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Daniel B. Zucker,9 Tomaž Zwitter,5 Borja Anguiano,11 Gary Da Costa,3

Valentina D’Orazi,12 Jonathan Horner,13 Prajwal R. Kafle,14 Geraint Lewis,1

Ulisse Munari,15 David M. Nataf,16 Melissa Ness,4 Warren Reid,9,17

Katie Schlesinger,3 Yuan-Sen Ting3 and Rosemary Wyse16

Affiliations are listed at the end of the paper

Accepted 2017 October 6. Received 2017 October 5; in original form 2017 July 18

ABSTRACT
The technique of chemical tagging uses the elemental abundances of stellar atmospheres
to ‘reconstruct’ chemically homogeneous star clusters that have long since dispersed. The
GALAH spectroscopic survey – which aims to observe one million stars using the Anglo-
Australian Telescope – allows us to measure up to 30 elements or dimensions in the stellar
chemical abundance space, many of which are not independent. How to find clustering reliably
in a noisy high-dimensional space is a difficult problem that remains largely unsolved. Here, we
explore t-distributed stochastic neighbour embedding (t-SNE) – which identifies an optimal
mapping of a high-dimensional space into fewer dimensions – whilst conserving the original
clustering information. Typically, the projection is made to a 2D space to aid recognition of
clusters by eye. We show that this method is a reliable tool for chemical tagging because it can:
(i) resolve clustering in chemical space alone, (ii) recover known open and globular clusters
with high efficiency and low contamination, and (iii) relate field stars to known clusters. t-SNE
also provides a useful visualization of a high-dimensional space. We demonstrate the method
on a data set of 13 abundances measured in the spectra of 187 000 stars by the GALAH
survey. We recover seven of the nine observed clusters (six globular and three open clusters)
in chemical space with minimal contamination from field stars and low numbers of outliers.
With chemical tagging, we also identify two Pleiades supercluster members (which we confirm
kinematically), one as far as 6◦ – one tidal radius away from the cluster centre.

Key words: methods: data analysis – stars: abundances – open clusters and associations:
general – open clusters and associations: individual: Pleiades.

1 IN T RO D U C T I O N

The use of chemical tagging in Galactic archaeology was first pro-
posed by Freeman & Bland-Hawthorn (2002), who suggested that
the abundances of elements in stars could be used as unique sig-
natures over their lifetime to ‘reconstruct’ stellar groups that have
long since dissolved. Theoretical arguments indicate that chemical
homogeneity (with the exception of light elements) is guaranteed in
open clusters up to 105 M� and in globular clusters up to a limit of

� E-mail: janez.kos@sydney.edu.au

107 M� (Bland-Hawthorn, Krumholz & Freeman 2010a). In prac-
tice, the degree of homogeneity may depend on the initial abundance
spread in the collapsing cloud from which the cluster forms (Feng
& Krumholz 2014). But, to date, essentially all open clusters ap-
pear to be chemically homogeneous to better than 0.1 dex (De Silva
et al. 2006; Sestito, Randich & Bragaglia 2007; Bovy 2016). Both
young and ancient (up to ∼9 Gyr) open clusters appear to be chem-
ically homogeneous (De Silva et al. 2006, 2007), indicating that
pollution from the interstellar medium does not wipe out this infor-
mation. For chemical tagging to be feasible for field stars, a large
amount of high-quality data has to be collected, i.e. of the order of
106 observed stars and ∼30 measured elements (Bland-Hawthorn
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& Freeman 2004; Ting, Conroy & Goodman 2015). Indeed, these
are the design goals of the GALAH1 survey on the HERMES in-
strument at the Anglo-Australian Telescope (Barden et al. 2010; De
Silva et al. 2015; Martell et al. 2017). This requirement can be much
lower for ‘soft’ chemical tagging if there is additional information
(e.g. kinematics, location) to associate the stars.

To chemically tag stars, one has to search for clustering in chem-
ical space (C-space), i.e. an N-dimensional space determined by the
measured number of elemental abundances. Strictly speaking, these
dimensions are unlikely to be independent, for example, iron-peak
elements are strongly coupled. Different elements also experience
a different cosmic spread (e.g. Bensby, Feltzing & Oey 2014), so
they cannot all be treated equally. Bensby et al. (2014) only give
cosmic spreads for the F and G dwarfs in the solar neighbourhood,
and the cosmic spreads for the population observed by GALAH (all
stellar types with ∼90 per cent of the stars within 3 kpc) is largely
unknown. Sample used in our study covers much larger region, as
well as more stellar types. Cosmic spreads that would be useful for
our work are therefore largely unknown. In the GALAH survey,
there are up to 30 elements for which abundances can be deter-
mined in each star, but in our study we will concentrate on a smaller
number (N = 13) of elements with well determined abundances.

How are we to find substructures in a high-dimensional space?
The human brain is excellent at detecting clustering in three or
fewer dimensions, but falls short for problems in more dimensions.
Most work to date has focused on finding clusters in the original
N-dimensional space. For example, Hogg et al. (2016) searched for
chemical groups in the APOGEE data by the k-means algorithm
and showed that some clusters correspond to groups in phase space.
Blanco-Cuaresma et al. (2015) utilized PCA to distinguish between
known clusters. Bland-Hawthorn et al. (2010b) used a density-based
hierarchical clustering algorithm and introduced the S-statistic to
show that clustering exists in a simulated dwarf galaxy. Mitschang
et al. (2014) and Quillen et al. (2015) used a probabilistic approach
to resolve chemical groups in a blind chemical tagging study, but
were unable to determine whether the groups found were, in fact,
co-natal (born together), or simply had nearly identical abundances.
When key chemical signatures can be confined to two or three di-
mensions, this classification becomes straightforward. Martell et al.
(2016) were able to identify halo stars that originated in globular
clusters, and de Silva et al. (2011) placed Hyades supercluster mem-
bers in one chemical group. De Silva et al. (2013) used chemical
tagging to relate the Argus association to IC 2391. A more advanced
algorithm, that also provides visualization, was used by Jofré et al.
(2017), who applied a method of evolutionary trees to stellar abun-
dances and produced a phylogenetic tree for 21 solar twins and the
Sun.

One of the most successful methods in recent years exploits the
huge computational power now available in desktop computers. The
so-called t-distributed stochastic neighbour embedding (t-SNE) al-
gorithm is a remarkable technique for reducing the dimensions
of a problem (van der Maaten & Hinton 2008). That technique
embeds each high-dimensional data point into a two dimensional
‘visualization’ space where ‘similar’ points are kept together and
‘dissimilar’ points are moved apart. Once the problem is reduced
into two dimensions, the clustering can be identified by eye. We
find that this method is highly effective in identifying known and
unknown cluster members. The method has some limitations: (i)
it is a black box that is difficult to tune or control; and (ii) the

1 GALAH survey webpage is https://galah-survey.org

abundance measurement errors are not used in the present applica-
tion. But the method is extraordinarily powerful as demonstrated in
recent papers, for example, to efficiently identify peculiar stars and
stellar populations in large surveys with a high level of complete-
ness (Lochner et al. 2016; Matijevič et al. 2017; Traven et al. 2017;
Valentini et al. 2017).

We describe our data in Section 2 and the method in Section 3. In
Section 4, we explore the efficiency of our method on nine known
clusters, and in Section 5, we present a more detailed analysis of
the Pleiades cluster. In Section 6, we discuss the implications of this
work and future development of the field.

2 TH E DATA

The data set analysed here has been drawn from three programmes:
the GALAH pilot programme, the K2-HERMES survey (Sharma
2017, in preparation) and the main GALAH survey (De Silva
et al. 2015; Martell et al. 2017). These three programmes have
different selection functions, but share the same observing proce-
dures, reduction pipeline and analysis pipeline (Kos et al. 2017).
Stars from all programmes are analysed together so the stellar pa-
rameters and the abundances are comparable.

All stars used in this paper have abundances measured by The
Cannon (Ness et al. 2015), applying a data-driven approach to esti-
mate stellar parameters and abundances using linear algebra to com-
bine the spectral flux for each pixel. The quadratic spectral model
of The Cannon was trained on a representative set of spectra, con-
sisting of benchmark stars (Heiter et al. 2015; Jofré et al. 2015), K2
stars with known seismic gravities (Stello et al. 2016, 2017) as well
as stars with high-quality spectra covering the parameter space. For
the training set, stellar parameters and abundances were estimated
using the spectrum synthesis code SME (Valenti & Piskunov 1996;
Piskunov & Valenti 2017).

The complete data set consists of 187 640 stars, mostly dwarfs,
observed between 2013 November and 2016 January. 15 601 stars
have unreliable stellar parameters (e.g. because of a peculiar spec-
trum, strong cosmic rays, etc.) and were excluded from the study.
As this is the first time The Cannon has been used with GALAH
data and represents the first internal release of abundances, the un-
certainties of the measured abundances have not been validated yet.
A map of the observed fields on the celestial sphere is given in
Martell et al. (2017).

Our data set consists of abundances of 13 elements (Na, Mg,
Al, Si, K, Ca, Sc, Ti, Cr, Fe, Ni, Cu, Ba) representing groups of
light, light odd-Z, alpha, iron peak and s-process elements. All
abundances were measured by The Cannon. The number of lines
used to measure the abundances of each element is given in Table 1.
Stellar parameters (Teff, log g, [Fe/H], and radial velocity) were
measured by fitting synthetic models of stellar atmospheres to one-
dimensional GALAH spectra (Kos et al. 2017). Abundances for all
13 elements were measured for each of 187 640 stars.

Proper motions from UCAC4 are also available for all stars,
and parallaxes from Gaia TGAS for some. For most stars, we cal-
culated the photometric distances following Zwitter et al. (2010)
using APASS and 2MASS photometry (Martell et al. 2017) and our
stellar parameters.

3 T-DI STRI BUTED STOCHASTI C NEI GHBO UR
EMBEDDI NG (T-SNE)

t-SNE is an algorithm from a family of manifold learning algo-
rithms. It has been extensively used in data science and made a break
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Table 1. Number of lines used to measure
the abundances of each element.

Element Number of lines

Na 3
Mg 2
Al 4
Si 5
K 2
Ca 5
Sc 10
Ti 20
Cr 9
Fe 52
Ni 7
Cu 2
Ba 2

into astronomy as a classification algorithm (Lochner et al. 2016;
Matijevič et al. 2017; Traven et al. 2017; Valentini et al. 2017),
along with other manifold learning algorithms (e.g. Vanderplas &
Connolly 2009; Daniel et al. 2011; Bu, Chen & Pan 2014). We ex-
tend its use as a pure manifold learning algorithm to find structure
in a 13-dimensional C-space.

t-SNE’s input is a set of N high-dimensional objects x1, . . . , xN .
In our case, each xi will be a collection of 13 abundances for a
single star:

xi =
([

Na

Fe

]
i

,

[
Mg

Fe

]
i

, . . . ,

[
Ba

Fe

]
i

,

[
Fe

H

]
i

)
. (1)

Following van der Maaten & Hinton (2008), we first calculate sim-
ilarities pij of the input set:

pij = pi|j + pj |i
2N

, pj |i = exp (−||xi − xj ||2/2σ 2
i )∑

k �=i exp (−||xj − xk||2/2σ 2
i )

, (2)

where σ i is a parameter calculated by t-SNE depending on the per-
plexity (a parameter that controls how one point relates to others –
see Wattenberg, Viégas & Johnson (2016) for a demonstration of
how perplexity works) and local density of the data set. Distances
||xi − xj || and ||xj − xk|| in the original implementation are Eu-
clidean. We modified the code to use Manhattan distances, as they
are less sensitive to sporadic outliers. Manhattan distance between
two points p and q in n dimensions is defined as

d( p, q) =‖ p − q ‖1=
n∑

i=1

|pi − qi |. (3)

We aim to produce a lower dimensional map with objects
y1, . . . , yN with similarities:

qij = (1 + || yi − yj ||2)−1∑
k �=i

(1 + || yk − yi ||2)−1
. (4)

To find the optimal mapping where qij reflects pij as well as
possible, we minimize the Kullback–Leibler divergence

KL(P ||Q) =
∑
i �=j

pij log
pij

qij

. (5)

Kullback–Leibler divergence measures the amount of information
lost if distribution Q is used instead of P. Kullback–Leibler diver-
gence is a non-convex function that is minimized by gradient descent
initialized randomly. Different runs of t-SNE, even when the same
parameters are used, can therefore result in a different mapping.

Table 2. Clusters with observed members in the GALAH and K2 surveys.
Six clusters with no given literature for membership have members identified
by us (See Appendix C).

Cluster Number of stars Type Notes

47 Tuc 90 GC Membership from Tucholke (1992).
M30 4 GC
M67 113 OC Membership from Geller, Latham &

Mathieu (2015). 404 spectra of 113
unique stars.

NGC 288 14 GC
NGC 362 27 GC
NGC 1851 7 GC
NGC 2516 3 OC Membership from Jeffries, Thurston

& Hambly (2001).
Pleiades 27 OC
ω Cen 230 GC 246 spectra of 230 unique stars.

GC = globular cluster
OC = open cluster

The algorithm is usually run several times and the mapping with
the lowest Kullback–Leibler divergence is used.

The scale of the map produced by t-SNE is irrelevant. Only
the relative relations between objects and groups on the map hold
any information. We therefore refrain from plotting the coordinate
system on the maps.

The above algorithm has a time dependence of O(N2), because
we have to calculate similarities for every pair of objects. This is
impractical for most applications, so we employ the Barnes–Hut
algorithm to calculate sparse similarities in O(N log(N )) time (van
der Maaten 2014). With such optimization, we can analyse our
whole data set on an average desktop computer in less than one
hour.

t-SNE is presented in a more intuitive way in Appendix A, to-
gether with a comparison with some other algorithms.

4 R E C OV E R I N G K N OW N C L U S T E R S IN
CHEMI CAL SPAC E

The GALAH survey targeted only a small number of individual
clusters (47 Tuc, NGC 288, NGC 1851, M 30, ω Cen, NGC 362
and M 67) as a part of the pilot survey. An additional two clus-
ters (NGC 2516 and the Pleiades) were observed because their
stars happen to fall into the magnitude range of the main survey
or K2-HERMES survey. A list of the observed clusters is given in
Table 2. In the pilot survey only probable members were observed.
To confirm the membership of such stars, as well as members of
serendipitously observed clusters, we made additional cuts in ra-
dial velocity, position, and in some instances, their proper motion.
Details are given in Appendix C. The exceptions are three clusters
for which we found members in the literature. There are also three
more clusters (Hyades, NGC 2243, and NGC 6362) in the observed
fields, but we could not find any of their members among survey
stars with valid parameters and abundances.

Fig. 1 shows the abundances for all 13 elements in the observed
clusters. Note that the scatter for some elements is consistently high,
regardless of the cluster. Around half of the scatter is statistical noise
(see Table 3). We demonstrate this by measuring the uncertainties
of the abundances from repeated observations of field stars and
M67. Only measurements made from spectra with signal-to-noise
ratio (S/N) ≥45 per pixel were used in order to distinguish between
repeats done with the purpose of quality estimation and repeats
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Figure 1. Abundances of 13 elements in 9 studied clusters. A violin plot
represents the distribution of measured abundances for all stars that we
identified as cluster members. The number of all stars in each cluster is
given next to the cluster name. Note how some elements have consistently
more scattered distributions.

Table 3. Uncertainties measured from 1579 repeated observations in the
whole GALAH sample and 377 repeated observations of M67 stars com-
pared to scatter observed in Fig. 1, and weights assigned to each element.
Uncertainties and scatters are expressed as standard deviations.

Uncertainty from Uncertainty from Scatter in
Element all repeats M67 repeats all clusters Weight

dex dex dex

Na 0.063 0.063 0.122 1.0
Mg 0.078 0.079 0.162 0.5
Al 0.066 0.063 0.129 1.0
Si 0.053 0.053 0.106 1.0
K 0.099 0.129 0.228 0.25
Ca 0.065 0.056 0.131 0.5
Sc 0.050 0.054 0.115 1.0
Ti 0.044 0.048 0.071 2.0
Cr 0.047 0.049 0.081 2.0
Fe 0.024 0.021 0.060 2.0
Ni 0.056 0.057 0.112 1.0
Cu 0.049 0.036 0.095 2.0
Ba 0.114 0.135 0.230 0.25

done to boost the S/N of some lower quality data. The rest of
the scatter is systematic, arising from the abundance determination
pipeline being sensitive to temperature variations or dwarf–giant
distinction.

The scatter in the Ba and K abundances is highest. Elements
like Fe, Ti and Cr have lower uncertainties. It is therefore not fair
to treat elements with different uncertainties as equally important
dimensions in the C-space. Before we use the abundances in t-
SNE, we standardize them so that the distribution of abundances of
every element has a zero median and a standard deviation of unity.
Standardization is done once for the complete data set (187 640
stars). Then we change the standard deviation of the standardized
set based on the weights that are proportional to the scatter we
observe in clusters. We are confident that there are no misidentified
members contributing to the scatter (see Appendix C). Elements
with more scatter will have a narrower distribution, so the distances

in those dimensions will always be damped and will not carry as
much importance as those for less scattered elements. Because it
is hard to quantitatively determine the weight for each element, we
will distribute the elements into four groups. Ba and K have by far
the highest scatter, so they will be given a weight of 0.25. Mg and
Ca also have high scatter, so they will have weights equal to 0.5. Fe,
Ti, Cr and Cu have the smallest scatter and will have a weight of
2.0, and the rest of the elements will have a weight of 1.0. Weights,
uncertainties measured from the repeated observations, scatter in
clusters and related weights are collected in Table 3. Weights are a
way to implement uncertainties into the t-SNE, as in our case the
uncertainties of individual measurements have not been estimated.
Without these weights, there would be fewer groups in the t-SNE
map and the stars from known clusters would end up scattered over
a larger area.

We use the weighted abundances to produce a t-SNE projec-
tion for a region around Pleiades (Fig. 2) and other clusters (Ap-
pendix B). In cases where we have more than one measurement for a
star, as for most M67 stars and some ω Cen stars, we first calculated
the average abundances for each star and used those in the t-SNE.
Stars with repeated observations are therefore only plotted once in
the t-SNE maps. No other information is used in the projection,
even though other stellar parameters (i.e. Teff, log g, vr, . . . ) are
displayed in the colour-coded t-SNE maps. One can pick out many
groups in the t-SNE map, some more pronounced than the others.
Groups associated with each cluster are marked and we leave a
detailed analysis of other pronounced groups for a later study.

Fig. 3 shows only the members in the t-SNE maps for the eight
remaining clusters. Out of all nine clusters, we claim that t-SNE
gives good results for all but two of them. In NGC 2516 the mem-
bership of three stars is not completely certain, so we cannot base
our conclusions on this cluster. Note that we only cover an edge
of the cluster in one of the observed fields, so a low number of
members are expected. We did not find any large groups in C-space
for 47 Tuc, so the chemical tagging of this cluster was unsuccess-
ful. It is not clear why only 47 Tuc was so resistant to chemical
tagging, since all globular clusters have inhomogeneities in their
light-element abundances (e.g. Thygesen et al. 2014), and we were
able to successfully tag stars from the other globular clusters. Per-
haps the abundances in other globular clusters are distinct enough
from field stars that they still form an isolated group.

In most of the tagged clusters, we find a small number of outliers:
stars that are cluster members, but do not lie in the same chemical
group as the rest of the stars. This is due to our measured abundances
being significantly different, so t-SNE did not associate them with
the main part of the cluster. Some outliers are expected, as our
reduction and analysis pipelines do not produce perfect results.
We also expected to see traces of fibre numbers in the t-SNE map
(there are two sets of 392 fibres in the fibre positioner, so different
stars could be observed with a given fibre with a problematic PSF,
which might manifest itself as a systematic error in the measured
abundance). With the exception of a few ill-performing fibres, we
see no relation between measured abundances and fibre used.

One can also notice that every cluster’s chemical group is popu-
lated with some stars that are not members. This contamination is
expected, as 13 abundances are not enough to completely isolate
the cluster (Mitschang, De Silva & Zucker 2012; Ting et al. 2012;
Ting, Conroy & Goodman 2015). We explore these stars further
in the case of Pleiades in the next section. We chose the Pleiades
for this experiment because it is the only young cluster with dis-
tinct kinematics that we can use to verify potential new member
candidates.
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Figure 2. t-SNE projection of 9408 stars in a 40◦ radius around the Pleiades. Each panel shows the same projection with different colour-codes for different
quantities (given in the top right-hand corner of each panel). Abundances of 13 elements, as well as Teff, log g, metallicity and radial velocity are colour coded.
The panel labeled ‘members’ shows the stars that belong to the cluster in red and field stars in grey. Two stars marked in green and numbered 1 and 2 are
newly discovered Pleiades members discussed in Section 5. They lie slightly away from the rest of the Pleiades because of their slightly different abundances,
more clearly illustrated in Fig. 4. 17 out of 27 Pleiades stars lie in the two tight groups in the bottom of the map marked A and B. The blue polygon marks the
Pleiades’ chemical group (see Section 5 and Fig. 6 for details). Colour version of this figure is available online.
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Figure 3. t-SNE projections for regions around the eight remaining clusters. Known members are marked in red and the number in some panels tells the
number of the stars in the main group, as the points often overlap. Top left-hand panel, to bottom right-hand panel the following clusters are shown: NGC 2516
(41 106 stars in a 30◦ radius), 47 Tuc (44 037 stars in a 35◦ radius), M30 (20 254 stars in a 35◦ radius), M67 (25 648 stars in a 45◦ radius), NGC 288 (11 535
stars in a 45◦ radius), NGC 362 (41 578 stars in a 35◦ radius), NGC 1851 (33 882 stars in a 35◦ radius) and ω Cen (33 281 stars in a 30◦ radius). Red marks on
the edge of each panel point towards the position of the main group of members. Colour version of this figure is available online.

5 C H E M I C A L P O P U L AT I O N S A N D N E W
M E M B E R S O F TH E P L E I A D E S

The Pleiades is a young (Brandt & Huang 2015) cluster for which
we expect to find some members well away from the centre of the
cluster, yet close enough that we can focus only on a small region
around the cluster (Kroupa & Boily 2002). The tidal radius of the
Pleiades is ∼6◦ (Adams et al. 2001), and we do not expect to find
any members at distances much larger than this, considering a low
number of observed stars in the broader Pleiades region. Despite
this, we focus our effort into an area of radius 40◦ around the
Pleiades to demonstrate the method on a larger number of stars.
The Pleiades are one of the most northerly objects that GALAH has
explored, in one of the K2 fields, so the 40◦ radius region includes
mostly K2-HERMES survey fields, a few pilot survey fields and
some regular survey fields at δ < +10◦ that have been observed,
but most of the 40◦ region has no observations at all. The Pleiades
members were identified by us using cuts in the position, radial
velocity and proper motions (see Appendix C). In this way we
identified 27 members.

After making the t-SNE map, we can see in Fig. 2 that most
Pleiades stars fall into one clump with few contaminating field stars.
Closer inspection shows, that the clump consists of two parts (groups
marked A and B on Fig. 3) with slightly different abundances of
[Sc/Fe], [Ba/Fe] and [Fe/H] (Fig. 4). Stars from both groups are
well mixed within 0.5 dex in log g and within 1000 K in Teff, where
stars from group A are on average hotter than stars from group B
with a large overlap. We tried to verify the two chemical groups by
analysing the Pleiades spectra with SME (Valenti & Piskunov 1996;
Piskunov & Valenti 2017). We analysed the members in the Pleiades
chemical groups, as well as the two new member candidates. With
SME, we managed to measure more elements (18), but not for every
star. Fig. 5 shows the SME results. We cannot confirm the existence
of two chemical groups we see in The Cannon abundances, so they

Figure 4. Top panel: the abundances for all 13 elements in groups marked
A and B in Fig. 2 and abundances for two new members. Middle panel:
Groups A and B are separated in [Sc/Fe], [Ba/Fe] and [Fe/H] abundances.
Abundances for each star are plotted. Bottom panel: kinematics for each
group.
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Figure 5. SME abundances for the Pleiades stars from the Pleiades chemical
group. Note that there is no bimodality in [Sc/Fe], [Ba/Fe], and [Fe/H] like
we see with The Cannon abundances.

are most probably an artefact induced by The Cannon or selection
of the training set. The scatter in [Sc/Fe], [Ba/Fe] and [Fe/H]
when calculated by SME is similar to what we get with The Cannon,
though. Any decisive conclusions will require more data and more
careful analysis of abundances. There are similar observations in
the literature (Gebran & Monier 2008) matching our large scatter in
[Sc/Fe] and [Ba/Fe] abundances, but not confirming two separate
groups, which could be due to the low number of observed stars
in those studies. Binary clusters do exist (Slesnick, Hillenbrand &
Massey 2002) and we can speculate that the Pleiades might be a
binary or merged cluster, if two separate chemical groups existed.
The idea of two populations in Pleiades has even been proposed
before (Stello & Nissen 2001). In any case, we show that features
like split chemical groups can be picked out by t-SNE whilst still
conserving the hierarchy and putting both groups close together.

Different abundances measured by The Cannon and SME are a
good indicator that both methods are susceptible to systematic errors
which we were not able to analyse with the current data set. Bots
methods give reliable measurements for our study, as the chemical
tagging is based on relative abundances only.

We define the Pleiades chemical group by combining all small
groups with at least one known Pleiades member that are close to
the main group. This decision is arbitrary but conservative. The
chemical group is marked with a blue polygon in Fig. 2.

We find a small number of contaminating stars in the Pleiades
chemical vicinity. Some contamination is expected, therefore we
cannot claim that all the stars in the chemical group are Pleiades
members. For clusters with adequate kinematic information, how-
ever, 13 abundances are enough, as we can use independent dimen-
sions: radial velocity, amplitude of the proper motion and direction
of the proper motion. We also have photometric information that we
combine into a single parameter: the distance (Zwitter et al. 2010).
These four additional dimensions are enough to select only those
stars with kinematics and distances that match the Pleiades’. This
leaves us with two stars that we claim are candidate Pleiades mem-
bers. The process of reducing ∼30 contaminating stars into two
candidate members is illustrated in Fig. 6. This can also be con-
firmed with the SME abundances (see Fig. 5).

There are actually two more stars in the whole 40◦ radius region
that match the Pleiades’ kinematics. They are both >20◦ away from
the cluster and do not fall near the Pleiades’ chemical group in
the t-SNE map. This means that after reducing the number of stars
from ∼9400 and ∼2 coincidental stars to ∼30 stars by chemically
tagging the cluster, we expect to find 2 30

9400 	 0.0064 stars that by
chance have the same kinematics as the Pleiades and that fall into
the cluster’s chemical group. We found two, which are therefore

Pleiades members with a high degree of certainty. It must be noted,
that one of the newly discovered members (star number 2) is a known
supercluster candidate (Mermilliod, Bratschi & Mayor 1997) that
escaped our cluster membership determination for being too far
from the cluster centre. Star number 1, however, has no relation to
the Pleiades in the literature.

6 D I SCUSSI ON

We show that t-SNE is an appropriate algorithm to search for clus-
tering in C-space by demonstrating its performance on all clusters
observed in GALAH and K2-HERMES surveys. With reasonable
exceptions the method performs well, which we further demonstrate
by discovering previously unknown members of Pleiades.

Perhaps an even more important conclusion is that extremely
precise abundances are not always needed to successfully chem-
ically tag cluster members or maybe even field stars. It turns out
that the ability to find structures in C-space is more valuable than
extreme accuracy of the data. Precise abundances help by reducing
the number of outliers and increasing the prominence of the chem-
ical groups, but we show that the groups exist and can be isolated
even when chemical homogeneity is only of the order of 0.1 dex.
This is best shown by being able to match the two new Pleiades
members to the cluster, even when the abundances do not always
agree with the abundances of Pleiades. Even with large discrepancy
in [Cu/Fe], the two stars still lie close to the Pleiades manifold and
are therefore correctly identified as members.

We do see some pollution from field stars in the mapped groups
associated with the clusters. This is largely due to only 13 elements
being used for chemical tagging, two of which (K and Ba) were
also given low weights. There are lines of up to 30 elements in the
observed wavelength ranges, so in the future we plan to use more
elements and reduce the level of pollution. It must be noted, that for
some clusters and dissolved groups chemical tagging might remain
unfeasible, if their abundances are not distinct enough from the
observed population of stars. With the current data, a large fraction
of the stars are untaggable. In t-SNE maps they are collected in the
middle, with no convincing structure visible that would separate
them from each other. Again, this is something that more observed
elements can solve. Despite the mentioned limitations, we conclude
that clusters tagged by t-SNE experience low pollution and fairly
high efficiency, especially when compared to competing methods.

A further demonstration of the power and robustness of t-SNE
is the hierarchy seen in some clusters where more than one pop-
ulation is found. Different populations form different groups, but
they all compose one larger group that includes the majority of
the cluster members. In a two-dimensional map, one can easily
see and correctly interpret these structures. This is very hard to do
in a higher-dimensional space without a good visualization of all
relevant dimensions. Built-in hierarchy also saves us from tagging
dwarfs and giants separately, as some studies in the literature do.
It can be seen from the log g panel in Fig. 2, and even better from
the figures in Appendix B, that giants are mostly separated from
predominantly dwarf-populated t-SNE maps. t-SNE knows nothing
about log g and the result is purely a consequence of abundances be-
ing dependent on gravity. This can be either an abundance pipeline
issue or a result of different stellar populations observed.

Adopting the Pleiades parallax of � = 7.48 ± 0.03 mas
(Gaia Collaboration et al. 2017), median proper motion of our
known Pleiades members (μ = 48.96 mas y−1), and proper mo-
tion of the newly discovered members, we can calculate, that these
stars were scattered out of the cluster 7.9 ±∞

4.6 Myr (star 1) and
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Chemical tagging of clusters in the GALAH survey 4619

Figure 6. Position of the analysed stars on the sky (top left-hand panel and top middle panel), on the HR diagram (top right-hand panel) and on the radial
velocity, distance and proper motion histograms (bottom row). In grey are plotted all the analysed stars in the 40◦ radius around Pleiades. In blue are the stars
that belong to the Pleiades chemical group (inside the blue polygon in Fig. 2). In red are known Pleiades members also marked with red symbols in Fig. 2.
Green are two new Pleiades stars that we discovered by chemical tagging. Colour version of this figure is available online.

0.68 ± 0.05 Myr (star 2) ago, at a velocity significantly larger than
the escape velocity of the cluster. Considering where in the HR dia-
gram the two stars lie, they are indeed good candidates to be ejected
from the cluster due to their low mass.

It was unexpected that our method would work well for globular
clusters. Globular clusters have large scatter in light elements and
are often chemically inhomogeneous. Results like ones for 47 Tuc
were therefore expected. Other globular clusters (with the exception
of NGC 2516, where the results are inconclusive) performed well,
especially ω Cen. These globular clusters are interesting targets
for further studies with chemical tagging as they are obviously
easiest and most reliable to tag. Stars from these globular clusters
have abundances distinct enough from fields stars that they were
successfully tagged. It is possible that t-SNE is robust enough that
with more measured element in the future the tagging will work for
47 Tuc as well.

This is an exploratory study in the early years of the GALAH sur-
vey to demonstrate that it is feasible to extract homogeneous clusters
from a huge stellar survey. There are still numerous improvements
to be made to the stellar abundance determinations, including 3D
non-LTE atmospheric corrections (Lind et al. 2017), better absorp-
tion line measurements using a photonic comb (Bland-Hawthorn
et al. 2017) and new data driven techniques to ensure abundance
uniformity across the survey (Ness et al. 2015). Thus the efficacy
of chemical tagging will only improve in the years to come.

One can see that the maps in Fig. 3 show many more structures
than we have analysed in this paper. We explored other chemical
groups and observed some regularities and patterns when kinematics
and positions on the sky were inspected. There are, however, some
contaminating stars in these groups as well and decisive conclusions
are hard to make. We leave the topic of pure blind chemical tagging
of field stars for future work. Blind chemical tagging will also

be much easier on the set of 30 abundances and >300 000 stars
soon to be produced by the GALAH collaboration. More observed
elements mean much less contamination of chemical groups, so we
might soon be able to find long-lost relationships between field stars
for the first time with good reliability. We also expect to find many
more distinct clusters than we can see in the presented t-SNE maps
(Bland-Hawthorn & Sharma 2016).

AC K N OW L E D G E M E N T S

JK is supported by a Discovery Project grant from the Australian
Research Council (DP150104667) awarded to J. Bland-Hawthorn
and T. Bedding. TZ acknowledge the financial support from the
Slovenian Research Agency (research core funding No. P1-0188).
SM acknowledges support from the Australian Research Coun-
cil through grant DE140100598. DMN is supported by the Allan
C. and Dorothy H. Davis Fellowship. DBZ acknowledges the fi-
nancial support of the Australian Research Council through grant
FT110100793

R E F E R E N C E S

Adams J. D., Stauffer J. R., Monet D. G., Skrutskie M. F., Beichman C. A.,
2001, AJ, 121, 2053

Barden S. C. et al., 2010, Proceedings of the SPIE, Volume 7735, HER-
MES: Revisions in the Design for a High-Resolution Multi-Element
Spectrograph for the AAT. SPIE, Bellingham, p. 773509,

Bensby T., Feltzing S., Oey M. S., 2014, A&A, 562, A71
Blanco-Cuaresma S. et al., 2015, A&A, 577, A47
Bland-Hawthorn J., Freeman K. C., 2004, PASA, 21, 110
Bland-Hawthorn J., Sharma S., 2016, Astron. Nachr., 337, 894
Bland-Hawthorn J., Krumholz M. R., Freeman K., 2010a, ApJ, 713, 166

MNRAS 473, 4612–4633 (2018)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/473/4/4612/4555384 by U
niversity of Southern Q

ueensland user on 02 O
ctober 2018



4620 J. Kos et al.

Bland-Hawthorn J., Karlsson T., Sharma S., Krumholz M., Silk J., 2010b,
ApJ, 721, 582

Bland-Hawthorn J., Kos J., Betters C., De Silva G., O’Byrne J., Patterson
R., Leon-Saval S., 2017, Opt. Express, 25, 15614

Bovy J., 2016, ApJ, 817, 49
Brandt T. D., Huang C. X., 2015, ApJ, 807, 58
Bu Y., Chen F., Pan J., 2014, New A, 28, 35
Daniel S. F., Connolly A., Schneider J., Vanderplas J., Xiong L., 2011, AJ,

142, 203
De Silva G. M., Sneden C., Paulson D. B., Asplund M.,

Bland-Hawthorn J., Bessell M. S., Freeman K. C., 2006, AJ,
131, 455

De Silva G. M., Freeman K. C., Asplund M., Bland-Hawthorn J., Bessell
M. S., Collet R., 2007, AJ, 133, 1161

de Silva G. M., Freeman K. C., Bland-Hawthorn J., Asplund M., Williams
M., Holmberg J., 2011, MNRAS, 415, 563

De Silva G. M., D’Orazi V., Melo C., Torres C. A. O., Gieles M., Quast G.
R., Sterzik M., 2013, MNRAS, 431, 1005

De Silva G. M. et al., 2015, MNRAS, 449, 2604
Feng Y., Krumholz M. R., 2014, Nature, 513, 523
Freeman K., Bland-Hawthorn J., 2002, ARA&A, 40, 487
Gaia Collaboration et al., 2017, A&A, 601, A19
Gebran M., Monier R., 2008, A&A, 483, 567
Geller A. M., Latham D. W., Mathieu R. D., 2015, AJ, 150, 97
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APPENDI X A : INTRO DUCTI ON TO T-SNE

Dimensionality reduction methods aim to reduce the number of
dimensions while preserving the structure of the data that we are
interested in. Here, we want to identify groups of data points in a
13-dimensional space. This can be done in the original 13 dimen-
sions, but the visualization would remain a problem. Also, we know
that chemical groups are not very distinct or isolated from each other
(there are field stars with very similar abundances), so fine-tuning
an algorithm in 13 dimensions is nearly impossible.

Linear and non-linear dimensionality reduction. Linear algo-
rithms, like PCA, are not very suitable for chemical tagging, espe-
cially if we first intend to project the data into two dimensions. Even
though the abundances of different elements are correlated, the re-
lations are not linear, so the projection into only two dimensions is
unable to conserve the structure from the high-dimensional space.
We illustrate the problem in Fig. A1. A double helix constructed
in three dimensions is projected into two dimensions with t-SNE.
One can see that both strands of the double helix become sepa-
rated in the t-SNE projection. A linear method would not be able to

Figure A1. t-SNE projection of a double helix into two dimensions. All
information about the shape of the structure is lost, but two strands become
separated. Colours are used for the illustration purposes only and are not
part of the data set, meaning that t-SNE only knows the coordinates of the
points, regardless the colour.
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Chemical tagging of clusters in the GALAH survey 4621

Figure A2. Comparison of the performance of PCA, LLE, Spectral embedding and t-SNE. Methods follow from the most to the least linear (left- to right-hand
panels). In the top row, we compare the four methods on the case of ω Cen (an easy case) and in the bottom row for M67 (a harder case). Known cluster
members are marked in red. Notice how efficiently t-SNE covers the plane and how many more distinct groups one can see. t-SNE projections in this figure
can be compared with projections for the same two clusters in Fig. 3. Projections are not the same, even though the same parameters were used. Chemical
groups, however, are almost identical.

produce that. Any linear projection will result in either a ring or two
interlocking ‘waves’ of points. But most non-linear dimensionality
reduction algorithms will be able to deal with this example.

Local and global algorithms. Most differences between non-
linear algorithms are in the mapping of local and global details.
Imagine the previous example, but with added outliers somewhere
far away from the double helix. Global algorithms will try to pre-
serve the structure at all scales. Points that are close together will
remain close together in the two-dimensional projection and dis-
tant outliers will be placed far away. The double helix structure,
however, might not be resolved as the distances between the points
in the double helix are negligible compared to the distances to
the outliers. With local algorithms, the position of each point in the
two-dimensional space is determined only by its nearest neighbours.
Local algorithms can ‘see’ the two strands of the double helix, but
will fail to map the outliers as their nearest neighbours are points on
the double helix. Positions of outliers on the two-dimensional map
will therefore be meaningless.

t-SNE is able to adapt itself to local density. It can map data sets
with a high variation in density, so it is able to resolve small, local
details, as well as the global picture.

Two examples in Fig. A2 show a projection of elemental abun-
dances for 13 elements for stars around ω Cen and M67 made with
four different algorithms. ω Cen stars have peculiar enough abun-
dances that they stand out from rest of the stars. M67 stars have
abundances that are much closer to field stars, so it is one of the
hardest clusters to chemically tag in our sample. One can see in
Fig. A2 that only t-SNE is able to create a map where cluster stars
lie in the region not densely populated by field stars. Locally lin-
ear embedding (LLE) and spectral embedding are able to identify
some groups of stars that are mapped into rays extending from the
central region. They cannot identify structures inside the central re-
gion, while t-SNE distributes stars pretty evenly, identifying many

groups where LLE and spectral embedding fail. PCA and spectral
embedding are able to tag ω Cen stars, but the pollution from the
field stars is much higher than in t-SNE maps.

t-SNE algorithm. The main difference between t-SNE and other
methods discussed here is that t-SNE does not use a fixed num-
ber of nearest neighbours to determine the position of a point in
the two-dimensional map. Instead, a neighbour is only used with
a probability that depends on the distance between the data points
(equation 2) under a Gaussian distribution with dispersion σ i. This
way, even points far away can be considered to calculate the position
of a point in two dimensions (they are used as ‘nearest neighbours’).
If we imagine a two-dimensional projection, not necessarily an op-
timal one, a similar probability can be calculated in two dimensions
(equation 4), this time requiring that the ‘nearest neighbours’ re-
semble a Student’s t distribution. A Student’s t distribution used
instead of the Gaussian makes t-SNE sensitive to fine and global
structures. An optimal projection is where the Gaussian and Stu-
dent’s t distributions are as close to each other as possible. This is
found by minimizing the sum of Kullback–Leibler divergences for
each data point, which is computationally intensive.

Role of perplexity. σ i in equation (2) is the second moment of
the Gaussian distribution (dispersion). It should be smaller for data
points in denser regions of the high-dimensional space and larger in
sparse regions, assuming regions of different densities are mapped
simultaneously. t-SNE finds σ i for every data point, such that the
perplexity

Perpi = 2−∑
j pj |i log2 pj |i (A1)

equals to the perplexity specified by the user. The specified perplex-
ity is typically in the range of 5–50.

Perplexity therefore controls whether t-SNE is more sensitive
to large or small structures. Its role is similar to the number of
nearest neighbours used by most other dimensionality reduction
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methods. See Wattenberg et al. (2016) for an excellent interactive
demonstration of the role of perplexity, as well as other caveats of
the t-SNE method.

Visualization. t-SNE does not retain distances but probabilities.
It is also highly non-linear, so the values for the coordinates of
data points in the projected map are meaningless. So are the units.
They can be thought of as coordinates of an image. In Figs A1
and A2, we show the two axes with corresponding numerical
values to spare the reader any confusion. In the main text, we
omit them altogether, so the projected map is actually treated as
an image.

Kullback–Leibler divergence is minimized by a gradient descent
method initialized by random sampling, so t-SNE will produce a
slightly different map on every run, even with the same data and
same perplexity. In the case of chemical tagging, usually the only
visible difference is a random rotation of the map. The difference
can be seen, if Figs 3 and A2 are compared. In general, one can run

t-SNE many times and use the projection with the lowest Kullback–
Leibler divergence.

At the beginning of this paper, we introduced t-SNE to avoid
finding groups in a 13-dimensional space. The problem of how
to find groups exists in the two-dimensional map as well. Any
group finding algorithm can be used and, thanks to t-SNE, can be
inspected visually. Such approach is used in Traven et al. (2017),
for example. In this paper, however, we find it unnecessary, as
we are only interested in one particular group of stars (one with
cluster members) in each two-dimensional map. A more systematic
analysis is therefore not needed.

A P P E N D I X B : T- S N E P RO J E C T I O N S O F T H E
REMAI NI NG C LUSTERS

t-SNE maps for the eight clusters, not presented in the main text,
are collected here.
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Chemical tagging of clusters in the GALAH survey 4623

Figure B1. t-SNE projection of 20 254 stars in a 35◦ radius around M30. Abundances of 13 elements used to create the projection are colour-coded. Teff,
log g, metallicity and radial velocity colour-codes are also plotted. The last panel shows the stars that belong to the cluster in red and field stars in grey. Three
out of four M30 stars lie in a tight group in the top right-hand part of the map (marked with dashes at the edge of the plot).
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Figure B2. t-SNE projection of 33 281 stars in a 30◦ radius around ω Cen. Abundances of 13 elements used to create the projection are colour-coded. Teff,
log g, metallicity and radial velocity colour-codes are also plotted. The last panel shows the stars that belong to the cluster in red and field stars in grey. 101
out of 230 ω Cen stars lie in a tight group in the bottom part of the map (marked with dashes at the edge of the plot) and additional 106 in a more sparse group
next to it.
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Chemical tagging of clusters in the GALAH survey 4625

Figure B3. t-SNE projection of 11 535 stars in a 45◦ radius around NGC 288. Abundances of 13 elements used to create the projection are colour-coded. Teff,
log g, metallicity and radial velocity colour-codes are also plotted. The last panel shows the stars that belong to the cluster in red and field stars in grey. 10 out
of 14 NGC 288 stars lie in a tight group in the top part of the map (marked with dashes at the edge of the plot).
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Figure B4. t-SNE projection of 41 578 stars in a 35◦ radius around NGC 362. Abundances of 13 elements used to create the projection are colour-coded. Teff,
log g, metallicity and radial velocity colour-codes are also plotted. The last panel shows the stars that belong to the cluster in red and field stars in grey. 23 out
of 27 NGC 362 stars lie in a group in the bottom part of the map (marked with dashes at the edge of the plot).
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Chemical tagging of clusters in the GALAH survey 4627

Figure B5. t-SNE projection of 33 882 stars in a 35◦ radius around NGC1851. Abundances of 13 elements used to create the projection are colour-coded.
Teff, log g, metallicity and radial velocity colour-codes are also plotted. The last panel shows the stars that belong to the cluster in red and field stars in grey.
Six out of seven NGC 1851 stars lie in a tight group in the top right-hand part of the map (marked with dashes at the edge of the plot).
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Figure B6. t-SNE projection of 25 648 stars in a 45◦ radius around M67. Abundances of 13 elements used to create the projection are colour-coded. Teff,
log g, metallicity and radial velocity colour-codes are also plotted. The last panel shows the stars that belong to the cluster in red and field stars in grey. 71 of
the 113 M67 stars lie in the biggest group in the bottom part of the map (marked with dashes at the edge of the plot).
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Chemical tagging of clusters in the GALAH survey 4629

Figure B7. t-SNE projection of 44 037 stars in a 35◦ radius around 47 Tuc. Abundances of 13 elements used to create the projection are colour-coded. Teff,
log g, metallicity and radial velocity colour-codes are also plotted. The last panel shows the stars that belong to the cluster in red and field stars in grey. Most
47 Tuc stars do not lie in a single group. The bigest group contains only 21 stars out of 90 47 Tuc stars.
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Figure B8. t-SNE projection of 41 106 stars in a 30◦ radius around NGC 2516. Abundances of 13 elements used to create the projection are colour-coded.
Teff, log g, metallicity and radial velocity colour-codes are also plotted. The last panel shows the stars that belong to the cluster in red and field stars in grey.
We only matched three stars to NGC 2516 of which none has a high membership probability in Jeffries et al. (2001). All stars lie in a middle region of the map
where stars that are hardest to classify lie (marked with dashes at the edge of the plot).
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APPENDIX C : C LUSTER MEMBERSHIP

For clusters targeted in the pilot survey the observed stars were pre-
selected based on their proper motions (47 Tuc, NGC 288, NGC
362, M 67) position on the HR diagram (47 Tuc, NGC 288, ω Cen,
NGC 362, M 67) and previous spectroscopic observations (NGC
288, NGC 1851, M 30, ω Cen). See Martell et al. (2017) for details.

Despite the pre-selection of observed stars, we did a further anal-
isys of possible members. Fig. C1 shows position, radial velocities
and proper motions used to determine the memberships. Our con-
ditions are simple cuts in position and radial velocity for globular
clusters and additional cuts in amplitude and angle of proper mo-
tion for Pleiades. Radii r1 and r2 (Kharchenko et al. 2013) are used
for the radius of the core and radius of the cluster, respectively.
For globular clusters, we consider all stars within 1.5r2, as there are
members expected to be observed outside r2. Any field stars are then
discarded by making a cut in radial velocity. Because all our glob-
ular cluster have radial velocities that are distinct from the radial

velocity of nearby field stars, we do not expect any misidentified
members. This is not true for Pleiades, so we use r1 as the posi-
tion criterium and make additional cuts in proper motion. We might
miss some members this way, but should keep the selection clear
of any field stars. The criteria are conservative, as any misidentified
members have more impact on the success of chemical tagging than
possible missed members. The following list gives the membership
criteria for each cluster:

(i) ω Cen: All stars within 1.5r2 and 200 < vr < 260 km s−1.
(ii) Pleiades: All stars within r1 and 5.0 < vr < 8.0 kms−1 and

45 < μ < 55 mas yr−1 and 2.70 < φμ < 2.80. φμ is the angle
of proper motion expressed in radians in the celestial coordinate
system.

(iii) NGC 1851: All stars within 1.5r2 and 300 < vr < 340 kms−1.
(iv) NGC 362: All stars within 1.5r2 and 210 < vr < 230 kms−1.
(v) NGC 288: All stars within 1.5r2 and −55 < vr < −35 kms−1.
(vi) M30: All stars within 1.5r2 and −175 < vr < −185 kms−1.
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Figure C1. Top to bottom panel: basic information used to determine membership for six clusters, where we did not use sources from the literature. Left- to
right-hand panel: position of observed stars (grey) and members (red) in a small region around each cluster centre. Red circle shows the maximum radius at
which the members can be. Green circles show values r1 (size of the cluster centre) and r2 (size of the cluster) from Kharchenko et al. (2013). Second panel
shows distribution of the radial velocities of all stars in the plotted field (grey) and cluster members (red). Last two panels show amplitude and angle of proper
motion for all stars in the plotted field (grey) and cluster members (red). There is no panel for NGC 288, because all observed stars made the cut and there are
no field stars within 5◦ of the cluster.
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