5.  The six climate mode indices investigated as inputs (predictors) for the four 

rainfall stations in PNG. Data Sources: Monthly sea surface temperature (SST) 

downloaded from the Physical Science Division (PSD, NOAA). SOI data was 

downloaded from the Bureau of Meteorology, Australia (BOM). 

Climate Mode 

Index (Predictor) 

Description Region 

Niño3.0 Average SSTA over 150°–90 °W and 5 °N–5 °S Pacific 

Niño3.4 Average SSTA over 170 °E–120 °W and 5 °N–5 °S Pacific 

Niño4 Average SSTA over 160 °E–150 °W and 5 °N–5 °S Pacific 

SOI The difference in pressure between Tahiti and Darwin 

(Troup 1965). 

Pacific 

EMI C – 0.5 x (E+W) 

Where the components are average SSTA over  

C: 165 °E–140 °W and 10 °N–10 °S  

E: 110°–70°W and 5 °N‒15°S  

W: 125°‒145 °E and 20 °N‒10 °S 

Pacific 

DMI WPI ‒ EPI Indian 

 

The source of the monthly SST for the period of January 1989 –December 2017 derived from 

Physical Science Division (PSD, NOAA) using the Hadley Centre sea ice and sea surface 

temperature (SST) data set (HadISST1) version 1 (Rayner et al. 2003). The SOI data was 

obtained from the Australian Bureau of Meteorology (BOM) and the method used in this study 

is the Troup SOI (Troup 1965) with the standardized anomaly of the monthly mean sea-level 

pressure difference between Tahiti (175ºS, 149.6 ºW) and Darwin, Australia (12.4ºS, 130.9ºE). 

The DMI also obtained from BOM were calculated by subtracting the West Pole Index (WPI) 

from the East Pole Index (EPI) to determine the overall polarization effect. The method used 

by the Australian BOM. The EMI, which was defined by Ashok et al. (2007) to monitor El 

Niño Modoki activity (summarised in 
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Table 5), the data was from the Japan Agency for Marine Earth-Science and Technology 

(JAMSTEC). Three-month averages of these climate indices mentioned were used in this 

study; January to March (JFM), April to June (AMJ), July to September (JAS) and October to 

December (OND). 

 

3.3 Forecasting Model Development 

The focus of this research study is to investigate the lagged relationships between rainfall and 

large-scale climate mode indices. 

Throughout this study, a 'lead 0, 1, 2...' terminology is applied. For instance, a 'lead-0' is defined 

as the average large-scale climate mode index (SOI, SST, EMI or DMI) for each three-month 

block compared to the average rainfall for the following three-month block.  

For example, in a 'lead-0' study January to March SOI is compared with April to June 

rainfall. For 'lead-1', July to September SOI would be compared with October to 

December rainfall, a 'lead-2' November to January rainfall and so on.  

For this study, comparisons are made for forecasts up to 'lead-6'.  

 

3.3.1 Correlations between Predictor Variables and the Objective Variable (Rainfall)  

Correlations coefficients were calculated to assess the statistical significance of the strength of 

the relationship between two variables. Despite the extensive use of the Pearson correlation 

coefficient, several undesirable characteristics associated with its use, due to which we select 

Kendall’s tau as the alternative for measuring dependence.  

 

Kendall’s tau is a well-accepted measure of dependence, which assesses statistical associations 

based on the ranks of the data from the same set of variables (Abdi 2007). It offers the best 

substitutes to the linear correlation coefficient as a measure of dependence for non-elliptical 

distributions, for which the linear correlation coefficient is inappropriate and often misleading.  

 

In addition, since the dependence measures depend on the rank only, the approach (rank-based) 

has the benefit of capturing the outlying observations compared to the linear approach. Further, 

Kendall’s tau plays an essential role in the parametrization of copula functions (Manner et al. 

2019). In this study, we define 'strong' correlations as those over 0.28. 
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3.3.2 Forecasting rainfall with D-vine based quantile regression model 

Suppose a data set (Y, X1, X2) which is three-dimensional where Y is the response variable (i.e. 

rainfall) in this study and (X1,X2) are the two covariates (e.g., climate mode indices), then all 

the three variables using their empirical distribution functions (or probability integral transform 

(PIT) as described earlier) are transferred to the pseudo-copula data (V,U1,U2).  

For the purpose of this study, we are interested in forecasting the conditional quantiles q
 of a 

response variable Y at a random quantile level ( )0,1   for given covariates 1 2( , ,..., )dX X X . 

In order to achieve this, the inverse of the conditional distribution can be expressed following 

Kraus and Czado (2017); 

 ( ) ( )
1,...,

1

1 | 1,..., : | ,...,
Xd

d Y X dq x x F x x −=  (20) 

Applying the PIT with the Sklar (1959) theorem, the response variable ( )YV F Y= conditioned 

on predictor variables ( ) ( ),...,j j j d d dU F X U F X= = the equation (3.1) on the right with the 

inversion can be written as;  

 ( ) ( )( )
1,..., 1 1

1 1 1

| 1 | ,..., | ,...,
| ,...,

X d dd
Y X d Y V U U u u

F x x F C


− − −=  (21) 

Hence, given a D-vine copula with response V as the first variable, the conditional copula 

quantile function 
( )1 1

1

| ,..., | ,...,d dV U U u u
C



−  can only be expressed analytically with the pair-copulas of 

D-vine which is not possible for arbitrary regular vines, therefore warranting the use of D-vine 

copula (see Kraus and Czado (2017) for more details). Figure 5 shows the three-dimensional 

D-vine model. 
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Figure 5:  Figure (a) is the model construction framework of a three-dimensional D-vine 

model (source (Nguyen-Huy et al. 2018)) 

Figure 5, shows an acyclic system in which the variables (V, U1, U2) are called the “nodes” of the D-

vine copula model, and two notes are connected together by a unique path. These paths are named the 

“edges” defined by a corresponding bivariate copula function of those two variables (two nodes).  The 

dashed path implies that whether the inclusion of the variable U2 into the bivariate model of V-U1 

increases the cllAIC or not. If the inclusion of U2 improves the cllAIC of the bivariate model, then a 

trivariate copula model is formed, i.e. V─U1─U2. The algorithm for sampling values ( )1 2, ,v u u  

from a three-dimensional D-vine copula is straightforward. First, sample ( )1 2 3, ,w w w  are 

independently drawn from a uniform distribution on  0,1 . Then, set: 

1 1,u w=  

( )1

2 2 121
,u F w u−=  

( )1 1

3 1 231 312
, ,v F F w u u− − =

 
   

where the conditional cumulative distribution functions 
21 31

,F F  and 
312

F  are defined: 

( ) ( )2 1 12 1 221

1

, ,F x x C u u
u


=


 

( ) ( )3 1 13 1 331

1

, ,F x x C u u
u


=


 

( )
( ) ( )

( )
2 1 3 1231 21 31

3 1 2312

2 121

,
, .

C F x x F x x
F x x x

F x x

 
 =


 

All statistical computations were performed using the VineCopula package (Schepsmeier et al. 2017) 

available through the R software (Team 2018), Matlab and Q-GIS 3.4 was used to create the map.  
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3.4 Forecast Model Performance Evaluation 

The model performance for rainfall forecasting for the rainfall stations in PNG was ascertained 

by using the model performance evaluation process.  

A robust model assessment requires evaluations from a wide range of statistical matrices as no 

single statistical measure is final (Willmott 1982; Deo et al. 2018). Pearson’s correlation 

coefficient (r), has been identified as an unsuitable measure in hydrologic model evaluation in 

(Legates & McCabe 1999).  A good alternative to the Pearson’s correlation is the Nash-

Sutcliffe Efficiency ENS (Nash & Sutcliffe 1970) as a “goodness-of-fit” or relative error 

measure since it is sensitive to differences in the observed and forecasted means and variances 

(Sumi et al. 2012). A wide range of statistical metrics is used to assess the performance of the 

developed models used in this study.   

The following statistical parameters and definition of the mathematical formulas were 

considered for the purpose; 

I. Correlation coefficient ( )r ; 

  

( )

2

1
2

2 2

1 1

; 1 1

n

i ii

n n

i ii i

O S S

R r

O O S S

O
− −

=

− −

= =

   
 − −  

   = −  
 

    − −   
     



 

 (22) 

II. Root mean square error (RMSE) (Chai & Draxler 2014); 

 
( )2

1

1
( ) ; 0 1

n

i ii
RMSE S O RMSE

n =
= −    (23) 

III. Mean absolute error (MAE) (Chai & Draxler 2014); 

 
( ) ( )

1

1
| |; 0 1

n

i ii
MAE S O MAE

n =
= −    (24) 

IV. Nash-Sutcliffe Efficiency ENS (Nash & Sutcliffe 1970); 
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V. Willmott’s Index of agreement ( )d  (Willmott 1982); 
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VI. Legates-McCabe’s Index ( )L (Legates & McCabe 1999); 
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VII. Relative Root Mean Square Error ( );%RRMSE  
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VIII. Mean Absolute Percentage Error ( );%MAPE  
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n O=

−
=  x 100 (29) 

Where iO = Observed rainfall, O
−

=mean of Observed rainfall, iS = Simulated rainfall and S
−

 = 

mean of Simulated rainfall. The first evaluation metric used to assess the models is the 

Pearson's correlation coefficient (r), the r is useful in determining if there is a relationship 

between two different variables, i.e., the Observed Oi  and Simulated ( )iS  rainfall values. The 

value of r lies between -1 to 1 with a value of 0r = indicating that the variables have no relation 

and if r = 1 then they have perfect positive relation, i.e., the change in one variable indicates 

the change in the other variable in the same direction with the same ratio. However, the 

equation is based on a linear relationship, and it is inappropriate to state that such a measure is 

statistically significant (Willmott 1982).   

The RMSE and MAE are absolute error measures that express the overall error in the rainfall 

forecast model and are both used in evaluating the model. The MAE, by definition, is never 

larger the RMSE when both matrices are calculated (Chai & Draxler 2014). The RMSE 

represents the sample standard deviation of the difference between predicted values and 

observed rainfall values. It follows an assumption that errors follow a Gaussian distribution 

and can evaluate the model with a higher level of skill compared to the correlation coefficient. 

For a perfect model, RMSE should be equivalent to zero; a small RMSE value indicates a more 

efficient model. 
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The MAE calculates the errors as an average of absolute differences between the observed 

values (rainfall), and the simulated were all individual differences have equal weights (Legates 

& McCabe 1999). It is used for non-Gaussian cases since it has a linear scoring rule that 

describes only the average errors, overlooking their direction of variation from the measured 

values. Thus, MAE always is ≥ 0, where MAE = zero signify a perfect fit while it ∞ represents 

the worst fit model. 

The Nash–Sutcliffe Efficiency (ENS) is widely used and is the most reliable statistic for 

assessing the goodness-of-fit of hydrologic models; it determines the relative magnitude of the 

remaining variance of simulated data in comparison to the measured variance, which in this 

case is the mean of the observed rainfall values (Prasad et al. 2017). The ENS indicates how the 

plots of observed versus simulated data fits the 1:1 line, 1 =  it perfectly matches modeled 

simulation to the observed data; 0 = no predictive advantage as it indicates that the model 

forecasts are as accurate as the mean of the observed data; and negative values when forecasted 

values deviate  (Legates & McCabe 1999). However, the ENS, according to Legates and 

McCabe (1999) overestimates the higher values, and the lower values are ignored. In order to 

overcome the disadvantage of the insensitivity issues associated with ENS, Willmott’s Index (d) 

of the agreement was introduced.  

The d  is a standardized measure and is used to calculate the degree of the prediction error of 

the model with regards to the observed values of the data by considering the ratio of mean 

squared error.  d = 1 signifies a perfect agreement between the simulated rainfall data and the 

observed rainfall data with a decrease from d 1 to 0, reduces their agreement as well (Legates 

& McCabe 1999). 

To further compliment the model's evaluation skills, and overcome the over sensitiveness to 

extreme values the Legates-McCabe’s Index (L) (Legates & McCabe 1999) is used as well to 

evaluate the model's performance since both d  and ENS cannot handle.  The L value lies 

between (−∞,1) and has an absolute value at 1.  

Since the four rainfall stations are from four geographically diverse sites, which shows in the 

different amount of rainfall received, the relative errors; RRMSE and MAPE were included to 

evaluate the model performance (Prasad et al. 2017). The RRMSE is computed by dividing the 

RMSE with the mean of the observed rainfall data, while the MAPE calculates the absolute 

value of average between simulated and observed rainfall data and is measured in percentage 

error, e.g.; if 10%RRMSE   is excellent, 10% 20%−  reflects good, 20% 30%−  fair and more 

than 30% poor (Mohammadi, K. et al. 2015; Despotovic et al. 2016). It is important to note 
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that the absolute error measures (RMSE and MAE) have a dissimilarity with the computation 

of the residual in RMSE squared, while in MAE, it is not. Also, since the absolute errors are in 

real units, this limits their ability to assess the model performance across the different sites. 

Therefore, to get a better understanding of the individual model performance assessments, 

various diagnostic plots, e.g., forecasting error histogram, boxplots and scatter plot, are also 

created. 
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CHAPTER 4 BIVARIATE FORECASTING MODEL   

 

This chapter focuses on developing and evaluating the bivariate copula forecasting techniques 

with the two different types of El Niño/Southern Oscillation (ENSO): canonical ENSO and 

ENSO Modoki, using bivariate copula models.  

 

The relationship between different three-month-average ENSO indicators and three-month-

total rainfall was first analyzed using rank-based Kendall’s correlation coefficients, and then 

the ENSO indicator with the highest correlation with rainfall was selected to develop bivariate 

copula models further. This chapter also discusses the results of the models performance 

evaluated via statistical means such as Willmott's Index (d), Nash–Sutcliffe Efficiency (ENS), 

Legates-McCabe’s Index (L), root-mean-square-error (RMSE), and mean absolute error 

(MAE), plus the mean absolute percentage error (MAPE) and the relative root mean square 

error (RRMSE) which concludes this chapter.  

 

This chapter is arranged as 4.1 Introductory note, 4.2 Methods, 4.3 Results and Discussion, 4.4 

Comparison of all sites, and 4.5 Concluding remarks. 

4.1 Introductory Note  

A continuous shortage of rainfall can have a devastating bearing on the environment, society, 

and economy, particularly in agricultural regions such as PNG. Accurate modeling of rainfall 

distribution enables farmers to make informed decisions to reduce their exposure to weather 

risks as well as taking advantage of favorable climatic relationships. Large-scale climate mode 

indices have been are known to have a noticeable influence on rainfall and have been used in 

recent years to forecast rainfall using copula statistical approaches (Khedun et al. 2014; 

Nguyen-Huy et al. 2017).  

 

ENSO has a profound influence on rainfall in PNG (Smith, I. et al. 2013) and will be used to 

develop the bivariate models to forecast rainfall in this chapter. At a larger scale, the impact of 

ENSO on rainfall patterns is generally well known, but at the regional scale, it is less known, 

which is the case over much of the New Guinea region.   From the four weather stations used 

in this study, three stations are from research stations which research coffee (Aiyura), Sugar 

Cane (Ramu) and Oil Palm with the final central climate station located in Port Moresby. 
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4.2 Methods 

4.2.1 Data and Explanation of Modelling Time Steps 

In this study, the three-month mean values of the ENSO indicators (SOI, Niño 3.4 SST, Niño 

3.0 SST, Niño 4.0 SST, and EMI) are used to forecast the following three-month block total 

rainfall (e.g., March-May mean SOI is predicting June-August total rainfall).  

Here we define the different lead times as lead-0, lead-1, lead-2 to lead-6. For example, in a 

‘lead-0’, the March-May (MAM; hereafter we use this notation style to refer a consecutive 

three months) SOI is used to compare the total June-August (JJA) rainfall in each rainfall 

stations.  

For a ‘lead-1’, February-April (FMA) SOI is compared with JJA rainfall, ‘lead-2’, January-

March (JFM) SOI is compared to JJA rainfall. Comparisons are made up to “lead 6’.  

The same for other ENSO indicators, e.g., to forecast FMA rainfall with Niño 4.0: Lead-0 = 

JFM, Lead-1=DJF, Lead-2=NDJ, Lead-3 = OND, and Lead-4 = SON. 

4.2.2 Correlations 

The importance of copula models is that it can select the best correlation structure between the 

predictor-target variables and offers a more robust tool to model dependence structures with 

jointly correlated variables (Schepsmeier 2015). The rank-based Kendall’s correlation 

coefficient was used to examine the relationship between the two different types of El 

Niño/Southern Oscillation (ENSO): canonical ENSO and ENSO Modoki on the rainfall across 

the four study sites in PNG. The climate-rainfall correlation magnitude required for statistical 

significance is ± 0.28 (at a significance level of 0.05).  Table 6 provides a summary for the 

three-monthly rainfall forecasting period and the different ENSO lead times based on the 

correlations. From the table models M3, M4, M10, and M11 for Aiyura, M4, and M10 for 

Ramu and M4 for Dami displayed weaker correlations and were not further used in the bivariate 

copula model development.   
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Table 6:  Selections based on the correlations for each of the study sites. The mean three-

month climate indices with the lead times were selected based on the highest 

correlations against the three-monthly total rainfall to use in the construction of 

the bivariate copula model development. The periods (shown in green) did not 

have a statistically significant relationship (at a significance level of 0.05). 

*RFP is the rainfall forecasting period, and CI denotes ENSO Climate Index. 

    Port Moresby Aiyura Ramu Dami 

Model 

Name 
RFP CI 

Lead 

(0-6) 

Ken

dall 
CI 

Lead 

(0-6) 

Kend

all 
CI 

Lead 

(0-6) 

Ken

dall 
CI 

Lead 

(0-6) 

Kend

all 

M1 JFM 
Niño 

3.4 
6 -0.52 EMI 1 0.49 

Niño 

4.0 
0 0.38 

Niño

3.0 
3 0.45 

M2 FMA 
Niño 

4.0 
6 -0.34 

Niño 

4.0 
4 0.38 EMI 2 0.39 

Niño

3.0 
6 0.37 

M3 
MA

M 

Niño 

3.4 
0 -0.32 SOI 5 -0.19 EMI 3 0.29 

Niño

4.0 
0 0.33 

M4 AMJ 
Niño 

3.4 
0 -0.40 

Niño 

3.4 
0 -0.19 

Niño 

3.0 
4 -0.14 EMI 2 -0.26 

M5 MJJ 
Niño 

3.0 
0 -0.28 

Niño 

4.0 
0 -0.39 EMI 0 -0.50 EMI 3 -0.40 

M6 JJA EMI 6 -0.38 
Niño 

4.0 
0 -0.41 

Niño 

4.0 
0 -0.47 EMI 3 -0.32 

M7 JAS SOI 0 0.32 SOI 0 0.43 
Niño 

3.0 
1 -0.51 

Niño

4.0 
0 -0.40 

M8 ASO SOI 0 0.39 SOI 0 0.36 
Niño 

3.4 
0 -0.45 

Niño

3.4 
0 -0.49 

M9 SON SOI 1 0.46 SOI 0 0.38 SOI 0 0.45 SOI 1 0.56 

M10 OND SOI 0 0.62 
Niño 

4.0 
3 -0.14 

Niño 

4.0 
5 0.20 SOI 2 0.30 

M11 NDJ SOI 1 0.63 
Niño 

3.0 
0 0.17 

Niño

3.0 
2 0.29 

Niño

4.0 
0 0.30 

M12 DJF SOI 1 0.50 SOI 0 -0.37 
Niño 

4.0 
3 0.32 

Niño

3.0 
4 0.39 

 

4.2.3 Model Development 

To fully assess the various forms of joint dependence structures, the rotated bivariate copula 

versions were also used to fit the bivariate models (Brechmann 2010). The bivariate copula 

models were constructed using the vinereg package, which performs the sequential estimation 

of a regression D-vine for quantile prediction as described in Kraus and Czado (2017). A total 
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of ten one and two-parameter copula families were applied to develop the bivariate copula 

model to assess the impact of multiple climate mode indices on rainfall.  

Following this, a one-fold cross-validation method was used to assess the out-of-sample 

performance of forecasting models at given quantile levels by applying the cross-validation 

(Nguyen-Huy et al. 2018) to the observed and forecasted values using R (Team 2018).  

The observed and forecasted values were then assessed using the performance matrices d, ENS, 

L, RMSE, and MAE, RRMSE, and MAPE to decide on the best model. 

4.3 Results and Discussion 

4.3.1 Station 1 – Port Moresby (POM) 

Port Moresby has a clear wet/dry season (Figure 4) with the dry season occurring around May 

to October and the wet season from November to April. Figure 6 shows Kendall’s correlations 

between the two different types of ENSO and rainfall in Port Moresby.  

It is interesting to note that SOI has a strong relationship with rainfall in Port Moresby between 

the three-monthly periods of JAS to DJF (M7-M12) (Figure 5-(a)), while the SST’s exerted a 

significant relationship between SON-JFM (M1-M5) (Figure 6-(b-d)) and EMI on the JJA 

(M6), OND and NDJ rainfall (Figure 6-(e)) (see also Table 6). The correlation between the 

NDJ rainfall and SOI lead-1 had the highest with 0.63, followed by correlation the between 

OND rainfall and SOI lead-0 (0.62). Niño 3.4 lead-6 had the highest negative correlations (-

0.52) with JFM rainfall Figure 6(c); these correlations are backed up by Smith, I. et al. (2013) 

while investigating correlations between seasonal average Niño 3.4 and seasonal rainfall over 

the New Guinea region.   

The findings are expected since both the El Niño, and La Niña develops around March to May, 

which explains why the SST’s have good correlations during that period (JFM-MJJ). The El 

Niño and La Niña gradually strengthen around the November-February period, which explains 

the significant SOI-rainfall correlations for M10 and M11.  
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Figure 6:  Kendall’s Tau correlation between the climate mode indices and the rainfall for 

Port Moresby, each plot represents different indices, (a) SOI, (b) Niño 3.0, (c) 

Niño 3.4, (d) Niño 4.0 and (e) EMI (Horizontal dotted lines indicate significant 

at 5%).  
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4.3.1.1 Model evaluation 

From the selections in Table 6,  each models performance were evaluated through different 

visual evaluation such scatter-plots and the coefficient of determination R2, Boxplots 

(Observed and Simulated), Frequency plot of absolute forecasting error |FE|,  as well through 

the performance metrics equations [Eq: (22) to (29)] were used to evaluate the ability of ENSO 

climate index to forecast rainfall. The models M8 and M9 (highlighted in Table 7) forecasted 

negative values in the year 1997, which is an extremely dry year indicating by very low rainfall 

of 7.8 mm observed for both (ASO and SON and the corresponding rainfall values for the 

forecasted was -17.94 and -16.85 respectively. The negative forecasted values may lie in the 

transform step where the quantile function was applied to convert the simulated copula data in 

[0,1] back to the observational scale. However, this also implies that the copula model has well 

captured the low part in the dependence structure between the two variables resulting in a 

correspondingly low value of realization.  

From the performance evaluation metrics presented in Table 7, the bivariate rainfall 

forecasting model with SOI lead-1 for NDJ rainfall (M11; hereafter we use this notation style 

to refer to the model name as provided in Table 6) rainfall returned the highest d for all the 

three months rainfall forecasting periods with 0.85 followed by the M10 (0.68), M1 (0.53), and 

M9 0.47 as the top-ranked and is further supported with the L = 0.48, 0.31, 0.28 and 0.20 

respectively. Overall the M11 model with indicator metrics r = 0.82, RMSE = 0.35,MAE = 

64.09, ENS = 0.67, d = 0.85 and L = 0.48 returned better results and is consistent with Kendall’s 

correlation discussed earlier of which M11 had the highest. The next best models include M10, 

M12 and M1. 
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Table 7:  The performance of the observed and simulated rainfall for Port Moresby, based 

on Pearson's correlation coefficient ( )r , RMSE (root mean square error), MAE 

(mean absolute error), ENS (Nash–Sutcliffe Efficiency), d (Wilmott Index)  and 

L (Legates-McCabe’s index). The highlighted periods (green) is M8 and M9 

model which had forecasted negative values *RFP is the rainfall forecasting 

period 

Model 

Name 
RFP CI 

Lead  

(0-6) 

Lead 

Months 
r 

RMSE 

(mm) 

MAE 

(mm) 

ENS  

 [-∞, 1] 

d 

[0, 1] 

L 

[-∞, 1] 

M1 JFM 
Niño 

3.4 
6 AMJ 0.63 130.72 99.79 0.38 0.53 0.28 

M2 FMA 
Niño 

4.0 
6 MJJ 0.49 145.66 118.57 0.22 0.44 0.09 

M3 MAM 
Niño 

3.4 
0 DJF 0.20 177.80 142.24 -0.04 0.24 -0.05 

M4 AMJ 
Niño 

3.4 
0 JFM 0.28 136.45 96.17 -0.01 0.33 0.08 

M5 MJJ 
Niño 

3.0 
0 FMA 0.14 120.92 93.72 -0.06 0.14 -0.02 

M6 JJA EMI 6 SON 0.23 97.83 64.04 0.01 0.31 0.11 

M7 JAS SOI 0 AMJ 0.30 46.68 35.83 0.05 0.12 0.11 

M8 ASO SOI 0 MJJ 0.45 51.05 39.12 0.18 0.45 0.15 

M9 SON SOI 1 MJJ 0.46 94.18 59.34 0.19 0.47 0.20 

M10 OND SOI 0 JAS 0.69 89.02 69.53 0.47 0.68 0.31 

M11 NDJ SOI 1 JAS 0.82 83.35 64.09 0.67 0.85 0.48 

M12 DJF SOI 1 ASO 0.52 118.59 87.15 0.26 0.43 0.19 

 

The RMSE and MAE are crucial evaluations for model performance- lower the number, better 

the model, this was observed M7 model for Port Moresby which had the lowest value (RMSE 

= 46.65 mm and MAE = 35.83 mm), however, the models performed poorly with the ENS = 

0.05, d = 0.12 and L = 0.11.  

The statistical metrics construe the excellent forecasting capabilities of M11 rainfall model 

compared to the other rainfall models, and this is further supported using additional diagnostic 

plots in Figure 7. The coefficient of determination (R2) and the linear fit equation also 

provided. Whereby the R2 values close to 1 indicate better fit (Hora & Campos 2015). The 

scatter plot clearly shows the NDJ-M11 bivariate models outperforms the other three models 
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(OND-M10, JFM-M1, and SON-M9) as their scatter points are diverted from the y x=  linear 

form. The scatterplot of the site Port Moresby is in congruence with the outcomes of Willmott’s 

Index (d), Nash–Sutcliffe Efficiency (ENS) and Legates-McCabe’s index (L) which confirms 

the superior performance of M11 bivariate rainfall model. The R2 of NDJ model has the highest 

R2 = 0.67, and it can be assuredly established that an overall 67% of the observed values could 

be forecasted for M11 rainfall. Again, the second-best model was M10 with a value of R2 = 

0.47 followed by M1 (R2 = 0.39) and M12 (R2 = 0.27). On the other hand, the gradient (m) 

which is an alternative model performance metric of the linear fit, was observed in M11 to be 

very closer to unity (i.e., 0.69) which reaffirms the model’s superior performance. 

 

Figure 7:  Bivariate copula models developed using lead-1 SOI, lead-0 SOI, and lead6 

Niño3.4 as the predictor variable respectively for three monthly cumulative 

rainfall for NDJ, OND, JFM, and DJF for Port Moresby (POM) rainfall station 

(PNG). In each panel, a least-squares regression line of the form RPred = m RObs 

+ C with a coefficient of determination R2 included, to assess the level of 

agreement between the forecasted and observed values is included. 

To further evaluate the bivariate rainfall forecast models, analysis of the forecasting errors (FE) 

was applied to assess the competence of the best models for Port Moresby for forecasting the 

rainfall. The difference between the forecasted and observed rainfall is the FE.  Figure 8 is a 

histogram plot showing the percentage frequency of errors of various error brackets of ± 100 

step sizes, was used to give a better understanding of the model's accuracy and also for practical 

applications (Deo et al. 2016). A histogram of the frequency error for the four best performing 

models for Port Moresby is prepared (Figure 8). Consistent with the results provided earlier, 

the most suitable forecast model is M1l, with 89 % of the forecasting errors observed within 
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the lowest error margin 0 < error ≤ 100. The next best models are the M10 with 81% in the 

same error bracket ± (0 < error ≤ 100). However, when the next error bracket (100 ≤ error ≤ 

200) was assessed M10 shows around 15% (i.e., 96% summed with the first bracket), whereas 

M10 model 11% (i.e., 100% summed with the first bracket). This demonstrates that the M11 

model is better than M10. The next best model (after M11 and M10) is M12 which displayed 

the highest percentage of errors in the smallest error bracket 70% to be precise compared to 

M1 with 67%. 

 

Figure 8:  Histogram of the frequency distribution (Freq %) of forecasted errors (FE) 

generated by the bivariate copula statistical model for rainfall in Port Moresby. 

The number of datum points in each error bin is shown. 

4.3.2 Station 2 – Aiyura  

Rainfall data from Aiyura (AIY) - first highlands rainfall stations in PNG established in 1937 

- was also used to develop bivariate models. As we have seen in the previous section, the ranked 

based correlations (Kendall tau) were performed between the three months cumulative total 

and three-month average climate indices with different lead times to select the best relationship 

as summarized in Table 6. 

Before constructing the copula-based bivariate model, the rank-based correlations were 

performed to identify statistically significant lagged correlations, based on which climate index 

that had the highest correlation with the 3-month total rainfall. The SOI lead-0 had strong 

positive correlations with the three months rainfall periods of JAS, ASO, OND, as shown in 

Figure 9(a). The JFM rainfall correlations with EMI leads 1-6 all displayed strong correlations 

ranging between 0.38-0.49 with lead-1 having the highest (Figure 9 (e)). It was also found that 



45 
 

none of the climate indices has a statistically significant correlation to the MAM, AMJ, OND, 

and NDJ rainfall with the correlation values falling between the horizontal dotted lines. The 

negative correlations displayed by ENSO occurs around the dry season for Aiyura, which is 

around May to September (less rainfall Figure 4). 
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Figure 9:  Ranked-based Kendall’s Tau correlation between the climate mode indices and 

the rainfall for Aiyura, each plot represents different indices, (a) SOI, (b) Niño 

3.0, (c) Niño 3.4, (d) Niño 4.0 and (e) EMI (Horizontal dotted lines indicate 

significant at 5%). 
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4.3.2.1 Model evaluation 

Evaluation of Aiyura rainfall models was carried out after generating the forecasted rainfall 

values. Table 8 provides the evaluation matrices that were employed to evaluate each model’s 

performance through the conventional matrices r, RMSE, and MAE, and the goodness of fit 

matrices ENS, d and L. The M1 copula-based bivariate model which was developed using JFM 

total rainfall (predictand) and EMI lead-1 (predictor) registered the highest r-value (0.63) and 

is trailed by M12 (0.51), M6 (0.48), M5 (0.47), M9 and M7 (0.41 apiece), M2 (0.38) and M8 

(0.27) in descending order. Further assessment using the absolute error measures, however, 

indicated that M5 attained the lowest possible RMSE and MSE values. Although M1 had the 

next best RMSE (105.99 mm), the MAE (89.75 mm) was outdone by M6 (MAE = 86.41 mm). 

Similarly, M5 and M6 outclassed M12 although the model had the second-best r value when 

compared with the absolute error measures. The results discussed so far are obscured implying 

an additional combination of metrics to further asses model performance.   

Statistical evaluation of model performances using Nash–Sutcliffe Efficiency (ENS), Willmott's 

Index (d),  and Legates-McCabe's Index ( )L , which generally require unity for perfect models, 

again M1 performed better yielding ENS = 0.63, d = 0.38 and L = 0.20 and reaffirming its 

superior performance which is consistent with the r-value. M12 again displayed the second-

best results through the goodness of fit assessment. The other two models, M6 and M5 

displayed exceptional results with M6 outclassing M5 with a noticeable difference between the 

r, ENS, and d while M6 performed better with the L index as shown in Table 8. In addition, 

although M2 had a slightly lower correlation compared to the models discussed so far although 

it performed better with the ENS index value of 0.37 which is also the same value with M7 and 

M9.   
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Table 8:  The performance metrics of the observed and simulated rainfall for Aiyura, 

based on Pearson's correlation coefficient (r), RMSE (root mean square error), 

MAE (mean absolute error), Nash–Sutcliffe Efficiency (ENS), Willmott's Index 

( )d  and Legates-McCabe’s index (L). *RFP is the rainfall forecasting period, 

LTM is the lead time in months.  

Model 

Name RFP CI 
Lead 

(0-6) 
LTM r   

RMSE 

(mm) 

MAE 

(mm) 

ENS  

 [-∞, 1] 

d  

[0, 1] 

L  

[-∞, 1] 

M1 JFM EMI 1 SON 0.63 105.99 89.75 0.63 0.38 0.20 

M2 
FMA 

Niño 

4.0 
4 JAS 0.38 157.14 126.45 0.37 0.10 0.09 

M3 MAM SOI 5 JAS       

M4 
AMJ 

Niño 

3.4 
0 JFM       

M5 
MJJ 

Niño 

4.0 
0 FMA 0.47 104.40 81.19 0.26 0.20 0.13 

M6 
JJA 

Niño 

4.0 
0 MAM 0.48 111.26 86.41 0.30 0.21 0.10 

M7 JAS SOI 0 AMJ 0.41 136.11 107.88 0.37 0.14 0.07 

M8 ASO SOI 0 MJJ 0.27 176.82 130.72 0.24 -0.08 -0.01 

M9 SON SOI 0 JJA 0.41 151.12 116.02 0.37 0.16 0.09 

M10 
OND 

Niño 

4.0 
3 AMJ       

M11 
NDJ 

Niño 

3.0 
3 MJJ       

M12 DJF SOI 0 SON 0.51 117.29 97.22 0.47 0.26 0.10 

 

Moreover, to further verify suitable rainfall models, the scatter plots of observed and predicted 

rainfall was employed. Consistent with the results discussed so far, the two best performing 

rainfall models was reaffirmed to be M1 and M12 (Figure 10). The plot clearly shows that the 

M1 rainfall model performed better with R2 (coefficient of determination) of 0.39 which is then 

trailed by M12 (R2 = 0.26), M6 (R2 = 0.23), M5 (R2 = 0.22), M9 (R2 = 0.16) and M2 (R2 = 

0.14). The scatterplot of the Aiyura is in agreement with the outcomes of d , ENS and L, which 

still confirms the superior performance of M1.  An alternative model performance metric is the 

gradient (m) of the linear fit, and for a good model the gradient should be close to unity and 

based on Figure 10 it was reaffirmed again that M1 had the uppermost value of  0.47. However, 
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it is interesting to note that the gradient for M5 and M6 (0.29 apiece) performed better 

compared to M12 (0.27).  

 

Figure 10:  Scatter plot of the six-best performing bivariate copula rainfall models for 

Aiyura rainfall station (PNG). M1 and M2 (top panel L-R), M5 and M6 (middle 

panel L-R) and M9 and M1 (bottom panel L-R). In each panel, a least-squares 

regression line (black) of the form RPred = m RObs + C with a coefficient of 

determination (R2) included, to assess the level of agreement between the 

forecasted and observed value. 

In addition to the scatter plots, the model’s preciseness was also evaluated using histograms of 

absolute forecasting errors plots which has a much more in-depth analysis of actual errors (Deo 

et al. 2016). Figure 11 shows the histogram plot with numbers displayed on each bar 

representing the actual percent-age values for the error brackets of 100 step-sizes. The M1 

model again maintained its dominance over all the other models registering the uppermost 

percentage of forecasting errors (74%) in the first bin (0 < error ≤ 100) followed by M6 (67%), 

M9 (63%), M5 and M12 (56% apiece) and finally M2 (48%). Although there is a tie between 

M5, and M12, the accumulation of percentages indicates that the total forecasting error of M5 

when compared to the second error bin 100  ≤ error ≤ 200, was calculated to be 96% while 

M12 scored a total of 89% of errors which indicates M5 outperforming M12.  

There is no doubt M1 performs better, having accumulated all percentage errors within the first 

and second error bins. Although M12 performed better (second best) in r metrics including the 
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d, ENS and L , its performance with the frequency error plots contradicts the results. One 

obvious limitation of the r metric is it only evaluates the general patterns between the observed 

and forecasted (modelled) values and not the absolute differences (Legates & Davis 1997). In 

addition, r ranges from 1.0 (perfect model) to 0.0 (poor model) and records the level of 

agreement between observed and forecasted data. However, it is limited as it based on linear 

relationships since it standardizes the variance of the observed and forecasted data (DeoTiwari, 

et al. 2017). On the other hand, the ENS, d, and L are based on ‘average’ performance were all 

forecasted, and observed data is used, and individual error assessment is not made (Willmott 

1982; Legates & McCabe 1999).  Frequency plots are more useful as it again provides a more 

in-depth analysis of actual errors of individual model performance. 

 

Figure 11:  Histogram illustrating the percentage frequency of absolute forecasting errors 

(|FE|) of the six rainfall forecasting models generated through the copula-based 

approach (bivariate) for Aiyura study site. Models M1 and M2 (top pane L-R), 

M5 and M6 (middle pane L-R) and M9 and M12 (bottom pane L-R). Each bar 

shows the percentage counts. 

4.3.3 Station 3 - Ramu  

Ramu is an important agricultural station and located in the Ramu valley in PNG and is 

involved in the production of sugar, beef and recently oil palm. Correlations were performed 

to assess the relationship between the climate index (lead 0-6) and rainfall. Selections of the 

predictors (climate index) and predictand (rainfall) to develop the copula-based bivariate 

models were based on the best (highest) correlation, as shown in Table 6. 
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The influence of the SST’s over rainfall in Ramu is obvious; Niño 3.0 - JAS and NDJ, Niño 

3.4 - ASO, and Niño 4.0 - JFM, JJA, and DJF. The SOI  lead-0 exerted its influence on the 

SON rainfall period with a correlation value of 0.45 as shown in Figure 12 (a). The SST based 

mode indices displayed a strong negative correlation between JJA – ASO rainfall periods with 

the highest recorded Niño 3.0 lead-0 (-0.51) for the JAS rainfall while the EMI had a significant 

association with rainfall between FMA, MAM, and MJJ with the latter having the strongest 

correlation (-0.51) with lead-0 (Figure 12(e)). The EMI correlation with Ramu rainfall is 

noticeable around the March to May period, and this is consistent with studies conducted in 

Australia which shows the north-western Australian autumn rainfall is correlated with El Nino 

Modoki (EMI) (Taschetto & England 2009). On the other hand, the positive correlation 

recorded between the SON – JFM rainfall on ENSO is consistent with the period in which 

ENSO’s peak intensity (December-April) and weakens during May-July which justifies the 

negative correlation values (Table 6). 
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Figure 12:  Kendall’s Tau correlation between the climate mode indices and the rainfall for 

Ramu. Plot (a) represent SOI, Niño 3.0 (b) Niño 3.4 (c), Niño 4.0 (d) and EMI 

(e). (The horizontal dotted line represents significance at 5%).  
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4.3.3.1 Model evaluation 

From the ten different bivariate copula-based rainfall models developed, it is evident that M9 

(SON) had a higher significant r  value followed by M6, M8, M5 and M7 with respective values 

of 0.59, 0.57, 0.56 and 0.54 as shown in Table 9.  

The next evaluation metrics considered was the RMSE and the MAE. Although M9 had a higher 

r  value its RMSE = 107.33 was not as good compared to M5, M6, M7 and M8 of which had a 

value of RMSE = 90.25, 74.39, 89.84 and 104.14 respectively as shown in Figure 13. The order 

changed when comparing metrics MAE, M5 performed better with 60.71, followed by M6 

(61.75), M7 (73.69), M8 (84.22) and M9 (85.80). However, we cannot decide the best models 

based on RMSE and MAE evaluations. Instead, a combination of other metrics, including 

RMSEs and MAEs, are often essential to assess model performance. 

 

Figure 13:  The root means square error RMSE (mm) and the mean absolute error MAE 

(mm) for the ten-rainfall forecasting model for Ramu station. 

Additional assessment of model performance using the Nash-Sutcliffe Efficiency (ENS), 

Willmott’s Index (d), and the Legate-McCabe’s Index (L), which ideally for perfect models 

requires unity, are performed to evaluate each of the ten copula-based bivariate rainfall models 

(Table 9). Based on the performance metrics mentioned, M9 model demonstrated a substantial 

improvement in the performance displaying the highest value of ENS and d compared to all the 

other models for Ramu, with a value of 0.70 and 0.39 respectively. M9 however, had the 

second-best performance with L = 0.22 compared to M5 (L = 0.33). The next best performing 

model based on d is M6 (0.34) followed by M8 (0.32) with the lowest-performing model M3 

(0.21). Other models which performed poorly based on WI, L and ENS included model M1, M2, 
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M3, and M12 all have negative values indicating the forecasted values diverging, whereas 

values closer to 0 have no predictive advantage (Legates & McCabe 1999). 

Table 9:  The performance evaluation metrics for the ten different bivariate copula 

rainfall models for Ramu, based on Pearson's correlation coefficient ( )r , RMSE 

(root mean square error), MAE (mean absolute error), Nash–Sutcliffe Efficiency 

(ENS) and Legates-McCabe’s index (L). *RFP – The three-monthly total rainfall 

forecasting period, CI – three moths average Climate Index (Predictor), LTM – 

Lead time months (Predictor)* 

Model 

Name 
RFP CI 

Lead 

(0-6) 
LTM r 

RMSE 

(mm) 

MAE 

(mm) 

ENS 

[-∞ 1] 

d  

[0, 1] 

L 

[-∞ 1] 

M1 JFM Niño 4.0 0 OND 0.29 194.22 157.81 0.23 -0.08 -0.04 

M2 FMA EMI 2 SON 0.33 173.99 134.70 0.24 -0.10 0.03 

M3 MAM EMI 3 SON 0.21 154.37 112.08 0.16 0.01 0.01 

M4 AMJ Niño 3.0 4 SON       

M5 MJJ EMI 0 FMA 0.56 90.25 60.71 0.53 0.30 0.33 

M6 JJA Niño 4.0 0 MAM 0.59 74.39 61.75 0.50 0.34 0.18 

M7 JAS Niño 3.0 1 MAM 0.54 89.84 73.69 0.54 0.26 0.17 

M8 ASO Niño 3.4 0 MJJ 0.57 104.14 84.22 0.59 0.32 0.18 

M9 SON SOI 0 JJA 0.64 107.33 85.80 0.70 0.39 0.22 

M10 OND Niño 4.0 4 MAM       

M11 NDJ Niño 3.0 2 JJA 0.36 155.63 130.55 0.39 0.11 0.03 

M12 DJF SOI 0 SON 0.36 195.69 167.21 0.45 0.03 -0.03 

 

Moreover, comparisons were made to evaluate the best rainfall models for Ramu using 

scatterplots of the observed and simulated values, as shown in Figure 14. From the four best 

models, the plots reaffirm M9 superior performance as the scatter points are clustered close to 

the y = x linear form with the maximum R2 = 0.41 indicating an overall 41% of the observed 

rainfall could be forecasted using that bivariate model. The next best model was M6 (R2 = 0.34) 

followed by M8 (R2 = 0.33) with M5 as the least performing having R2 = 0.31. An alternative 

model performance metric is the gradient (m) of the linear fit. For a suitable model the gradient 

should be close to unity, based on the models evaluated M9 was close to idyllic magnitudes 

further backing up the outcomes of the predictor metrics with a m = 0.41, which was again 

trailed M6.  
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Figure 14:  Comparisons of the four best performing copula-based bivariate rainfall models 

for Ramu rainfall station (PNG). In each panel, a least-squares regression line 

of the form RPred = m RObs + C with a coefficient of determination 2R included, 

to assess the level of agreement between the forecasted and observed values are 

included. 

Furthermore, the bivariate copula-based rainfall forecast models were further evaluated using 

the frequency error plots as shown in Figure 15 where the absolute value of error accumulated 

in separate error bins of ±100 of various error brackets was used to give a better understanding 

of the model accuracy for practical applications. For each error bin, the percentage count is 

shown at the top of each error bar. It is interesting to note that the rainfall predictions using M6 

yielded the highest frequency of errors in the smallest error bracket (0 < error ≤ 100) with 81% 

of all data points in this smallest error bracket, followed by M5 (74%)  M5 (70%) and M8 

(67%). Evidently, Figure 15 indicates that M6 is the best model since a more significant 

portion of errors lies within smallest error bracket (0 < error ≤ 100) with a smaller portion of 

the datum points redistributed in larger error bracket (precisely 19%). This signifies that M6 

tends to generate more accurate predictions.  
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Figure 15:  Frequency plot of absolute forecast errors (Freq %) generated by the bivariate 

copula statistical model for the best performing rainfall models for Ramu. The 

number of datum points in each error bin is shown 

However, when compared with the scatterplot (Figure 14), the overall covariance between 

forecasted and observed data indicates that M9 has better performance, and this conflicts the 

results. However the major limitation of r is it standardizes means and variance of the observed 

and forecasted datum which was bounded by [−1, 1] and only measures the overall 

correspondence (Deo, Kisi, et al. 2017; DeoTiwari, et al. 2017).  

Also, based on the ENS, d, and L indicated the better model as M9 as discussed; however they 

are based on ‘average’ performance where all forecasted and observed data is used and 

individual error assessment are not made. ENS assesses the differences between observed and 

forecasted data and calculates as average square values, and as a consequence, larger values in 

the data can be over-estimated as well as smaller values neglected (Legates & McCabe 1999).  

The Willmott index (d) (Willmott 1982) overcomes the insensitivity created by ENS since it 

evaluates the precision of the forecasted values concerning observed values of the data by 

taking into account the ratio of mean squared error instead of the square of the error differences. 

Whereas L  does not overestimate since the absolute values are considered and give appropriate 

weights to the errors and differences (Legates & McCabe 1999),  

The frequency plots are more meaningful as it evaluates the individual error assessment of the 

models and therefore M6 is the best models since 81% of errors lies within smallest error 
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bracket (0 < error ≤ 100) with the remaining 19% of the datum points redistributed in larger 

error bracket.  

4.3.4 Station 4 – Dami 

The fourth station used in this study is Dami research station, which is in West New Britain 

Province, PNG with an estimated terrain elevation above sea level of 30 m.  As a prior step for 

constructing a model, correlations were done using Kendall tau correlations to assess how 

strongly the relationship of the three-monthly average climate index (predictor) and three-

monthly total rainfall. These were done using the rank-based method since this approach has 

the advantage of capturing far-off observations hence in deciding the best associations with the 

predictor and the predictand (i.e., rainfall) for the model development using copula (Nguyen-

Huy et al. 2018).  

The correlations plots in Figure 16 showed low correlations with the ENSO indices during the 

period AMJ with all values falling between the dotted line. The EMI had a better correlation 

with MJJ and JJA rainfall. The three months mean SOI lead-1 correlation with the SON total 

rainfall displayed the highest positive significant correlation (0.56) compared to all the other 

models. The SOI also displayed good correlations (0.30) with the OND rainfall while the 

remaining three-monthly rainfall periods correlated well with the SST’s as shown in Table 6 

and Figure 16. The EMI negative correlation values associated with Dami’s rainfall occurs 

around June – August which is similar to negative EMI-rainfall correlations observed in 

Australia (Taschetto & England 2009; Yuan, C. & Yamagata, T. 2015). On the other hand, 

again and as similar to Ramu station the positive correlation recorded between the SON – JFM 

rainfall on ENSO is consistent with the period in which ENSO’s is at peak intensity (December-

April) and weakens during around May-August which supports the negative correlation values. 
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Figure 16:  Kendall’s Tau correlation between the climate mode indices and the rainfall for 

Dami station. Plot (a) represent SOI, Niño 3.0 (b) Niño 3.4 (c), Niño 4.0 (d) and 

EMI (e). (The horizontal dotted line  represents significance at 5%). 
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4.3.4.1 Model evaluation 

The evaluation of each model’s performance was carried out after forecasting the rainfall 

values, which was generated through the copula-based method. Each model performance was 

assessed to validate their performance using the evaluation metrics, as shown in Table 10.  

Model M4 (MJJ) as discussed in the previous section, was excluded since it did not have a 

statistically significant relationship with rainfall and the climate mode index. Based on the 

Pearson’s correlation coefficient (Table 10), M8 had the maximum r -value of 0.72 and is 

followed by M9 (0.66), M1 (0.48), M5 (0.40), M2 (0.39), M12 (0.31), M6 (0.30), M3 (0.26), 

M7 (0.24), M11 (0.12) and finally M10 (0.05). The r metric quantifies the strength of linear 

associations between the observed and forecasted rainfall values, and as observed from the 

previous evaluation (Ramu and Port Moresby), although models with mediocre or poor models 

some could achieve higher correlations. 

The next evaluation metrics considered was the absolute error measures RMSE and the MAE. 

The lower the absolute error measure, the better the model (ideal values = 0). The smallest 

RMSE and MAE values were again recorded by M8, and the next best was M9 which so far 

based on the conventional metrics (r, RMSE, and MAE) both consistently displayed superior 

performance. Intriguingly, M1 and M2 performed poorly compared to M10 although both had 

higher r values.   

In addition to the conventional metrics (r, RMSE, and MAE) additional evaluation of model 

performance using the goodness-of-fit metrics ENS, d, and L, which ideally for perfect models 

requires unity. The value of d was also high again high for M8 with 0.77 followed by M9 

(0.68), M1 (0.46) and M12 (0.31), this order of the top-performing model is also observed with 

the ENS and L. Furthermore, models which performed poorly based on d, L and ENS included 

model M7 and M11, have negative values indicating the forecasted values diverging, whereas 

values closer to 0 (M6, M10, and M3) have no predictive advantage (Legates & McCabe 1999). 

Based on the evaluations discussed, the results from Table 10, reaffirms M8 provided the best 

results for rainfall forecasting for the ASO rainfall scheme followed by the M9 (SON). 
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Table 10:  The performance evaluation metrics for the bivariate copula rainfall models for 

Dami, based r, RMSE, MAE, ENS, d, and L. *RFP – The three-monthly total 

rainfall forecasting period, CI – three moths average Climate Index (Predictor), 

LTM – Lead time months (Predictor)* 

Model 

Name 
RFP CI 

Lead 

(0-6) 
LTM r 

RMSE 

(mm) 

MAE 

(mm) 

NSE   

[-∞, 1] 

d   

[0, 1] 

 L  

[-∞, 1] 

M1 JFM Niño 3.0 3 JAS 0.48 319.76 263.64 0.21 0.46 0.07 

M2 FMA Niño 3.0 6 MJJ 0.39 320.27 278.79 0.14 0.34 0.06 

M3 MAM Niño 4.0 0 DJF 0.26 273.00 216.86 0.03 0.19 0.10 

M4 AMJ EMI 2 NDJ       

M5 MJJ EMI 3 NDJ 0.40 149.89 116.08 0.15 0.36 0.12 

M6 JJA Niño 4.0 0 MAM 0.30 150.40 119.83 0.05 0.26 0.01 

M7 JAS Niño 4.0 0 AMJ 0.24 161.49 111.12 -0.01 0.28 0.03 

M8 ASO Niño 3.4 0 MJJ 0.72 132.01 98.67 0.51 0.77 0.34 

M9 SON SOI 1 MJJ 0.66 136.91 104.42 0.42 0.68 0.27 

M10 OND SOI 2 MJJ 0.05 289.55 217.17 -0.45 -0.16 -0.22 

M11 NDJ Niño4.0 0 ASO 0.12 337.48 248.11 -0.05 0.21 0.05 

M12 DJF Niño3.0 4 MJJ 0.31 313.80 238.42 0.05 0.31 0.11 

 

Figure 17: Scatter plots of the four best bivariate copula rainfall models for Dami rainfall 

station (PNG). ASO-M8 (top-left), SON-M9 (top-right), MJJ-M5 (bottom-left) 

and JFM-M1 (bottom-right). In each panel, a least-squares regression line of the 

form RPred = m RObs + C with a coefficient of determination (R2) included, to 

assess the level of agreement between the forecasted and observed values are 

included. 
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Moreover, comparisons were further made to evaluate the best rainfall models for Dami using 

scatterplots of the observed and forecasted values, as shown in Figure 17. From the four best 

models selected based on model performance, the plots reaffirm M8 superior performance, 

with the maximum R2 = 0.51 indicating an overall 51% of the observed rainfall could be 

forecasted using that bivariate copula-based model. The next best model was M9 (R2 = 0.43) 

followed by M1 (R2 = 0.22) with a lower performance displayed by M5 having R2 = 0.16. An 

alternative model performance metric is the gradient (m) of the linear fit and based on the 

models evaluated M9 was close to idyllic magnitudes (unity) further backing up the outcomes 

of the predictor metrics with an m = 0.56, with, both showing consistent results across all 

performance evaluations so far. 

Furthermore, model accuracy was evaluated using the frequency percentage error plot by 

examining the magnitude of errors for each model with different error ranges of ± 100. The 

results in Figure 18 reaffirmed again M8 superior performance since 70% of errors lies within 

the smallest error bracket (0 < error ≤ 100). The next best model was again M9 with 63% of 

errors in the smallest magnitude (0 < error ≤ 100) error bracket. This signifies that M8 tends to 

generate more accurate predictions since a more in-depth analysis of actual errors is explained 

by frequency plot and is consistent with the results discussed earlier.  

 

Figure 18:  Frequency plot of absolute forecasting error |FE| created by the bivariate copula 

models M8, M9, M5, and M12 for Dami rainfall.  The number of datum points 

in each error bin is shown on top of each histogram. 
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4.4 Comparisons of All sites 

Finally, a geographical comparison of the best performing model for each rainfall sites was 

compared using relative root mean square error (RRMSE) and the mean absolute percentage 

error (MAPE). According to (Mohammadi, K. et al. 2015) the different ranges of RRMSE is 

defined as follows; excellent if % RRMSE   < 10%;   good   if   10% < % RRMSE   < 20%;   fair   

if 20% < % RRMSE < 30%; and  poor  if  % RRMSE ≥ 30%. 

Corresponding to the results presented in Table 11 and Figure 19, the RRMSE and MAPE 

values ranged between 21.54 - 87.48% and 16.88 – 141.42% respectively. Based on the RRMSE 

ranges, M1, M2, M11, and M12 models were found between the 20% < RRMSE < 30% range 

indicating the fair model precision while the remaining displayed poor performance. The 

performance of M10, although performed well with the performance evaluation metrics (r, 

RMSE, MAE, ENS, d, and L) performed poorly based on relative errors. The M11, M12, and 

M1, however, displayed consistent results for Port Moresby and are preferred over the other 

models. 

For Aiyura, the lowest relative percentage errors were generated by M1 (RRMSE = 15.39% 

and MAPE = 13.23%) with the lowest followed by M12 (RRMSE = 22.89% and MAPE = 13%) 

as seen in  Figure 19 and both models displayed good (10% < RRMSE < 20%) model precision. 

The next category (20% < RRMSE < 30%), only M2 fitted that category (RRMSE = 22.89% 

and MAPE = 20.27%) and can be described as a fair model. The next station Ramu, the relative 

percentage errors for M1, M2, M3, M9, M11, and M12 can all be categorized as fair models 

(20% < RRMSE < 30%) (Mohammadi, K. et al. 2015) with the M9 again displaying consistent 

results throughout the model evaluation and is preferred for Ramu. While for Dami, the lowest 

percentage of errors was observed in M1. However, the forecasted errors generated in Figure 

18 for the smallest magnitude (0 < error ≤ 100) error bracket is 22% which is poor model 

performance. M8, M9, and M5 as discussed in the previous section had 70%, 63%, and 56% 

(respectively) of their errors in the smallest magnitude (0 < error ≤ 100) error bracket and based 

on the RRMSE and MAPE, they registered their relative error between the (20% < RRMSE < 

30%) and are preferred models for Ramu with high esteem in M8 model. 
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Table 11:  Performance evaluation of the study sites’ using the relative measures, RRMSE, 

and MAPE for each site. The excluded periods (shown in green) did not have a 

statistically significant relationship with the wheat yield, whereas M8 and M9 

for Port Moresby generated errors (negative forecasted rainfall values) during 

model development. 

 
Port Moresby Aiyura Ramu Dami 

Model 

Name 

RRMSE, 

% 

RMAE, 

% 

RRMSE, 

% 

RMAE, 

% 

RRMSE, 

% 

RMAE, 

% 

RRMSE, 

% 

RMAE, 

% 

M1 21.54 20.00 15.39 13.23 25.42 21.82 18.54 15.22 

M2 26.40 25.55 22.89 20.27 23.08 19.86 21.80 20.64 

M3 39.04 34.68   23.37 17.92 25.04 22.55 

M4 47.82 37.51       

M5 73.69 94.37 31.19 29.95 34.84 31.33 26.62 22.03 

M6 87.48 129.01 35.05 34.66 45.33 53.30 27.70 27.87 

M7 61.82 141.42 42.32 41.72 45.98 67.21 32.15 35.32 

M8 61.01 102.61 47.83 50.70 34.26 35.09 25.37 22.44 

M9 74.06 94.77 32.58 29.02 22.94 19.28 25.48 22.90 

M10 41.75 48.65     40.48 33.79 

M11 22.25 16.88   21.91 19.25 30.67 22.57 

M12 24.77 21.03 16.75 15.10 26.33 25.29 21.20 17.03 
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Figure 19:  The mean absolute percentage error (MAPE) and relative root mean square error 

(RMSE) for the different bivariate copula-based rainfall models for the four 

study sites. 

4.5 Concluding Remarks 

Correlations performed between the best lead times for the climate mode indices and the three-

month total rainfall, which forms a basis for bivariate models applied to capture ENSO impact 

are summarised in Table 6. Based on the copula-based bivariate rainfall models developed and 

discussed so far in this chapter, several models for each station can be used to forecast rainfall 

for different three-monthly schemes. For Aiyura, M1 and M12 can be used to forecast the total 

rainfall for the JFM and DJF. For Ramu, M9 which displayed consistent results throughout the 

model evaluation and is preferred to forecast rainfall for June-July-August, while Dami station, 

M8, and M9 are equally exceptional models that can be used to forecast the total ASO and 

SON rainfall. The final rainfall site Port Moresby, M11 and M1 can be used to forecast the 

cumulative rainfall for NDJ and JFM.   
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CHAPTER 5 TRIVARIATE MODELS 

5.1 Introduction  

This chapter focuses on developing and evaluating the trivariate copula forecasting techniques 

using rainfall as the response variable and the two covariates canonical (ENSO)/ENSO Modoki 

and the IOD (Dipole Mode Index (DMI)).  

Based on the selections done with the bivariate models, DMI was added to the copula models 

to evaluate whether the performance of the model is improved or not.  

This chapter also discusses the results of the model performance evaluated via statistical means 

using the Pearson’s correlation coefficient r, Willmott’s Index (d), Nash–Sutcliffe Efficiency 

(ENS), Legates-McCabe’s Index (L), root-mean-square-error (RMSE), and mean absolute error 

(MAE), plus the relative root mean square error (RRMSE) and mean absolute percentage error 

(MAPE). 

5.2 Methods 

5.2.1 Data 

The rainfall data (1990-2017) was arranged in three-monthly totals, JFM, FMA, MAM, AMJ, 

MJJ, JJA, JAS, ASO, OND, NDJ and DJF for the four study sites. The Dipole Mode Index 

(DMI) which represent the Indian Ocean Dipole (IOD) (details in Table 5), was also arranged 

in three monthly averages. Here we define the different lead times as lead-0, lead-1, lead-2 to 

lead-6. For example, in a ‘lead-0’, the February-April (FMA) DMI is used to forecast the May-

June (MJJ) rainfall. For a ‘lead-1’, February-April (FMA) DMI is compared with JJA rainfall, 

‘lead-2’, January-March (JFM) DMI is compared to JJA rainfall. Comparisons are made up to 

“lead 6’. 

5.2.2 Model Development  

The D-vine regression models were constructed using the vinereg package, which performs 

the sequential estimation of a regression D-vine for quantile prediction as described in Kraus 

and Czado (2017). The common form of the trivariate D-vine regression models is Y─X1─X2, 

where Y denotes the three-month total rainfall, X1 is one of the ENSO indicators used to 

forecast Y and defined in Chapter 4 (Figure 5), and X2 refers to the corresponding IOD 

indicator (i.e. DMI). By the definition of vine copulas, these variables are called the nodes, and 

any two nodes are connected by a unique path “─”, which is associated with a bivariate pair-
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copula. Then, the one-fold cross-validation method was used to assess the out-of-sample 

performance of forecasting models at given quantile levels by applying the cross-validation 

(Nguyen-Huy et al. 2018) to the observed and forecasted values.  

The observed and forecasted values were then assessed using the performance matrices d, ENS, 

L, RMSE, MAE, RRMSE, and MAPE to decide on the best model. 

5.3 Results and Discussion 

5.3.1 Station 1- Port Moresby (POM) 

The inclusion of IOD (DMI) index to the bivariate models discussed in the preceding chapter 

for Port Moresby rainfall is evaluated using the evaluation metrics, as shown in Table 12.  

 

Table 12 shows M11 had the highest correlation between the observed and forecasted rainfall 

values with 0.76r =  followed by M10 0.64r = , while M3 had the lowest value 0.11r = . When 

compared with the bivariate result in Table 7 the trivariate copula-based model improved the 

r performance of M4, M5, and M6. Further evaluations assessment using the absolute error 

measures RMSE (mm) and MAE (mm) which are wieldy used in evaluating forecasting model 

accuracy were also used to evaluate the trivariate copula models as depicted in Figure 20.  

 

The range of the RMSE was in the array of 48.14 to 186.33, of which M7 had the lowest value 

and M3 the highest.  Similarly, the MAE was lowest for M7 followed by M6 and M10, while 

the highest was M12. Based on the RMSE and MAE the values must be as smaller to indicate 

small deviations of the forecasted values from the observations, and this was displayed by M7 

which performed better followed by M6, M10, and M11 in ascending order. When compared 

to the bivariate results (Table 7) for RMSE and MAE the trivariate results performed lesser. 
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Figure 20:  The RMSE (mm) and MAE (mm) for the copula based trivariate rainfall models 

for Port Moresby rainfall station. 
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Table 12:  The performance evaluation metrics for the trivariate copula rainfall models for 

Port Moresby (POM), based on correlation coefficient (r), RMSE, MAE, ENS, d 

and L. The models M8 and M9 forecasted negative values in the year 1997 

(drought), which as expected the ASO and SON observed rainfall was 7.8 mm 

for both (SON and ASO) and the corresponding rainfall values for the 

forecasted was -17.94 and -16.85 respectively. *RFP – The three-monthly total 

rainfall forecasting period, CI –Climate Index (Predictor), LTM – Lead time 

months (ENSO and IOD). 

Model 

Name 
RFP 

Lead  

(0-6) 
LTM r 

RMSE 

(mm) 

MAE 

(mm) 

ENS 

[-∞, 1] 

d 

[0, 1] 

L  

[-∞, 1] 

M1 JFM 6 AMJ 0.50 154.80 109.54 0.13 0.47 0.21 

M2 FMA 6 MJJ 0.46 149.14 122.84 0.18 0.38 0.06 

M3 MAM 0 DJF 0.11 186.33 149.76 -0.15 0.15 -0.10 

M4 AMJ 0 JFM 0.29 136.71 98.30 -0.02 0.32 0.05 

M5 MJJ 0 FMA 0.18 119.07 93.78 -0.03 0.17 -0.02 

M6 JJA 6 SON 0.28 98.40 62.29 0.00 0.39 0.13 

M7 JAS 0 AMJ 0.26 48.14 36.38 -0.01 0.15 0.10 

M8 ASO 0 MJJ 0.40 53.03 40.68 0.12 0.43 0.11 

M9 SON 1 MJJ 0.49 93.00 60.04 0.21 0.51 0.19 

M10 OND 0 JAS 0.64 95.15 74.96 0.39 0.65 0.25 

M11 NDJ 1 JAS 0.76 98.03 73.32 0.55 0.80 0.41 

M12 DJF 1 ASO 0.44 126.75 92.45 0.16 0.38 0.14 

 

Additional assessment of the trivariate copula rainfall models was also done using the 

goodness-of-fit assessment ENS, d and L index to further evaluate the models' performance. In 

order to attain the best model, the values of ENS, and d should be close to unity for the best fit 

(DeoTiwari, et al. 2017). Based on the results depicted in Table 12, M11 had the uppermost  

ENS value with 0.55 followed by M10 with 0.39; this was consistent with the d wherein M11 

had the highest value of 0.80 followed by M10 (0.65).  Further assessment using L was 

evaluated and again, M11 had the uppermost value of 0.41 followed by M10. Given the models' 

performance evaluation it is clear that M11 and M10 performed exceptionally well compared 

with the other models outperforming them in r , ENS, d and L. The evaluation metric evaluated 
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so far is consistent with the bivariate results indicating M11 and M10 as the two best models 

for Port Moresby.  

Furthermore, the trivariate rainfall models were further appraised using the relative frequency 

of absolute forecast error to determine the best models as shown in Figure 11 were each error 

bins ± 100, the percentage count is displayed at the top of each bar. It is interesting to note that 

M10 yielded the third highest frequency of errors in the smallest error bracket (0 < error ≤ 100) 

recording 81% (Figure 8) in the bivariate model, however with the trivariate model it recorded 

78%, which was the highest % error score.  Also, M11 models had the highest with 89% of 

errors in the smallest error bracket (0 < error ≤ 100) in the bivariate model, a decrease of 22% 

(i.e., from 67%) was recorded in the trivariate. The M12 model displayed no changes to its 

score for both models with 70% in the 0 < error ≤ 100), 22% in the 100 ≤ error ≤ 200 and 7% 

in the 200 ≤ error ≤ 300 error brackets. From the results discussed so far (Figure 8 and Figure 

11), the inclusion of DMI clearly improved the forecasting error of M1, M6, M11 and M10 in 

the first error bracket (0 < error ≤ 100) 100 ≤ error ≤ 200 brackets.  

 

Figure 21:  A histogram of the relative frequency of absolute forecasting error |FE| (mm) 

for copula-based trivariate rainfall models for Port Moresby.  The number of 

datum points in each error bin is shown on top of each histogram 

5.3.2 Station 2- Aiyura 

The performance evaluation of the copula-based quantile regression models in forecasting 

rainfall for Aiyura was statistically evaluated using the r, RMSE, MAE, ENS, d and L. In terms 
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of the conventional metrics r, RMSE and MAE as shown in Table 13, the absolute error 

measures RMSE (mm) and MAE (mm) for M1 was the lowest with 99.64 mm and 79.33 mm 

respectively, the second-best result was displayed by M5 followed by M2, while M9 performed 

poorly. Further evaluations using the correlation measures to determine the strength and 

direction between the observed and forecasted values of each copula-based quantile regression 

models. M1 again displayed the highest linear relationship with r = 0.68 followed by M2 (r = 

0.62) and M5 (r = 0.45).  

Furthermore, models performance using the goodness-of-fit assessment NSE , d and L  index 

further supported the performance of model M1 with the highest ENS, d, and L with 0.45, 0.69 

and 0.30 scores while the next best model was M2 with 0.37, 0.64, and 0.20 respectively. This 

performance confirmed that M1 and M2 provide an ideal combination of evaluations with the 

lowest errors (MAE/RMSE) including high performance of d and L which reaffirms both 

models performance. The next best results after M1 and M2 was displayed by M5. According 

to Legates and McCabe (1999) to achieve a perfect model ENS should be equal to 1 and, for this 

study M1 displayed the highest value (0.45). However, with the  d of Agreement as explained 

by Willmott et al. (2012), values approaching +1 represents a better model performance, the 

negative values displayed by M6, M8, M9, and M12 only indicates that the model is worse in 

performance (Willmott et al. 2012).  

Moreover, comparisons were further made to evaluate the best rainfall models for Aiyura using 

scatterplots of the observed and forecasted values, as shown in Figure 22. From the three 

models discussed so far, the plots reaffirm M1 superior performance, with the maximum 

correlation coefficient value of 2 0.46R = indicating an overall 46% of the observed rainfall 

could be forecasted using that trivariate copula-based model, an increase of 7% when compared 

to the bivariate model (Figure 10). The next best model M2 recorded R2 = 0.39 followed by 

M5 (R2 = 0.20) with a lower performance displayed by M9. An alternative model performance 

metric is the gradient (m) of the linear fit and again M1 was close to idyllic magnitudes (unity) 

further backing up the outcomes of the predictor metrics with an m = 0.46, showing consistent 

results across all performance evaluations so far. 



74 
 

 

Figure 22:  Scatter plots of the trivariate copula-based quantile regression models for the 

observed and forecasted rainfall for Aiyura station (PNG). (Note: The straight 

blue line is the least square fit line for each scatter plots of the form RPred = m 

RObs + C).  

Table 13:  The performance evaluation metrics for the three different D-vine copula-based 

quantile regression rainfall models for Aiyura, based on r, RMSE, MAE, ENS, d 

and L. *RFP – The three-monthly total rainfall forecasting period, CI – three 

moths average Climate Index (Predictor), LTM – Lead time months (ENSO and 

IOD) (Predictor)* 

Model 

Name 
RFP 

Lead 

(0-6)  

 

LTM 
r 

RMSE 

(mm) 

MAE 

(mm) 

ENS  

[-∞, 1] 

d  

[0, 1] 

L  

[-∞, 1] 

M1 JFM 1 SON 0.68 99.64 79.33 0.45 0.69 0.30 

M2 FMA 4 JAS 0.62 131.63 111.18 0.37 0.64 0.20 

M5 MJJ 0 FMA 0.45 107.56 87.60 0.15 0.23 0.06 

M6 JJA 0 MAM 0.40 130.01 93.92 -0.08 0.27 0.02 

M7 JAS 0 AMJ 0.43 135.87 107.05 0.14 0.40 0.08 

M8 ASO 0 MJJ 0.30 194.16 132.52 -0.30 0.17 -0.02 

M9 SON 0 JJA 0.07 196.51 140.37 -0.42 -0.08 -0.10 

M12 DJF 0 SON 0.30 141.66 110.77 -0.08 0.32 -0.03 
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Figure 23:  A histogram of the relative frequency of absolute forecasting error |FE| (mm) 

for the three copula-based trivariate rainfall models for Aiyura. The number of 

datum points in each error bin is shown on top of each histogram. 

Model accuracy was further evaluated through examining the frequency of absolute value of 

the forecasting errors within the different ranges of errors of up to ± 100, as shown in the figure 

above (Figure 23). The M1 model again performed exceptionally well compared to the other 

two models for Aiyura, since it had 78% of all the model’s errors falling in the smallest 

magnitude (0 < error ≤ 100) error bracket, whereas for models M2 and M5 in this category had 

59% and 70% respectively. Furthermore, the M1 model when compared to the bivariate results 

in Figure 11 (M1), the trivariate model performed better in the smallest error bracket (0 < error 

≤ 100) with 78% whereas the bivariate had 74% in the same range while 22% and 26 % of 

errors in the next error bracket (100 ≤ error ≤ 200). The inclusion of DMI in the trivariate 

models greatly improved the forecasting error for M9 models performance from 41% 

(bivariate) to 63% of errors in the first error bracket compared indicating ENSO and IOD 

enhances the model’s performance.  

5.3.3 Station 3- Ramu 

Correlations performed between the best lead times for the climate mode indices and the three-

month total rainfall, which forms a basis for bivariate models applied to capture ENSO impact. 

IOD indices (DMI) embedded into bivariate models (i.e. the trivariate models) to account for 

the compound effect of ENSO and IOD on the extreme events. Each model developed were 

evaluated using the r, RMSE, MAE, ENS, d, and L to identify the best trivariate copula-based 
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regression models for rainfall forecasting in Ramu. The correlation, as shown in Table 14 

varied between 0.20r =  to 0.57r =  in correspondence with the linear agreement between the 

observed and forecasted rainfall datum. Model M8 had the strongest linear agreement, and the 

weakest was displayed by M1 while the next best two models M5 and M6 scored r = 0.54 

apiece.  

The models forecasting capabilities were further evaluated through the RMSE and MAE. When 

evaluating the model performance via RMSE and MAE, the smaller the magnitude of metrics, 

the better the models to reflect the deviation from forecasted data and the observed data. 

Therefore, based on Table 14 the highest values for both the RMSE and MAE values were 

displayed by M1, M2 and M12 indicating poor performance whist M5 and M6 had the lowest 

which indicates both as best model based on RMSE and MAE metric. 

Further evaluation using the ENS, d and L index was also used to determine the performance of 

the best trivariate copula-based quantile regression models, and the results are shown in Table 

14. The ENS index logged in the highest value through M8 ENS = 0.31, followed by M5 and M6 

both with ENS = 0.0.27. However with the d index as explained by Willmott et al. (2012), 

values approaching +1 represents a better model performance, although the results varied from 

0.62 to 0.04, M8 had the highest index score of d = 16 on the other hand, M2 had .04d =  

which indicates that the M2 performed poorly (Willmott et al. 2012). Furthermore, the results 

based on Legates-McCabe’s index L the highest value was M5 and M6 had the best results at 

L = 0.32, 0.15 respectively while M1 and M2 performed poorly with negative values. From 

the model evaluations so far (r, RMSE, MAE, ENS, d and L), models M5, M6, M7 and M8 

displayed exceptional results.  
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Table 14:  Table showing performance evaluation metrics for the D-vine copula-based 

quantile regression rainfall models for Ramu, based on correlation coefficient

( )r , RMSE, MAE, ENS, d and L. *RFP – The three-monthly total rainfall 

forecasting period, CI – three moths average Climate Index (Predictor), LTM – 

Lead time months (Predictor)* 

Model 

Name 
RFP 

DMI 

Lead 

(0-6) 

DMI 

LTM 
r 

RMSE 

(mm) 

MAE 

(mm) 

ENS  

[-∞, 1] 

d  

[0, 1] 

L  

[-∞, 1] 

M1 JFM 0 OND 0.20 222.06 170.24 -0.42 0.19 -0.12 

M2 FMA 2 SON 0.24 199.68 142.67 -0.46 0.04 -0.02 

M3 MAM 3 SON 0.11 160.75 117.13 -0.07 0.05 -0.03 

M5 MJJ 0 FMA 0.54 91.97 61.52 0.27 0.52 0.32 

M6 JJA 0 MAM 0.54 77.94 64.45 0.27 0.48 0.15 

M7 JAS 1 MAM 0.51 93.52 76.45 0.20 0.53 0.14 

M8 ASO 0 MJJ 0.57 105.28 89.06 0.31 0.62 0.13 

M9 SON 0 JJA 0.45 127.08 101.15 0.15 0.52 0.08 

M11 NDJ 2 JJA 0.30 161.55 133.82 0.04 0.37 0.01 

M12 DJF 0 SON 0.42 198.18 160.94 0.01 0.48 0.00 

 

Figure 24:  A histogram of the relative frequency of absolute forecasting error |FE| (mm) 

for trivariate rainfall models for Ramu. The number of datum points in each 

error bin is shown on top of each histogram. 
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The forecasting capabilities of the best four models as indicated through the evaluation process, 

were further evaluated using the frequency of absolute error plots through examining the 

frequency of the forecasting errors within the different ranges up to ± 100 as shown in Figure 

24. As seen in the above plot there is no doubt M5 is the top model since a larger portion of 

errors (≈ 78%) lies within the smallest error bracket (0 < error ≤ 100) while M6 had the second-

highest errors (≈ 74%). The inclusion of DMI improved the rainfall forecast errors in the 

smallest error bracket for M5-JJA from 74% in the bivariate model to 78% in the current model.   

5.3.4 Station 4- Dami 

The D-vine copula-based quantile approach was also applied to develop the copula-based 

trivariate models for rainfall at Dami station. IOD indices (DMI) was inserted into bivariate 

models (i.e., the trivariate models). For the eleven different trivariate models, a robust model 

assessment require a combination of evaluations as no single statistical measure is conclusive, 

hence a wide range of statistical metrics are used to evaluate the models and includes the 

Pearson correlation coefficient (r), RMSE, MAE, ENS, d and L including diagnostic plots to 

identify the best trivariate copula-based regression models for rainfall forecasting in Dami. 

Table 15:  Table showing performance evaluation metrics D-vine copula-based quantile 

regression rainfall models for Dami, based on correlation coefficient ( )r , RMSE, 

MAE, ENS, d and L. *RFP – The three-monthly total rainfall forecasting period, 

CI – three moths average Climate Index (Predictor), LTM – Lead time months 

(ENSO and IOD) (Predictor)* 

Model 

Name 
RFP 

Lead 

(0-6) 
LTM r 

RMSE 

(mm) 

MAE 

(mm) 

ENS 

[-∞, 1] 

d 

[0, 1] 

L  

[-∞, 1] 

M1 JFM 3 JAS 0.48 321.46 267.35 0.21 0.48 0.05 

M2 FMA 6 MJJ 0.25 357.12 308.99 -0.07 0.26 -0.04 

M3 MAM 0 DJF 0.22 279.58 218.84 -0.01 0.21 0.09 

M5 MJJ 3 NDJ 0.34 155.99 120.84 0.08 0.32 0.09 

M6 JJA 3 DJF 0.25 156.19 125.52 -0.02 0.26 -0.03 

M7 JAS 0 AMJ 0.00 199.08 129.89 -0.54 -0.03 -0.14 

M8 ASO 0 MJJ 0.54 172.95 122.25 0.16 0.62 0.18 

M9 SON 1 MJJ 0.61 145.16 106.90 0.35 0.64 0.25 

M10 OND 2 MJJ -0.23 299.36 223.13 -0.55 -0.63 -0.25 

M11 NDJ 0 ASO 0.07 350.22 254.79 -0.13 0.17 0.03 
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M12 DJF 4 MJJ 0.32 331.47 258.06 -0.06 0.38 0.04 

 

The performance of error indicators RMSE and MAE as shown in Table 15, ranged from 114.16 

mm to 357.12 mm and 145.16 mm to 308.99 mm, respectively. Based on the error indicators 

the best model is M9 since it has the lowest values of RMSE (145.16 mm) and MAE (106.90 

mm), while the inferior model having the highest error indicators is M2 (RMSE = 357.12 mm, 

MAE = 308.99 mm). It is worth mentioning that the smaller the values of RMSE and MAE it 

represents further preciseness of the rainfall estimation and in an ideal case for a perfect model 

value should be zero. The M9 model enhanced performance was further supported through the 

measure of linear relationship r reaffirming the model's superiority over the other models with 

the highest value of 0.61 and is followed by M8 with r = 054. So far based on the conventional 

metrics, r, RMSE, and MAE the model 9 performed better. 

Furthermore, the copula-based trivariate models' performance was further evaluated using the 

ENS, d, and L index. The M9 again performed remarkably well having the highest scores ENS = 

0.35, d = 0.64 and L = 0.25 including all performance evaluation measures evaluated so far. 

The second-best model clearly is M8 with ENS = 0.16, d = 0.62 and L = 0.18 index values. M1 

and M5 make up the best four models based on the evaluation metrics in Table 15. 

Additionally, analogies were further made to assess the top rainfall models for Dami using 

scatterplots of the observed and forecasted values, as shown in Figure 25. From the four 

models, the plots reaffirm M9 superior performance, with the highest correlation coefficient 

value of 2 0.37R = demonstrating an overall 37% of the observed rainfall could be forecasted 

using that trivariate copula-based model. The subsequent model M8 recorded 2 0.29R =  

followed by M1 ( 2 0.23R = ) with a lesser performance displayed by M5 having 2 0.11R = . In 

addition, an alternative model performance metric is the gradient (m) of the linear fit and as 

seen from the models evaluated M8 was close to idyllic magnitudes (unity) further reaffirming 

the outcomes of the metrics with a value of m = 0.37, showing consistent results across all 

performance evaluations so far. 
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Figure 25:  Scatter plots of the trivariate copula-based quantile regression models for the 

observed and forecasted rainfall for Dami station (PNG). (Note: The straight 

blue line is the least square fit line for each scatter plots of the form RPred = m 

RObs + C). 

Finally, Figure 26 shows a histogram plot displaying the percentage frequency distribution of 

forecasting error calculated in error brackets of  ± 100 step-sizes which has a deeper analysis 

of actual errors and could aid in the interpretation of model accuracy for practical applications 

(Deo et al. 2016). No doubt the best performing model is M9 since a larger share of errors (≈ 

63%) lies within the smallest error bracket (± 100) followed by M8 with 56%. This indicated 

the superiority of M9 over M8, M5 (52%) and M1 (19%) and models. The results are consistent 

with the earlier results in Table 15.  

Furthermore, when comparing the histograms of forecasting errors in both bivariate (Figure 

18) and trivariate models, the bivariate model for M9 displayed consistent results of 63% of 

forecasting error in the smallest error bin (0 < error ≤ 100) in both the bi/trivariate models, 

however there was a noticeable increase in the 100 ≤ error ≤ 200 error bracket observed in the 

trivariate model (26%) compared to 22% in the bivariate model indicating that DMI, when 

included, increased the M9 performance. M8 although performed well in the bivariate model 

with 70% in the smallest error bracket, with the trivariate model the performance dropped to 

56% indicating no improvement in the trivariate model with the inclusion of IOD, however 

when compared to the next error bracket (100 ≤ error ≤ 200) the trivariate model improved the 

forecasting error from 22% (bivariate) to 26%. The bivariate model also performed better with 

the M9 model with 63% of errors in the smallest error bin while the trivariate model had 52%.  
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Figure 26:  A histogram of the relative frequency distribution of absolute forecasting error 

|FE| (mm) for copula-based trivariate rainfall models for Dami station. The 

number of datum points in each error bin is shown on top of each histogram 

5.4 Comparison of all sites 

The models were finally evaluated using geographical comparison for the models using relative 

root mean squared error (RRMSE) and mean absolute percentage error (MAPE) for the study 

sites (Port Moresby, Aiyura, Ramu and Dami) was made. According to Mohammadi, K. et al. 

(2015) the different ranges of RRMSE is defined as follows; excellent if %RMSE < 10%; good   

if 10% < %RMSE < 20%; fair if 20% < % RMSE < 30%; and poor if % RMSE ≥ 30%. 

Based on Table 16 and Figure 27, the model with the lowest relative percentage errors 

(RRMSE and MAPE) across all the other trivariate rainfall models was M11 (RRMSE = 24.49% 

and MAPE = 19.69%) and M1 (RRMSE = 25.50% and MAPE = 20.99%)  for Port Moresby 

followed by M12 (RRMSE = 30.33% and MAPE = 25.63%). In addition, M2 and M12 also 

performed well having both RRMSE and MAPE % between the 20% < RRMSE < 30% category. 

In contrast, models M6 and M7 generated the highest RRMSE and MAPE across all stations, 

with the highest MAPE observed M7 (135.46%). This was because the MAPE (the most 

common measure used to forecast error) works best if there are no extremes to the data and this 

scenario is expected since Port Moresby experiences very little rainfall around the July to 

September period. The accuracy of models M11, M1, M2, and M12 are considered as fair 

models since 20% < RRMSE < 30% whereas the other performed poorly since RRMSE > 30% 

(Despotovic et al. 2016) 



82 
 

For Aiyura, the lowest relative percentage errors were generated by M1 (RRMSE = 14.46% 

and MAPE = 11.54%) and M2 (RRMSE = 19.18% and MAPE = 16.97%). Overall M1 again 

displayed its lead over the other models followed by M2 and both can be classified as good 

models since both laid between the 10% < RRMSE < 20% range (Despotovic et al. 2016). The 

results for M1 is consistent with the results for the bivariate model (M1) of which this model 

performed slightly better in all evaluation metrics indicating the index DMI improves 

forecasting during the JFM period. 

For the third rainfall station Ramu, M11 displayed the lowest RRMSE (22.74%), and MAPE 

(19.61%) including M3 with 24.34% and 19.01% respectively. M12 and M1 also displayed 

exceptional RRMSE and MAPE results of 26.67% and 22.24% and 29.06% and 23.27% 

respectively. Overall the four trivariate copula model performed within the ranges of a fair 

model since all the RRMSE was within the 20% < % RRMSE < 30% (Mohammadi, Kasra et 

al. 2015). Contrastingly, the models M5, M6, M7, and M8 which performed better with the 

evaluation metrics (r, RMSE, MAE, ENS, and d) did poorly with the RRMSE and MAPE all 

having scored ≥ 30%. Although M11, M12, M1, and M3 scored within the ‘fair’ model 

category (20% < % RRMSE < 30%) there performance in the evaluation metrics was not as 

good compared to M5-M8. However, M9 displayed consistent results throughout the 

evaluation, and based on the RRMSE and MAPE, it is a ‘fair’ model and is preferred for Ramu. 

Finally, the RRMSE and MAPE metrics were applied to evaluate the trivariate copula models 

for Dami station. Based on Figure 27, the M1 is a good model since it had the lowest RRMSE 

and MAPE values of 18.64% and 15.39% respectively and is within the range 10% < %RMSE   

< 20%. The other model which scored between the 20% < % RRMSE < 30% (fair) included 

M2, M3, M5, M6, M9, and M12. 
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Table 16:  A comparison of the copula-based trivariate models' performance at different 

study sites’ using the relative error measures, the relative root mean square error 

(RRMSE) and mean absolute percentage error (MAPE). 

 
Port Moresby Aiyura Ramu Dami 

Model 

Name 

RRMSE, 

% 

MAPE, 

% 

RRMSE, 

% 

MAPE, 

% 

RRMSE, 

% 

MAPE, 

% 

RRMSE, 

% 

MAPE, 

% 

M1 25.50 20.99 14.46 11.54 29.06 23.27 18.64 15.39 

M2 27.03 26.89 19.18 16.97 26.48 21.50 24.31 22.72 

M3 40.91 36.37 26.71 24.53 24.34 19.01 25.65 22.50 

M4 47.91 38.48 29.97 30.69 24.64 19.85 30.21 24.65 

M5 72.56 87.35 32.13 32.07 35.50 32.04 27.70 22.87 

M6 87.99 83.71 40.95 36.73 47.49 55.13 28.77 28.86 

M7 63.76 135.46 42.24 40.40 47.87 70.33 39.63 49.78 

M8 63.37 106.31 52.52 51.68 34.64 36.55 33.24 28.02 

M9 73.14 114.05 42.37 37.68 27.16 24.55 27.01 23.67 

M10 44.63 51.42 29.43 22.32 25.49 23.14 41.85 36.37 

M11 26.17 19.02 19.04 15.60 22.74 19.61 31.83 23.45 

M12 26.48 22.12 20.23 17.21 26.67 22.24 22.39 18.54 

 

 

Figure 27:  The mean absolute percentage error (MAPE) and relative root mean square error 

(RMSE) for the different trivariate copula-based rainfall models for the four 

different study sites. 
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5.5 Concluding Remarks  

This chapter explored the spatio-temporal influence of the climate driver IOD (DMI) influence 

with respect to rainfall in four locations in PNG. Based on the bivariate copula model defined 

in Chapter 4, the trivariate copula models were developed through the D-vine copula-based 

quantile approach to account for the joint influence of ENSO and IOD on rainfall. From the 

results discussed in this chapter, for Port Moresby the M11 as it displayed consistent results. 

For Aiyura, M1 and M2 displayed consistent and exceptional results and can be used to forecast 

the total rainfall for JFM and FMA period. Furthermore, the best performing model for Ramu, 

M9 which displayed consistent results throughout the model evaluation is preferred, while 

Dami station, M1, and M9 are equally exceptional models that can be used to forecast the total 

ASO and SON rainfall. 

From the results discussed so far (Figure 8 and Figure 11) for Port Moresby, the inclusion of 

DMI clearly improved the forecasting error of M1, M6, M11 and M10 in the first error bracket 

(0 < error ≤ 100) and the second error bracket (100 ≤ error ≤ 200) brackets when compared. 

The performance of the trivariate models when compared to the bivariate models, there was 

not much improvement in model performance. Improvements were observed in the Aiyura with 

the trivariate models with noticeable increase in M1, M2 outperforming the results displayed 

by the bivariate models. Whereas for Ramu, the inclusion of DMI improved the rainfall forecast 

errors in the smallest error bracket for M5-JJA from 74% in the bivariate model to 78% in the 

current model, however there was not much improvement other model performance when DMI 

was added to the trivariate model. Finally, for Dami the best models M8 and M9 when 

compared to the bivariate models, the performance of both models in the trivariate models was 

noticeably lower indicating no improvement in model performance with the inclusion of DMI 

in the trivariate models.  
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CHAPTER 6 CONCLUSION  

6.1 Summary of the Findings 

Rainfall forecasting is an essential task in precision agriculture as subsistence agricultural 

activities are associated with the number of water resources available for better-sustained crop 

health. The paramountcy statistical models and artificial intelligence-based big data analytic 

techniques in sustainable agricultural practices are evolving very rapidly in the 21st century. 

This study was primarily focused on applying copula-based statistical approaches to forecast 

rainfall in four different rainfall stations (Port Moresby, Aiyura, Ramu and Dami) in PNG.  

This study has employed the two different types of El Niño/Southern Oscillation (ENSO): 

canonical ENSO and ENSO Modoki to model rainfall (bivariate) as well as the former coupled 

with IOD (DMI) to jointly model rainfall (trivariate). The rainfall data (monthly) used in this 

study was from the years 1990-2017 whist the climate modes index data from 1989 to 2017. 

Also, the impact of climate mode index on rainfall was investigated using the rank-based 

correlation measure. 

To illustrate the usefulness of climate mode indices for conditional-based rainfall forecasting 

through the D-vine copula approach, statistically significant lagged correlations were identified 

based on which climate index that had the highest correlation with the 3-month total rainfall. 

Spatial correlation of the climate indices across different study sites was not identical across 

all four stations. In order to completely understand the nature of the rainfall-ENSO relations, it 

is important to appreciate that rainfall at any site is reliant on several factors which are not 

examined in detail in this thesis, but most likely reflect the interaction such as topography and 

the Western Pacific monsoon.  

The D-vine copula-based quantile approach allows identifying the most influent predictors for 

rainfall forecast through the AIC-corrected conditional log-likelihood (cllAIC). To forecast 

rainfall, the lagged correlations of IOD indicator (DMI) with three-month total rainfall were 

established up to 7 months ahead (e.g., in a 'lead-0' study January to March average SOI is 

compared with April to June total rainfall) using the Kendall rank correlation coefficients. 

Correlations performed between the best lead times for the climate mode indices and the three-

month total rainfall forms the basis for bivariate models applied to capture ENSO impact. IOD 

indices (DMI) are then embedded into the bivariate models (i.e., the trivariate models) to 

account for the compound effect of ENSO and IOD on the extreme events. 
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6.1.1 Bivariate Models 

i. Port Moresby: Evaluations based on the predictor metrics also indicated M11 to be the 

best model, displaying the best results compared to all model with r = 0.82, RMSE = 

91.74, MAE =73.15, NSE =0.61, WI = 081, L =0.41. RRMSE results for M11 laid 

between 20% < % RRMSE < 30% indicating a fair rainfall forecasting model. 

Additionally, the M11 which represents the NDJ-SOI lead-1 also displayed the highest 

correlation (0.63) for Port Moresby, and the performance evaluations reaffirmed the 

model’s performance.  

ii. Aiyura: The forecasting skill displayed by JFM and FMA rainfall period with EMI and 

Niño 4.0 respectively showed consistent results throughout the results. Both had 

statistically significant Kendall’s correlation of 0.49 and 0.38 respectively, and both 

displayed consistent superior performance during the course of the model’s evaluations. 

The best performing model was no doubt M1, displaying with r = 0.63, RMSE = 105.99, 

MAE =89.75, NSE =0.63, WI = 0.38, L =0.20. Additionally, the RRMSE indicate that 

M1 is a good model with 15.39% (good if; 10% < % RRMSE < 20%). Additional 

evaluations using the plots further reaffirms M1 superior performance.     

iii. Ramu: The EMI correlation with Ramu rainfall is noticeable around the March to May 

period, and this is consistent with studies conducted in Australia which shows north-

western Australian autumn rainfall is correlated with El Nino Modoki (EMI). On the 

other hand, the positive correlation recorded between the SON – JFM rainfall on ENSO 

is consistent with the period in which ENSO’s peak intensity (December-April) and 

weakens during May-July which justifies the negative correlation values. The best 

rainfall model after evaluating the performance metrics was M6 and was further 

supported by the frequency plots, 81% of errors lies within smallest error bracket (0 < 

error ≤ 100), however with the RRMSE and MAPE it performed poorly (45.33% and 

53.30 respectively). M9 model is preferred.  

iv. Dami: The EMI negative correlation values associated with Dami’s rainfall occurs 

around June – August which is similar to negative EMI-rainfall correlations observed 

in Australia. On the other hand, again and as similar to Ramu station the positive 

correlation recorded between the SON – JFM rainfall on ENSO is consistent with the 

period in which ENSO’s is at peak intensity (December-April) and weakens during 

around May-August which supports the negative correlation values 
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6.1.1 Trivariate Models 

The trivariate copula-based models constructed through the D-vine copula-based quantile 

regression approach consists of the IOD indices (DMI) embedded into the bivariate models to 

account for the compound effect of ENSO and IOD on the rainfall. The findings are as follows;   

i. Port Moresby: Model M11 and M1 are ‘fair’ models as indicated through the percentage 

errors with M11 (RRMSE = 24.49% and MAPE = 19.69%) and M1 (RRMSE = 25.50% 

and MAPE = 20.99%) but based on the performance evaluation the M11 is preferred.   

ii. Aiyura: Based the performance evaluation metrics, M1 model had the highest ENS, WI, 

and L with 0.45, 0.69 and 0.30 scores while the next best model M2 with 0.37, 0.64 and 

0.20 respectively. In addition, both models displayed good results with the relative 

percentage errors, M1 (RRMSE = 14.46% and MAPE = 11.54%) and M2 (RRMSE = 

19.18% and MAPE = 16.97%). Both can be classified as good models since both scores 

are between the 10% < RRMSE < 20% range  

iii. Ramu: From the evaluations made to assess the model’s performance, M9 displayed 

consistent results throughout the model evaluation is preferred 

iv. Dami: Based on the RRMSE and MAE, M1 is a good model since the models RRMSE 

and value was within the range 10% < % RRMSE   < 20%. The other model which 

scored between the 20% < % RRMSE < 30% (fair) included M2, M3, M5, M6, M9 and 

M12, however model M9 is preferred as it displayed consistent results throughout the 

model evaluation. 

 

6.2 Synthesis   

Based on the results presented in this study, for the bivariate and trivariate copula-based rainfall 

models, bivariate models for Aiyura displayed consistent results with models M1 and M2, the 

inclusion of DMI in the trivariate model further helped improved the overall performance for 

both models.  For Port Moresby, the inclusion of DMI in the trivariate models when compared 

to the bivariate models, there was not much improvement in model performance evaluations, 

however the forecasting error for M1, M6, M11 and M10 was improved. The best rainfall 

model identified for Port Moresby is the bivariate M11 model. For Ramu, the M9 model 

displayed consistent results throughout the model evaluation and is preferred to forecast rainfall 

for June-July-August, while Dami station, the bivariate model M8, and M9 are equally 

exceptional models that can be used to forecast the total ASO and SON rainfall.  
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6.2 Recommendations for Future Work 

Since this study was limited in terms of its scope as a Master’s project, and the objectives that 

could be fulfilled in this period, the following recommendations have been made for further 

research opportunities: 

i. Port Moresby rainfall experiences very-low rainfalls, negative values in predicted 

rainfall in M8-ASO and M9-SON in the years where rainfall amount is low, and these 

negative values contributed to the reduction of model performance. Future study should 

explore further this issue related to a marginal fitting method to improve the forecast 

skill using copula-based models. 

ii. The present study considers the same lagged time of predictors (e.g., JJA-SOI and JJA-

DMI) to forecast the seasonal rainfall. Future work may combine different lagged time 

of predictors (e.g. JJA-SOI and ASO DMI). In addition, inclusions of other large-scale 

climate mode indices are expected to improve the performance of the forecast model. 

iii. The methods of fitting marginal distributions need to be investigated further to avoid 

the occurrence of the negative forecasted values and hence to improve the performance 

of the forecast model.  

iv. Statistical models, in general, rely on the relationship between predictand and 

predictors. The limitation of data length used in this thesis may affect the performance 

of the forecast models since it does not fully reflect the characteristic in the relationship 

between large-scale climate mode indices and rainfall. Further, due to the short record, 

the co-occurrences between different phases of ENSO and IOD are rare, which may 

affect the analysis of the compound influences of such two indices on extreme rainfall 

events.  

One of the limitations of this Master’s study (performed over 1.5 years) was that it was 

restricted to developing only a copula-based approach for rainfall forecasting. However, it is 

recommended that a further study be performed that compares copula models with other kinds 

of models, such as machine learning, time-series models or other statistical models used in 

rainfall forecasting areas. This was beyond the scope of the present study but can form useful 

subject for further investigation.    
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APPENDICES   

The highest positive correlation for Aiyura was between FMA rainfall and IOD lead-6 (May-

June-July) with 0.56, followed by MAM rainfall and IOD lead-5 (JAS) trailed by JFM and IOD 

lead-0 (OND) on 0.45 and 0.32 respectively. Overall the IOD had a significant correlation with 

Aiyura rainfall between the three-rainfall period mentioned, and the correlations were below 

the signature line between AMJ through to DJF. Whereas in Port Moresby the rainfall periods 

JJA, JAS, ASO, SON, and OND have a significant positive correlation with IOD (lead-2, 5, 6, 

6, 6) with ASO rainfall showing a reliable correlation between IOD lead-6 (NDJ) with 0.45. 

Furthermore, the strong correlation between IOD and Port Moresby rainfall occurs between the 

August to October period. These months are generally low rainfall months, and also the IOD 

usually intensifies around August to October and decay rapidly when the monsoon arrives 

which justifies the correlation (Yuan, C. & Yamagata, T. 2015).  

The total JFM, FMA and NDJ rainfall for Ramu displayed strong correlation of 0.43, 0.36 and 

0.30 with DMI lead-0 including DMI lead-6 with the SON rainfall with a correlation of 0.28 

while all the other remaining three months rainfall period had none statistical significance with 

the climate mode index IOD (Dipole Mode Index (DMI)). Highest correlation for Dami is 

observed between the MAM rainfall and IOD lead-2 (OND) with 0.43, followed by the 

correlation between IOD lead-6 and lead-5 for AMJ and ASO rainfall with 0.35 and 0.30 

respectively, whilst the weak correlations OND-DJF period is expected since IOD influence in 

the southern hemisphere decreases around end of spring when the monsoon arrives.  
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Figure 28:  Ranked based Kendall’s Tau correlation between the DMI and the rainfall for 

Port Moresby, Aiyura, Ramu and Dami. (Horizontal dotted lines indicate 

significant at 5%). 

 

 


