
Phenomenological approach to

3D spinning waves

D.V. Strunin and S.A. Suslov

Department of Mathematics and Computing, University of Southern Queensland,

Toowoomba, Queensland 4350, Australia

e-mail:strunin@usq.edu.au, ssuslov@usq.edu.au

Abstract

The spinning waves occur in solid flames and detonation when the

plane uniformly propagating reaction front loses stability. As a re-

sult, the front breaks into localized zones of intensive reaction. We

study a 3D phenomenological model aimed at modeling such phenom-

ena. The model constitutes a nonlinear partial differential equation.

This work contains preliminary results demonstrating the capacity

of the model to reproduce basic experimental features of the unsta-

ble front: metastability of the uniform state and formation of self-

sustained regime with predominantly lateral propagation of the front

curvature.

1 Introduction

Spinning combustion is an interesting nonlinear phenomenon initially discov-
ered in detonation [1] and later on in solid-phase combustion [2]. One should
distinguish the meaning of the term “nonlinearity” when applied to combus-
tion from its meaning when applied to waves in fluids and other conservative
systems. Roughly speaking, small amplitude waves in fluids are linear and the
nonlinear effects become significant when the amplitude is relatively large.
Any combustion wave is already nonlinear by its nature. However, small
perturbations to the traveling wave solution of the original reaction-diffusion
equations satisfy linearized equations. If instability develops, the nonlinear
effects come into play.

The spinning waves in solid-phase combustion were extensively studied
since the early 1970’s experimentally [2, 3, 4] and theoretically [5, 6, 7, 8]
and still attract considerable attention [9, 10].
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In the present paper we model the nonlinear effects with the phenomeno-
logical partial differential equation. Previously, a one-dimensional (involving
one independent spatial variable) version of the equation was formulated [11]:

∂tH = ∂6

xH − ∂2

xH (∂xH)2 + (∂xH)4 , (1)

where H is the coordinate of the combustion front which is assumed to be
a line separating fresh mixture above it from hot products below. In other
words, H(x, t) is the distance traveled by the front through the reacting
mixture, depending on the time t and coordinate x transversal to the average
propagation.

In deriving model (1) the goal was to reproduce three main qualitative
features of the actual process. First, the decay of a front with relatively
smooth curvatures. This would correspond to the decay of a front with
insufficient initial concentration of energy. Second, the self-sustained non-
trivial dynamics of a front with relatively sharp curvatures so that a typical
amplitude of the settled curvatures is governed by the equation, not the ini-
tial condition. Third, the self-propagating front moving predominantly in
lateral direction at any particular moment. These properties are ensured by
the dynamical structure of (1): the purely dissipative linear part, nonlinear
nature of the source and overall dynamical balance involving all three terms
in the right-hand side. equation (1) was shown to give spinning wave solu-
tions corresponding to the front moving around a hollow cylinder with thin
walls [11].

2 Three-dimensional model

Here we generalize equation (1) to incorporate the second transversal dimen-
sion, y, in order to model the front propagation through a 3D continuum.
With the distance H measured along the third axis, z, we aim to obtain a
three-dimensional pattern. The generalization is:

∂tH = ∇
6H −∇

2H (∇H)2 + (∇H)4 , (2)

where
∇ = i ∂x + j ∂y .

For simplicity we use a square domain, 0 < x, y < L, corresponding
to a rod with a constant square cross section. When running numerical
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experiments we found it convenient to use a modified form of equation (2)
with some arbitrary positive coefficients included in each term in the right-
hand side:

∂tH = a∇6H − b∇2H (∇H)2 + c(∇H)4 . (3)

Equation (2) is transformed into (3) by rescaling H, t and the spatial coor-
dinates. In Cartesian coordinates (3) has the form

∂tH = a
(

∂6

xH + 3∂4

x∂
2

yH + 3∂2

x∂
4

yH + ∂6

yH
)

dissipation

− b (∂2

xH + ∂2

yH)
[

(∂xH)2 + (∂yH)2
]

source

+ c
[

(∂xH)4 + 2(∂xH)2 (∂yH)2 + (∂yH)4
]

. transfer

(4)

On the right, we label the terms according to their dynamical action (for

more detail see [11]). The following conditions are adopted:

∂xH = 0 , ∂2

xH = 0 , ∂3

xH = 0 at x = 0 and x = L ,

∂yH = 0 , ∂2

yH = 0 , ∂3

yH = 0 at y = 0 and y = L .
(5)

The zero first derivatives stipulate zero slope of the front towards the bound-
aries and therefore these conditions are associated with the physical condition
of adiabaticity. The other conditions are imposed arbitrarily at this stage.

3 Numerical results

Equation (4) was discretised in space on a uniform equilateral grid using stan-
dard second order accurate central differences using 7×7 point stencil which
allows to preserve the symmetry of the original equation in approximating
all required derivatives including the mixed ones. The boundary conditions
(5) were discretised using the fictitious point approach. The essence of this
technique is in introducing a number (3 in this case) of additional layers of
discretization points just outside of each of the boundaries. Then formally
the physical boundary points are treated as interior and therefore equation
(4) is approximated uniformly up to and including the physical boundaries.
Boundary conditions (5) are then approximated using second order central
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Figure 1: Numerical solution of equation (4) with boundary conditions (5)
and initial pulse of magnitude H0 = 35 near the top right corner of the
domain for a = c = 1 and b = 10.
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Figure 2: Average front position as a function of time. Parameters as in
Figure 1.

finite differences and the resulting equations are used to eliminate the ficti-
tious points in favor of the interior points adjacent to the boundary. This
approach enables one to preserve the symmetry and the second order spatial
accuracy up to and including the boundaries. This would not be possible
to do using one-sided differences near the boundaries. Since equation (4)
is nonlinear, to avoid expensive iterative solution of a system of nonlinear
difference equations at each time step an explicit first order accurate for-
ward Euler method was chosen for time discretization. To avoid numerical
instability in time integration a sufficiently small time step was used. It
was found that for the spatial discretization steps of ∆x = ∆y = 0.025 (for
which the numerical solution was obtained) the time step ∆t = 0.003∆x6

was sufficiently small to ensure numerical stability for all regimes including
a very stiff initial stage with an initial condition of the form of a δ-function
placed asymmetrically near the top right corner (x, y) = (2, 2) of the do-
main, see the first plot in Figure 1. For the chosen set of parameters and
geometry, despite the high symmetry of both the original equation and the
adopted discretization scheme, the solution obtained from a slightly asym-
metric initial state never becomes symmetric. Due to the nonlinearity the
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Figure 3: Counterclockwise spinning wave (circled) in the numerical solution
of equation (4). Parameters as in Figure 1.
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relatively smooth initial front seen in the second snapshot in Figure 1 be-
comes unstable and develops secondary fronts as seen in the third snapshot.
The nonlinear interaction of these multiple secondary fronts in turn leads to
what appears to be chaotic dynamics for sufficiently large time, see snap-
shots 4–5 in Figure 1. Despite this overall chaotic behavior of a solution
the average position of a front Hav always increases with time as shown in
Figure 2 which confirms the relevance of the proposed model to realistic sit-
uation of a propagating combustion front. The dynamics of Hav shows that
the front propagates with a non-constant speed with periods of slow lami-
nar burning dominated by the diffusion terms in equation (4) followed by
a rapid turbulent combustion largely determined by interactions of curvilin-
ear fronts described by nonlinear terms in equation (4). The computations
were performed up to time t ≈ 5.9 × 10−5 (80 millions time steps) and show
that the front evolution for the chosen set of parameters remains intermit-
tently chaotic. However a closer look at some intermediate stages of the front
evolution indicates that model (4) admits shortliving solutions representing
spinning waves which propagate along the boundaries of the domain. A se-
ries of snapshots presented in Figure 3 show a front (circled) propagating
along the boundaries counterclockwise for some time before this motion is
destroyed by nonlinear collisions with other local fronts corresponding to the
maxima of the presented solution.

4 Conclusions

We presented selected results on 3D modeling of unstable combustion waves
using the phenomenological model (4). Using numerical simulations we
showed that the model preserves the property of metastability of an initially
uniform front. When excited by a sufficiently strong perturbation the front
forms a self-sustained structure moving predominantly in lateral direction.
Such a motion is typical for spinning waves signs of which were detected in
the presented numerical solution. However the obtained spinning waves are
easily destroyed by collisions with other nonlinear local fronts. It is hoped
that stable spinning solutions can be obtained from the suggested model
by choosing carefully the appropriate set of model parameters and initial
conditions.
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