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Abstract

We re-examine fully developed isothermal unidirectional plane Couette-Poiseuille
flows of an incompressible fluid whose viscosity depends linearly on the pressure as
previously considered in [1]. We show that the conclusion made there that, in con-
trast to Newtonian and power-law fluids, piezo-viscous fluids allow multiple solutions
is not justified, and that the inflection velocity profiles reported in [1] cannot exist.
Subsequently, we undertake a systematic parametric study of these flows and iden-
tify three distinct families of solutions which can exist in the considered geometry.
One of these families has no similar counterpart for fluids with pressure-independent
viscosity. We also show that the critical wall speed exists beyond which Poiseuille-
type flows are impossible regardless of the magnitude of the applied pressure gra-
dient. For smaller wall speeds channel choking occurs for Poiseuille-type flows at
large pressure gradients. These features distinguish drastically piezo-viscous fluids
from their Newtonian and power-law counterparts.

Key words: pressure-dependent viscosity, piezo-viscous fluid, plane
Couette-Poiseuille flow

1 Introduction

Piezo-viscous fluids (i.e. fluids whose viscosity depends strongly on the pres-
sure) form a very interesting rheological class. The possibility of the existence
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of such fluids in nature has been discussed by various authors for centuries
[2–4]. More recently, the fluids exhibiting noticeable dependence of their vis-
cosity on the pressure were found in technological applications such as polymer
processing [5] and journal bearing lubrication [6,7]. Besides, geo-fluids such as
magma and gases forming Jovial planets which are subject to large pressures
are also candidates for this class of fluids. Due to the practical importance of
piezo-viscous fluids the number of studies dealing with them increase steadily.
Perhaps the most comprehensive cycle of recent works considering flows of
such fluids both mathematically from the point of view of existence and well-
posedness and numerically are by Hron, Málek, Rajagopal and collaborators
[1,8–12]. Earlier studies include [13–15], to name a few. It is argued in these
references that even though the fluid can exhibit a strong dependence of vis-
cosity on pressure its compressibility frequently is much weaker. Therefore
such fluids can be considered as effectively incompressible, at least for the
purpose of studying the piezo-viscous effects [1,16]. Such approach will also
be adopted in the present work.

Simple shear flows of piezo-viscous fluids were considered in [1] for two rhe-
ological models which assumed the viscosity to be an exponential or linear
function of the pressure. It was found in [1] that fully developed solutions can
only exist for the linear constitutive law. Later, Renardy [16] confirmed this
finding and formulated a general proof that fully-developed plane flows whose
velocity is independent of the longitudinal coordinate can exist only for viscos-
ity which depends linearly on the pressure. The major concern regarding this
model is that it does not guarantee positive definiteness of the viscosity which
requires the pressure to remain positive. Such a constraint is not present for
incompressible fluids with pressure-independent rheology for which the pres-
sure is defined up to an arbitrary additive constant. Therefore, special care has
to be taken in modelling piezo-viscous fluids to monitor positive-definiteness
of the pressure. This will be done in the present work.

It was shown in [1] and [16] that fully developed plane flows of piezo-viscous
fluids require exponential dependence of the pressure on the downstream coor-
dinate. While this solution excludes the existence of the negative pressure its
physical relevance is still of some concern expressed in [17]: since the pressure
and thus viscosity tend to zero exponentially quickly along the channel, the
fluid effectively becomes inviscid. This is unlikely to happen in reality. Never-
theless we believe that simple solutions discussed in [1,16] and derived in the
present work form an important conceptual and benchmark set for the piezo-
viscous rheological model. Therefore here we re-visit and correct previously
known results for plane Couette-Poiseuille flows of piezo-viscous fluids, sys-
tematically classify all possible solutions and report new remarkable features
which distinguish simple piezo-viscous flows from their pressure-independent
counterparts. Additionally, we investigate the solutions corresponding to the
shear-thinning variant of the rheological model and compare the results with
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those obtained for a shear-independent formulation.

2 Problem definition and governing equations

Consider a flow of an incompressible fluid with the pressure-dependent viscos-
ity between two parallel horizontal plates separated by the distance 2L from
each other. The top plate moves with velocity V ∗ from left to right, the bot-
tom plate is stationary. The pressure gradient ∇π is applied along the channel
which (depending on its direction) can either enhance or partially suppress the
fluid flow caused by the motion of the upper wall. The flow is described by
the following equations [1]

ρ
du

dt
= −∇π + ∇ ·

(

2µ(π)|D|p−2D
)

, (1)

∇ · u = 0 , (2)

where we neglect the gravity and assume that the velocity field u is two-
dimensional with components (u, v) in the (x, y) directions, respectively. We
choose the coordinate system in such a way that the x and y axes have positive
right and upward directions, respectively, and the horizontal centre-plane of a
channel is located at y = 0. In equation (1),

D=
1

2
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∂u
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+ ∂v
∂x

∂u
∂y

+ ∂v
∂x
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 , (3)

|D|= 1

2

√

√

√

√2

(

∂u

∂x

)2

+ 2

(

∂v

∂y

)2

+

(

∂u

∂y
+

∂v

∂x

)2

. (4)

The value of the exponent p defines the shear-dependent properties of a fluid:
p ≶ 2 corresponds to shear-thinning and shear-thickening fluids, respectively.
In this paper we will consider in detail two cases: the shear-independent fluid
with p = 2 and shear-thinning fluid with p = 3

2
.

The governing equations are complemented by the constitutive relations

ρ = const. , µ = aπ > 0 (5)

and the no-slip/no-penetration boundary conditions

(u, v) = (0, 0) at y = −L and (u, v) = (V ∗, 0) at y = L . (6)
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We non-dimensionalise the equations using L, pressure π∗ evaluated at (x, y) =
(0, 0), u∗ = (π∗/ρ)1/2 and t∗ = L(ρ/π∗)1/2, as the scales for length, pressure,
velocity and time, respectively, to obtain

∂u

∂t
+ (u · ∇)u = −∇π + α∇ · (2π|2D|p−2D) , (7)

∇ · u = 0 , (8)

(u, v) = (0, 0) at y = −1 and (u, v) = (V, 0) at y = 1 , (9)

π = 1 at (x, y) = (0, 0) , (10)

where V = V ∗(ρ/π∗)1/2,

α =
a

2p−2

(

π∗

ρL2

)

p−1

2

(11)

and all symbols now denote the corresponding non-dimensional quantities.
Note that α plays the role of the effective inverse Reynolds number. This is
easy to see by setting p = 2 (which corresponds to the flow of a generalised
Newtonian fluid [1]) so that

α = a

(

π∗

ρL2

)
1

2

=
aπ∗

ρ(π∗/ρ)1/2L
=

µ∗

ρu∗L
=

1

Re
. (12)

3 Couette-type flows

As was shown in [1] and [16] if the fluid viscosity is a linear function of the
pressure, a parallel x-independent steady solution for the velocity field exists
away from the channel ends. However the basic flow expressions given in [1]
contain a few misprints. Also an incorrect conclusion about the possibility of
multiple solutions for the basic flow is made in [1]. To avoid any confusion
we re-derive the basic flow expressions here and provide a more structured
discussion of the parametric conditions for the existence of various solutions.

Assume that U = (U(y), 0) and π = Π(x, y). Then the non-dimensional gov-
erning equations become

−∂Π

∂x
+ α

∂

∂y

(

Π[U ′]p−1
)

= 0 , −∂Π

∂y
+ α

∂

∂x

(

Π[U ′]p−1
)

= 0 , (13)

where we assumed that the Couette condition U ′(y) ≥ 0 is satisfied for
−1 ≤ y ≤ 1, where prime denotes a derivative with respect to y. The no-slip
boundary conditions require that U(−1) = 0 and U(1) = V . One particular
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solution of this system of equations is

U(y) =
y + 1

α
1

p−1

, Π = Π(ζ) , Π(0) = 1 , ζ = x + y . (14)

This linear velocity profile exists only if the upper plate moves with the non-

dimensional velocity Vc = 2/α
1

p−1 . In this case the problem degenerates ad-
mitting an arbitrary positively valued function of the argument ζ as a solution
for the pressure. In particular, the pressure could be constant (equal to 1 due
to the chosen non-dimensionalisation) as is the case in Couette flow of New-
tonian fluids. We will discuss the meaning of this ambiguity in section 3.2. If

α
1

p−1 V 6= 2 then

∂Π

∂x
= α

∂Π

∂y
[U ′]p−1 + α(p − 1)Π[U ′]p−2U ′′ ,

∂Π

∂y
= α

∂Π

∂x
[U ′]p−1 . (15)

These equations are identical to equations (3.9ab) given in [1]. Solving equa-
tions (15) for the pressure derivatives we obtain

1

Π

∂Π

∂x
=

α(p − 1)[U ′]p−2U ′′

1 − α2[U ′]2(p−1)
,

∂Π

∂y
=

α2(p − 1)Π[U ′]2p−3U ′′

1 − α2[U ′]2(p−1)
. (16)

Further, the first of equations (16) is equivalent to

∂ ln Π

∂x
=

1

2

d

dy
ln

∣

∣

∣

∣

∣

1 + α[U ′]p−1

1 − α[U ′]p−1

∣

∣

∣

∣

∣

(17)

which, upon integration in x, leads to

Π(x, y) = C2(y)eC1(y)x , C1(y) =
1

2

d

dy
ln

∣

∣

∣

∣

∣

1 + α[U ′]p−1

1 − α[U ′]p−1

∣

∣

∣

∣

∣

, C2(y) > 0 . (18)

Substituting (18) into the second of equations (15) we obtain

C ′
2(y) + C2(y)C ′

1(y)x = α[U ′(y)]p−1C2(y)C1(y) (19)

The right-hand side of (19) is independent of x. Therefore C ′
1(y) = 0 and

C1(y) =
1

2

d

dy
ln

∣

∣

∣

∣

∣

1 + α[U ′]p−1

1 − α[U ′]p−1

∣

∣

∣

∣

∣

=
C0

2
= const. (20)

so that

Π(x, y) = C2(y)eC0x/2 , C2(0) = 1 . (21)

Integrating (20) in y and taking into account that αU ′ > 0 obtain

1 + α[U ′]p−1

1 − α[U ′]p−1
= M1,2e

C0y , (22)
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where M1 < 0 and M2 > 0 are chosen for α[U ′]p−1 > 1 and α[U ′]p−1 < 1,
respectively. Given that the right-hand side of equation (22) is non-singular
for any finite M1,2 and C0 we conclude that the velocity profile must be such
that the condition α[U ′]p−1 > 1 or α[U ′]p−1 < 1 is satisfied everywhere in the
flow. Also note that the absolute value of the ratio in the left-hand side of
equation (22) is greater than 1 for all positive values of α and U ′. On the
other hand the term eC0y in the right-hand side ranges from values which are
less than 1 to values which are greater than 1 over the interval −1 ≤ y ≤ 1 for
any value of C0. Therefore the balance between the left- and right-hand sides
of equation (22) can only be achieved if

|M1,2| > e|C0| ≥ 1 . (23)

This condition apparently was overlooked in the original work by Hron et
al. [1] which ultimately resulted in their incorrect conclusion regarding the
possibility of inflection-point solutions for the problem. This will be discussed
in more detail in Section 3.1.

Rearranging equation (22) we obtain

U ′(y) =

(

1

α

M1,2e
C0y − 1

M1,2eC0y + 1

)
1

p−1

. (24)

Since U(−1) = 0 the expression for the basic flow velocity is given by

U(y) =
∫ y

−1

(

1

α

M1,2e
C0s − 1

M1,2eC0s + 1

)
1

p−1

ds . (25)

The substitution of (24) and (20) into (19) results in

C ′
2(y)

C2(y)
=

C0

2

[

M1,2e
C0y − 1

M1,2eC0y + 1

]

. (26)

Integrating (26) with respect to y and taking into account that C2(0) = 1 we
obtain

C2(y) =
M1,2e

C0y/2 + e−C0y/2

M1,2 + 1
,

so that the final expression for the pressure is

Π(x, y) =
M1,2 + e−C0y

M1,2 + 1
eC0(x+y)/2 . (27)

It follows from this expression that the sign of constant C0 defines the direc-
tion of the applied pressure gradient and thus the preferable direction for the
pressure-driven flow (left–right if C0 < 0 and right–left if C0 > 0). Also note
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that restrictions (23) guarantee that the pressure (and thus the fluid viscosity)
remain positive in the flow domain.

In conclusion of this section we provide useful asymptotic expressions for the
velocity and pressure fields obtained from equations (25) and (27) in the limit
of C0 → 0:

U(y)≈
(

1

α

M1,2 − 1

M1,2 + 1

)
1

p−1

(y + 1)

+

(

(M1,2 − 1)2−p

α(M1,2 + 1)p

)
1

p−1 M1,2C0

p − 1
(y2 − 1) (28)

+

(

(M1,2 − 1)3−2p

α(M1,2 + 1)2p−1

)
1

p−1 M1,2C
2
0

3(p − 1)2
[(M1,2 + 1)2 − p(M2

1,2 + 1)](y3 + 1) ,

where M1,2 are determined from the boundary condition U(1) = V and

Π(x, y) ≈ 1 +

(

x + y − 2y

M1,2 + 1

)

C0

2
+

[

(x + y)2

4
− xy

M1,2 + 1

]

C2
0

2
. (29)

Note that in general the pressure depends on the value of p implicitly via the
values of M1,2. For definiteness and unless specified otherwise in the text we
will take C0 < 0 in the subsequent discussion. This corresponds to a negative
longitudinal pressure gradient assisting a left-to-right flow.

3.1 Inflection point profiles are impossible for a shear-thinning fluid

Some of the velocity profiles for Couette-Poiseuille flow presented by Hron et
al. [1] in their Figure 4 contain an inflection point within the flow domain.
While providing the values of C0, p and V for their fields these authors do not
give the corresponding values of α and thus it is impossible to reproduce their
solutions exactly. Therefore we only sketch them in Figure 1 for reference
convenience. Below we will argue that the inflection velocity profiles such
as the ones reported in [1] and sketched in Figure 1(a,b) cannot satisfy the
governing equations (15) for shear-thinning fluid with 1 < p < 2 and therefore
are incorrect.

Differentiating equation (24) with respect to y leads to

U ′′(y) =
2C0M2e

C0y

(p − 1)α1/(p−1)

(

M2e
C0y − 1

)(2−p)/(p−1)

(M2eC0y + 1)p/(p−1)
. (30)
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Fig. 1. Sketch of some Couette-Poiseuille solutions reported in [1] for C0 < 0 and
p = 3

2 : (a), (c) the velocity and (b), (d) the corresponding pressure profiles.

We only consider the solution with M2 > 0 because the necessary inflection
point condition U ′′(Y ) = 0 cannot be satisfied for M1 < 0 at any y. Note from
equations (24) and (30) that if Y is an inflection point so that U ′′(Y ) = 0
then U ′(Y ) = 0 as well. The profiles depicted in Figure 4 in [1] (see the
sketch in Figure 1(a)) seem to confirm this. However condition (23) means that
M2e

C0y − 1 ≥ 0 for −1 ≤ y ≤ 1 and according to equation (30) U ′′(y) cannot
change its sign within the flow domain. Therefore inflection profiles satisfying
the Couette flow condition U ′(y) ≥ 0, −1 ≤ y ≤ 1 and similar in shape to
those sketched in Figure 1(a) cannot exist. In this regard Couette-type flows
of a fluid with pressure dependent viscosity are similar to the corresponding
flows of a Newtonian fluid.

The corollary of the above discussion is that the curvature of a monotonic
velocity profile can be zero only at the boundaries y = ±1, see Figure 1(c).

3.2 Specific case of p = 2

For p = 2 the governing equations (1) take the form which is closest to Navier-
Stokes equations describing flows of Newtonian fluids. Shear-thickening or
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shear-thinning is not present in this case and therefore we consider it in detail
first in order to highlight the major effects brought about by the dependence
of the viscosity on the pressure. Equation (25) results in

U(y) = −1 + y

α
+

2

αC0

ln
M1,2e

C0y + 1

M1,2e−C0 + 1
, M1,2 =

1 − e
αV +2

2
C0

e
αV
2

C0 − eC0

, (31)

where M1,2 ≶ 0 is chosen for αV ≷ 2, respectively. It is easy to show that
the condition |M1| > e|C0| is satisfied for any value of C0 < 0. In other words
we arrive at a remarkable and somewhat counterintuitive conclusion that if
the upper wall velocity is greater than the critical speed Vc = 2/α the Cou-
ette condition U ′(y) ≥ 0 is satisfied everywhere in the flow domain regardless
of how strong the applied longitudinal pressure gradient is. This behaviour
is caused completely by the piezo-viscosity and is drastically different from
that of fluids with pressure-independent viscosity. As seen from Figure 2(a,b)
strengthening the longitudinal pressure gradient leads to the formation of a
thin velocity boundary layer near the moving plate where the viscosity is sig-
nificantly smaller than that in the bulk of the fluid. The upper plate essentially
slides along the surface of the fluid whose bulk moves with an invariant lin-
ear velocity profile given by (14). Increasing the pressure effectively “freezes”
the fluid making it more viscous in the bulk so that a high-velocity motion
only exists near the moving boundary. The linear part of the velocity profiles
shown in Figure 2(a) remains invariant when |C0| is sufficiently large while
the pressure distribution shown in Figure 4(b) changes very strongly. Such a
behaviour becomes possible only because of the pressure’s non-uniqueness in
the critical regime discussed in the beginning of Section 3. In other words,
various solutions for Π given by (14) can be considered as the pressure distri-
butions corresponding to velocity profiles which are distinct in principle, but
the difference between which is exponentially small.

For small wall velocities V < 2/α the condition M2 > e|C0| is only satisfied for
|C0| < K, where K is given by equation

cosh K = e
αV K

2 , or, when αV → 0 , K ≈ αV . (32)

A family of low-speed Couette-type flows is shown in Figure 2(c,d). As for
fluids with pressure-independent viscosity, increasing the pressure gradient
leads to a larger curvature of the velocity profile near the moving wall.

For |C0| > K the Couette condition U ′(y) ≥ 0 cannot be satisfied for all coor-
dinates y. Therefore in these regimes strengthening the pressure gradient will
lead to the appearance of the velocity profiles containing segments of positive
and negative shear as is the case in Poiseuille-type flows. These flows will be
considered in detail in Section 4.1. The parametric boundary between Couette-
and Poiseuille-type flows is shown in Figure 3(a). It has a vertical asymptote
at αV = 2 to the right of which only a Couette-type flow with U ′(y) > 0 is
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Fig. 2. Couette-type solutions for p = 2 and V = 1: (a), (b) α = 3,
C0 = 0,−1,−3,−8,−20; (c), (d) α = 1, C0 = −iK/4, i = 0, 1, 2, 3, 4, K ≈ 1.2188.
Arrows indicate the direction of increasing |C0|.
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Fig. 3. The boundary |C0| = K given by equations (32) and (42) separating Couette-
and Poiseuille-type solutions for (a) p = 2 and (b) p = 3

2 .

possible, the feature not found for fluids with pressure-independent viscosity.

In the limit of C0 → 0 which corresponds to small pressure gradients along
the channel the series expansions (28) and (29) with p = 2 and expression
(31) for M1,2 become
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M1,2 ≈
2 + αV

2 − αV

(

1 +
αV C2

0

12

)

, (33)

U(y)≈V
y + 1

2
+

C0

16α
(4 − α2V 2)(y2 − 1)

(

1 +
C0V y

6

)

, (34)

Π(x, y)≈ 1 +
C0

4
(2x + αV y) +

C2
0

8
(x2 + y2 + αV xy) . (35)

As expected, by setting C0 = 0 we recover plane Couette flow of Newtonian
fluid

Π = 1 , U(y) = V
y + 1

2
. (36)

The terms linear in C0 lead to the expressions similar to those for Couette-
Poiseuille flows of fluids with pressure-independent viscosity while terms quadratic
in C0 introduce piezo-viscous effects.

3.3 Specific case of p = 3
2

In the case of p = 3
2

considered in [1] equation (25) leads to the following
expression for the basic velocity profile

U(y) =
y + 1

α2
− 4M1,2

α2C0

eC0y − e−C0

(M1,2e−C0 + 1) (M1,2eC0y + 1)
. (37)

The boundary condition U(1) = V then leads to

V =
2

α2
− 8M1,2

α2C0

sinh C0

(M1,2e−C0 + 1) (M1,2eC0 + 1)
(38)

and a quadratic equation for M1,2

M2
1,2 + 2δM1,2 + 1 = 0 , δ = cosh C0 +

4

α2V − 2

sinh C0

C0

. (39)

The real solutions exist only if |δ| ≥ 1 and only those of them which lead to
|M1,2| > e|C0| are relevant. Therefore

α2V > 2 : δ > 1, M1 = −δ −
√

δ2 − 1 < −e|C0| , (40)

α2V < 2 : δ < −1, M2 = −δ +
√

δ2 − 1 > e|C0| . (41)

Subsequently, we conclude that for any fixed set of parameters (α, V, C0) there
exists a unique basic flow velocity profile satisfying the condition U ′ > 0 for
−1 ≤ y ≤ 1. This is in contrast to the conclusion made in [1] that multiple
solutions to the problem are possible. For example, it is claimed in [1] that two
distinct solutions with monotonic velocity profiles sketched in Figure 1(c) and
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Fig. 4. Couette-type solutions for p = 3
2 and V = 1: (a), (b) α = 2,

C0 = 0,−1,−3,−8,−20; (c), (d) α = 1, C0 = −iK/4, i = 0, 1, 2, 3, 4, K ≈ 1.9150.
Arrows indicate the direction of increasing |C0|.

the corresponding pressure distributions shown in Figure 1(d) can exist for the
same set of physical parameters for p = 3

2
and C0 < 0. However it is easy to

see that solutions similar to those shown by the dashed lines in Figure 1(c,d)
do not satisfy the governing equations (15). Indeed for C0 < 0 the longitudinal
pressure gradient ∂Π

∂x
is negative. At the same time for the solution showed by

the dashed-line ∂Π
∂y

> 0 and U ′ > 0. Therefore the second of equations (15)
cannot be satisfied since its left- and right-hand sides have opposite signs.
Thus like in the case of Newtonian fluids, only one solution (sketched by a
solid line in Figure 1(c,d)) can exist. See also a similar discussion in [17].

Now consider the limitations imposed by inequalities (40) in more detail. It
follows from definition (39) that δ > cosh C0 ≥ 1 for any C0. Re-write the
second of inequalities (40) as

√
δ2 − 1 > e|C0| − δ =

(

1 − 4

(α2V − 2)|C0|

)

sinh |C0| .

It is clearly satisfied if the expression in parentheses is negative. If it is positive
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the above is equivalent to

8 sinh |C0| cosh |C0|
(α2V − 2)|C0|

> − 8 sinh2 |C0|
(α2V − 2)|C0|

which is also satisfied for any C0. Similarly to the case of p = 2 we conclude
that if the upper plate moves with a speed which is larger than Vc = 2/α2

the velocity profile remains monotonic with U ′ > 0 regardless of how strong
the applied pressure gradient is. As seen from Figure 4(a,b) strengthening
of the longitudinal pressure gradient also leads to the formation of a thin
velocity boundary layer near the moving plate and all velocity and pressure
distributions obtained for p = 3/2 are remarkably similar to those found for
p = 2. Therefore the shear-thinning properties of the fluid have little influence
on the flow behaviour in comparison with piezo-viscous effects.

If the velocity of the upper plate is smaller than the critical value then the
influence of the applied pressure gradient is more conventional: it leads to
the curvature variation of the bulk velocity profile as seen in Figure 4 (c,d).
A monotonic velocity profile can only exist until U ′(1) becomes zero which
corresponds to the smallest allowed value of M2 = e|C0|. Upon using (39) and
(40) we find that the maximum value of |C0| = K for which the Couette
condition U ′ ≥ 0 is still fulfilled has to satisfy the equation

K =
2 tanh K

2 − α2V
or, when α2V → 0 , K ≈ α

√

3V

2
. (42)

If V < Vc and |C0| > K then the velocity profile cannot be monotonic any-
more. The applied pressure gradient becomes too strong and the basic flow
velocity profile will have regions of positive and negative slopes similar to those
in a plane Poiseuille flow of Newtonian fluids. Such profiles cannot be described
by equation (25) having a constant M1,2 uniquely defined for the complete flow
region and require a slightly different treatment as will be described in Sec-
tion 4. The diagram showing the parametric boundary separating Couette-
and Poiseuille-type flows for p = 3/2 is shown in Figure 3(b). It is very similar
to the diagram depicted in Figure 3(a) for p = 2. The same can be said about
the velocity profiles. Therefore we conclude that the major qualitative flow
features are defined by the piezo-viscosity rather than by the shear-thinning
ability of the fluid. The only difference seen from comparing Figures 2 and
4 (c) is that shear-thinning leads to a slightly fuller velocity profile near the
moving wall because a small-shear region tends to move as a solid due to the
increased viscosity.

In the limit of C0 → 0 the series expansions (28) and (29) with p = 3/2 and
expressions (40) and (41) become
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M1,2 ≈
√

2 + α
√

V√
2 − α

√
V

(

1 +
3α2V − 2

12α
√

2V
C2

0

)

, (43)

U(y)≈V
y + 1

2
+

C0

√
2V

8α
(2 − α2V )(y2 − 1)

+
C2

0

48α2
(2 − α2V )(3α2V − 2)y(y2 − 1) , (44)

Π(x, y)≈ 1 +
C0

4
(2x +

√
2V αy) +

C2
0

8
(x2 + y2 +

√
2V αxy) . (45)

Again, by setting C0 = 0 we recover plane Couette flow (36), however the
Couette-Poiseuille flow given by terms linear in C0 is somewhat different from
that arising at p = 2. This difference results from the shear-thinning effects
observed at p = 3/2.

4 Poiseuille-type flows

For Poiseuille-type flows occuring when the applied pressure gradient is suf-
ficiently strong and the wall velocity is smaller than the critical speed the
velocity profile will have an extremum at some interior point Y , −1 < Y < 1,
where U ′(Y ) = 0. If ∂Π

∂x
< 0 we expect that U ′(y) ≶ 0 for y ≷ Y . For ∂Π

∂x
> 0

the signs of the velocity derivatives will be reversed. Consider the case of
∂Π
∂x

< 0 (i.e. C0 < 0) first.

For −1 ≤ y < Y , U ′ > 0 so that equations (13)–(22) hold. Equation (22)
immediately gives M1,2 = e−C0Y and then for −1 ≤ y ≤ Y the solution is

U(y) =
∫ y

−1

(

1

α

eC0(s−Y ) − 1

eC0(s−Y ) + 1

)
1

p−1

ds , Π(x, y) =
1 + eC0(Y −y)

1 + eC0Y
eC0(x+y)/2 .

(46)

For Y < y ≤ 1, U ′ = −|U ′| < 0 so that equations (13) become

∂Π

∂x
+ α

∂

∂y

(

Π|U ′|p−1
)

= 0 ,
∂Π

∂y
+ α

∂

∂x

(

Π|U ′|p−1
)

= 0 . (47)

A solution procedure similar to that described in Section 3 results in the
following expressions for the velocity and the pressure valid in the region
Y ≤ y ≤ 1

U(y) = V +
∫ 1

y

(

1

α

1 − eC0(s−Y )

1 + eC0(s−Y )

)
1

p−1

ds , Π(x, y) =
1 + eC0(Y −y)

1 + eC0Y
eC0(x+y)/2 .

(48)
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Fig. 5. Poiseuille-type solutions for p = 2 and α = V = 1: (a) velocity, (b) pressure
for C0 = −2,−6,−15,−30,−100; (c), location of the velocity maximum and (d) the
maximum velocity as the function of |C0|. Arrows indicate the direction of increasing
|C0|.
Note that the values of C0 must be the same in equations (46) and (48)
in order to guarantee the continuity of pressure. After integration in y the
boundary conditions U(−1) = 0 and U(1) = V and the continuity condition
U(Y+0) = U(Y−0) fully define the velocity profile and the extremum location
Y . Finally note that when C0 > 0 the solution for the pressure is still given
by equations (46) and (48) while the integrands in the velocity solutions (46)
and (48) need to be swapped.

4.1 Specific case of p = 2

When p = 2, the integration of (46) and (48) leads to the expressions for the
velocity profile which both can be written as

U(y) =
1 − y + 2Y

α
+

2

αC0

ln
eC0(y−Y ) + 1

eC0(1+Y ) + 1
, Y =

1

C0

ln
eC0 − e

αV C0
2

eC0+
αV C0

2 − 1
(49)

which is valid for −1 ≤ y ≤ 1. A set of representative profiles is shown in
Figure 5(a). For small pressure gradients the velocity profiles are quite similar
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to those of Poiseuille-type flows of fluids with pressure-independent viscos-
ity. However at larger values of |C0| the flow profiles of a piezo-viscous fluid
are drastically different. They essentially consist of two linear segments corre-
sponding to the critical velocity profile (14) with very large curvature in the
region near y = Y connecting them. The value of Y asymptotically approaches
Y = αV

2
, see Figure 5(c), which is obtained as the limit of (49) as C0 → −∞

when αV < 2. Perhaps the most drastic distinction of the considered flow
from its counterpart with the pressure-independent viscosity is the “choking”
of the channel: regardless of how large the applied pressure gradient is the
maximum flow velocity cannot exceed the asymptotic value of Umax = V

2
+ 1

α
,

see Figure 5(d). The pressure distribution shown in Figure 5(b) indicates that
the fluid becomes less viscous near the moving wall while the viscosity near
the stagnant wall, being a linear function of the pressure, increases drastically.

For pure Poiseuille flow (V = 0) we obtain Y = 0 and the velocity profile
expression reduces to

U(y) = −y + 1

α
+

2

αC0

ln
1 + eC0y

1 + e−C0
≡ 2

αC0

ln
cosh C0y

2

cosh C0

2

, (50)

which was originally derived in [1]. In the limit C0 → 0 we recover a parabolic
profile corresponding to the flow of a Newtonian fluid with non-Newtonian
contribution proportional to C3

0

U(y) ≈ y2 − 1

4α
C0 −

y4 − 1

96α
C3

0 . (51)

The maximum flow speed achieved at y = 0 in this limit is

Umax ≈ −C0

4α

(

1 − C2
0

24

)

which shows that non-Newtonian effects are characterised by the magnitude
of the term C2

0/24. For a more straightforward comparison of our solutions
with conventionally non-dimensionalised flows of Newtonian fluids note that a
standard definition of Reynolds number Re∗ is obtained using (12) as follows

Re∗ =
ρUmaxu

∗L

µ∗
= −ρC0u

∗L

4αµ∗
= − C0

4α2
= −C0

4
Re2 .

4.2 Specific case of p = 3/2

With p = 3
2

the integration of equations (46) and (48) leads to the following
basic velocity profile for Poiseuille-type flows
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Fig. 6. Poiseuille-type solutions for p = 3
2 and α = V = 1: (a) velocity, (b) pressure

for C0 = −2,−6,−15,−30,−100; (c), location of the velocity maximum and (d) the
maximum velocity as the function of |C0|. Arrows indicate the direction of increasing
|C0|.

U(y) =−1 + y

α2

C0

|C0|
− 4

α2|C0|
1 − eC0(y+1)

(1 + eC0(y−Y )) (1 + eC0(Y +1))
, −1 ≤ y ≤ Y ,

U(y) = V − 1 − y

α2

C0

|C0|
+

4

α2|C0|
1 − eC0(y−1)

(1 + eC0(y−Y )) (1 + eC0(Y −1))
, Y ≤ y ≤ 1 ,

where the extremum coordinate Y satisfies the equation

4 sinh(C0Y )

cosh(C0Y ) + cosh C0

− 2C0Y = α2V |C0| . (52)

A family of representative solutions is shown in Figure 6. Similarly to Couette-
type flows, the velocity profiles differ drastically from their Newtonian coun-
terparts. As for p = 2 the channel chokes for large values of |C0|: no increase
of the driving pressure gradient can lead to the maximum flow velocity greater
than Umax = V

2
+ 1

α2 achieved at Ymax = α2V
2

in the limit |C0| → ∞, see Fig-
ure 6(c, d). The pressure distribution shown in Figure 6(b) is very similar to
that found for p = 2.

In the limit of pure Poiseuille flow (V = 0) equation (52) results in Y = 0 and,
after some trigonometric manipulations, the velocity profile can be re-written
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as

U(y) =
|y| − 1

α2

C0

|C0|
+

tanh(C0/2) − tanh(C0|y|/2)

α2|C0/2|
, −1 ≤ y ≤ 1 . (53)

This is a generalisation of equation (3.20) given in [1]. For small values of |C0|
expression (53) reduces to a power-law fluid profile

U(y) =
|y|3 − 1

12α2

C3
0

|C0|
(54)

with the maximum speed

|Umax| ≈
C2

0

12α2
.

Comparing this with the expression for p = 2 we conclude that due to the
shear-thinning effects the maximum speed of pure Poiseille flow is larger for
p = 3

2
if the ratio |C0|

α
> 3 i.e. for large longitudinal pressure gradients. For

further discussion of the family of pure Poiseuille profiles the reader is referred
to [1].

5 Conclusions

We have undertaken a thorough parametric study of unidirectional plane shear
flows of an incompressible fluid with the pressure-dependent viscosity. It is
shown that the problem is governed by three non-dimensional parameters: the
wall speed V , C0 characterising the applied pressure gradient and α represent-
ing the rheology of a fluid. We have found that in contrast to the previous
reports [1,8] the flow solution is always unique for any fixed set of governing pa-
rameters and that solutions with velocity profiles containing an inflection point
cannot exist. The obtained solutions reveal a drastic difference in the flow be-
haviour of a piezo-viscous fluid in comparison with its pressure-independent
counterpart. The major features are: the existence of three classes of solu-
tions (one Poiseuille- and two Couette-type flow families); the existence of
the critical wall speed beyond which a new Couette-type solution (not found
for fluids with pressure-independent viscosity) exists; and the channel choking
phenomenon discovered in Poiseuille-type flows at large longitudinal pressure
gradients. At the same time the comparison of solutions obtained for shear-
independent (p = 2) and shear-thinning (p = 3

2
) piezo-viscous fluids reveals

no qualitative difference between their flows. Given the drastic distinction
between simple flows of pressure-independent and piezo-viscous fluids a hy-
drodynamic stability study of the considered flows reveals even more new
features and provides further insight into their physics. This study is cur-
rently underway. The first results for pure Poiseuille flow are reported in [18]
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and the results for Poiseuille-Couette flow will be presented in a subsequent
publication.
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