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Abstract. Individual privacy will be at risk if a published data set is not properly de-
identified.k-anonymity is a major technique to de-identify a data set. A more general
view ofk-anonymity is clustering with a constraint of the minimum number of objects
in every cluster. Most existing approaches to achievingk-anonymity by clustering are
for numerical (or ordinal) attributes. In this paper, we study achievingk-anonymity
by clustering in attribute hierarchical structures. We define generalisation distances
between tuples to characterise distortions by generalisations and discuss the proper-
ties of the distances. We conclude that the generalisation distance is a metric distance.
We propose an efficient clustering-based algorithm fork-anonymisation. We exper-
imentally show that the proposed method is more scalable and causes significantly
less distortions than an optimal global recodingk-anonymity method.

1 Introduction

A vast amount of operational data and information has been stored at different vendors and
organizations. Most of the stored data is useful only when the data is shared and analysed
with other related data. However, this kind of data normally contains some personal details
and sensitive information. The data can only be allowed to be released when the private
information is protected.

More and more powerful data mining tools require a large amount of data from vari-
ous sources to produce promising results. On the other hand, these powerful data mining
tools may be maliciously used to uncover personal-related sensitive information in data.
Therefore, privacy preservation becomes a fundamental issue in data mining.

Cryptographic technique is a choice since it can hide data from unauthorised users.
However, cryptographic methods may restrict data access and exchange too much. Further-
more, cryptographic privacy-preserving methods [15, 22, 24] usually tailor some specific
data mining tasks, and therefore lose generality.

Random perturbation can provide certain privacy protection [5, 4, 18], but they are suit-
able for data of numerical attributes. When data contains categorical values, the methods
are not quite effective.

Data generalisation is applicable to both categorical and numerical data, andk-anonymity
provides a practical model for privacy protection [21, 20, 19]. Since thek-anonymity model
is simple and practical, it has been extensively studied in recent years [14, 6, 23, 10, 13]. A
more general view ofk-anonymisation is clustering with a constraint of the minimum num-
ber of objects in every cluster [3]. A number of methods approach identity protection by
clustering [4, 1]. However, these methods are applicable to numerical attributes only. A re-
cent work [9] extends a clustering-based method [8] to ordinal attributes, but it does not
deal with attributes in hierarchical structures. Other works [2, 17] dealing with categori-
cal attributes do not consider attribute hierarchies. In this paper, we focus our effort on
achievingk-anonymity in hierarchical attribute structures. We define some general metrics
in attribute hierarchies for measuring the quality ofk-anonymous tables, and map them to
generalisation distances which can be minimised in the process ofk-anonymisation. This



greatly facilitates achievingk-anonymity by local recoding via clustering. To the best of
our knowledge, this work is the first work to do such mapping. We also present an efficient
algorithm for this purpose, and demonstrate that our method causes less distortions than an
optimalk-anonymity algorithm.

2 Preliminary Definitions

The objective ofk-anonymisation is to make every tuple of privacy-related attributes in
a published table identical to at least (k - 1) other tuples. As a result, no privacy-related
information can be easily inferred.

For example, young people with stress and obesity are potentially identifiable by their
unique combinations of gender, age and postcode attributes in Table 1a.

To preserve their privacy, we may generalise their gender and postcode attribute values
such that each tuple in attribute set{Gender, Age, Postcode} has two occurrences. The
view after the generalisation is listed in Table 1b.

Gender Age PcodeProblem
male middle 4350 stress
male middle 4350 obesity
male young 4351 stress

female young 4352 obesity
female old 4353 stress
female old 4353 obesity

Gender Age PcodeProblem
male middle 4350 stress
male middle 4350 obesity

* young 435* stress
* young 435* obesity

female old 4353 stress
female old 4353 obesity

Gender Age PcodeProblem
* middle 435* stress
* middle 435* obesity
* young 435* stress
* young 435* obesity
* old 435* stress
* old 435* obesity

Table 1. (a) Left: a raw table. (b) Middle: a 2-anonymous view by local recoding. (c) Right: a 2-
anonymity view by global recoding.

In this paper, we adopt a simplified postcode scheme, where its hierarchy{4201, 420*,
42**, 4***, * } corresponds to{suburb, city, region, state, unknown}, respectively.

Definition 1 (Quasi-identifier Attribute Set). A quasi-identifier attribute setis a set of
attributes in a table that potentially reveal private information, possibly by joining with
other tables.

For example, attribute set{Gender, Age, Postcode} in Table 1a is a quasi-identifier.
Table 1a potentially reveals private information of patients (e.g. young patients with stress
and obesity). If the table is joined with other tables, it may reveal more information of
patients’ disease history. Normally, a quasi-identifier attribute set is understood by domain
experts.

Definition 2 (equivalence class).An equivalence classof a table with respect to an at-
tribute set is the set of all tuples in the table containing identical values for the attribute
set.

For example, tuples 1 and 2 in Table 1a form an equivalence class with respect to
attribute set{Gender, Age, Postcode}. Their corresponding values are identical.

Definition 3 (k-anonymity Property). A table isk-anonymouswith respect to a quasi-
identifier if the size of every equivalence class with respect to the attribute set isk or more.

k-anonymity requires that every occurrence within an attribute set has the frequency at
leastk. For example, Table 1a does not satisfy2-anonymity property since tuples{male,
young, 4351} and{female, young, 4352} occur once.

Definition 4 (k-anonymisation).A view of a table is said to be ak-anonymisationof the
table if the view modifies the table such that the view satisfies the k-anonymity property
with respect to the quasi-identifier.



For example, Table 1b is a 2-anonymous view of Table 1a since the size of all equiva-
lence classes with respect to the quasi-identifier is 2.

A table may have more than onek-anonymous views, but some are better than others.
For example, we may have another 2-anonymous view of Table 1a as in Table 1c. Table 1c
loses more details than Table 1b. Another objective fork-anonymisation is to minimise dis-
tortions. We will give a definition of distortion later. Initially, we consider it as the number
of cells being modified.

There are two ways to achievek-anonymity, namelyglobal recodingandlocal recod-
ing. Another name for global recoding isdomain generalisation. The generalisation hap-
pens at the domain level. When an attribute value is generalised, every occurrence of the
value is replaced by the new generalised value. Most working models are global recoding
models, such as [20, 14, 6, 19, 12, 23, 10]1. A global recoding method mayover-generalise
a table. An example of global recoding is given in Table 1c.

A local-recoding method generalises attribute values at cell level. A generalised at-
tribute value co-exists with the original value. A local recoding method does not over-
generalise a table and hence may minimise the distortion of an anonymous view. Sweeney
studied a local recoding model, but did not present a working local recoding algorithm [21,
20]. Sweeney’s MinGen algorithm is impractical and DataFly is a global recoding algo-
rithm. Gagan Aggarwal et al. [2] and Adam Meyerson et al. [17] analysed a simplified
local recoding model that does not involve hierarchical attributes. Both papers conclude
that optimal k-anonymisation is NP-hard.µ- andτ -Argus methods [11], are two working
local recoding methods, butµ-Argus does not guaranteek anonymity as discovered in [20].
τ -Argus works efficiently only on limited number of attributes. More recent work of local
recoding k-anonymisation was reported in [13] by LeFevre et al. The method deals with
numerical values, and does not involve attribute domain hierarchies. An example of local
recoding is given in Table 1b.

A global-recoding method causes too much distortions to a table. It is preferable to use
a local-recoding method. However, optimal local-recoding is NP-hard [2, 17]2. Therefore,
good heuristic methods are required to achievek-anonymisation by local recoding.

The objectives ofk-anonymisation by local recoding is listed as follows.

– to modify a table to satisfy the k-anonymity property, and
– to minimise the distortion of the view from its original table.

3 Measuring the Quality of k-anonymisation

In this section, we discuss metrics for measuring the quality of generalisation.
A general criterion should be the distortion of a table. A simple measurement of distor-

tion is themodification rate. For a k-anonymous viewV of tableT , themodification rate
is the fraction of cells being modified within the quasi-identifier attribute set. For example,
the modification rate from Table 1a to Table 1b is 22.2% and the modification rate from
Table 1a to Table 1c is 66.7%.

This criterion does not consider hierarchical structures. For example, the distortion
caused by the generalisation of birth date from D/M/Y to M/Y is significantly different
from the distortion caused by the generalisation of gender from M/F to *. The former still

1 [13] also considers global-recoding. However, the definition is different from our work and most
previous work. Suppose there are three dimensions(A, B, C). In their global-recoding model, for
each possible value(a, b, c) (wherea ∈ A, b ∈ B andc ∈ C), all tuples with this value in the data
set should be generalised to the same value. However, this formulation is actually a local-recoding
in our work and most previous work.

2 To the best of our knowledge, the global local-recodingK-anonymity problem defined in this
paper has not been shown to be NP-hard in the literature. As the definition of the global recoding
in [13] is different from ours, the result of the NP-hardness shown in [13] can be regarded for the
local-recoding problem in our work.



keeps most information of Birth Date but the latter loses all information for Gender. The
modification rate is too simple to reflect such differences.

We calculate distortions of two tables based on distortions of their corresponding tuple
pairs. We first define a metric measuring the distance between different levels in an attribute
hierarchy.

Definition 5 (Weighted Hierarchical Distance).Let h be the height of a domain hierar-
chy, and let levels1, 2, . . . , h − 1, h be the domain levels from the most general to most
specific, respectively. Let the weight between domain levelj andj − 1 be predefined, de-
noted bywj,j−1, where2 ≤ j ≤ h. When a cell is generalised from levelp to levelq, where
p > q. The weighted hierarchical distance of this generalisation is defined as

WHD(p, q) =

∑p
j=q+1 wj,j−1∑h

j=2 wj,j−1

The right part of Figure 1a shows the numbering methods of hierarchical levels and the
left part of Figure 1a shows weights between hierarchical levels. Level 1 is always the most
general level of a hierarchy and contains one value.

We can define weightwj,j−1 to enforce a priority in generalisation. In the following,
we discuss two simple but typical schemes.

1. Uniform Weight: wj,j−1 = 1 , where2 ≤ j ≤ h
This is the simplest scheme where all weights are equal to 1. In this scheme, WHD

is the number of steps a cell being generalised over all possible generalisation steps, e.g.
h− 1. For example, let birth date hierarchy be{D/M/Y, M/Y, Y, 10Y, C/Y/M/O, * }, where
10Y stands for 10-year interval and C/Y/M/O for child, young, middle age and old age.
WHD from D/M/Y to Y is WHD(6, 4) = (1 + 1)/5 = 0.4. In gender hierarchy,{M/F, *},
WHD from M/F to * is WHD(2, 1) = 1/1 = 1. This means that the distortion caused by
the generalisation of five cells from D/M/Y to Y is equivalent to the distortion caused by
the generalisation of two cells from M/F to *.

As this scheme is quite simple, this does not capture that the generalisations at differ-
ent levels yield different distortions. It is expected that the generalisation near to the root
should distort the data more compared with the generalisation far from the root. We take the
address for illustration. Suppose the address contains three components - street no, street
name and postcode. For example, the address is “20, Smith Street, Pcode 4351”. Let us
consider two generalisations - the generalisationG1 from “20, Smith Street, Pcode 4351”
to “Smith Street, Pcode 4351” and the generalisationG2 from “Pcode 4351” to “Pcode
435*”. It is obvious thatG1 (i.e. the removal of the street no) corresponds to a smaller dis-
tortion whileG2 (i.e. the removal of the suburb) corresponds to a larger distortion, because
the area coverage by the suburb, of course, is larger than the area coverage by a housing
(denoted by the street no). This example motivates us to propose another scheme.

2. Height Weight: wj,j−1 = 1/(j − 1)β where2 ≤ j ≤ h andβ is a real number≥ 1
provided by a user.

For a fixedβ, the intuition of this scheme is that the generalisation near to the top
should give greater distortion compared with the generalisation far from the top. Thus, we
formulate the height weight scheme, where the weight near to the top is larger and the
weight far from the top is smaller. For example, consider a hierarchy:{D/M/Y, M/Y, Y,
10Y, C/Y/M/O, *} for birth date. Letβ = 1. WHD from D/M/Y to M/Y is WHD(6, 5) =
(1/5)/(1/5 + 1/4 + 1/3 + 1/2 + 1) = 0.087. In gender hierarchy{M/F, *}, WHD from
M/F to * is WHD(2, 1) = 1/1 = 1. The distortion caused by the generalisation of one cell
from M/F to * in gender attribute is more than the distortion caused by the generalisation
of 11 cells from D/M/Y to M/Y in birth date attribute.



In some cases, users prefer that the weight near to the leaf node should be equal to a
smaller value (compared with the case whenβ = 1). Then, in this model, we allow this
requirement. In order to satisfy this kind of requirement, we simply set theβ value with a
larger value (e.g. 2) such that the weight near to the leaf node is smaller.

There are other possible other schemes for various applications.
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Fig. 1.(a) Left: Two examples of domain hierarchies - one for categorical values and one for
numerical values. (b) Right: Depiction of weights between domain levels and a simplified
hierarchical value tree.

In the following, we define distortions caused by the generalisation oftuplesandtables.

Definition 6 (Distortions of Generalisation of Tuples).Let t = {v1, v2, . . . , vm} be a
tuple andt′ = {v′1, v′2, . . . , v′m} be a generalised tuple oft. Let level(vj) be the domain
level ofvj in an attribute hierarchy. The distortion of this generalisation is defined as

Distortion(t, t′) =
m∑

j=1

WHD(level(vj), level(v′j))

For example, let the weights of WHD be defined by the uniform weight, attribute
Gender be in hierarchy of{M/F, * } and attribute Postcode be in hierarchy of{dddd,
ddd*, dd**, d***, * }. Let t3 be tuple 3 in Table 1a andt′3 be tuple 3 in Table 1b.
For attribute Gender,WHD = 1. For attribute Age,WHD = 0. For attribute Postcode,
WHD = 1/4 = 0.25. Therefore,Distortion(t3, t′3) = 1.25.

Definition 7 (Distortions of Generalisation of Tables).Let viewD′ be generalised from
table D, ti be thei-th tuple inD and t′i be thei-th tuple inD′. The distortion of this
generalisation is defined as

Distortion(D,D′) =
|D|∑

i=1

Distortion(ti, t′i)

where|D| is the number of tuples inD.

From Table 1a and 1b,WHD(t1, t′1) = WHD(t2, t′2) = WHD(t5, t′5) = WHD(t6, t′6)
= 0 andWHD(t3, t′3) = WHD(t4, t′4) = 1.25. The distortion between the two tables is
Distortion(D,D′) = 1.25 + 1.25 = 2.5.

4 Generalisation Distances

In this section, we map distortions to distances and discuss the properties of the mapped
distances.



4.1 Distances between Tuples and equivalence classes

An objective ofk-anonymisation is to minimise the overall distortions between a gener-
alised table and the original table. We first consider how to minimise distortions when
generalising two tuples into an equivalence class.

Definition 8 (Closest Common Generalisation).All allowable values of an attribute form
a hierarchical value tree. Each value is represented as a node in the tree, and a node has
a number of child nodes corresponding to its more specific values. Lett1 and t2 be two
tuples.t12 is the closest common generalisation oft1 and t2 for all i. The value of the
closest common generalisationt12 is

vi
12 =

{
vi
1 if vi

1 = vi
2

the value of the closest common ancestor otherwise

where,vi
1, vi

2, andvi
12 are the values of thei-th attribute in tuplest1, t2 andt12.

For example, Figure 1b shows a simplified hierarchical value tree with 4 domain levels
and2(l−1) values for each domain levell. Node 0** is the closest common ancestor of
nodes001 and 010 in the hierarchical value tree. Consider another example. Lett1 =
{male, young, 4351} andt2 = {female, young, 4352}. t12 = {∗, young, 435∗}.

Now, we define the distance between two tuples.

Definition 9 (Distance between Two Tuples).Let t1 andt2 be two tuples andt12 be their
closest common generalisation. The distance between the two tuples is defined as

Dist(t1, t2) = Distortion(t1, t12) + Distortion(t2, t12)

For example, let the weights of WHD be defined by the uniform weights, attribute Gen-
der be in hierarchy of{M/F, * } and attribute Postcode be in hierarchy of{dddd, ddd*,
dd**, d***, * }. t1 = {male, young, 4351} and t2 = {female, young, 4352}. t12 =
{∗, young, 435∗}. Dist(t1, t2) = Distortion(t1, t12) + Distortion(t2, t12) = 1.25+1.25 =
2.5.

We discuss some properties of tuple distance in the following.

Lemma 1. Basic properties of tuple distances
(1) Dist(t1, t1) = 0 (i.e. a distance between two identical tuples is zero)
(2) Dist(t1, t2) = Dist(t2, t1) (i.e. the tuple distance is symmetric), and
(3) Dist(t1, t3) ≤ Dist(t1, t2) + Dist(t2, t3) (i.e. the tuple distance satisfies triangle in-
equality)

Proof. The first two properties obviously follow Definition 9b. We prove property 3 here.
We first consider a single attribute. To make notions simple, we omit the superscript

for the attribute. Letv1 be the value of tuplet1 for the attribute,v13 be the value of the
generalised tuplet13 for the attribute from tuplet1 and tuplet3, and so forth.

Within a hierarchical value tree,Dist(t1, t3) is represented as the shortest path linking
nodesv1 andv3 andDist(t1, t2) + Dist(t2, t3) is represented as the path linkingv1 andv3

via v2. Therefore,Dist(t1, t3) ≤ Dist(t1, t2) + Dist(t2, t3). The two distances are equal
only whenv2 is located within the shortest path betweenv1 andv3.

The overall distance is the sum of distances of all individual attributes. The above proof
is true for all attributes. Therefore, the property 3 is proved.

An example of Property 3 can be found in the hierarchial value tree of Figure 1b. The
distance between 00* and 011 is(a + b + c), the distance between 00* and 010 is(a +
b + d), and the distance between 010 and 011 is(c + d). Therefore,Dist(00∗, 011) <
Dist(00∗, 010) + Dist(010, 011). In a special case,Dist(00∗, 011) = Dist(00∗, 01∗) +
Dist(01∗, 011).

Now, we discuss distance between two groups of tuples.



Definition 10 (Distance between Two equivalence classes).Let C1 be an equivalence
class containingn1 identical tuplest1 andC2 be an equivalence class containingn2 iden-
tical tuplest2. t12 is the closest common generalisation oft1 andt2. The distance between
two equivalence classes is defined as follows.
Dist(C1, C2) = n1 ×Distortion(t1, t12) + n2 ×Distortion(t2, t12)

Note thatt12 is the tuple thatt1 andt2 will be generalised if two equivalence classesC1 and
C2 are merged into one equivalence class. The distance is equivalent to the distortions of
the generalisation and therefore the choice of merger should be those equivalence classes
with the smallest distances.

5 Algorithm

In this section, we present an algorithm to implementk-anonymisation by local recoding.
The basic idea for the algorithm is finding an arbitrary equivalence class of size smaller

thank and merging it with the closest equivalent classes to form a larger equivalent class
with the smallest distortion. This process repeats recursively until each equivalent class
contains at leastk tuples.

We first discuss how to handle the situation that a small equivalent class (e.g. the class
containing one tuple) merges to a large equivalent class (e.g. the class containing a hundred
of tuples). Should we generalise the whole large equivalent class in order to absorb the
small equivalent class? We should not. A better solution is to allocate a small number of
tuples. For example,k-1 tuples from the large equivalent class are allocated to merge with
the small equivalent class. As a result, information in most tuples of the larger equivalent
class is preserved. the set of the tuples allocated in this way is called astuband the set of
the remaining tuples is called atrunk.

Definition 11 (Stub and Trunk of Equivalent Class). Suppose a small equivalent class
E1 and a large equivalent classE2 are to be generalised fork-anonymity. If|E1| < k and
|E1|+|E2| ≥ 2k, E2 is split into two parts, astuband atrunk. The stub contains(k−|E1|)
tuples, and the trunk contains(|E1|+ |E2| − k) tuples.

After this split, both the generalised equivalent class ofE1 with the stub and the re-
maining trunk ofE2 satisfyk-anonymity property. The detailed information in the trunk is
preserved.

After this definition, we calculate the distance between two equivalent classesE1 and
E2, where|E1| < k, as follows.

– if (|E1|+ |E2| < 2k), calculate normal as in Definition 10.
– if (|E1|+ |E2| ≥ 2k), calculate the distance betweenE1 and the stub ofE2.

The pseudo code of the proposed algorithm is presented in Algorithm 1.

Algorithm 1 K-Anonymisation by Clustering in Attribute hierarchies (KACA)
1: form equivalence classes from the data set
2: while there exists an equivalence class of size< k do
3: randomly choose an equivalence classC of size< k
4: evaluate the pairwise distance betweenC and all other equivalence classes
5: find the equivalence classC ′ with the smallest distance toC
6: generalise the equivalence classesC andC ′

7: end while

Line 1 forms equivalent classes. Sorting data in a certain order will speed up the process.
One tuple is also called an equivalent class. Normally, the number of equivalent classes is
significantly less than the number of tuples in the data set.



The generalisation process continues in lines 2-6 when there is one or more equivalence
classes whose size is smaller thank.

In each iteration, we randomly find an equivalence classC of size smaller thank in line
3. Then, we calculate the pairwise distances betweenC and all other equivalence classes in
line 4. Line 5 finds the equivalence classC ′ with the smallest distance. Line 6 generalises
the equivalence classesC andC ′.

The above process terminates when there is no equivalent class whose size is smaller
than k. The sizes of all equivalent classes are greater than or equal tok, and hencek-
anonymity is achieved.

All tuples are sorted and onlyO(n) passes is needed to find all equivalent classes.
The complexity of this step isO(nlog n). Let |E| be the number of equivalent classes in
line 2. Each iteration requires to choose an arbitrary equivalence class, which takesO(1)
time, evaluate the pairwise distance, which takesO(|E|) time, find the equivalence class
with the smallest distance, which takesO(|E|) time, and finally generalise the equivalence
class, which takesO(1) time. Thus, the runtime of an iteration isO(|E|). As there are
O(|E|) iterations, the overall runtime isO(nlog n + |E|2).

The above algorithm is easy to extend to handle outlier tuples, which are far away from
all other tuples, by setting a minimum distance threshold in line 6 to avoid large distortions
caused by generalising two distant equivalent classes. Outlier tuples are suppressed instead
of generalised. We did not do this in this algorithm since in the next section we compare an
optimal algorithm that does not suppress tuples.

6 Empirical Study

A Pentium IV 2.2GHz PC with 1GM RAM was used to conduct our experiments. The al-
gorithm was implemented in C/C++. In our experiments, we adopted the publicly available
data set, Adult Database, from the UCIrvine Machine Learning Repository [7]. This data
set (5.5MB) was also adopted in [14, 16, 23, 10]. We also used a configuration similar to
[14, 16]. We eliminated the records with unknown values. The resulting data set contains
45,222 tuples. Nine attributes were chosen as the quasi-identifier, as shown in Table 2.

Attribute Distinct Values Generalisations Height
1 Age 74 5-, 10-, 20-year ranges 4
2 Work Class 7 Taxonomy Tree 3
3 Education 16 Taxonomy Tree 4
4 Martial Status 7 Taxonomy Tree 3
5 Occupation 14 Taxonomy Tree 2
6 Race 5 Taxonomy Tree 2
7 Sex 2 Suppression 1
8 Native Country 41 Taxonomy Tree 3
9 Salary Class 2 Suppression 1

Table 2.Description of Adult Data Set

We evaluated the proposed algorithm in terms of two measurements: execution time
and distortion ratio. LetT be the original data set andT ′ be the data set generalised by
an algorithm. LetT ′′ be the fully generalised data set, where all attributes of all tuples are
generalised to the root of the hierarchy. Distortion ratio of a generalised data setT ′ is equal
to the distortion ofT ′ divided by the distortion ofT ′′.

We conducted the experiments ten times and took the average execution time. We com-
pared our algorithm KACA proposed with the best-known global recoding based algorithm
Incognito [14].

We conducted the experiments with two types of distortion measures discussed in Sec-
tion 3 - uniform weight and height weight. Figure 2 shows the results with uniform weight
measurement.



(a) (b)

(c) (d)

Fig. 2.Execution Time and Distortion Ratio Versus Quasi-identifier Size (Uniform Weight)
(k = 2 for (a) and (b) andk = 10 for (c) and (d))

Figure 2 shows that the execution time of both algorithms increases with the quasi-
identifier size. On average, the execution time of the KACA algorithm is larger than that of
the Incognito algorithm.

The distortion ratio increases with the quasi-identifer size. This is because it is less
likely that two tuples in the original data set are equal to each other when the quasi-
identifier size is greater. Thus, a larger distortion is needed. The distortion ratio of the
KACA algorithm is 5.57 times lower than that of the Incognito algorithm on average. This
is because, as we discussed before, the global recoding algorithm (Incognito algorithm)
over-generalises the data set a lot while the KACA algorithm generalises the data set less
extent fork-anonymity. Whenk increases, the distortion ratio of all algorithms increases.
As we require more tuples to be identical for largerk, more distortions will be generated
for largerk.

We have also conducted the experiments with height weight measurement. For the sake
of space, we do not show the results as the results with height weight measurement are
similar to Figure 2.

7 Conclusions

In this paper, we study how to achievek-anonymity by clustering in attribute hierarchies.
We define two general metrics of the generalised data sets to measure the quality ofk-
anonymisation. We define generalisation distances between tuples to characterise distor-
tions of generalisations and discuss the properties of the distances. We conclude that the
generalisation distance satisfies properties of metric distances. We propose an efficient al-
gorithm to achievek-anonymity by clustering in attribute hierarchical structures. We ex-
perimentally show that the proposed method causes significantly less distortions than an
optimal global recodingk-anonymity method. The distortion ratio of our proposed algo-
rithm is 5.57 times smaller on average.
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