
I.J. of Electronics and Information Engineering, Vol.11, No.1, PP.25-39, Sept. 2019 (DOI: 10.6636/IJEIE.201909 11(1).04) 25

Proposing a Secure
Component-based-Application Logic and
Sys-tem’s Integration Testing Approach

Faisal Nabi1, Jianming Yong1, and Xiaohui Tao2

(Corresponding author: Faisal Nabi)

School of Management and Enterprise, Information Systems Research Group

Toowoomba Campus, University of Southern Queensland, Australia1

(Email: faisal.nabi@yahoo.com)

Faculty of Health, Engineering and Sciences, University of Southern Queensland, Australia2

(Email: xtao@usq.edu.au)

(Received Mar. 30, 2018; Revised and Accepted Oct. 20, 2018; First Online Jan. 21, 2019)

Abstract

Software engineering moved from traditional methods of software enterprise applications to com-
ponent based development for distributed system’s applications. This new era has grown up for
last few years, with component-based methods, for design and rapid development of systems, but
fact is that , deployment of all secure software features of technology into practical e-commerce
distributed systems are higher rated target for intruders. Although most of research has been con-
ducted on web application services that use a large share of the present software, but on the other
side Component Based Software in the middle tier ,which rapidly develops application logic, also
open security breaching opportunities .This research paper focus on a burning issue for researchers
and scientists ,a weakest link in component based distributed system, logical attacks, that cannot
be detected with any intrusion detection system within the middle tier e-commerce distributed ap-
plications. We proposed An Approach of Secure Designing application logic for distributed system,
while dealing with logically vulnerability issue.

Keywords: Application Architecture; Application Logic; Component-Based-Development; Design
Flaw; Logical Attack; Web Software Risk

1 Introduction

Advent of the e-Commerce ushered in a new period pervaded by sense of boundless excitement &
opportunities. However, need to think of risks as mere opportunities, the reason being that, in most
business environment, the number or size of the risks taken usually to the number or size of the
advantages to be gained. Today, vendors of e-Commerce systems are relied solely on secure transactional
protocols such as SSL, TSL Nevertheless; the advancement of the security field has proved that vendors
of e-commerce systems can not solely rely on secure transaction protocols such as SSL an encryption
protocol promoted as proof of 100 % security by e-commerce vendors [1, 11].

Lost in the hype are the real security risks of e-commerce security is more than secure transactional



I.J. of Electronics and Information Engineering, Vol.11, No.1, PP.25-39, Sept. 2019 (DOI: 10.6636/IJEIE.201909 11(1).04) 26

protocols, cryptographic schemes / techniques, parameter security, Intrusion detection systems etc,
these attributes make up only some part of security, privacy & client trust of e-commerce [4].

The software that executes on the either end of the transaction-server-side or client-side software poses
real threats to the security, privacy in e-commerce systems. Two familiar adages play an important
role in understanding to secure e-commerce systems (1) A chain is only as strong as its weakest link
(2) in the presence of obstacles, the path of least resistance is always the path of choice [2]. Although,
the security issues of the front-end & back-end software systems in e-commerce application warrant
equal attention for complete security in e-commerce . This research paper focus is to represent the
weakest link in e-commerce system which is based on CBS in middle Tier; we will also prove through
experiment, logic subversion attack that cannot be detected with any intrusion detection system within
the middle tier based application logic.

1.1 Contribution

Our work makes two important contributions, related to web insecure software development practices.
This explained three categories of operational vulnerabilities; our target is Application Logic operational
vulnerabilities that can be because of (1) design weaknesses, or (2) system configuration errors that
may leads calling wrong component operation. We have proposed UML Based Secure Designing for
Application Logic and system’s integration testing model with applicability of system unification process
for assurance purposes.

1.2 Type of Scientific Research

This research de-pends on exploratory research project that targets new idea about application vulner-
ability to scope out extent of business logic phenomena problem to generate idea about this phenomena.
Proposing through UML based secure design modeling & system integration testing model with appli-
cability of unification process for assurance.

2 Application Business Logic

The business logic describes the steps required to complete or perform a particular action as defined
by the application developer, this is also called business logic because it contain business rules in
e-commerce system in the middle tier. Modern web application implements business logic & its use
changes the state of the business (as captured by the system) [12,13]. Web application executes business
logic & so the most important models of the system focus on the business logic & business state, that
refer to business rules as defined within an application of e-commerce to perform a particular action
based on designing & implementation [12,13,19].

The middle tier of e-commerce servers that implements the business application logic represents the
functions or services that a particular e-commerce site provides. As a result, a given site may often
employ custom-developed logic. As the demand for e-commerce services grows, the sophistication of
the business application logic grows accordingly [2, 4].

3 Component-Based-Software Role in Business Logic & Con-
cerns

A framework that provide a way to distribute a self-contained piece of software in forms, called “Objects”
or in generally” Components” is encapsulated in a standard that can interoperate with other components



I.J. of Electronics and Information Engineering, Vol.11, No.1, PP.25-39, Sept. 2019 (DOI: 10.6636/IJEIE.201909 11(1).04) 27

in a framework such as JavaBeans, COM,DCOM & CORBA [2]. E-commerce sties offer more than front-
end servers; however. They will usually run complex middleware programmes such as CGI, Java servlets,
Application servers & Component-based-Software such as Enterprise Java Beens, Java 2 Enterprise
Edition (J2EE), CORBA, COM & DCOM Components. Basically, Component-based-Software idea
is to develop, purchases & reuse industrial-Strength Software in order to rapidly prototype business
app-logic [17]. One of the more popular component frame works for e-commerce application is EJB,
which support Component –Based Java Been. Other Component based technology models include the
common object request broker architecture (CORBA) an open standard developed by OMG & Common
object model by Microsoft & DCOM which support .Net environment [4].

The component frameworks are the glue that enables software components to provide services, busi-
ness app-logic & uses standard infrastructure services such as naming, persistence, introspection &
event handling, while hiding the details of the implementation by using welldefined interfaces [4]. The
business application logic is coded in software “Components” that can be “Custom-Developed or pur-
chased Commercial-off-the-shelf” [4]. In-addition to supporting the CGI functions, component –Based
Software is expected to enable distributed B2B applications over the internet, and as that market
for component–based software heats up, many standard business application logic components will be
available for purchase off the shelf [4].

The application servers provide the infrastructural services for particular component models such as
EJB, CORBA, COM, and DCOM. They also provide an interface for the business application logic to
back-end services such as database management, enterprise resource planning (ERP), & legacy software
system services [3, 4].

Figure 1: Component based business application logic

There is no doubt that component based software provide numerous benefits, but it poses security
hazards similar to CGI scripts. CBS enables Software development in general –purpose programming
language such as Java, C & C++.As these components execute with all rights & privileges of server
process same, same like CGI they process untrusted user “Input” because Component based software



I.J. of Electronics and Information Engineering, Vol.11, No.1, PP.25-39, Sept. 2019 (DOI: 10.6636/IJEIE.201909 11(1).04) 28

can be used to build sophisticated large-scale applications, errors are unarguably more likely with CBS.
Regardless of the implementation Application serv-ers-the security risks of server side software are
higher & therefore server-side software must be carefully designed & implemented. One reason for
the emergence of Components-based-software on e-commerce sites is the complexity of the software
necessary to implement business application logic. This complexity, in turn, introduces more software
flaws that can be exploited for malicious gain.

4 Web Software Application & Component-Based-Development
Risks

Modern web applications run large scale software applications for e-commerce, Information-distribution,
Entertainment, Collaborative research work, Surveys, & numerous other activities.

They run distributed hardware platforms & heterogeneous Computer systems. The software that
powers Web applications is distributed, is implemented in multiple languages & styles , incorporates
much reuses & third-party components , is built with cutting edge technologies as stated (section
Component based Software) & must interface with users, other web sites & databases. Although.
Server-side components are relatively new to the component market. Benefits enable the developer to
provide solutions that run on a per server basis. These components serve many clients simultaneously
without significant performance loss. Server-side components can also be upgraded efficiently removing
the complexities of updating potentially thousands of desktop machines.

Component logic is often run on powerful servers as opposed to a desktop machine [9]. This makes
the server-side component an excellent candidate for systems that require efficient throughput and
performance [20]. The word “heterogeneous” is often used for web software, it applies in so many
ways that the synonymous term “diverse” is more general & familiar, & probably more appropriate [5].
The software components are often distributed geographically both during the development & deploy-
ment (diverse distribution), & communicates in numerous distinct & sometimes novel ways (diverse
communication) [10].

Web-based-software systems by integrating numerous diverse components from disparate sources, in-
cluding custom-built special-purpose applications, customized “Commercial off-the-shelf Software Com-
ponents & third-party products [5]. Much of the new complexity found with web-based applications
also results from how the different Software components are integrated. Not only is the source unavail-
able might be hosted on computers at remote, even competing organization. To ensure high quality for
the web systems composed of very loosely coupled components, which seriously required evaluate these
Components connections [6].

Web software Components are coupling more loosely than any previous software application(Jeff Of-
futt,2002).As it is stated above that e-commerce sites offer more than front-end servers, they usually run
complex Middleware programmes such as CGI Scripts, Java Servlets, application Servers & Compo-
nent-Based-Software such as EJB Java Beans, J2EE, CORBA, COM & DCOM Components-Based
Solution. One reason for the emergence of this Component-based software on e-commerce sites is the
complexity of the software necessary to implement business application logic. This Complexity, in turn,
introduces the more Software Flaws that can be exploited for malicious, gain [3, 22].

The web‘s function & structure have changed drastically, particularly in the past couple of [5],
example of a changes in last couple of years idea use of web 2.0 feature Ajax (The Ajax engine is the
client-side code that handles calls between the client & server) .

Typically this would be a library of JavaScript function included on the page [7], more prone it
is to have flaws in that any attacker with basic skills can use proxy software (or call script functions
directly)to bypass the intended logic/business logic due to complexities involved & since more appli-



I.J. of Electronics and Information Engineering, Vol.11, No.1, PP.25-39, Sept. 2019 (DOI: 10.6636/IJEIE.201909 11(1).04) 29

Figure 2: Traditional tightly coupled software system vs. extremely loosely coupled web software
systems

cation logic is being delegated to web browser , this idea of Ajax is leading to open flaw which allows
intruders to easily read the source code & look for weakness area in the system middle-tier application
logic. Sharing business logic client-side reveals source information of the complete system, which is too
dangerous combining representation logic, rendering logic & business logic & resides business logic client
& Application server-side. For example, Ajax-enable application with multiple levels of user account it
was found that the site employed one JavaScript include file for the entire client-side logic. This meant
that an anonymous user with trail account could see the logic behind the administrator-level service
call. The locations of all administrator service script were disclosed, providing invitation a definitive
map of application to a potential attacker to attack business logic in the middle-tier, therefore, in this
scenario EASI framework also get failed to protect the system integrity & security. Web sites are now
fully functional software systems that provide business-to-customer e-commerce, busi-ness-to-business
e-commerce & many services to many users.

The growing use of third-party software components & middleware represents one of the biggest
changes in the e-commerce web software-Application systems so as Security; integrity has threat because
of the Flaws in the design.

The business application logic is a key weak link in security of many online sites. Typically, applica-
tion subversion attacks as well as data driven attacks exploit weakness in this web app-software.

5 Security Properties Violations in Middle Tier

The violation in the middle tier is real caused based on business rule, in a way, those are deployed,
basically indicate serious violation and related Integrity & security. Component based software that
develops rapidly business application logic can be Custom-Developed/COTS that may have flaws in
design of its web software application. The use of component based software risks, cause of these



I.J. of Electronics and Information Engineering, Vol.11, No.1, PP.25-39, Sept. 2019 (DOI: 10.6636/IJEIE.201909 11(1).04) 30

logical vulnerabilities that may lead towards subversion, misuse or circumvent the steps deployed by
the application function.

The major cause of web insecurity is insecure software development practices. Operational security
vulnerabilities generally have three main causes:

1) Design weaknesses;

2) Implementation/coding vulnerabilities;

3) System configuration errors.

Addressing design weaknesses ,especially important because these weaknesses are not corrected easily
after a system has been deployed. We are working on operational vulnerabilities in the middle tier of web
based information system that is composed with Components, not on traditional software techniques
as used to be in the past.

As that, it is explained three categories of operational vulnerabilities, our target is Business Appli-
cation Logic operational vulnerabilities that can be because of (1) design weaknesses, or (3) system
configuration errors that may leads calling wrong component operation.

Unfortunately, even simple flaw in the complex middleware layer can provide the leverage neces-
sary to bypass even strong authentication schemes. Whereas most front-end & Back-end systems are
commercial-off-the shelf (COTS) software packages, a good portion of the middleware software is nec-
essarily custom-development in order to implement every business’s particular application logic.

The most significant weak link in server-side systems is the middleware layer. Therefore, a strong risk
management plan will focus on providing rigorous software assurance for the middleware software [3].

“A software system’s security & its integrity only as secure as its weakest component” [14].
Security problems originate from flaw in software design, and configuration management. These

flaws are leveraged by the users of the software by malicious or accidently providing a level of access &
privilege that would not otherwise be granted by the programme [1].

A flaw become the cause to represent vulnerability in the underlying software mitigating a flaw
typically involves significantly more effort than simply modifying a few lines of code. Please note
another point that problem does not solely in the implementation, the implementation that follows the
design flaws & based on component-based (COTS) software that might contain the flaws. For example
, the classical example, for instance performing sensitive business logic in a tainted client application is
a design flaw that cannot be mitigated by simple measure such as modification array bounds.

Designing software behave, is a process that involves indentify & codifying policy & logic, then
enforcing that policy & logic with reasonable technology to perform certain function or activity. There
is no silver bullet for software security. Advance technology for scanning code is good at finding
implementation-level mistakes, but there is no substitute for experience [15,16].

6 Application Logic Attacks Operation

Unlike, common application technical attacks, such as SQL injection or buffer overflow, each application
logic attack is usually unique, since it’s not mentioned or part of any taxonomy of web application
attacks, and since it has to exploit a function or feature that is specific to the application. Since,
application logic attacks are not based on characteristics like buffer overflow which can be characterize
them as other technical vulnerabilities in the web application (SQL, SSI or buffer overflow).This makes
it more difficult for automated vulnerabilities testing TOOLS to identify or detect such vulnerability
class of attacks because they are caused by the flaws in Logic & not necessarily flaws in the actual Code.



I.J. of Electronics and Information Engineering, Vol.11, No.1, PP.25-39, Sept. 2019 (DOI: 10.6636/IJEIE.201909 11(1).04) 31

When application logic attacks are successful, it is often because developers do not build sufficient
process validation & controls into application logic. This lack of functional flow control of logic allows
attacker to perform certain steps incorrectly or out of order of the defined Logic.

An experiment conducted to demonstrate attacking on application’s business logic in the scenario
of the (SOAP) by injecting code in the SOAP message. In this case, as we know all that (SOAP) is
a message-based communications technology that uses the XML format to encapsulate data. It can
be used to share information and transmit messages between systems, even if these run on different
operating systems and architectures. Its primary use is in web services, and in the context of a browser
accessed web application, you are most likely to experience SOAP in the communications that occur
between “Application Components” [8].

SOAP is often used in large-scale enterprise applications where individual tasks are performed by
different computers to improve performance (W3C.org). It is also often found where a web application
has been deployed as a front end to an existing application. In this situation, communications between
different components may be implemented using SOAP to ensure modularity and interoperability. Be-
cause XML is an interpreted language, SOAP is potentially vulnerable to code injection in a similar
way as the other examples [18].

XML elements are represented syntactically, using the “Metacharacters” <> and /. If user supplied
data con-taining these characters is inserted directly into a SOAP message, an attacker may be able to
interfere with the structure of the message and so interfere with the application’s logic or cause other
undesirable effects [19].

A “Banking Application” in which a user initiates a funds transfer using an HTTP request like the
following:

In the course of processing this request, the following SOAP message is sent between two of the
application’s back-end components:

Look how the XML elements in the message correspond to the parameters in the HTTP request,
and also the addition of the ClearedFunds (Component). At this point in the application’s logic, it has
determined that there are insufficient funds available to perform the requested transfer, and has set the



I.J. of Electronics and Information Engineering, Vol.11, No.1, PP.25-39, Sept. 2019 (DOI: 10.6636/IJEIE.201909 11(1).04) 32

value of this Component to False, with the result that the component which receives the SOAP message
does not act upon it. In this situation, there are various ways in which you could seek to inject into
the SOAP message, and so interfere with the application’s logic. For example, submitting the following
request will cause an additional ClearedFunds (Component) to be inserted into the message before the
original element (while preserving the SQL’s syntactic validity). If the application processes the first
ClearedFunds (Component) that it encounters, then you may succeed in performing a transfer when no
funds are available:

If, on the other hand, the application processes the last ClearedFunds (Component) that it encoun-
ters, you could inject a similar attack into the ToAccount parameter.

A different type of attack would be to use XML com-ments to remove part of the original SOAP
message altogether, and replace the removed elements with your own. For example, the following
request injects a ClearedFunds (Component) via the Amount parameter, provides the opening tag for
the ToAccount (Component), opens a comment, and closes the comment in the ToAccount parameter,
thus preserving the syntactic validity of the XML:

A further type of attack would be to attempt to complete the entire SOAP message from within
an injected parameter and comment out the remainder of the message. However, because the opening
comment will not be matched by a closing comment, this attack produces strictly invalid XML, which
will be rejected by many XML parsers:

In most situations, you will need to know the structure of the XML that surrounds your data, in
order to supply crafted input which modifies the message without invalidating it. In all of the preceding
tests, look for any error messages that reveal any details about the SOAP message being processed. This
will disclose the entire message, enabling you to construct crafted values to exploit the vulnerability.

Experiment Result:

Hence, we have derived the result from this experiment, that application’s component logic can be
subverted, even if, application follows absolutely correct functionality. This course of action proved the



I.J. of Electronics and Information Engineering, Vol.11, No.1, PP.25-39, Sept. 2019 (DOI: 10.6636/IJEIE.201909 11(1).04) 33

claim that such attack subversion of application logic cannot be detected, even if EASI frame work
of security deployed, failed to filter or catch this security breach attempt. Through this experiment
research, it is concluded that business logic layer in n-tier applications need for such a design strategy
is motivated by the fact that logical flaws do not show patterns or signatures and, thus, their discovery
cannot be automated.

7 Previous Model of Security EASI for e-Commerce System

Actually previous model EASI does not meet the com-plete solution since it’s also based on COTS
Security Products these security services are used through API,s of Security services as mentioned
within the Model EASI [21] provides a common security framework to integrate many different security
solutions to securely connecting Web servers to back-office data Stores. The key security services of
this model authentication, authorization, cryptography, accountability, and security administration.

Therefore, since the nature of business application logic vulnerabilities are varied, as explained above
in the experiment and in Section 6.1,7, which is reason why explained above EASI framework does not
control those problems in the business application logic to be attacked or violation its integrity & logical
functions.

8 Proposed UML Based Secure Designing for Application Logic

One of the first steps in system design should be the analysis of the possible attacks to the specific system
and their consequences when successful. This analysis can be used to define the countermeasures that
need and will also be useful later to evaluate the system security.

Identifying the components that needs to be secured, is a very important factor and first stage in
the designing a secure environment for system. Next mechanisms that can be used to secure those
components need to be identified. It is then necessary to understand which mechanisms are to be put
together to secure the components thus giving rise to a secure development scenario.

In the n-tier distributed–computing environment, front-end presents presentation logic which invoke
the business logic for the submitted request then the business logic layer hosted application interacts
with the data tier & its logic for requested enquiry and computes the results that will be delivered to
the presentation-logic layer.

Typically , security senility increases its flow from the first layer towards the last such partitioning
into zones helps define the security requirement for the environment & the design of the topology to
the host the components. It is also need to make sure that every aspect of the application’s design is
clearly mentioned in the sufficient detail to understand every assumption made by the designer and all
such assumption must be explicitly on the record within design plan.

For example, sources code is clearly commented purpose & intended uses of each component and
assumption made by each component about anything that is outside of its direct functional control.
It is also important to reference to all client code which makes use of the component and clear to it
effect could have prevented the Logic flaw within the online registration functionality as defined in
the example in that case “client” here refers not to the user end of the client-server relationship but to
other code for which the component being considered is an immediate dependency. When implementing
functions that update session data on the basis of input received from the user or actions performed
by the user, reflect carefully on any impact that the updated data may have on other functionality
within the application unexpexted side effects can occur in entirely unrelated functionality defined by
a different programmer or even a different development team.



I.J. of Electronics and Information Engineering, Vol.11, No.1, PP.25-39, Sept. 2019 (DOI: 10.6636/IJEIE.201909 11(1).04) 34

8.1 UML Based J2EE Secure Design Modeling for Application Logic

Designing of application for e-commerce distributed system in a tier is also very important since many
attacks are cause of design flaws in the e-commerce systems such logical flaws do not often refer to
component based flaws but also architectural, component modeling to set the logic of application while
using business rules related to the particular business or activity. Therefore , it is very important to
define clearly architectural design of topology in which system going to design for deploy by separating
each tier clearly , second stage focus on the appli-cation logic design strategy & policy with that compo-
nents have to function under given business defined rule/policy , third stage refer to design strategy for
components which dynamic web content is used to tailor an individual’s interactions with a web site
& provide users with more interactive information. Dynamic content may be rendered in various form,
such as static HTML files, Java Script or JSP file rendered using component supported environment
such as Java servlets in a J2EE invokes business –logic application hosted middle tier to access back-end
business data.

Figure 3: UML based secure design J2EE component based application logic modeling

In the above given example of attack as it is stated that always follow right principles of web applica-
tion software engineering in the right technology environment support for component interoperability &
security. it is noticed in the example that threat to the application integrity & application dependability
based on the design flaw & engineering of the component while defining logic for e-commerce system



I.J. of Electronics and Information Engineering, Vol.11, No.1, PP.25-39, Sept. 2019 (DOI: 10.6636/IJEIE.201909 11(1).04) 35

web application software by merging all logic and invoke the direct access using servlets through JDBC
to the back-end having bypass the middleware process or without encapsulating the business logic in
an enterprise bean, it also define screening as a shield to the organizational resources by restricting
unauthorized people to access valuable data or temper the resources.

8.1.1 Validation for the proposed UML Based Secure Design J2EE Component Based
Applica-tion Logic

Business-level- Process Integration is based on business component’s integration, which takes part to
process a certain job/task event. This comes into being because of business logic inside a component.
When we talk about business process integration, it means integrating business component’s business
processing logic, this integration completely rely upon “Business” component’s Interface. A compo-
nent interface is self-descriptor that provides specification, which defines component offers, what service
such as, Account service provided by Account Component interface (as given above example experi-
ment study), this is called Component interface specification, it reflects component’s business process
functionality, and indicates a component offer a particular service [24].

By using this specification, we can derive a component’s syntax and semantics to determine its
provided and required interfaces. The provided interface is a collection of functionality and behavior
that collectively define the service a component provides to its associated clients. It may be seen as the
entry point for controlling the component, and it determines what a component can do. If we look at a
component from the point of view of its provided interface, it takes the role of a server. If we look at it
from the point of view of its required interface, the component takes the role of a client. Provided and
required interfaces define a component’s provided and required contracts [25].

8.1.2 Integration and System Testing Approach

Components and integration level testing is therefore often confronted with the problem that the service
provided by the component or a group of components under test (the SUT) requires functionality of
components which are not ready for integration. Delays of the component and integration level testing
process can be avoided by the development of emulators for the missing functionality and an elaborated
project plan which considers the integration order of the components. This integration level testing
shows, how the UML Testing Profile (UTP by (OMG)) can be utilized for this kind of testing [23].

Since model-based integration and system testing does not require all component realizations .Models
can usually be available earlier than realizations, this model-based I & T technique enables earlier
detection and prevention of problems when compared or matched to real system testing.

Furthermore, models usually allow easier adaptation and configuration than realizations, which means
that they are well suited for system testing under different conditions. Especially for exceptional
behavior testing, creating the non-nominal test conditions, e.g., a broken component, is usually easier
and less expensive when models are used instead of realizations. Besides that this improves the coverage
and thus the quality of tests, the ability to rapidly change test conditions using models also improves
the efficiency of test execution. As such, model-based system testing not only allows earlier testing, but
it also increases the risk reduction rate for the test phase.

Figure 4 contains a graphical representation of mod-el-based integration and system testing. When
only the depicted components C1 and Cn are considered, the figure shows that component C1 is
represented by model M1, while component Cn is represented by realization Zn. Using the model-based
integration infrastructure IMZ, model M1 and realization Zn are integrated, yielding the model-based
integrated system {M1, Zn} IMZ.This early representation of the system is then tested on the system
level using tests derived from the system requirements R and the system design D, which is graphically
represented by the dashed arrow .



I.J. of Electronics and Information Engineering, Vol.11, No.1, PP.25-39, Sept. 2019 (DOI: 10.6636/IJEIE.201909 11(1).04) 36

Figure 4: Integration and system testing model

8.2 Systems Unification Approach for Application Process & Assurance
Properties

In cooperating our design model through model-based approach in component-based-software develop-
ment, would promotes as a means to achieve cost-effective, high quality of assurance in the development
and platform-independent design. This approach is a means of realizing the “correct by construction
philosophy” where by flaws in a product design are discovered early at the design stage, such as com-
ponents integration flaws. By using this approach, we can extract the integration flaw/fault existing
between the components interfaces, interacting with each other in the system, that is composed with
the component’s integration on the bases of their “business process functionality”.

Component’s realization contract artifacts help to understand design and applicability of its transfor-
mation into model-based application process for assurance properties unification that can be achieved
by its interconnection relationship behavioral study.

Application of extracted test design for an e-commerce system should follow a complete plan.

1) Scenario-based-approach for modeling business scenario to generate test scenarios from extracted
Test design.

2) Selecting integration strategies of components matching with requirement specifications & their
offered and used interface, design drivers and stubs.

3) Derive test scenarios from business scenarios and business flows of components, and derive test
cases by analyzing business data. Limits of Conducted Practice:

The above proposed secure design strategy successfully, practiced at above mention e-commerce
industry. Due to ethical right and their company policy, snapshots of integration or component test
(Diagnostic specification) out come not allowed exposing publically.



I.J. of Electronics and Information Engineering, Vol.11, No.1, PP.25-39, Sept. 2019 (DOI: 10.6636/IJEIE.201909 11(1).04) 37

Figure 5: System s unification approach for application process & assurance properties

Figure 6: Component’s interconnection relationship design by contract



I.J. of Electronics and Information Engineering, Vol.11, No.1, PP.25-39, Sept. 2019 (DOI: 10.6636/IJEIE.201909 11(1).04) 38

9 Conclusion

Attacking an application’s logic involves a mixture of systematic probing and lateral thinking. As we
have identified, there are various key points’ checks that one should always carry out to the application’s
behavior.

Often, the way an application responds to these actions will point towards some defective assumption
that can violate, to malicious effect.

Therefore, common sense is a appropriate tool while designing secure web application software and
deploying component based business logic into the system. Application system developer must focus
on security besides the functionality, because this functionality can be productive, when it works as per
and within its functional control defined business policy into the e-commerce systems.

References

[1] A. K. Ghosh, E-Commerce Security: Weak Links Best Defence, John Wiley & Sons, New York,
1998.

[2] A. K. Ghosh, Security and Privacy in Ecommerce, John Wiley & Sons, 2000.
[3] A. K. Ghosh, Security & Privacy for EBusiness, John Wiley & Sons, 2001.
[4] F. Nabi, “Secure business application logic for e-commerce systems,” Elsevier Journal of Computers

& Security, 2005.
[5] J. Offutt, “Quality attributes of web software applications,” IEEE Software, vol. 19, no. 2, pp.

25-32, 2002.
[6] E. Dustin, J. Rashka, D. McDiarmid, Quality Web System: Performance, Security & Usabilty,

Adition-Wesley, Boston, 2001.
[7] P. Ritchie, The Security Risks Of Ajax/Web 2.0 Application, Elsevier, Network Security, 2007.
[8] C. V. Berghe, J. Riordan, F. Piessens, “A vulnerability taxonomy methodology applied to web

services,” IBM Zurich Research Laboratory, 2005.
[9] R. R. Raje, B. R. Bryant, M. Auguston, A. M. Olson, C. C. Burt, “A unified approach for the inte-

gration of distributed heterogeneous software components,” in Proceedings of Monterey Workshop
Engineering Automation for Software Intensive System Integration, 2001.

[10] F. Cao, B. R. Bryant, R. R. Raje, M. Auguston, A. M. Olson, and C. C. Burt, “Component
specification and wrapper/glue code generation with two-level grammar using domain specific
knowledge,” Lecture Notes Computer Science, vol. 2495, Springer-Verlag, 2002.

[11] G. Simson, S. Gene, Web Security And Commerce, O’Reilly Publishing, 1997.
[12] M. Hung, Y. Zou, Extracting Business Process From The Three-Tier Architecture System, Queen’s

University Kingston, ON, K7L 3N6, Canada 2005.
[13] M. Hung and Y. Zou, “A framework for exacting workflows from e-commerce systems,” in Pro-

ceedings of Software Technology and Engineering Practice, 2005.
[14] J. Viega, G. McGraw, Building Secure Software, John Wiley, 2006.
[15] G. Hoglund, G. McGraw, Exploiting Software, Adition-wesley, 2004.
[16] D. Verdon, G. McGraw, “Risk analysis in software design,” IEEE Security & Privacy, vol. 2, no.

4, pp. 79-84, 2004.
[17] D. Allan, Web Application Security: Automated Scanning or Manual Penetration Testing, Jan.

2008. (ftp://ftp.software.ibm.com/software/rational/web/whitepapers/r_wp_autoscan.
pdf)

[18] M. McIntosh and P. Austel, “XML signature element wrapping attacks and countermeasures,” in
Workshop on Secure Web Services, 2005.

[19] M. A. Rahaman, A. Schaad, and M. Rits, “Towards secure soap message exchange in a SOA,” in
Workshop on Secure Web Services, 2006.

ftp://ftp.software.ibm.com/software/rational/web/whitepapers/r_wp_autoscan.pdf
ftp://ftp.software.ibm.com/software/rational/web/whitepapers/r_wp_autoscan.pdf


I.J. of Electronics and Information Engineering, Vol.11, No.1, PP.25-39, Sept. 2019 (DOI: 10.6636/IJEIE.201909 11(1).04) 39

[20] G. J. Brahnmath, R. R. Raje, A. M. Olson, M. Au-guston, B. R. Bryant, C. C. Burt, “A quality of
service catalog for software components,” in Proceedings of the Southeastern Software Engineering
Conference, 2002.

[21] R. Heffner, Planning Assumption: Giga’s Model for Enterprise Application Security Integration,
Giga Information Group, June 22, 2001. (http://www.gigaweb.com)

[22] D. Schmidt, M. Stal, H. Rohnert, F. Buschmann, Pattern-Oriented Software Architecture, Vol. 2,
Patterns for Concurrent and Networked Objects, Wiley, 2000.

[23] P. Baker, et al., Component and Integration Level Testing, Springer Belin Heidelberg, 2007.
[24] M. Juric, R. Nagappan, R. Leander, S. J. Basha, Professional J2EE EAI, Wrox Press, 2002.
[25] H. G. Gross, Component-Based-Software Testing with UML, Springer, 2005.

Biography

Faisal Nabi is a PhD researcher at university of southern Queensland Australia. He has published
some interesting papers on component-based application logic vulnerability. His main area of research
is e-commerce security, specially focus on rapidly developed COTS based application design (security
by design).

Jianming Yong is an Associate Professor at University of Southern Queensland.He did his PhD
from SwinburneUT. His main area of research interest are Advanced Networking, Internet technology,
M-Commerce,E-business, Data Integration, Workflow systems, Information system security, Network
management. He is member of IEEE.

Xiaohui Tao is Senior Lecturer in Faculty of Health, Engineering and Sciences, University of Southern
Queensland (USQ), Australia. Before joined USQ, I was a Research Associate with the e-Discovery
Lab, Faculty of Science and Technology at Queensland University of Technology (QUT), Australia, and
completed PhD in QUT as well.His research interests include Information Retrieval, Text Mining, and
Knowledge Engineering.

http://www.gigaweb.com

	Introduction
	Contribution
	Type of Scientific Research

	Application Business Logic
	Component-Based-Software Role in Business Logic & Concerns
	Web Software Application & Component-Based-Development Risks
	Security Properties Violations in Middle Tier
	Application Logic Attacks Operation
	Previous Model of Security EASI for e-Commerce System
	Proposed UML Based Secure Designing for Application Logic
	UML Based J2EE Secure Design Modeling for Application Logic
	Validation for the proposed UML Based Secure Design J2EE Component Based Applica-tion Logic
	Integration and System Testing Approach

	Systems Unification Approach for Application Process & Assurance Properties

	Conclusion
	REFERENCES

