

University of Southern Queensland

Teaching Programming
Strategies Explicitly to Novice

Programmers

A dissertation submitted by

Michael de Raadt

for the award of

Doctor of Philosophy

2008

Abstract Teaching Programming Strategies Explicitly to Novice Programmers

 Page ii

Abstract

The traditional approach to training novice programmers has been to provide explicit

programming knowledge instruction but to rely on implicit instruction of

programming strategies. Studies, reported in literature, have discovered universally

poor results on standardised tests for novices studying under this traditional

approach.

This dissertation describes the explicit integration of programming strategies into

instruction and assessment of novice programmers, and the impact of this change on

their learning outcomes.

An initial experiment was used to measure the performance of students studying

under a traditional curriculum with implicitly taught programming strategies. This

experiment uncovered common flaws in the strategy skills of novices and revealed

weaknesses in the curriculum. Incorporation of explicit strategy instruction was

proposed.

To validate a model of strategies as being authentic and appropriate for novice

instruction, an experiment with experts was conducted. Experts were asked to solve

three problems that a novice would typically be expected to solve at the end of an

introductory programming course. Experts‟ solutions were analysed using Goal/Plan

Analysis and it was discovered that experts consistently applied plans, the sub-

algorithmic strategies suggested by Soloway (1986). It was proposed that plans

could be adapted for explicit inclusion in an introductory programming curriculum.

Initially a curriculum incorporating explicit strategy instruction was tested in an

artificial setting with a small number of volunteers, divided into control and

experimental groups. The control group was taught using a simplified traditional

curriculum and the experimental group were exposed to a curriculum which

explicitly included programming strategies. Testing revealed that experimental group

participants applied plans more than control group participants, who had been

expected to learn these strategies implicitly. In interviews, experimental participants

used strategy-related terminology and were more confident in the solutions they had

created. These results justified a trial of the curriculum in an actual introductory

programming course.

When explicit instruction of programming strategies was incorporated into an actual

introductory programming curriculum, novices achieved superior results when

compared to results from the initial experiment. Novices used strategies significantly

more when these strategies were incorporated explicitly into instructional materials

and assessment items.

This series of experiments focussed on explicitly teaching specific programming

strategies rather than teaching problem-solving more generally. These experimental

results demonstrate that explicit incorporation of programming strategies may

improve outcomes for novices and potentially improve the potential of expert

programmers in future.

Teaching Programming Strategies Explicitly to Novice Programmers Certification of Dissertation

 Page iii

Certification of Dissertation

I certify that the ideas, experimental work, results, analyses and conclusions reported

in this dissertation are entirely my own effort, except where otherwise

acknowledged. I also certify that the work is original and has not been previously

submitted for any other award, except where otherwise acknowledged.

________________________________ ______________

Signature of Candidate Date

ENDORSEMENT

________________________________ ______________

Signature of Supervisor Date

________________________________ ______________

Signature of Supervisor Date

Relevant Publications Teaching Programming Strategies Explicitly to Novice Programmers

 Page iv

Relevant Publications

DE RAADT, M., WATSON, R. & TOLEMAN, M. (2002) Language Trends in

Introductory Programming Courses. In Proceedings of Informing Science and

IT Education Conference. p. 329 - 337.

DE RAADT, M., WATSON, R. & TOLEMAN, M. (2003) Language Tug-Of-War:

Industry Demand and Academic Choice. Australian Computer Science

Communications, 25, 137 - 142.

DE RAADT, M., WATSON, R. & TOLEMAN, M. (2003) Introductory

programming languages at Australian universities at the beginning of the

twenty first century. Journal of Research and Practice in Information

Technology, 35, 163-167.

DE RAADT, M., WATSON, R. & TOLEMAN, M. (2004) Introductory

Programming: What's happening today and will there be any students to teach

tomorrow? Australian Computer Science Communications, 26, 277 - 284.

DE RAADT, M., TOLEMAN, M. & WATSON, R. (2004) Training strategic

problem solvers. ACM SIGCSE Bulletin, 36, 48 - 51.

DE RAADT, M., TOLEMAN, M. & WATSON, R. (2006) Chick Sexing and Novice

Programmers: Explicit Instruction of Problem Solving Strategies. Australian

Computer Science Communications, 28, 55 - 62.

DE RAADT, M. (2007) A Review of Australasian Investigations into Problem-

Solving and the Novice Programmer. Computer Science Education, 17, 201 -

213.

DE RAADT, M., TOLEMAN, M. & WATSON, R. (2007) Incorporating

Programming Strategies Explicitly into Curricula. In Proceedings of the

Seventh Baltic Sea Conference on Computing Education Research (Koli

Calling 2007). p. 53 - 64.

Teaching Programming Strategies Explicitly to Novice Programmers Acknowledgments

 Page v

Acknowledgments

I would like to thank my supervisors, Mark Toleman and Richard Watson, for the

experience they shared, their enthusiasm in my work and, perhaps above all, their

patience.

I thank my family, my wife Erica and my two children, Hannah and Isaac, for

allowing me to spend time away to complete my research work and for encouraging

me to keep going and get the job done.

I thank the CSEd community for taking my ideas seriously and showing me the value

of research in this area.

Thanks to Simon for his proofing services. Simon is a published author and leading

figure of the CSEd community.

Thanks also to Peter Dunn for his assistance on statistics matters.

I thank my Lord Jesus, to whom I pray, for giving me the strength to achieve my

absolute potential and benefit those in the world around me.

Table of Contents Teaching Programming Strategies Explicitly to Novice Programmers

 Page vi

Table of Contents

Abstract .. ii

Certification of Dissertation .. iii

Publications ... iv

Acknowledgments .. v

Table of Contents .. vi

Glossary ... viii

1. Introduction ... 1

1.1 Motivation ... 1

1.2 Aims .. 2

1.3 Dissertation Structure .. 4

2. Problem Solving and Novice Programmers .. 5

2.1 A Brief History of Programming Instruction .. 5

2.2 Recent teaching in Australian and New Zealand 7

2.3 Aspects of Novice Instruction ... 9

2.4 Explicit Programming Strategies ... 20

2.5 Need for Further Research .. 22

3. Experimental Methodology .. 24

3.1 Scope of Experimentation ... 24

3.2 Experimental Approach ... 25

3.3 Research Questions ... 28

3.4 Overview of Experimentation ... 29

4. Goal/Plan Analysis of Programs created by Novices with No Explicit

Strategy Instruction ... 30

Overview ... 30

4.1 Introduction ... 30

4.2 Research Questions ... 32

4.3 The Experimental Problem .. 33

4.4 Methodology ... 36

4.5 Results ... 40

4.6 Discussion ... 43

4.7 Implications ... 44

5. Experts and Explicit Strategies ... 46

Overview ... 46

5.1 Introduction ... 46

Teaching Programming Strategies Explicitly to Novice Programmers Table of Contents

 Page vii

5.2 Research Questions ... 48

5.3 The Problems... 48

5.4 Methodology ... 50

5.5 Results ... 54

5.6 Discussion ... 57

5.7 Implications ... 58

6. Incorporating Strategies Explicitly into an Artificial Curriculum 60

Overview... 60

6.1 Introduction ... 60

6.2 Research Questions ... 62

6.3 Description of Curricula .. 62

6.4 Methodology ... 67

6.5 Results ... 69

6.6 Discussion ... 77

6.7 Implications ... 79

7. Teaching and Assessing Programming Strategies Explicitly in an Actual

Setting ... 81

Overview... 81

7.1 Introduction ... 81

7.2 Research Questions ... 83

7.3 Integrating Strategy Instruction into Written Materials, Lectures,

Tutorials and Practical Classes .. 84

7.4 Assessing Strategy Skill in Assignments and Examinations 93

7.5 Methodology ... 100

7.6 Results ... 102

7.7 Discussion ... 106

7.8 Implications ... 108

8. Findings and Contribution of this Study ... 109

8.1 Findings of this Study ... 109

8.2 Contribution .. 113

8.3 Future Work .. 114

References .. 116

List of Figures .. 121

List of Tables.. 123

Appendices ... 124

Glossary Teaching Programming Strategies Explicitly to Novice Programmers

 Page viii

Glossary

The following terms are used throughout this dissertation. They are presented here to

clarify their meaning. The terms are described and explored more deeply in Chapter

2 with references to sources. The terms are presented in alphabetic order.

 Comprehension

In the context of programming, comprehension is the ability to read and

understand code or program related information. This may involve simulating

execution of a program to manually compute a result.

 Course
A single period of instruction, usually contained within a semester.

Equivalent to the terms unit, paper or subject used in some institutions.

 Curriculum
Teaching materials, assessment items and method of delivery, related to a

single course (see above).

 Expert
A programmer who writes programs on a regular or daily basis. For the

purposes of this dissertation it is not important when a novice programmer

(see below) becomes an expert is not critical, as comparisons are made only

between programmers at the extremes of this scale.

 Explicit Instruction
Instruction where the the instructor openly describes, usually in some

documented form, what the student is to learn and how to go about that

learning.

 Generation
In the context or programming, generation involves the creation of code or

program related information, potentially implementing a solution to a

problem.

 Goal

An identified part of a solution that needs to be achieved for a programming

problem.

 Implicit Instruction
Instruction within a scenario where a student is expected to undertake

learning without being given a full context for what it is they are to learn or

how.

 Knowledge

See Programming Knowledge below.

 Novice
A programmer learning how to program for the first time. In this dissertation

novices are students undertaking a first course (see above) in programming.

 Plan
A fundamental form of programming strategy (see below). The means of

Teaching Programming Strategies Explicitly to Novice Programmers Glossary

 Page ix

achieving a goal (see above) within a solution to a programming problem.

Plans are normally contained in the tacit knowledge of experts.

 Problem Solving
A mechanism for achieving a solution to a programming problem. Within the

scope of this document, problem solving is not intended to be interpreted

more generally.

 Programming Knowledge
A programmer‟s understanding and potential to apply the syntax and

semantics of a programming language and any related language features.

 Programming Strategy
A general term for a range of programming problem solving approaches

including plans (see above), patterns, algorithms and other methodologies. A

programming strategy is an abstracted method for applying programming

knowledge to solve a problem.

 Strategy

See Programming Strategy above.

 Teaching Programming Strategies Explicitly to Novice Programmers

 Page x

Chapter 1 Introduction

 Page 1

1. Introduction

As an information society we rely on computers and software used on computers.

The potential to create new software governs our progress as an information society.

The responsibility for creating software falls on information technology professionals

and key among these are programmers.

Like computers, the art of programming is relatively new, yet it is fundamentally

entrenched in our information-dependent world. Expert programmers have the

potential to solve many information-related problems. Programmers have the

potential to overcome new problems and advance the world of computing a little

further with each new solution.

Guiding novices to gain expertise builds a stronger field of expert programmers and

strengthens our potential as an information society into the future. Constructing more

complex and higher quality software relies on instructors training expert

programmers who are more capable and more confident.

1.1 Motivation

Programming is a cognitively demanding task and training novices can be a

challenging undertaking. Novices must learn the programming knowledge (syntax

and language features) and programming strategies (ways to apply this knowledge in

order to solve programming problems).

For many years introductory programming instructors have anecdotally reported

failure rates that are higher than most institutions generally tolerate (Lister, 2000,

Carbone et al., 2000, Guzdial and Soloway, 2002). Much research in computing

education has focused on ways to overcome high failure rates in introductory

programming.

Seeking concrete evidence, a number of studies have attempted to quantify the level

of skill of novice programmers at the end of an introductory programming course. A

multinational study of novice programmers (McCracken et al., 2001) showed

universally poor results on a standardised test conducted at institutions across the

world. This study did not identify sources of the inadequacies demonstrated, but it

did offer an opportunity to accept the failings of the past and a chance to begin to

develop new curricula which could better encourage novices to reach expected

standards.

Observed novices have produced poor results in standardised program generation

tests, with many novices demonstrating a fragile knowledge (Lister et al., 2004) and

most novices failing to demonstrate programming strategies (Lister et al., 2006).

There are at least two possible causes for this behaviour.

One possibility is that there are some bright students, but most students simply do not

possess the mental capacity to meet the standard set for them.

Another possibility is the curricula used in traditional introductory programming

courses, and the methods used to deliver them, fail to adequately teach most students

programming knowledge and strategies.

Introduction Chapter 1

 Page 2

It is likely that both of these causes are contributing in some way; however blaming

novices for their own failure will not improve outcomes so we must consider ways of

improving curricula to address these failings.

Kuittinen and Sajaniemi (2003) contend that many attempts to ease novice

difficulties have simply sought to teach a traditional curriculum in more exciting

ways. Increased student enthusiasm resulting from such innovations does not seem to

have improved the outcomes of struggling students around the world. Rather than

making ad-hoc changes to parts of an aging curriculum in the hope of finding some

magic formula, a better objective is to systematically discover the conceptual barriers

that cause novices to struggle and to consider new curricula elements that encourage

novices to overcome these barriers.

Ultimately, the underlying motivation for attempting to improve introductory

programming curricula is to support the development of more competent novices

who will hopefully go on to become better expert programmers, creating superior

software and benefiting the greater community.

1.2 Aims

Traditional curricula include explicit instruction of programming knowledge.

Novices are taught the constructs and associated facilities of a language in a well

expressed manner. By contrast, programming strategies, the means of applying

programming knowledge to solve problems, are taught implicitly (Soloway, 1986). It

is expected that novices will construct their own programming strategies by

obtaining programming knowledge, solving problems, then reflecting on this process.

It has been shown that some novices can successfully develop programming

strategies over a period of implicit learning (Rist, 1991). However, outcomes for the

majority of novices remain poor (McCracken et al., 2001, Lister et al., 2004, Lister et

al., 2006).

Explicit instruction has been shown to be far more powerful than implicit instruction.

When compared with implicit instruction, explicit instruction has been proven to

produce faster learning, higher accuracy and an understanding of the underlying

principles of the concepts being learnt in specific disciplines (Baddeley, 1997).

Expressing and instructing programming strategies in a more explicit fashion may

improve outcomes for novices. Before this can be achieved, an set of programming

strategies, used by experts but relevant to novices, needs to be expressed.

It has been suggested that experts hold programming strategies in a tacit form in

their minds (Soloway, 1986). Experts build this tacit collection of strategies over

time and apply and adapt it for new problems as they arise. If a concrete set of

strategies is proposed for teaching, it needs to be validated against the strategies

applied by experts.

Chapter 1 Introduction

 Page 3

Programming Strategy Instruction

tacit

implicit

non-assessed

expressed

explicit

assessable

Figure 1.1. Including programming strategies in curricula

The aim of work described in this dissertation is to improve the curricula and

pedagogy used for training novice programmers by adding curricular elements

designed to overcome difficulties faced by novices. The transition from an implicit

traditional approach to an explicit approach, pictured in Figure 1.1, aims to:

1. use the tacit programming strategies of experts to validate an expressed set of

strategies, suitable for novice programmers;

2. move from the implicit delivery of strategies to curricula and methods of

delivery that explicitly teach authentic programming strategies to novices,

and test the impact of this move; and

3. target the application of specific strategies in assessment of novices‟ skills,

thus promoting the value of strategies.

To accomplish these aims, the following tasks were proposed and undertaken.

 Measure the programming strategy skill level of novices trained using a

traditional curriculum. This can then be used as a benchmark for later

comparison with new curricula.

 Identify authentic expert programming strategies that are relevant to novice

programmers.

 Create a curriculum that explicitly integrates programming strategy

instruction with programming knowledge instruction.

 Determine the impact of explicitly teaching programming strategies,

comparing this to the skill level of novices trained under a traditional

curriculum.

 Demonstrate how programming strategies can be assessed as part of regular

assignments and examinations.

Introduction Chapter 1

 Page 4

1.3 Dissertation Structure

This dissertation is divided into three parts. The introductory chapters set the stage

for the experimental work described in subsequent core chapters, and findings are

brought together in the concluding chapter.

Introduction, Overview and Methodology

The body of this dissertation begins in chapter 2 by exploring research related to

introductory programming instruction. A history of introductory programming

teaching is given. A number of terms, focusing on aspects relevant to teaching in this

area, are defined. Areas where there is a need for further exploration are identified

and the potential for the contribution made by this study is explained.

Chapter 3 then outlines the scope of experiments undertaken in this study. Research

questions are discussed and Goal/Plan Analysis, the main methodological tool for

measuring novice programming strategy skill, is described in detail.

Description of Experiments

The core of the work described in this dissertation was achieved through four

experiments. The experiments were conducted in sequence, with the findings of each

study leading to a need for the following experiment.

Chapter 4 describes an experiment where Goal/Plan Analysis was applied to the code

of novices who had studied programming with implicit-only programming strategy

instruction. Results of this study justify the aim to explicitly express programming

strategies in the curriculum used. These results also served as a basis for the

comparison of results of later experiments.

Chapter 5 presents an experiment which attempted to identify strategies used by

expert programmers. The experiment targeted strategies that are relevant to novice

programmers and could be explicitly incorporated into introductory programming

curricula.

Chapter 6 describes an experiment that compared two introductory programming

curricula: one that explicitly included programming strategy instruction and another

that followed a traditional implicit strategy instruction approach. The experiment

explored the feasibility of using a curriculum including programming strategy

instruction, and attempted to measure and compare the impact of the two curricula on

novices.

Chapter 7 shows how programming strategies were included in an actual university

level introductory programming course. This chapter describes how strategies were

incorporated in instructional material and how they were assessed for grading

purposes. Results of this approach are compared to the benchmark set in the initial

experiment showing an increase in the use of strategies.

Conclusions and Statement of Contribution

Conclusions are made in chapter 8. Implications of these conclusions for the field of

computing education are discussed and the original contribution of this dissertation is

identified. Finally, future work is suggested.

Chapter 2 Problem Solving and Novice Programmers

 Page 5

2. Problem Solving and Novice Programmers

In the previous chapter the rationale and aims of the study described in this

dissertation were presented. This chapter establishes a context for the experiments

described in later chapters. The first sections review areas of computing education

relevant to this investigation. Then a number of important terms are defined; these

terms will be used throughout the dissertation. Programming strategies can be

expressed in a number of forms; two of these are compared, and the form used in

experimentation is identified. Having established a context, the need for investigation

in this area is expressed and justified.

2.1 A Brief History of Programming Instruction

“If you ask me what accomplishment I'm most proud of, the answer would

be all the young people I've trained over the years; that's more important

than writing the first compiler.”

Grace Hopper

Computer programming became a practised discipline as computing technologies

began to develop. Initially computer programmers were self-taught as there were no

educational programs covering programming in the early days of computing.

Computing science, which includes computer programming, surfaced as an offspring

of other academic disciplines such as mathematics. “Computing education emerged

from a few optional units in mathematics or engineering to establish its own

discipline as Computer Science (CS) in the 60s” (Pham, 1996). Early computing

curricula focused primarily on creating programs for data processing as this was the

origin of computing, but over time the discipline grew and divided into substantial

sub-disciplines (Pham, 1996). As computing technologies have become relevant to

more than a handful of specialists, the discipline, and education within the discipline,

has been forced to change and adapt.

In 1971 Niklaus Wirth introduced the language Pascal, primarily for teaching novice

programmers (Wirth, 1971, Wirth, 1974). Pascal was simple and well structured, and

allowed instructors to focus on fundamental concepts involved in the task of

programming. Although other academic languages had been presented and used,

none have had the impact of Pascal, which during a period of 23 years was taught at

some stage in almost all Australian universities (de Raadt et al., 2002).

During the 1980s and into the 1990s the advent of personal computers brought

computing within reach of non-computing professionals and this new group of

computer users required training. Initially, the best way to provide end-user

computing skills was thought to be training in programming. A notion developed that

all computer users could benefit from some amount of programming literacy.

Because of this, programming was referred to as “the New Latin” (Soloway, 1993).

Through the act of learning programming it was believed that students would

develop general problem-solving and design skills that could be applied to the

remaining facets of their lives. Novices being trained as the expert programmers of

the future were joined by students who would be exposed to not more than a

semester or two of programming instruction. A new approach was considered

Problem Solving and Novice Programmers Chapter 2

 Page 6

necessary to teach both groups. As many tertiary institutions of the era did not have

the resources to teach both groups independently, compromises were made which

generally involved teaching as many of the features of the Pascal programming

language as was practical within an introductory course and hoping students would

learn problem solving along the way.

Programming is no longer „the New Latin‟. While computing skills are even more

valuable today general computer users are more commonly directed to learn

application skills rather than programming. Current courses for non-programmers

attempt to instil capabilities in applications such as word processors, spreadsheets

and presentation graphics packages. The teaching of programming is now largely

directed once more to students who will later take on computing study and strive to

become expert programmers or at least require some programming skills as part of

their professional training.

Since 2003, Pascal is no longer taught in any Australian university – choosing a

language that will attract students is considered, by most instructors, as a higher

priority than the pedagogical benefits a language can give (de Raadt et al., 2002).

Languages used in introductory programming courses are most commonly industry-

relevant languages. A large number of papers have suggested that one language is

superior to another because it possesses desirable features (eg. Bergin, 2000, Biddle

and Tempero, 1998, Chandra and Chandra, 2005, Hadjerrouit, 1998, Stroustrup,

1999) or because changing to the new language seemed to encourage better results

from students (eg. Hitz and Hudec, 1995, Andreae et al., 1998). What is shown in

literature is likely to be a reflection of the debates that have undoubtedly taken place

within the meeting rooms and corridors of teaching institutions.

In the late 1980s and early 1990s programmers began to explore Object-Oriented

Programming (OOP), a new programming paradigm that combines data with

behaviour related to that data. Many instructors felt that this paradigm was more

analogous to natural human understanding and therefore could benefit novices. Many

papers during the 1990s debated just that (eg. Reid, 1993, Decker and Hirshfield,

1994, Kölling et al., 1995). A new language, Java, introduced in 1994, embodied the

object-oriented paradigm. Java was immediately successful because it also provided

strong integration with the World Wide Web, which was rapidly growing at the same

time. Java became popular and students wanted to learn it. Universities within

Australia were facing competition and strict government funding regulations (Pham,

1996). Attracting students by teaching them what they wanted to learn contributed

largely to the curricula of the late 1990s.

2.1.1 Failure Rates

Many anecdotal reports state failure rates in introductory programming courses are

higher than acceptable, gaining attention within tertiary institutions. Seeking

empirical evidence the „McCracken group‟, involving multinational participants from

the UK, USA, Israel, Poland and Australia, came together as an ITiCSE 2001

working group (McCracken et al., 2001). The group studied competency of novices

after a one- or two-semester introductory course in programming. The group

established a set of standard test questions with set evaluation criteria which were

applied at participating institutions. The average score was 21% leading to a

conclusion that “many students do not know how to program at the conclusion of

their introductory courses” (p. 125). The study did not identify sources of the

inadequacies demonstrated by novices or potential fixes for these problems.

Chapter 2 Problem Solving and Novice Programmers

 Page 7

However, the McCracken group did offer an understanding that these problems are

universal and there is now an opportunity to develop new curricula which could

produce better outcomes in novices.

2.2 Recent teaching in Australian and New Zealand

As preliminary work for this study an investigation was made into several aspects of

introductory programming courses within universities in Australia and New Zealand.

The work was referred to as the „Census‟ as it attempted to capture information about

all such courses in the region
1
. The Census was first conducted in 2001 and covered

57 introductory programming courses at 37 Australian universities (de Raadt et al.,

2002, de Raadt et al., 2003b, de Raadt et al., 2003a). The second Census was

conducted in 2003 and covered 85 courses from 39 Australian and eight New

Zealand universities (de Raadt et al., 2004). Both instances of the Census covered

languages and paradigms taught, tools used and numbers of students. A third census

is being conducted in 2008.

2.2.1 Declining Student Numbers

A trend showing a reduction in the number of students undertaking introductory

programming courses was observed between the 2001 Census and 2003 Census. The

average decline in students between the two instances of the Census was 28% (de

Raadt et al., 2004).

While having fewer students does not diminish the importance of improving

instruction of programming, it does place pressure on instructors, many of whom are

at risk of losing their jobs.

2.2.2 Industry-Relevant Languages

In both undertakings of the Census the most popular languages used in introductory

programming courses were Java, C/C++, Visual Basic and Haskel. The first three of

these languages could be classified as industry-relevant languages as they were

widely used in industry at the time (de Raadt et al., 2003b) and not primarily

designed with teaching in mind. The three non-commercial languages found by the

2001 Census (Haskel, Eiffel and Ada) were taught predominantly in sandstone

universities (Australian universities established before 1950 (Ashenden and Milligan,

1999)).

Instructors participating in the 2001 Census were asked why they chose their current

language. The responses (summarised in Table 2.1) showed that instructors chose a

language either because they perceived it to have industry relevance, or because they

believed it would be attractive to students who perceived that it was industry-

relevant. This reason appears to have been more important than choosing a language

for its pedagogical benefits. At sandstone universities, which can attract students

more easily through traditional reputations, pedagogical benefits of a language where

mentioned more often as a reason than industry-relevance.

1
 Australasia is an excellent location for such research as social and educational standards match those

in other developed countries, yet the scale and number of institutions in this region makes it possible

to contact almost all introductory programming instructors.

Problem Solving and Novice Programmers Chapter 2

 Page 8

Table 2.1.Count of reasons given for language choice in

all universities (reproduced from de Raadt et al., 2002)

Reason Count

Industry-relevance/Marketable/Student demand 33

Pedagogical benefits of language 19

Structure of degree/Department politics 16

OOP language wanted 15

GUI interface 6

Availability/Cost to students 5

Easy to find appropriate texts 2

2.2.3 Paradigm

The list of languages taught in introductory programming courses, as discovered by

the Census, was dominated by object-oriented languages, with over 80% of

instructors choosing an OO language. However, many instructors teaching OO

languages did not use an objects-first approach in their teaching, instead remaining

with a procedural approach.

Table 2.2. Paradigm used in teaching (reproduced from de Raadt et al., 2004)

Paradigm
Australia New Zealand

By Lang. Taught By Lang. Taught

Procedural 11.7% 53.0% 8.3% 34.0%

Object-oriented 82.2% 36.6% 91.7% 66.0%

Functional 6.1% 10.3% 0% 0%

2.2.4 Approaches to Problem Solving

In the 2003 Census, participants were asked to estimate what percentage of time (in

lectures and tutorials) was spent on the teaching of “problem-solving strategies”.

Estimates of the proportion of lecture time devoted to the instruction varied greatly

between participating instructors. Some participants responded that problem-solving

strategies were not part of their course, with several indicating that problems used in

their teaching were not of a large enough scale to warrant teaching problem-solving

strategies. Other participants reported that their entire lecture time covered problem-

solving strategies. Participants were asked what strategies they teach to their

students. From the 108 responses given, there were 74 identifiable strategies

differing in scale and complexity. As summarised in Table 2.3, the majority of

participating instructors described a waterfall problem solving strategy, but even in

this there was no consensus. The use of patterns in one course comes closest to the

approach described in this dissertation.

Chapter 2 Problem Solving and Novice Programmers

 Page 9

Table 2.3. “Problem solving strategies” identified in 2003 Census.

Strategy Type Different strategies
identified

Instructors
using

Waterfall problem solving strategies (analyse, design, implement) 39 66

Non-waterfall problem solving strategies (eg test-driven design) 6 6

Learning Strategies (eg working backwards, involving patterns) 6 6

Teaching strategies (eg, showing examples) 12 5

Unclassified 18 18

Total 75 108

This variation in time spent and forms of problem-solving instruction may be due to

instructors not having a common definition of what is involved in the teaching of

problem-solving strategies at the novice level.

2.2.5 Problem Solving in Textbooks

During the 2003 Census instructors reported using zero (some instructors prescribe

no text), one, or more of 49 textbooks discovered by the Census. A copy of each text

was requested from publishers and the content of the 40 texts that were delivered was

analysed (de Raadt et al., 2005).

The most widely used text is Simple Program Design (Robertson, 2004). This text is

not targeted at a specific language, but rather covers problem-solving aspects related

to programming. This text is used together with a language-based text in most cases.

Problem-solving instruction was presented in varying degrees between the analysed

texts (see Table 2.4). Some texts avoid problem solving as a specific topic altogether,

focusing only on language syntax instruction. Some authors rely on large numbers of

examples and provide little explicit instruction of problem solving. One author

bluntly stated “Students learn to program by example” (Sparke, 2003, p. xi). Some

texts offer a brief mention of algorithmic problem solving in an early chapter, but

this teaching is not obviously integrated in the remainder of the text. Other texts offer

instruction in high-level systems analysis or software engineering but little

algorithmic problem solving; object-oriented software engineering is a common

topic. There are a small number of texts that describe problem solving and attempt to

integrate this teaching throughout the text using case studies and examinations of

problems.

Table 2.4. Problem solving content in textbooks discovered by 2003 Census

Integration of Problem Solving Number of texts Proportion of texts

Problem solving integrated throughout 6 15%

Cursory or no content on problem solving 34 85%

Total texts examined 40

2.3 Aspects of Novice Instruction

A review of literature related to introductory programming was conducted by

Robins, Rountree, & Rountree (2003). This review investigated attempts to apply

cognitive psychology research to programming instruction. Robins et al. propose the

Problem Solving and Novice Programmers Chapter 2

 Page 10

following aspects of a programmer‟s ability and use them to compare research in the

area.

 expert-novice

 knowledge-strategy

 comprehension-generation

These three aspects will be used and expanded in the following subsections. They are

clearly related, although definitive links between these aspects have not been proven.

Within the knowledge-strategy aspect, levels of problems are described by the author

of this dissertation to allow the scope of study to be clearly defined.

As well as these aspects, another important distinction is made between implicit and

explicit instruction. Section 2.3.6 describes this distinction and discusses the value of

explicit instruction. These aspects will be referred to in the remainder of the

dissertation.

2.3.1 Experts and Novices

An expert programmer was defined by Winslow (1996) as a programmer with

roughly 10 years experience. Winslow argued that “turning a novice into an expert is

impossible in a four year program” and suggests the best product of a three or four

year degree is “competence”. Rist (1995) argued that programmers demonstrate

themselves to be experts when they can produce the best designed solutions to

particular problems. For the purposes of this dissertation the assumption is made that

students in an introductory course are novices, most of whom will be learning

programming for the first time. An expert is assumed to be someone who has

experience in programming and practices programming on a regular or daily basis. In

experiments described in this dissertation, the point at which a novice becomes an

expert is not critical as comparisons are made between complete novices and experts.

In this dissertation the means of capturing expertise is through discovering experts‟

tacit knowledge and representing this in a form that can be understood by novices.

Another method for passing expert knowledge to novices through a cognitive

apprenticeship (Collins et al., 1987). In a cognitive apprenticeship, “learners can see

the processes of work” (Collins et al., 1991, p. 1) as achieved by an expert. The idea

of using the cognitive apprenticeship model in programming instruction has been

proposed in a number of theoretical papers (Caspersen and Bennedsen, 2007, Shabo

et al., 1996).

2.3.2 Knowledge and Strategies

Unlike the expert-novice aspect, which can be represented on a continuum,

knowledge and strategy are disparate, but related entities. They are dependent on

each other; however they need to be distinguished.

Knowledge involves the “declarative nature” (the syntax and semantics) of a

programming language while strategies describe how programming knowledge is

applied (Davies, 1993).

Programming knowledge relates to specific constructs and facilities of a given

language. A novice usually acquires programming knowledge in a single language.

Such knowledge may be transferable to another language if that language is

syntactically similar, but new learning is required when a novice encounters a

dissimilar language or paradigm.

Chapter 2 Problem Solving and Novice Programmers

 Page 11

Programming strategies relate to the application of programming knowledge to solve

a problem. Ideas expressed in such strategies are more abstract than programming

knowledge and are usually applicable to multiple languages within the same

programming paradigm. Programming strategies can also be applied between similar

paradigms; for instance strategies (such as looping strategies) learned in an

imperative paradigm can often be applied in an object paradigm, but would not be as

easy to apply in functional or event-driven paradigms.

The term strategy is a generic term exemplified by problem solving ideas such as

plans (1986), patterns (Wallingford, 1996), algorithms and other methodologies,

together with means of integrating these ideas to form a single solution.

Robins et al. (2003) define a distinction between novices who are effective or

ineffective. Effective novices learn to program with little assistance, while ineffective

novices fail to learn how to program, or do so only with a great deal of assistance.

Robins et al. suggest that the key to novices becoming effective lies in them learning

programming strategies rather than acquiring programming knowledge. Along a

similar line, Soloway (1986) states:

…language constructs do not pose major stumbling blocks for novices...

rather, the real problems novices have lie in “putting the pieces together,”

composing and coordinating components of a program. (p. 850)

Soloway then proposes that teaching should reach beyond a focus on syntax (as

programming knowledge) and focus on programming strategies.

Recent studies have attempted to quantify the ability of novices after an introductory

programming course. The „Leeds group‟ brought together researchers from the UK,

USA, Denmark, Finland, Sweden, Australia and New Zealand as an ITiSCE 2004

working group (Lister et al., 2004). The group was attempting to isolate the cause of

poor novice results measured by the McCracken group (McCracken et al., 2001)

mentioned earlier (§ 2.1.1). The group used a set of multiple-choice questions that

focused on program comprehension (reading and understanding code). The Leeds

authors contended that no problem solving would be required to answer the

questions, so if students failed this test, it would indicate a failure in programming

knowledge. If novices succeeded in the test this would confirm that novices can

successfully acquire programming knowledge so instructors could put this issue aside

and focus their attention on how to improve strategy instruction.

Table 2.5. Performance in the Leeds study (reproduced from Lister et al., 2004)

Quartile Score Range No. of Students Percent of Students

1st (top) 10 – 12 152 27%

2nd 8 – 9 135 24%

3rd 5 – 7 142 25%

4th (bottom) 0 – 4 127 23%

Novices who participated in the Leeds study did not perform as poorly as those who

participated in the McCracken study, nor did they perform universally well. The

distinction between the third and fourth quartiles in the Leeds group study (shown in

Table 2.5) is between 4 and 5 correct answers out of the set of 12; a performance

little better than guessing.

Problem Solving and Novice Programmers Chapter 2

 Page 12

Suppose the students who participated in this study were all studying their

first semester of programming at a single institution. Suppose further they

were given these 12 MCQs as their exam, and the institution regarded a

25% failure rate as the upper limit of what was acceptable. Then students

who scored 5 out of 12 on these MCQs would be progressing to the second

semester programming course (Lister et al., 2004, p. 128).

The Leeds group concluded that many novices possess only fragile programming

knowledge. The study can be criticised due to a fault in the underlying assumption,

made by the authors, that comprehension questions do not require problem-solving

ability. The comprehension-generation and knowledge-strategy aspects are probably

related but, to the authors knowledge, it has not been proven that these aspects are

dependent. The Leeds group studied novice program comprehension, but made

conclusions about novice programming knowledge. Regardless, there is undoubtedly

some truth in the conjecture that the programming knowledge of many novices is

flawed.

A following study, the „BRACElet project‟ (Whalley et al., 2006), extended the

Leeds study, using a set of questions created using Bloom's Revised Taxonomy

(Anderson et al., 2001) to test programming skill over an identifiable cognitive

range. The BRACElet study included questions that were categorised in the Bloom's

levels of apply, understand and analyse, with specified sub-categories for each

question. More correct answers were given for these better defined questions when

compared to results from the Leeds group, but again many novices demonstrated

gaps in their programming knowledge.

2.3.3 Levels of Problems

Problems that a programmer may face can be differentiated in their level of

complexity. The following three classes of problem form a scale according to the

complexity of problems. This taxonomy is the invention of the author.

System-Level Problems

Problems at the system level are large, complex and usually unique. Examples of

problems at this level might be designing an accounting system for a large

corporation, developing a web interface for a government department or developing

a widely used end-user application such as an email client. Well established

strategies have been formulated for designing and implementing solutions to

problems of this scale, usually following a Waterfall software development process

(analyse, design, implement, test, maintain) (Royce, 1970). New processes such as

Extreme Programming (Beck, 2001) might also be useful at this level. Problem

solving at this level is too complex for novices in their initial study of programming.

Algorithmic-Level Problems

Problems at the algorithmic level are identifiable parts of a greater problem. (In an

academic setting they may be addressed independently.) For such problems, a

solution is usually achieved by adopting established algorithms, widely used in the

programming community. Solutions to problems of this scale may individually form

functions. Generic forms of these functions may be included in standard libraries and

perform tasks such as sorting, searching, or maintaining data structures. A novice

may be able to start using such strategies at the end of an initial course in

Chapter 2 Problem Solving and Novice Programmers

 Page 13

programming and may use them in greater depth in a second or third course in

programming.

Sub-algorithmic-Level Problems

Problems at the sub-algorithmic level are at their most basic. Attempting to

decompose and describe a problem below this scale will lead to syntactical

definitions of specific language constructs. Solutions to sub-algorithmic problems

form parts of more complex solutions. Coded solutions to individual problems at this

scale will not usually form entire functions, but several sub-algorithmic solutions

may be combined to reach this size. Examples of problems at this scale include

guarding a division to avoid division by zero, achieving repetition until a sentinel is

found, or swapping the values of a pair of variables. This level of problem is

particularly relevant to novices in an initial exposure to programming. While

problems are basic at this level, they are still regularly encountered by experts and

are therefore relevant to programmers at all levels of expertise.

2.3.4 Comprehension and Generation

In the context of programming, comprehension is the ability to read and understand

the outcomes of an existing piece of code; generation is the ability to create a piece

of code that achieves certain outcomes. In studies of how novices learn the roles of

variables, Kuittinen and Sajaniemi (2003) refer to simulation (tracing through code

and predicting its output) as separate to comprehension (to “describe what is the

purpose of the given program and how it works” (p. 6)). Although there is a subtle

difference, for the purposes of this dissertation simulation will be considered as

comprehension.

Whalley et al. (2006) contend that “a vital step toward being able to write programs

is the capacity to read a piece of code and describe it” (p. 249) meaning that a novice

must be able to comprehend a solution (and the knowledge and strategies within it)

before they can generate a solution at the same level of difficulty. In other words,

novices are more likely to take some time building comprehension of a problem

solution and later attempting to generate a solution to the same or a similar problem;

this may happen concurrently with several programming concepts. This assumption

seems natural, perhaps due to the similarity between learning a programming

language and learning a natural language where a child will generally learn to read

words before they can write them.

Program comprehension can be thought of as less cognitively demanding than

generation. According to the Bloom‟s Revised Taxonomy (Anderson et al., 2001)

comprehension tasks can be classified at the lower understand and apply levels while

generation involves the cognitively higher create level. Oliver, Dobele, Greber, &

Roberts (2004) measured the cognitive difficulty of assessments of six courses in an

undergraduate computing degree program. The courses included three programming

courses studied in first year and early in second year and three networking courses

studied in second year. For each course the cognitive difficulty of assessments was

measured using Bloom‟s Taxonomy, with each course being given a single rating

between 1.0 and 6.0 according to the average difficulty of its assessment tasks. While

this study can be criticised for applying Bloom‟s Taxonomy as a linear scale, it did

conclude that first-year programming courses include assessment tasks more

cognitively demanding than those encountered in the later networking courses. This

was because assessment tasks in the programming courses frequently reach higher

Problem Solving and Novice Programmers Chapter 2

 Page 14

cognitive levels including apply, analyse and create. So while both comprehension

and generation of programs are important skills for a novice, traditional curriculum

assessments focus strongly on generation, perhaps assuming that comprehension will

be developed as a prerequisite skill.

2.3.5 Relationships between Aspects

The expert-novice, knowledge-strategy and comprehension-generation aspects are

clearly related. According to Brooks (1983), experts and novices can be

distinguished by how they undertake comprehension. Rist (1995) suggests novices

and experts can be differentiated by how they undertake program generation. During

program generation an expert can rely on a tacit body of programming plans

developed through solving past problems (Soloway, 1986), while a novice has

traditionally been expected to conceive and apply plans, with varying degrees of

success (Rist, 1991). A distinction of expertise by use of strategy is proposed by

Bailie (1991, p. 277): “one feature clearly distinguishing the novice from the expert

programmer is the ability to plan.”

An instructor might present an example problem, say a loop that repeats a fixed

number of times. The instructor may then display and describe a coded solution to

the problem. A novice might say “I understand how the for loop works and I can

see your program solves the problem, but I don't think I could have dreamed up that

solution myself.” This novice has distinguished between their programming

knowledge and their programming strategies (or lack thereof). They have also shown

they can comprehend the solution presented by the instructor but do not feel

confident in their ability to generate that solution themselves.

In the BRACElet project (mentioned earlier in section 2.3.2), as well as asking

novices to predict the outcome of code in a number of questions, participants were

also shown a piece of code and asked to “In plain English, explain what the

following segment of code does” (Whalley et al., 2006, p. 248). This last question

has been referred to as “Question 10” and is sometimes quoted by this name. The

responses to Question 10 were categorised according to levels of the SOLO

Taxonomy (Biggs and Collis, 1982) which distinguishes levels of understanding.

Responses were categorised as shown in Table 2.6.

Table 2.6. SOLO Categorisation of Question 10 responses (reproduced from Whalley et al., 2006)

SOLO category Description

Relational [R] Provides a summary of what the code does in terms of the code’s purpose.

Multistructural [M] A line by line description is provided of all the code. Summarisation of individual
statements may be included

Unistructural [U] Provides a description for one portion of the code (i.e. describes the if statement)

Prestructural [P] Substantially lacks knowledge of programming constructs or is unrelated to the question

Blank Question not answered

Performance on Question 10 was consistent with other questions in the study.

Approximately 30% of participants in the BRACElet study were able to give a

SOLO Relational response for Question 10; 55% gave a Multistructural response;

13% gave a Unistructural response; a small remaining percentage showed only a

Prestructural response. These results mean that 70% of novice participants were

describing code line-by-line at best. Less than a third of novices were able to identify

Chapter 2 Problem Solving and Novice Programmers

 Page 15

the overall purpose of the code. The BRACElet project authors propose that novices

would need to give a SOLO Relational response to Question 10 before they could

generate the same solution themselves (Whalley et al., 2006). Considering the

comprehension-generation and knowledge-strategy aspects, this means that before a

novice can generate code involving strategies, they must first show comprehension

of the strategies in an equivalent piece of code. The results show that only 30% of

the participants could comprehend the strategies applied in the solution while the

remaining participants were relying on programming knowledge.

A follow-up paper from the BRACElet project group (Lister et al., 2006) asked

instructors (as expert programmers) to explain the code previously given to students.

Their responses were then analysed according to the SOLO categorisation given in

Table 2.6. Seven of eight participating instructors gave a Relational response,

suggesting that the ability to comprehend code at this level is related to programming

expertise. This expertise seems to be lacking in 70% of the novices tested in the

BRACElet project. This finding is consistent with that of Fix, Wiedenbeck and

Scholtz (1993) who identified a contrast between the ability of novices and experts

on program comprehension. Fix et al. suggest that experts can discover goals, relate

goals to previous experience, recall plans, and integrate these to form a program. The

BRACElet group went on to suggest that while their study has examined novice and

expert potential to think in abstract ways about code, it does not identify how novices

could be better trained to perform this task.

Assessment and Aspects of Novice Instruction

When assessing students it is possible to target skills in comprehension or

generation. In a comprehension task, novices are given a piece of code and asked

questions about it. For example a novice might be shown a piece of code and asked

to predict its output. A novice might be asked to identify problems in a flawed piece

of code. To test generation skills, novices can be asked to create a solution to a given

problem.

It is also possible to assess knowledge and strategies independently. Knowledge tasks

focus on the syntax and semantics of a language but do not require a novice to solve

a problem. Strategy questions might ask a novice to identify a strategy used to create

a problem solution (for example Question 10 from the BRACElet project) or apply

strategies when solving a problem.

Problem Solving and Novice Programmers Chapter 2

 Page 16

Knowledge
Comprehension

Knowledge
Generation

Strategy
Comprehension

Strategy
Generation

Knowledge

Strategy

G
e
n
e
ra

tio
n

C
o
m

p
re

h
e
n
s
io

n

Figure 2.1. Creating programming assessments with

consideration of novice instruction aspects

By combining the knowledge-strategy aspect with the comprehension-generation

aspect, four types of assessment tasks can be identified, as shown in Figure 2.1. This

division is the author‟s invention.

Exercises can be used to target programming knowledge by asking a novice to

comprehend a piece of code, where strategies have not been applied. Knowledge-

comprehension can be tested by asking novices to describe the effect of a particular

language construct, such as an if statement, given in simple context.

Knowledge-generation can be assessed by asking novices to apply a particular

language construct in a certain way. For example a novice could be asked to write a

for loop that counts from 0 to 9. Such tasks can be designed without asking novices

to solve a problem.

Strategy-comprehension can be assessed by showing novices solutions and asking

them to identify strategies that were applied in creating the solution.

Strategy-generation can be tested by asking novices to generate a solution that

requires the application of certain strategies. In programming assignments, strategy-

generation is perhaps the most commonly assessed combination.

For examples of questions that target individual areas, see section 7.4.3.

2.3.6 Implicit and Explicit Instruction

The previous sections have addressed aspects on which computing education

research can be classified, according to Robins et al. (2003). Another important

aspect relevant to this dissertation is how instruction is delivered, which can be

described as being implicit, explicit, or a combination of these.

Explicit instruction involves the instructor openly describing, usually in some

documented form, what the student is to learn and how to go about that learning.

Implicit instruction creates a scenario where a student is expected to undertake

learning without being given a full context for what it is they are to learn or how.

Chapter 2 Problem Solving and Novice Programmers

 Page 17

The following is an example of the distinction between explicit and implicit

instruction.

My four year old son enjoys playing Uno (a card game) against the

computer. Being a father I naturally coach him on how to play. The goal of

a player in Uno is to be the first to discard all their cards. In a turn a

player must play a card with either the same colour or number as that on

the top of the discard pile. If a player cannot match the colour or number

of the top card on the discard pile they must draw a card from the pick-up

pile or play a Wild card.

For many of the turns a player takes the choice of card to play is simple.

Occasionally a player must choose from a number of alternatives, and

choosing one option over another can give the player an advantage later

in the game. Determining the best option is a strategic decision. For

example, when a player cannot follow the colour or number of the card at

the top of the discard pile they may play a Wild card. When a player uses a

Wild card they can choose one of four colours to follow in the subsequent

turns. To make an appropriate choice of colour I can coach my son in one

of two ways.

I can examine the

cards my son has and

simply tell him which

colour to choose. If we

were to repeat such

coaching several times

my son might learn to

generalise the advice I

am giving him and

extrapolate a strategy

for choosing a colour

after playing a Wild

card. This is an

implicit approach.

I can inform my son that a good strategy to follow after playing a Wild

card is to determine which colour is in the largest majority of his cards

and nominate that colour for subsequent turns. Giving my son this strategy

in this manner is an example of explicit instruction. After instructing my

son in this way, when the opportunity arises, I encourage my son to

practice this strategy.

The Sapir-Whorf Hypothesis (Whorf, 1956) proposes that language determines

thought: “We dissect nature along lines laid down by our native languages” (p. 212).

In order to be able to think about something you need some term to describe it. This

proposal might not be entirely true (particularly in light of ambiguity (Pinker, 2007)),

but humans are driven to take what is tacit and make it explicit in order to describe it.

During an introductory programming course, novices are expected to develop

knowledge and strategies to allow them to comprehend and generate solutions.

Problem Solving and Novice Programmers Chapter 2

 Page 18

Novices will not become experts during an introductory course, but can be expected

to reach a level of competency. A traditional form of programming problem-solving

instruction begins with a worked example: novices are shown a simple problem

solution from an instructor (or a textbook). Following exposure to a range of problem

solutions, a novice is given a problem definition requiring a solution similar to those

presented in examples. The novice is expected to devise a solution; they are expected

to build strategies by undertaking problem solving, applying reasoning about the

examples presented. Typically no framework is given to the novice to assist them in

building the strategies required for a solution. This is an implicit approach to

learning strategies. By contrast, explicit strategy instruction presents concrete

techniques that a novice can use to take a problem definition and create a solution.

An explicit approach guides the novice to learn and apply strategies.

Rist (1991) observed novices in an implicit-only setting as they attempted to

construct strategies to solve problems and noted that many of the novices succeeded.

He also noted that some novices were able to re-apply strategies they had developed

earlier to new problems in order to solve them more quickly (Rist, 1995). However,

achieving this may be possible for only a small group of novices. McCracken et

al.(2001) and later studies (Whalley et al., 2006, Lister et al., 2004) have shown that

many novices have a fragile programming knowledge and lack programming

strategies at the end of an introductory course.

Beyond computing education a number of studies have compared the outcomes of

students under implicit and explicit education. A comparison of explicit and implicit

instruction, undertaken by Biederman and Shiffrar (1987), showed a stark

quantifiable difference between these two approaches. Chick-sexing is a profession

that involves determining the gender of day-old chicks at commercial egg hatcheries.

The distinction between male and female chicks remains hard to determine by visual

examination of genitalia until one month of age. However, being able to determine

the gender of chicks early avoids feed wastage on unwanted males. Professional

sexers can classify over 1000 chicks per day and can identify gender in less than a

second, with a required level of accuracy. Traditional training of sexers involves six

to twelve weeks of implicit instruction, standing along-side an expert instructor,

making observations, then attempting the task through trial and error. It can take

years for novice chick sexers to achieve the experience and accuracy of an expert

professional. In this context Biederman and Shiffrar established an experiment to

measure the effectiveness of implicit instruction and compare it to explicit

instruction. Initially a benchmark of accuracy was attained through a group of

volunteers with no sexing experience who were asked to identify the gender of 18

chicks from genitalia photographs. Performance of these subjects was 60.5%, slightly

greater than chance. The same photographs were shown to five sexers, who had been

trained in the traditional implicit fashion, who achieved an average performance of

72%. A sexer with vast experience (quoted as 50 years and 55 million chicks) was

recruited to identify the gender of chicks from the series of photos. Biederman and

Shiffrar then interviewed this man and asked him to explain the visual aspects that

prompted his decisions. From this interview a single instruction sheet was created

which explicitly described key visual aspects. The volunteers were split into control

and experimental groups. The instruction sheet was given to the experimental group

to study for one minute. After instruction both groups of volunteers were retested

using a second set of photographs. Control subjects showed no improvement in their

accuracy over the original measurement. Volunteers in the experimental group, who

Chapter 2 Problem Solving and Novice Programmers

 Page 19

had read the explicit instruction sheet, averaged accuracy of 84%, which was above

that of trained sexers in the initial test. An important aspect of this experiment is that

the volunteers are not learning a skill which needed to be generalised before it could

be used. The participants were taught strategies which could be applied directly to

the task they were being tested on. According to Baddeley (1997) the findings of this

chick-sexing experiment demonstrate that a brief period of explicit instruction can be

more effective than months of implicit learning.

Studies have shown that implicit-only learning can improve a student's performance

but it does not create an understanding of underlying systems. In a study closer to

programming, Reber (1993) examined implicit learning in the context of language

acquisition. According to Reber, children learn the greater part of their native

language through implicit means. Second-language instruction is usually achieved

through explicit study of the grammar of a new language. Reber used a small, finite-

state artificial grammar to test the effectiveness of implicit learning of a second

language. An experiment was established involving volunteers divided into control

and experimental groups. The experimental group was shown sequences generated

from the grammar without being shown the rules of the grammar used to construct

the sequences. The control group was shown sequences that were randomly

generated and not part of the grammar. After training, both groups were shown 44

sequences, half of which were grammatically correct according to the grammar. The

participants were asked to determine which were well formed according to the

grammar. Experimental subjects achieved 79% accuracy while members of the

control group showed no capacity to accurately distinguish sequences. The results

showed that the experimental group had learned the grammar and were able to

recognise sequences from it. However, when the experimental group participants

were interviewed and asked to describe the grammar they had been exposed to, they

were unable to express any understanding of the rules used to generate sequences.

Berry and Dienes conducted a similar experiment (Berry and Dienes, 1993) which

asked participants to learn the workings of a simulated transport system through

implicit instruction only. Participants showed learning and an ability to operate the

system, but when asked to describe the underlying rules of the system, participants

were not able to show any understanding.

The previously described experiments indicate the weakness of implicit-only

learning and the strength of explicit instruction. It is not the purpose of this

dissertation to suggest that explicit instruction be adopted at the expense of implicit

learning; programming is still a practical, creative art and much benefit can still be

gained through self-discovery. Novice programmers can learn programming

strategies over time though implicit instruction, but it may be possible to improve the

outcomes of novices by adding explicit instruction of programming strategies. Husic,

Linn and Sloan (1989) discuss how teaching practices influence how students solve

problems. If syntax is the focus, students will attempt to solve problems by

syntactical means only. “Instructors must achieve a delicate balance between

providing opportunities for independent problem-solving and modelling explicit

problem-solving strategies” (p. 581). According to Soloway (1986, p. 851),

“strategies that experts use need to be made explicit and taught explicitly to students

in introductory programming courses.”

Problem Solving and Novice Programmers Chapter 2

 Page 20

In light of previous research, adding explicit instruction to introductory programming

curricula may:

 increase student learning speed;

 create a more structured understanding of the problem-solving processes;

 create an enriched vocabulary for describing problems and how to solve

them; and

 enable instructors to undertake deeper analysis and assessment of novice

programming strategy skill.

Another important requirement, suggested by previous research such as the chick

sexing experiment, is need to be specific about which strategies will be included in

the curriculum rather than teaching problem solving as a general abstract task. So not

only is there a need to teach programming strategies in an explicit manner, the

strategies to be taught needs to be specifically defined also.

2.4 Explicit Programming Strategies

If it is desirable to include explicit instruction of programming strategies in

introductory curricula, an instructor must first capture and document these in a form

that can be delivered explicitly to novices. Robins et al. (2006) portray strategies as

being important but ill-defined in literature. A number of attempts have been made to

represent strategies; these include plans, schema and patterns. This section describes

attempts to create explicit representations of programming strategies which can be,

or are being, delivered to students.

According to Soloway (1986), programming strategies are made up of plans and the

associated means of incorporating these into a single solution. Goal/Plan Analysis is

the process of describing an ideal solution, which contains appropriate plans, and

comparing this with the solution of a novice. This analysis allows an instructor to see

if a novice has succeeded in learning and applying specific plans. Much of the

research by Soloway and his colleagues used the idea of plans to explore

misconceptions that novices exhibit (Spohrer and Soloway, 1986, Spohrer et al.,

1985a). PROUST (Johnson and Soloway, 1984) was one of a series of intelligent

tutoring systems including the GPCEditor (Guzdial et al., 1998) and SODA

(Hohmann et al., 1992). PROUST could perform Goal/Plan Analysis on a Pascal

program, comparing its plan structure to a structure established by an instructor.

Johnson (1986) gave a description of the inner workings of PROUST and also

released a catalogue of goals and related plans. Plans, as a form of programming

strategy, are a candidate for explicit instruction to novices.

The idea of the schema/plan was not widely used by instructors for many years until

the rise of the object paradigm, which brought with it a new sense of reuse and a new

term to computing: patterns (Wallingford, 1996). According to Clancy and Linn

(1999), “learning programming means learning patterns and strategies that enable

rapid learning of new programming languages” (p. 37), but novices do not infer

patterns naturally, and so instructors should “create appropriate exercises and

supports so students extract patterns, reuse patterns, develop a disposition to use

patterns, and create patterns of their own” (p. 41). Porter and Calder (2003) have

proposed A Pattern-Based Problem-Solving Process for Novice Programmers. Their

approach shows students how to apply patterns. Porter and Calder also use a pattern

language for applying patterns to problems and refining solutions. They believe

Chapter 2 Problem Solving and Novice Programmers

 Page 21

patterns have enhanced their curriculum and pedagogical approach. “Patterns lend

themselves to the learning of a skill like programming, because they provide the

static knowledge plus the means to apply it” (p. 236). Porter and Calder tested their

approach on a small number of volunteers divided into control and experimental

groups (Porter and Calder, 2004). Participants were asked to undertake an exercise

under test conditions. This study showed slightly better outcomes in participants who

had been exposed to patterns and the pattern language, however none of the

participants in either group demonstrated any obvious use of the patterns or the

pattern language during testing. A later study by Muller, Haberman and Ginat

(2007) showed novices to be more competent in problem decomposition and solution

construction after studying under a pattern-oriented instruction approach. In this

study novices were shown how patterns can be used and were instructed in

algorithmic patterns. There is a growing community of instructors interested in the

pattern approach (Wallingford, 2007).

Based on the plan ideas of Soloway, Sajaniemi has been refining an explicit

description of the roles of variables which is being incorporated in introductory

programming curricula (Sajaniemi, 2002). Sajaniemi‟s categorisation of variables by

their role (for instance constant, stepper, most-recent holder and so on) is claimed to

cover 99% of variables encountered in examples in an introductory programming

course. When code is shown to students the role of each variable is identified. A

standard visualisation of variable roles has also been created. Kuittinen & Sajaniemi

(2003) describe an experiment involving novices divided into three groups, a control

group (receiving traditional instruction) and two experimental groups (who were

explicitly instructed in roles, with one experimental group also being exposed to

animation of roles in examples). After an exam involving comprehension and

generation exercises, an analysis of results found no significant difference between

groups on questions. However, when asked to give explanations of their answers,

novices in the control group tended to give “operation level descriptions” while

novices in the experimental groups gave “data level” descriptions, which reflect a

deeper knowledge of a program and represent better comprehension (Pennington,

1987). Sajaniemi & Kuittinen (2005) conclude that novices are able to learn the roles

of variables and apply them to new situations. They believe this allows novices to

generate solutions which contain fewer errors and demonstrate superior

programming skills.

Related to programming, Klahr and Carver (1988) found that students explicitly

instructed and assess in debugging strategies showed improved debugging ability in

later programming courses.

An experimental curricula, described later in this dissertation, uses Soloway‟s plans.

Plans were chosen over patterns, even though patterns have become more

widespread in recent years. Patterns are commonly used in the object paradigm and

require a pattern language for application. Plans can be used in multiple paradigms,

including the object paradigm. Plans can be expressed simply, particularly at a sub-

algorithmic level. In saying this, the focus of this research is not on the types of

strategy that are taught but on how they are taught, and the consequent outcomes for

students. It is likely that patterns, or another strategy representation, could be used to

achieve the same programming strategy understanding for students as plans.

From this point on the term plan is used to represent a specific form of strategy and

the term strategy is used in its more generic sense.

Problem Solving and Novice Programmers Chapter 2

 Page 22

2.5 Need for Further Research

Programming instruction is a relatively new practice. Programming curricula have

evolved as student cohorts and technologies have changed, and have followed the

shifting standards of the computing industry (§2.1). Currently student numbers in

computing courses are dwindling, which places pressure on instructors to perform

(§2.2).

Instructors do not have a common definition of what constitutes problem solving

instruction in an introductory programming course and differ greatly on the extent to

which problem solving should be incorporated into courses at this level (§2.2.4).

Most existing textbooks contain little content addressing problem solving and most

do not integrate this throughout (§0).

Introductory programming instruction is cognitively demanding, with many novices

failing to reach expected standards at the end of an initial period of instruction.

Studies have shown that novices perform poorly on standardised program generation

tests (§2.1.1). In program comprehension tests, novice performance is better, but still

poorer than expected by instructors. This may indicate that the programming

knowledge of novices is fragile (§2.3.2). When asked to explain the purpose of a

given piece of code only 30% of novices were able to give a SOLO Relational

response, indicating a possible lack of programming strategy skill (§2.3.5). These

strategy-related deficiencies could be compounding the effect of poor programming

knowledge in generation exercises.

The traditional approach to teaching programming to novices in an introductory

course has been to gradually reveal the constructs and features of a programming

language. Most attempts to enhance this approach, in order to improve outcomes for

novices, have simply been novel ways of teaching the same curriculum.

New efforts to ease and enhance learning have varied in their general

approach to improve learning: most studies report effects of new teaching

methods and new ways of presenting teaching materials, while

reorganization of topics and introduction of new concepts have been far

more rare. (Kuittinen and Sajaniemi, 2003, p. 347)

Considering new concepts and ways of integrating these concepts may improve the

potential of novices.

2.5.1 Strategies Appropriate for a Curriculum

Goal/Plan Analysis has been used as a tool for determining weaknesses in a student‟s

code and identifying gaps in their application of plans (§2.4). Expressing strategies

as plans provides a representation of strategies that can be explicitly incorporated

into a curriculum. However, while plans are claimed to be based on the tacit

strategies of experts, this has not been authenticated. Any proposed set of strategies

needs to be validated as authentic by comparing them to the strategies used by expert

programmers.

2.5.2 Integrating Strategies into a Curriculum

Studies have investigated the incorporation of programming strategies explicitly into

introductory programming curricula as patterns (Wallingford, 1996, Porter and

Calder, 2003) and the roles of variables (Sajaniemi, 2002, Ben-Ari and Sajaniemi,

Chapter 2 Problem Solving and Novice Programmers

 Page 23

2004). Integration of plans as strategies was never attempted by Soloway, the

initiator of plans, or his colleagues, but it was something they intended to do

(Soloway, 2003). Once a set of strategies has been validated as authentic, and

expressed in a form that us suitable for dissemination to novices, it can be explicitly

integrated into an introductory programming curriculum. The usefulness of the

curriculum and its impact on novices needs to be measured and contrasted to those of

a traditional curriculum.

2.5.3 Assessing Strategy Ability in Novices

Goal/Plan Analysis is a tool for measuring the strategy skill of a novice programmer.

However, it is not an appropriate tool for regular assessment in an introductory

programming course. Testing novices' programming strategy skills, as a means of

assessment, can be achieved by isolating programming knowledge and programming

strategies in assessment items and measuring these separately. The consistency of

tasks used for such assessment needs to be measured.

The next chapter describes the overall methodology followed in the experiments that

form the core of investigation described in this dissertation. The scope of

experimentation is defined using the terminology given earlier in this chapter.

Research questions are discussed and the method used to answer these questions is

given. This leads into later chapters which describe each of the experiments in detail.

Experimental Methodology Chapter 3

 Page 24

3. Experimental Methodology

Chapter 1 of this dissertation identified a rationale and aims for study. Relevant

research was described in chapter 2, which also identified important aspects of

introductory programming instruction and a need for further research.

This chapter discusses the methodology of the four experiments that were conducted

for the purpose of this dissertation. The scope of these experiments is defined in

section 3.1. The method of analysis is described in section 3.2. The experiments were

undertaken to address a series of research questions which are discussed in section

3.3. Finally a preview of the experiments described in the following four chapters is

given in section 3.4.

3.1 Scope of Experimentation

This dissertation studies instruction of problem solving to novice programmers. A

categorisation of existing research into teaching of programming within computing

education, encountered by the author, is given in Figure 3.1.

CURRICULUM

"What should be

in an

(Introductory)

Programming

Course?"

NOVEL

APPROACHES

"I tried this and

students liked it."

DEBUGGING

SKILLS

"Novices make

errors

because…"

FUTURE OF

PROGRAMMING

INSTRUCTION

"Should we be

teaching

programming

to…?"

LANGUAGE/

PARADIGM

"This language/

paradigm is

better

because…"

PLAGIARISM

"Students cheat

because…"

PREDICTING

SUCCESS

"Students will do

better if they

have

previously…"

ASSESSING

PROGRAMMING

SKILLS

"This tests

student ability

best…"

TOOLS

"Using these

tools we can

teach

programming

better…"

Focus of Study

DEBUGGING

TOOLS

"These tools help

novices learn to

fix the errors."

PROBLEM

SOLVING

"How do we

teach students

better problem

solving?"

EXPERT &

NOVICE

"What do Experts

have that

Novices don't?"

KNOWLEDGE &

STRATEGY

"This

distinguishes

ability to solve

problems."

GENERATION &

COMPREHENSION

"There is a

difference between

reading and writing

code."

Figure 3.1. Some computing education research areas showing focus of this dissertation

This dissertation focuses on the area, highlighted in red in Figure 3.1, relating to the

teaching of problem solving to novice programmers. Klahr and Carver (1988) found

some success in transferring debugging skills learned in a programming context to a

Chapter 3 Experimental Methodology

 Page 25

non-programming context. However, as described by Perkins (1992) transfer of

learning is limited to contexts closely associated to the learning context. Achieving

“near transfer” is far more likely than achieving “far transfer”, if transfer can be

achieved at all. In this dissertation problem solving is considered only in a

programming context rather than in its general sense. Strategies suggested are

intended only for use in programming and are not expected to benefit students‟

problem solving skills in other disciplines.

Specifically within this problem-solving area, experimentation is targeted at sectors

of the following aspects (defined in section 2.3).

 Expert-Novice
Experimentation will focus on exploring this area for the benefit of novices

learning programming in their initial exposure (that is in an introductory

programming course, sometimes referred to as CS1). Experimentation

involving experts will be conducted for the purpose of advancing the quality

of novice instruction.

 Knowledge-Strategy

This dissertation primarily explores the instruction of programming strategy

although programming knowledge instruction is considered as it is related to

(if not required for) the application of programming strategies. The level of

problems solved by novice programmers in their initial exposure is sub-

algorithmic, sometimes reaching simpler problems at the algorithmic level.

 Comprehension-Generation

Both strategy-comprehension and strategy-generation are considered and

explored in this dissertation. The focus of the first three experiments is

strategy-generation, driven by the method of analysis (Goal/Plan Analysis see

section 3.2.1). In the final experiment, approaches for teaching and assessing

both strategy-comprehension and strategy-generation are tested.

In relation to teaching approach along the implicit-explicit aspect (defined in section

2.4), this dissertation:

 measures the effect of implicit-only teaching on novices' programming

strategies (chapter 4);

 describes authentic strategies that can be used in explicit instruction (chapter

5); and,

 observes the impact of explicitly teaching programming strategies in artificial

and actual instruction settings (chapters 6 and 7).

The representation of programming strategies chosen for the experiments described

here include plans used by Johnson and Soloway (1984).

3.2 Experimental Approach

A binding feature of the four experiments described in this dissertation was a

common method for experimentation. The common instrument for determining

impact of a curriculum on novices was Goal/Plan Analysis, which is described in

section 3.2.1 below. This method of analysis was used to study novices‟ solutions

and also to study the solutions of experts in validating the authenticity of the plans as

an explicit form of programming strategies. In the final experiment, alternatives to

Experimental Methodology Chapter 3

 Page 26

Goal/Plan Analysis are suggested as tools for assessing programming strategy in

novices.

3.2.1 Applying Goal/Plan Analysis

Goals and Plans, and the ability to compose plans into a solution, form an enriched

vocabulary of programming strategies (Soloway, 1986). “Goals and plans –

stereotypical, canned solutions – are two key components in representing problems

and program solutions” (p. 851).

Goal/Plan Analysis is a method for analysing code created by a novice to determine

if they have understood and applied appropriate strategies in the code's construction.

Goal/Plan Analysis was proposed by Elliot Soloway and his colleagues in early

papers (Soloway and Woolf, 1980, Soloway et al., 1982, Soloway et al., 1983b) but

arguably the definitive description of Goal/Plan Analysis is given in Soloway (1986).

After justifying the motivation for using goals and plans, a description of the

application of Goal/Plan Analysis is shown through a number of examples in this

seminal paper.

As a knowledge elicitation technique involving experts (Cooke, 1994) Goal/Plan

Analysis can be classified as content analysis, a form of protocol analysis. Protocol

analysis is an appropriate tool for directly capturing expert‟s problem solving

strategies (Burje, 1998).

With a given problem, the process begins with the instructor determining the goals

that need to be achieved to solve the problem. These goals are then mapped to plans.

In this context, a plan is a stereotypical abstract solution to a sub-algorithmic

problem. A small set of plans are illustrated in Soloway (1986). A more complete set

is published in Johnson and Soloway (1984) with the description of the programming

tutor PROUST. Some plans and other strategies were added to create a fuller

curriculum for experimentation. A list of strategies referred to in this dissertation is

given in Appendix A.

Soloway (1986) used the following averaging problem as an example.

Write a program that will read in integers and output their average. Stop

reading when the value 99999 is input. (p. 851)

Soloway gives a model solution for this problem, which is reproduced in Figure 3.2.

Chapter 3 Experimental Methodology

 Page 27

Figure 3.2. How a solution is derived from goals and plans, reproduced from (Soloway, 1986)

The instructor must also define how the plans should be integrated to form a

solution. Soloway gives the following methods as “gluing together plans [that] have

been identified” (p. 856):

 Abutment
Plans, or parts of plans, are glued together in sequence, as illustrated on the

right-hand-side of the averaging problem shown in Figure 3.2.

 Nesting
One plan is completely surrounded by another plan. For example, in the

averaging program (in Figure 3.2), the OUTPUT PLAN, the plan that realises

the goal of writing out the average, is nested within the SKIP-GUARD

PLAN, which realises the goal of preventing division by zero in the average

calculation, which can occur if the count of inputs is zero.

 Merging
At least two plans are interleaved. For example, to solve the averaging

problem, the input, summing and counting plans are merged.

Soloway also suggests that plans need to be tailored to meet the specific goals of a

problem. “After all, we do call it „software‟” (p. 856).

Once a model solution is created from plans composed together using the integration

methods put forward by Soloway, this model can be compared to a solution given by

a novice. The presence or absence of plans in the novice's solution, and the correct

application of integration methods is noted. Flaws in the novice's solution emerge

where plans are missing or poorly integrated. The goal/plan vocabulary can be useful

in describing these bugs and correcting a novice's solution.

Experimental Methodology Chapter 3

 Page 28

3.3 Research Questions

Past research presented in chapter 2 showed a need for curricular development which

can be linked to the aims of this study, specifically:

 validation of an authentic set of strategies that are suitably expressed for

explicit instruction to novices (aim 1);

 development and testing of a curriculum that incorporates programming

strategies (aim 2); and

 development and testing of forms of assessments designed to test knowledge

and strategy ability independently (aim 3).

Four experiments were conducted and are described in the following four chapters. A

set of research questions was associated with each experiment, and used to guide the

design and evaluation of each experiment. The experiments were conducted in a

series with the conclusions of each experiment dictating the research questions to be

answered in the next.

The research questions relevant to each experiment are listed in an initial section of

the chapter relating to that experiment. These questions are also re-stated in section

8.1, where the answers to the questions are presented together. A brief overview of

the questions asked for each experiment is now given.

3.3.1 Initial Experiment

Initially a baseline for student learning under a traditional curriculum needed to be

measured. The questions listed in section 4.2 directed the experiment described in

chapter 4 and are answered in section 4.6. The questions ask about the strategy skills

of novices trained using implicit-only instruction of programming strategies and

what this implies about the curriculum used at the time.

3.3.2 Validation of Strategies

In order to establish an appropriate set of authentic programming strategies that can

be incorporated explicitly into an introductory programming curriculum, the tacit

strategies of experts needed to be explored. The questions listed in section 5.2 relate

to the experiment described in chapter 5 and are answered in sections 5.6 and 5.7.

The questions ask if plans are consistent with strategies applied by experts when

solving problems.

3.3.3 Use in an Artificial Course

An attempt to incorporate programming strategies explicitly into an introductory

course was attempted, initially in an artificial setting. The questions listed in section

6.2 drove the experiment described in chapter 6 and are answered in section 6.6. The

questions ask about the feasibility and impact of explicit instruction of strategies and

the potential to assess novices using Goal/Plan Analysis.

3.3.4 Use in an Actual Course

After successful testing in an artificial setting, the curriculum was used in an actual

course. The questions listed in section 7.1.1 relate to experiment described in chapter

7 and are answered in section 7.7. The questions ask about the feasibility and impact

Chapter 3 Experimental Methodology

 Page 29

of explicitly teaching strategies in an actual programming course, and the use of

assessment items that attempt to separate knowledge and strategy skills.

3.4 Overview of Experimentation

There are four main experiments described in this dissertation. The experiments were

conducted in sequence with the results of each experiment informing questions to be

answered in the next. Retrospectively the sequence of experiments can be viewed as

shown in Figure 3.3.

Measure novice
strategies in implicit-

only setting

Validate authentic
expert

programming
strategies

Explicitly
incorporate

programming
strategies

Test instruction
and assessment

in real intro
programming

setting

Figure 3.3. Overview of experiments in a process

Each experiment is described in one of the following four chapters.

In chapter 4 an experiment is described that attempted to measure the effect of

implicit-only teaching on novices' programming strategies.

Chapter 5 describes an experiment that sought to capture and make explicit strategies

that can be held as authentic and used by experts.

In chapter 6 an experiment is described that involved the delivery of two curricula,

one containing explicit instruction of programming strategies and another taking an

implicit-only approach. These curricula were delivered in an artificial setting. The

impact of the two curricula were measured and compared.

Chapter 7 describes the implementation of a curriculum including explicit instruction

of programming strategies in an actual setting and the subsequent impact on novices.

Following the description of each experiment the main findings are recapitulated in

chapter 8 and are used to offer the contribution made.

The experiments described in chapters 5 and 6 were conducted with individuals,

outside normal teaching environments. For these experiments, permission was sought

and ethical approval was granted by the USQ Human Research Ethics Committee to

proceed under controlled circumstances that protected participants.

Goal/Plan Analysis of Programs created by Novices with No Explicit Strategy Instruction Chapter 4

 Page 30

4. Goal/Plan Analysis of Programs created by

Novices with No Explicit Strategy Instruction

“In the beginner's mind there are many possibilities, but in the expert's

mind there are few.”

Shunryu Suzuki

Overview

This chapter describes an experiment conducted with 42 introductory programming

students. The students had received little explicit instruction in general problem

solving (see section 4.1.2) and had not been explicitly exposed to sub-algorithmic

programming strategies in any form. At the end of a semester of programming

instruction, students were asked to write a solution to an averaging problem.

Solutions created by students were analysed using Goal/Plan Analysis. Results

showed gaps in students‟ programming strategies, implying weaknesses in the

curriculum.

4.1 Introduction

Goal/Plan Analysis is a tool for identifying weaknesses in the solutions of novice

programmers (see section 3.2.1). Goal/Plan analysis has been used to find common

bugs or misconceptions present in the programming strategies of a cohort of novices

(Spohrer et al., 1985a, Johnson, 1986), but to the author‟s knowledge, no previous

study has applied Goal/Plan Analysis to an entire cohort of students to find the

general programming strategy skill levels of those students. The aim of the

experiment described in this chapter was to achieve this and discern from this

weaknesses in the curriculum being delivered.

4.1.1 Participants

Participants were students studying in a first-year introductory programming course.

All participating students were attending on-campus classes. Participants included

school leavers (recent high school graduates) and mature-aged students. Students

were enrolled in a range of discipline areas but were primarily IT and Engineering

students.

4.1.2 Setting

This experiment refers to an introductory programming course taught at the

University of Southern Queensland. The course was designed for students with no

previous programming experience.

At the time of the experiment, the curriculum for the course was focused on the

syntactic constructs and facilities of the C programming language, with little

coverage of problem solving and no explicit instruction in programming strategies.

The topics covered in the course were listed as follows.

 Programming Concepts

 Developing Programs with Functions

Chapter 4 Goal/Plan Analysis of Programs created by Novices with No Explicit Strategy Instruction

 Page 31

 Storing Data

 Writing Functions

 Conditions

 Pointers

 Input

 Repetition

 Arrays

 Text Files

 Structures and Abstract Data Types

 Recursion

Each of these topics was covered by a single module in the study materials. One

module was taught each week of the course. Study materials consisted of a written

„Study Book‟ and lecture notes delivered during on-campus lectures and posted on

the course website afterward. Each module included paper-based and computer-

based tutorial exercises. Some of the exercises required students to solve problems

and implicitly learn programming strategies. There were three major assignments

during the course and each covered a number of modules.

None of the modules was devoted to programming strategies; however a description

of the problem-solving process was given in the initial module. The context of

problem solving was described as Design, Implementation, Compilation and Testing.

The lecture notes described Design within the problem-solving process as follows.

Before the programmer can solve a problem, they must know precisely what

the problem is. A good programmer will take time to properly define the

problem, including the inputs and outputs the program has. When this is

defined, the programmer will design an algorithm on paper or using some

computerised tool. An algorithm is a finite sequence of precise instructions

that leads to a solution.

Other than this, a number of programming conventions and tips were discussed in the

study materials, though they could not be seen as forming programming strategies.

These were as follows.

 The “Dangling Else” problem

 Clearing Standard Input

 Meaningful Identifiers

 When to Use What Loop (for, while, do-while)

The final sub-topic above (When to Use What Loop) is closest to a programming

strategy. This topic referred to each looping construct available in the C

programming language and showed examples of the typical use of each construct.

The materials did not suggest how a student should apply loops in general, or the set

of goals that loops can be applied to achieve.

No sub-algorithmic programming strategies (defined in section 2.3.3) were explicitly

covered in the course; students were expected to learn these implicitly through

Goal/Plan Analysis of Programs created by Novices with No Explicit Strategy Instruction Chapter 4

 Page 32

exercises. The following is a problem students were asked to solve in a practical

session at the end of the Repetition module.

Write a program that will allow the user to enter words. Use the %s format

sequence in a scanf() call to capture each word one at a time. Find the

length of each word using strlen(). To end the user input, the user will

enter the string “end”. At the end of the program, output the count of words

and the average length of the words.

In the problem description the student is not asked to reflect on the strategies needed

to solve the problem, nor how to integrate these strategies. The wording of the

problem focuses on the syntactical nature of the problem: what functions to use, what

format sequence to use. Students are expected to implicitly learn how to create a loop

that will stop when the word “end” is encountered. They are expected to discover

implicitly how to count the words, sum their lengths and produce an average.

Students would not be familiar with any of these strategies as they were not covered

explicitly in the course. They are expected to merge these ideas into a coherent

solution. The strategies are not suggested in the problem itself as no vocabulary to

express such strategies had been established between the instructor and students.

A complete solution would include:

 a sum and count variable both initialised to zero;

 inputs gathered until the sentinel word is encountered (the sentinel should not

be included as an input);

 counting of words;

 summing of word lengths;

 merging of input, counting and summing so that the words only need to be

entered once; and

 calculation of the average (being sure that the division does not take place if

there is a zero count caused by the word “end” being entered as the first

input).

From this perspective, the strategies required to solve the problem are the same as

those needed for the problem used in the experiment described in this chapter.

Therefore students had been given the opportunity to learn the strategies required to

solve the experimental problem through implicit means.

The task described in this experiment required students to complete a solution on

paper. Students had experienced writing solutions to programming problems on

paper during tutorial classes, so they were familiar with generating code in the

experimental context.

4.2 Research Questions

This experiment was motivated by two related questions which are answered in

section 4.6.

RQ1. What is the potential of students who have been exposed to an implicit-

only teaching of programming strategies to solve a sub-algorithmic

Chapter 4 Goal/Plan Analysis of Programs created by Novices with No Explicit Strategy Instruction

 Page 33

problem that requires application of a number of programming strategies

for a complete solution?

RQ2. What are the deficiencies in the curriculum that are demonstrated by

students' solutions to the given problem?

If it is seen as desirable to incorporate explicit instruction into an introductory

programming curriculum, answers to the above questions will provide a benchmark

for future comparison of student results.

4.3 The Experimental Problem

The following problem is taken verbatim from a paper by Elliot Soloway (1986).

Write a program that will read in integers and output their average. Stop

reading when the value 9999 is input.

In his paper Soloway used this problem to demonstrate how Goal/Plan Analysis can

be applied. Examples of student solutions were used to show correct and incorrect

application of the specific set of required plans. No statistics on the success of any

particular cohort was given, so there was no pre-existing benchmark for the

problem‟s difficulty.

This problem was chosen for this experiment because of its previous use, with a well

described method of analysis. Using Goal/Plan Analysis it is simple to identify plans

within a solution to this problem. The problem is simple in its wording, allowing

students to complete the problem without needing to refer to further information. The

problem itself is language independent. It can be solved using any language under

any paradigm. The examples and solutions given below are in C, but this is not the

only language that has been used to solve the problem for Goal/Plan Analysis. In

chapter 6 of this dissertation a version of the problem is shown in the JavaScript

language. The original problem solution (Soloway, 1986) was shown in Pascal

(Figure 3.2).

A correct solution to this problem will demonstrate programming knowledge and

programming strategies that a student would be expected to demonstrate at the end

of a semester of programming instruction, in order to be awarded a passing grade.

The problem includes the ideas of sequence, selection and repetition, input and

output, and simple operations, which are likely to appear in any introductory

programming curriculum, even in courses that avoid programming strategy

instruction. To create a complete solution to this problem certain goals would need to

be recognised, and these goals would need to be mapped to plans, integrated

correctly to form a single solution. The goals and plans and an integration example

are described in the following subsections.

Goals

A number of goals are alluded to in the problem description. The goals should be

apparent to novices through reading the problem description and without lengthy

analysis.

Goal/Plan Analysis of Programs created by Novices with No Explicit Strategy Instruction Chapter 4

 Page 34

 Input the numbers

 Compute the sum of the numbers

 Compute the count of the numbers

 Calculate the average from the sum and the count (keeping in mind that the

count of values could be zero)

 Output the average

Plans

There are a number of plans that are needed to completely solve the problem. The

absence of any of the following plans would reduce the level of completeness. The

plans needed to completely solve the problem are also listed in Figure 4.1.

 Sentinel-Controlled Input plan

 Sum plan

 Count plan

 Average plan

 Guarded Division plan

 Output plan

Chapter 4 Goal/Plan Analysis of Programs created by Novices with No Explicit Strategy Instruction

 Page 35

Figure 4.1. Identified goals, associated plans and a potential solution

P
la

n
s

C
o

m
p

u
te

 S
u

m

G
o

a
ls

C
o

m
p

u
te

 C
o

u
n

t

C
o

m
p

u
te

 A
v

e
ra

g
e

O
u

tp
u

t
A

v
e

ra
g

e

S
u

m
 P

la
n

C
o

u
n

t P
la

n

A
v
e

ra
g

e
 P

la
n

O
u

tp
u

t P
la

n

In
it
ia

li
s
e

 S
u

m
 V

a
ri

a
b

le

D
iv

id
e

 S
u

m
/C

o
u

n
t

O
u

tp
u

t

In
te

g
ra

te
d

 P
la

n
s

G
e

t
N

u
m

b
e

rs
P

ri
m

e
d

 S
e
n
ti
n
e
l
C

o
n
tr

o
lle

d
 In

p
u
t

L
o

o
p

 P
la

n

P
ri

m
in

g
 In

p
u

t

S
e

n
ti
n

e
l C

o
n

tr
o

ll
e

d
 L

o
o

p

Te
s
t

fo
r

S
e

n
ti
n

e
l

U
s
e

 In
p

u
t

S
u

b
s
e

q
u

e
n

t I
n

p
u

t

In
it
ia

lis
e

 S
u

m
L

in
e

 0
5

T
e

s
t f

o
r
S

e
n

ti
n

e
l

L
in

e
 1

1

D
iv

id
e

 S
u

m
/C

o
u

n
t

L
in

e
 1

9

P
ri
m

in
g

 In
p

u
t

L
in

e
s
 0

9
-1

0

A
d

d
 In

p
u

t t
o

 S
u

m

L
in

e
 1

2

In
c
re

m
e

n
t C

o
u

n
t

L
in

e
 1

3

O
u

tp
u

t
L

in
e

 2
0

S
u

b
s
e

q
u
e

n
t I

n
p

u
t

L
in

e
s
 1

4
-1

5

In
it
ia

lis
e

 C
o

u
n

t
L

in
e

 0
4

T
e

s
t o

f
D

iv
is

o
r

L
in

e
s
 1

8
-2

1

S
C

L
 o

r
C

C
L

A
d

d
 to

 S
u

m

In
it
ia

li
s
e

 C
o

u
n

t V
a

ri
a

b
le

S
C

L
 o

r
C

C
L

In
c
re

m
e

n
t C

o
u

n
t

G
u

a
rd

e
d

 D
iv

is
io

n
 P

la
n

G
u

a
rd

e
d

 D
iv

is
io

n

Te
s
t

o
f

D
iv

is
o

r

P
e

rf
o

rm
 D

iv
is

io
n

0
1

#
i
n
c
l
u
d
e

<
s
t
d
i
o
.
h
>

0
2

0
3

i
n
t

m
a
i
n
(
)

{

0
4

i
n
t

c
o
u
n
t

=

0
;

0
5

i
n
t

s
u
m

=

0
;

0
6

i
n
t

c
u
r
r
e
n
t
;

0
7

i
n
t

a
v
e
r
a
g
e
;

0
8

0
9

p
r
i
n
t
f
(
"
I
n
p
u
t

n
u
m
b
e
r
:

"
)
;

1
0

s
c
a
n
f
(
"
%
i
"
,

&
c
u
r
r
e
n
t
)
;

1
1

w
h
i
l
e
(
c
u
r
r
e
n
t

!
=

9
9
9
9
)

{

1
2

s
u
m

=

s
u
m

+

c
u
r
r
e
n
t
;

1
3

c
o
u
n
t

=

c
o
u
n
t

+

1
;

1
4

p
r
i
n
t
f
(
"
I
n
p
u
t

N
u
m
b
e
r
:

"
)
;

1
5

s
c
a
n
f
(
"
%
i
"
,

&
c
u
r
r
e
n
t
)
;

1
6

}

1
7

1
8

i
f
(
c
o
u
n
t

>

0
)

{

1
9

a
v
e
r
a
g
e

=

s
u
m

/

c
o
u
n
t
;

2
0

p
r
i
n
t
f
(
"
A
v
e
r
a
g
e
:

%
i
\
n
"
,

a
v
e
r
a
g
e
)
;

2
1

}

2
2

}

P
o

s
s

ib
le

 S
o

lu
ti

o
n

Goal/Plan Analysis of Programs created by Novices with No Explicit Strategy Instruction Chapter 4

 Page 36

Figure 4.1 shows a flow of design starting with an identification of the goals that

need to be achieved. The goals are then mapped to plans that can be used to achieve

the goals. Each plan on its own can achieve little and needs to be correctly integrated

into a whole solution; for this problem, it is necessary for plans to be abutted to form

a correct sequence. Some plans are merged; for instance the Input, Sum and Count

plans need to be applied to the same set of input and thus the Summing and Counting

are merged with the Primed Sentinel-Controlled Input Loop plan. Some plans are

nested, for instance the Average and Output plans which are nested inside the

Guarded Division plan.

4.4 Methodology

Students were asked to solve the problem on paper (without computers) as an exam-

like activity during tutorial classes, conducted in an ordinary class room. Students

were not given any warning and were not expected to have prepared for the activity.

Students were not allowed access to resources during the activity.

All students in the course attending classes on-campus were asked to participate. The

experiment was conducted during the third last week of the course and two weeks

after the module covering Repetition, which contained relevant knowledge content

and exercises (including the exercise shown in 4.1.2 above).

Each student was given a piece of paper with the problem statement printed at the top

and a number of lines for the student to write their solution to the problem (see

Appendix B). The following statement was then read aloud to the participating

students.

Please follow the instructions on the paper as closely as possible when writing

your program. This task is not graded and will not contribute to your

assessment. Completing this task is not required in order to complete the

course. By completing the task you will allow us to improve the course for you

and other students. You do not need to write your name on the paper. The

program should take 10 to 15 minutes to complete.

There were three tutorial classes during the week. The experiment was consistently

conducted and overseen by a single instructor. All students attending these classes

accepted the invitation to participate. Although an estimation of time was given in

the statement read to students, no time limit was applied; this estimate was made by

the instructor before the experiment was started. Specific times were not measured,

however, most students required longer than estimated, taking between 15 to 20

minutes to create a solution.

Students were asked not to speak while solving the problem, unless it was to ask a

question. A number of students asked questions to clarify the problem statement and

these students were answered individually.

4.4.1 Goal/Plan Analysis

Each solution was analysed using Goal/Plan Analysis (see section 3.2.1). According

to the plans given for a complete solution in Figure 4.1 above, each of the following

plan features (and merging of the sum and count plans*) was judged to be present or

absent in each student's solution.

Chapter 4 Goal/Plan Analysis of Programs created by Novices with No Explicit Strategy Instruction

 Page 37

 Initialisation of a sum variable (for Sum plan)

 Initialisation of a count variable (for Count plan)

 A Sum plan in a Primed Sentinel-Controlled Loop

 A Count plan in a Primed Sentinel-Controlled Loop

 A guard against division by zero (for Average plan)

 An Average plan

 An Output plan

 Merging of the Sum and Count plans inside the Primed Sentinel-Controlled

Loop*

There are a number of acceptable variations to the example solution shown in Figure

4.1. In some languages variables are automatically initialised; solutions in this

experiment were written in C where initialisation is not automatic. The average

calculation and output could be combined. A different looping construct, other than

while, could be used in the solution. However even with such variation, it is still

possible to recognise the required plans.

4.4.2 Examples of Analysis

The following examples show where students have demonstrated, or failed to

demonstrate, use of plans within their solutions.

Figure 4.2. A solution showing no apparent plans

Some students handed in solutions in which no plans could be identified. This may

have been because the student produced very little code as in Figure 4.2, or code

from which plans could not be isolated, as in Figure 4.3 where the student appears to

have misinterpreted the instructions given.

Goal/Plan Analysis of Programs created by Novices with No Explicit Strategy Instruction Chapter 4

 Page 38

Figure 4.3. A solution where plans are not easily identifiable

Chapter 4 Goal/Plan Analysis of Programs created by Novices with No Explicit Strategy Instruction

 Page 39

Figure 4.4. A solution with a number of flaws

The majority of students created a solution that, on the surface, contained the main

ingredients for calculating an average, but also contained a number of flaws that

would prevent the program from working in some instances, or from working at all.

Figure 4.4 is a typical example. The following flaws can be noted.

 The count variable i is initialised, but the sum variable is not; this would

result in a solution that produces an incorrect answer in most or all

executions.

 The user input is not primed; if the user enters the sentinel value at the first

opportunity, the loop would still be entered. The sentinel will also be included

in the sum and for this, the solution is forced to compensate when calculating

the average.

 There is also a slight possibility that the uninitialised value of the user input

could be equal to the sentinel, in which case the user would never be given

the opportunity to provide input. While the chance of this is exceptionally

small, programs used regularly by a number of users will eventually

encounter such circumstances and produce an error that is difficult to identify

during testing.

 The division used to calculate the average is not guarded, so if the user has

entered the sentinel at the first opportunity, a division by zero would take

place and the program would crash, or, worse, produce a false result.

Goal/Plan Analysis of Programs created by Novices with No Explicit Strategy Instruction Chapter 4

 Page 40

Figure 4.5. A solution demonstrating the necessary plans

In Figure 4.5 we see a demonstration of the required plans.

 The sum and count variables are initialised.

 The loop is primed with an initial user input.

 The sum and count plans are within the Primed Sentinel-Controlled Loop and

merged so only one set of user input is required.

 The count is tested to guard against division by zero before the average is

calculated and output.

4.5 Results

Solutions of 42 participating students were analysed for the presence or absence of

the plans and of associated strategies for incorporating the plans.

Chapter 4 Goal/Plan Analysis of Programs created by Novices with No Explicit Strategy Instruction

 Page 41

62%

64%

45%

43%

71%

10%

88%

88%

38%

36%

55%

57%

29%

90%

12%

12%

Initialise Sum

Initialise Counter

Sentinel Controlled Sum Loop Plan

Sentinel Controlled Count Loop Plan

Merged with PSCIL plan*

Guard Against Div. By Zero

Average Plan

Output Plan

Present Absent

Figure 4.6. Presence or absence of plans and use of merging* in student's solutions

Figure 4.6 shows that some plans were present in almost all students' solutions while

others were seldom applied.

 Most students, but not all, used division to calculate the average and output

that amount.

 About a quarter of students failed to merge the summing of inputs with the

counting. This is consistent with the findings of Spohrer et al. (1985b) who

found students unable to merge such plans created “buggier” solutions.

 About a third of students failed to initialise the sum or count or both.

 Less than half of students produced correct primed sentinel-controlled loops

for the summing or counting or both. Many students included the sentinel in

their sum and count and would not handle the possibility of the first input

being the sentinel.

 Less than 10% of students guarded against a division by zero.

Goal/Plan Analysis of Programs created by Novices with No Explicit Strategy Instruction Chapter 4

 Page 42

0

2

4

6

8

10

0 (none) 1 2 3 4 5 6 7 (all)

N
u

m
b

e
r

o
f

S
tu

d
e
n

ts

Number of Correctly Applied Plans

Figure 4.7. Levels of completeness as judged by number of plans correctly applied

There were seven plans needed for a correct solution (incorporation of the sum and

count plans in the sentinel controlled loop is not counted here). Figure 4.7 shows the

levels of completeness and the number of students reaching each level. Only one

single student of 42 applied all seven expected plans. Most students applied between

three and six plans.

2%

20%

98%

80%

All Plans

All Except Guarded Div

Present Absent

Figure 4.8. Correctness and with exception for Guarded Division plan

A complete solution to Soloway‟s problem would include all plans (see section

4.4.1). Only one student created a fully complete solution. Guarded division is

clearly the least applied plan. If guarded division is excluded, 23% of students

created an acceptable solution (as shown in Figure 4.8). During tool tests, the

PROUST tool discovered bugs in 89% of 206 novice solutions (Johnson, 1986) of

the “rainfall problem” (Johnson et al., 1983), which includes the averaging problem

used here together with maximum and validation components. So high levels of

misconceptions is consistent with previous measures of plan use.

Programming strategies were not an assessable part of the course. The assignments

and the exam focused on knowledge components of the course. Applying complete

correctness may be appropriate for experts, but it is not commonly applied to

novices. If this problem were judged in the same way as a normal exam, with each

required plan being worth a fraction of a total mark, then the average mark would be

4/7 plans or 57%. If the passing mark were 50% then 62% of participants would

have received a passing mark. Over 70% of the students actually passed the course.

Chapter 4 Goal/Plan Analysis of Programs created by Novices with No Explicit Strategy Instruction

 Page 43

4.6 Discussion

The two questions that motivated this experiment (see section 4.2) are discussed in

the next two sub-sections. This is followed by a number of possible flaws found with

the problem during experimentation.

4.6.1 Potential of Students

RQ1. What is the potential of students who have been exposed to an implicit-

only teaching of programming strategies to solve a sub-algorithmic

problem that requires application of a number of programming strategies

for a complete solution?

Students failed to demonstrate application of certain important strategies. Only one

student was able to achieve a fully complete solution to the averaging problem.

Students, on average, demonstrated 57% of the expected plans.

Participating students were not consistently able to:

 initialise sum and/or count variables,

 use a correct looping strategy for the given problem,

 guard against events such as division by zero, or

 merge plans that should be achieved together.

4.6.2 Weaknesses of Curriculum

RQ2. What are the deficiencies in the curriculum that are demonstrated by

students' solutions to the given problem?

This experiment demonstrated weaknesses in the existing teaching approach. Within

an implicit-only approach to programming strategy instruction, poor looping

strategies may reflect the unnatural form of looping constructs in modern

programming languages. According to Soloway, Bonar, and Ehrlich (1983a),

programming looping structures available in programming languages do not reflect

the way students envisage repetition. Such misconceptions of looping constructs are

described as a poor “cognitive fit” to the looping plans required in this experiment. It

is not feasible to change the language‟s looping constructs, so students must be given

strategies for using existing constructs when solving problems.

It is likely that few students would have experienced the effect of dividing by zero as

simple practical exercises can protect students from having to deal with this problem.

Rather than being sheltered from encountering errors such as division by zero,

novices should be explicitly taught strategies that deal with boundary conditions.

This experiment shows that many students had not learned certain programming

strategies implicitly. The curriculum used, containing only implicit instruction of

programming strategies, had not allowed those students to learn the required plans

and demonstrate the application of these plans.

Goal/Plan Analysis of Programs created by Novices with No Explicit Strategy Instruction Chapter 4

 Page 44

4.6.3 Possible Flaws in the Problem

This section raises concerns with the problem statement that arose during the

experiment. These possible flaws are not seen as having affected the results observed

in this experiment, but could be considered in future replications of the experiment.

 Wording of the problem is very simplistic. This could imply that a less than

fully complete solution is acceptable. Checking that there is a sufficient count

to calculate an average might be neglected due to the simple wording of the

problem.

 Students were allowed to ask questions while completing the task and some

showed confusion over whether the sentinel value should be included as an

input or not, as this is only implied by the problem description. Stating that

the sentinel should not be counted as an input would make the problem

statement clearer, but it may also be too suggestive of the strategies required.

 The problem statement asks for an average to be calculated which means that

numbers need to be input, counted and summed. There is no request within

the wording of the problem statement that these three actions need to take

place simultaneously, or that it is desirable for a user to be asked to enter the

numbers once only, or that a solution that asks the user to enter the numbers

twice or more is deficient. It is assumed that the novice will draw these

conclusions.

 There is no mention of input validity in the problem statement. Assuming that

the user enters some value, should the input be validated or not? To achieve

validation requires another, more complex, strategy. An input validation

strategy was not desired, yet the problem does not state that valid input can

be assumed. If validation was required it would double the length and

complexity of any correct solution and require twice the time to complete. No

student attempted validation in solutions analysed for this experiment.

4.7 Implications

This experiment has shown that a cohort of students exposed to an implicit-only

teaching of sub-algorithmic programming strategies do not produce solutions that

consistently demonstrate the required programming strategies. Improvements to the

curriculum may yield better outcomes for students, overcoming the detected flaws.

Past research has shown explicit instruction can be more powerful than implicit

instruction (Baddeley, 1997). A more explicit focus on the poorly used strategies

from this experiment, and programming strategies in general, may produce improved

outcomes.

Validate authentic
expert

programming
strategies

Explicitly
incorporate

programming
strategies

Test instruction
and assessment

in real intro
programming

setting

Measure novice
strategies in implicit-

only setting

Measure novice
strategies in implicit-

only setting

Figure 4.9. Overview of experiments in a process after first experiment

The next stage of this study attempts to capture a relevant set of programming

strategies that can then be incorporated explicitly into an introductory programming

curriculum. According to Soloway and his colleagues, the source of goals and plans

are experts themselves who have developed a tacit set of canned solutions (Soloway,

1986). In his description of the PROUST system, Johnson (1986) gives a catalogue

Chapter 4 Goal/Plan Analysis of Programs created by Novices with No Explicit Strategy Instruction

 Page 45

of plans. Chapter 5 describes a comparison of an adapted set of plans from this

catalogue with the strategies demonstrated by experts. This study seeks to confirm

that plans are an authentic representation of expert strategies.

With a set of authentic, concrete, strategies it may be possible to explicitly

incorporate programming strategies into an introductory programming curriculum.

The feasibility of such instruction needs to be tested and the impact on students

needs to be measured. Chapter 6 describes an experimental curriculum that was

tested with students in an artificial setting.

If programming strategies can be explicitly incorporated into introductory

programming curricula they can possibly be assessed. Methods of assessing

programming strategy skill may yield a better measurement of the outcomes of

students in an introductory programming course than traditional methods. A study of

instruction and assessment of programming strategies in an actual introductory

programming setting is described in chapter 7. Student performance after explicit

strategy instruction is compared with the results shown in this chapter.

Experts and Explicit Strategies Chapter 5

 Page 46

5. Experts and Explicit Strategies

“An expert is a man who has made all the mistakes which can be made, in

a narrow field.”

Niels Bohr

Overview

A previous experiment (chapter 4) showed a number of common programming

strategy flaws in novices‟ solutions to a simple averaging problem. The curriculum

used to instruct the novices required the novices to learn programming strategies in

an implicit way. Including explicit instruction of programming strategies in the

curriculum might improve outcomes for students. To achieve this, a set of concrete,

authentic sub-algorithmic strategies was sought. Biederman and Shiffrar (1987) used

interviews with an expert chick sexer to gather descriptions that could be presented

in an explicit form (see section 2.3.6). Expert programmers are a source of

programming strategies that could be taught explicitly to novices.

An experiment was conducted with 25 experts, who were asked to solve three well

defined problems. Plans identified in expert solutions were compared with plans

used by Soloway and his colleagues (Soloway, 1986, Johnson and Soloway, 1984)

through Goal/Plan Analysis. Results showed plans appear in solutions created by

experts, thus validating Soloway‟s plans as a model of expert programming

strategies. These strategies could be explicitly included in introductory programming

curricula to overcome previously identified weaknesses.

5.1 Introduction

An initial experiment (described in chapter 4) showed weaknesses in novices‟

programming strategy skills, exposed by the flaws in solutions to a set programming

task. The novices had been instructed using a curriculum that required learning of

programming strategies implicitly.

The presence of these flaws indicated possible weaknesses in the curriculum used to

instruct the novices in programming strategies. Expecting students to learn strategies

implicitly resulted in students acquiring an incomplete set of programming strategies

and a poor understanding of how to integrate them. This was consistent with results

presented by Reber (1993), who examined implicit learning in the context of

language acquisition. Reber found that experimental subjects could learn through

implicit-only means but when interviewed and asked to describe the underlying

system they had been exposed to, they were unable to express any understanding.

Rist (1991) observed novices in an implicit-only setting as they attempted to

construct their own strategies to solve problems and noted that many of the novices

succeed. Yet, later research (Whalley et al., 2006) has shown that only 30% of

novices at the end of an introductory programming course could comprehend and

describe the strategies applied in a given piece of code; the remaining students

described code line-by-line, relying on programming knowledge.

An experiment conducted by Biederman and Shiffrar (1987) showed that taking the

tacit understanding of expert chick sexers and providing an explicit representation of

this to novice chick sexers greatly improved learning outcomes. This experiment

Chapter 5 Experts and Explicit Strategies

 Page 47

showed that minutes of exposure to explicit instruction can be more effective than

weeks of implicit training (Baddeley, 1997).

While chick sexing is far removed from the task of programming, and learning an

artificial grammar is trivial by comparison, the implicit-only approach to instruction

is similar to the way programming strategies are traditionally taught in an

introductory programming course. Students are given the basic knowledge of a

programming language and are then expected to develop programming strategies and

an understanding of the problem solving processes implicitly through practical

exercises.

To overcome programming strategy weaknesses discovered in novices, taking

programming strategies from being instructed in an implicit-only manner and adding

explicit instruction may improve outcomes.

Biederman and Shiffrar interviewed a single expert chick sexer and from this were

able to create explicit instruction for novice chick sexers. Chick sexing requires only

a small number of strategies for the identification of chick gender. By comparison,

problem solving in programming is a more diverse task. Sub-algorithmic

programming strategies are at the level most relevant to novice programmers in an

introductory course (see section 2.3.3). Even at this simple level there are many

strategies. It is therefore unlikely that an interview with a single expert programmer

would yield all programming strategies relevant to novices.

Two well developed forms of programming strategy that could be seen as models of

expert strategies are plans and patterns (see section 2.4 for more details on

representations of strategies). Patterns can be applied to a range of problems from

sub-algorithmic through algorithmic to system-level problems, but tend to be used to

define solutions at the algorithmic level and above. Patterns are commonly used in

the object-oriented paradigm. While the OO paradigm is widely used in industry, and

many introductory programming courses adopt an OO language, the majority of

Australasian introductory programming courses still introduce programming using

the procedural paradigm (see section 2.2.3). Plans can be used to describe solutions

at sub-algorithmic and algorithmic levels. Plans may not be the most suitable form

for describing system-level problem solutions. It is the sub-algorithmic level that is

most relevant to novice programmers in their first exposure to programming

(however, programmers must use sub-algorithmic strategies at all stages of

expertise). Plans can be described without a great deal of extraneous information. No

system is needed to describe plans or how they are applied. Most plans are simply

labels for parts of a concise solution along with a description of how these parts are

integrated. Plans can be applied in almost any paradigm. For this reason, plans have

been chosen as the form of strategy used in the experiments in this and later chapters.

However, in stating this, it is likely that these experiments could be replicated using

patterns or some other representation of strategies.

Soloway and his colleagues state that plans were identified based on the tacit

expertise of programmers (Soloway et al., 1982, p. 52).

We, as expert programmers, have constructed a set of such plans, which

cover the type of simple looping problems used in introductory

programming courses.

Experts and Explicit Strategies Chapter 5

 Page 48

No report of the sourcing of these strategies is published so it is assumed that these

strategies were the product of discussion among academics who were instructors of

novice programmers. This experiment sets out to test if plans are used by expert

programmers. If this model is consistent then plans can be viewed as an appropriate

form of strategies to be instructed explicitly in a curriculum.

In programming related work, Sajaniemi and Prieto (2005) used a card sorting

exercise and interviews to validate their model of the roles of variables with experts.

In this study professional programmers were asked to organise variables used in set

programs into groups. The variables covered six of the previously identified roles

(Sajaniemi, 2002) and experts‟ groupings matched these roles with 85% accuracy.

5.1.1 Participants

As discussed in section 2.3.1 there are several levels of expertise between a novice

and an expert programmer. In this study participants were qualified as experts if they

were generating publicly used code on a regular or daily basis. The participants were

14 paid professional programmers and 11 academics who were instructors of

programming courses.

5.1.2 Setting

The experiment was conducted in the place of work of the participants involved.

Where participants were professional programmers the experiment was conducted in

a meeting room, or similar, within their normal work building. Where participants

were university academics the experiment was conducted in their office away from a

computer.

5.2 Research Questions

This experiment was motivated by two related questions which are answered in

section 5.6.

RQ3. Do experts exhibit identifiable plans in their solutions to problems?

RQ4. Can an authentic set of strategies, used by experts, be represented in an

explicit form, suitable for instruction?

If the answer to these two questions is positive then it is possible to consider the

following issue which is discussed in section 5.7.

RQ5. Does the potential to represent authentic programming strategies mandate

explicit instruction of programming strategies to novices?

5.3 The Problems

The aim of this experiment was to explore sub-algorithmic strategies in solutions

created by experts that are relevant to novice programmers. Although the problems

used here are small in scale, the strategies being elicited could be used by experts on

a regular basis within solutions to larger problems. Three problems were chosen that

a novice would be expected to solve at the end of an initial semester of

programming. For each, the problem statement, identifiable goals and expected plans

are shown. The problems increase slightly in complexity from Problem 1 to Problem

Chapter 5 Experts and Explicit Strategies

 Page 49

3. The problems are sufficiently generic to permit solutions in a broad range of

languages.

5.3.1 Problem 1

Read in 10 positive integers from a user. Assume the user will enter valid

positive integers only. Determine the maximum.

Goals

 Input 10 numbers

 Determine maximum

 Output maximum

Plans

2. Counter Controlled Loop

1. Initialisation (maximum)

3. Input

4. Maximum

5. Output

5.3.2 Problem 2

This problem is similar to that presented to novices in the previous experiment (see

section 4.3). The problem was refined to eliminate the need for validation, which

would otherwise double the complexity of the problem.

Read in any number of integers until the value 99999 is encountered. Assume

the user will enter valid integers only. Output the average.

Goals

 Input the numbers (initial and subsequent inputs)

 Compute the sum of the numbers

 Compute the count of the numbers

 Calculated the average from the sum and the count (keeping in mind that the

count of values could be zero)

 Output the average

Experts and Explicit Strategies Chapter 5

 Page 50

Plans

4. Sentinel Controlled Input Sequence

8. Guarded Division

3. Priming Input

5. Count

7. Input

9. Calculate Average

2. Initialisation

(sum)

1. Initialisation

(count)

6. Sum

10. Output

5.3.3 Problem 3

Input any number of integers between 0 and 9. Assume the user will enter

valid integers only. Stop when a value outside this range is encountered. After

input is concluded, output the occurrence of each of the values 0 to 9.

Goals

 Input numbers (initial and subsequent inputs)

 Count set (tally each number)

 Output set tallies

Plans

1. Counter Controlled Loop

4. Sentinel Controlled Input Sequence

7. Counter Controlled Loop

2. Initialisation (count set item)

3. Priming Input

5. Count Set (Tally)

6. Input

8. Output

5.4 Methodology

As with Biederman and Shiffrar's (1987) chick sexing experiment (see section 2.3.6),

participants were asked to solve problems on paper, away from a computer (solution

Chapter 5 Experts and Explicit Strategies

 Page 51

sheets are shown in Appendix C). The focus of analysis of solutions was not on the

syntactical correctness of the solutions, but on which strategies experts used to solve

the problems. Using paper was a means of enforcing this focus.

The three problems were presented on a single sheet of paper each, with the problem

statement at the top and lines for answering the problem below this.

Participants were timed to see how long they took to solve each problem.

Participants were asked not to rush. Where two or more programmers were

participating simultaneously, participants were asked not to collaborate, or race to

complete the problem.

A card sorting exercise and interviews have been used as a knowledge elicitation

exercise to validate the roles of variables with experts (Sajaniemi and Prieto, 2005).

Here, the knowledge elicitation technique used is to apply Goal/Plan Analysis to

experts‟ solutions to set programming problems.

5.4.1 Goal/Plan Analysis

Results were analysed by checking for:

 the presence of each of the relevant plans (shown above),

 nesting and merging in appropriate locations, and

 an overall correctness measure of abutment.

Analysis of Solutions to Problem 1

In most cases the presence of a plan is easily determined. For instance when

searching for a maximum plan, two features are sought: first, an initialisation of a

maximum variable; second, a test comparing the current maximum with a new

candidate and an assignment if appropriate. With counter-controlled loops, only

loops including a test of an incrementing counter variable were accepted.

Figure 5.1. A participant's solution to Problem 1

Experts and Explicit Strategies Chapter 5

 Page 52

In Figure 5.1 a solution to Problem 1 created by a participant is presented. When

performing Goal/Plan analysis on this solution the following features were identified.

 The maximum is initialised; the first input will become the new maximum.

 There is a counter-controlled loop; the for loop using the counter i will

repeat 10 times regardless of user input.

 The user is able to enter input.

 Each input is compared with the current maximum and retained if greater.

 The maximum is output at the end of the program.

 The input and maximum plans are nested inside the counter-controlled loop.

Analysis of Solutions to Problem 2

Sentinel-Controlled Loops were considered to be present only if there was a priming

input and the looping construct tested if the first or most recent input could be the

sentinel before using it as an input. In this way the sentinel will not be included as an

input for summing and counting purposes. A Guarded Division requires a selection

construct that will prevent division if the divisor is zero.

Figure 5.2. An acceptable solution to Problem 2

Figure 5.2 shows a participant's solution to Problem 2. From this solution the

following features can be identified.

 The sum and count (i) are initialised.

 The loop is a Sentinel-Controlled Loop as the test is primed by an initial input

and the sentinel will not be included in the sum or count.

 If the count of inputs is zero, the calculation of the average (including a

division by the count) will not be performed.

Chapter 5 Experts and Explicit Strategies

 Page 53

Figure 5.3. A poor solution to Problem 2

Figure 5.3 shows another participant's solution to Problem 2. This solution fails to

demonstrate a number of elements that were being identified.

 The loop is not a proper Sentinel-Controlled Loop; the input value used in

testing is initialised but it is not primed with user input (which could be the

sentinel in the first instance). The sum and count will include the sentinel

value.

 The division operation used to calculate the average is not guarded.

Analysis of Solutions to Problem 3

For a Set-Counting plan, only methods of classifying and counting inputs, as

opposed to capturing and keeping the user's input, were accepted. In some languages

initialisation of variables and arrays is done automatically; where this was the case,

participants were seen as having fulfilled the initialisation components of the plans.

Experts and Explicit Strategies Chapter 5

 Page 54

Figure 5.4. A participant's solution to Problem 3

In Figure 5.4 a participant's solution to Problem 3 is shown. From this solution the

following features can be identified.

 A count of numbers 0 to 9 is being kept in an array. The array elements are

initialised to zero using a Counter-Controlled Loop at the start of the

program.

 The second loop is a Sentinel-Controlled Loop as the test is primed by an

initial input and the sentinel (any value outside the range 0 to 9) will not be

counted.

 Each input is tallied using the input as an index into the array.

 The counts are output using a Counter-Controlled Loop at the end.

5.5 Results

Two measures were recorded: the times taken by each participant to complete each

problem and the presence or absence of the expected strategies in each solution.

In one instance a participant used an event-driven paradigm to solve the problems.

Goal/Plan Analysis could not be applied in this case as many of the underlying

constructs, such as loops, were not used. This demonstrates that Goal/Plan Analysis

is not applicable to all paradigms. The solutions of this participant were not used in

the analysis. In three instances participants created a solution to some different

problem. In these cases it was clear the experts had misread the instructions rather

Chapter 5 Experts and Explicit Strategies

 Page 55

than being unable to solve the problem. These solutions were disqualified from

analysis, but the remaining solutions from these participants were used. This

occurred with one professional in Problem 1 and two professionals in Problem 2.

Table 5.1. Average times for problems by expert type in

minutes and seconds (and number of each type)

 Prob. 1 Prob. 2 Prob. 3 Overall

Academics 4:50 (11) 4:52 (11) 6:17 (11) 15:58

Professionals 5:33 (12) 5:17 (13) 6:16 (11) 17:06

All 5:13 5:05 6:16 16:34

Table 5.1 shows times taken by participants to solve the problems The number of

solutions included for each problem and each expert type is shown in parentheses.

The average time to complete all three problems was 16min 34sec. To give a

comparison, the initial study described chapter 4 showed novices at the end of a

semester's instruction taking 15 to 20 minutes to solve the equivalent of Problem 2

alone. There was a difference in times between participants who were academics and

those who were professional programmers, although it was not proven to be

significant in a t-test of this sample (t≈0.47, p≈0.32, df=22). The six fastest times

were contributed by academics. This may have been due to the simple nature of the

problems, which would be familiar to academics but less so to professionals.

Table 5.2. Average plan use problems by expert type

 Prob. 1 Prob. 2 Prob. 3 Overall

Academics 97.7% (11) 82.6% (11) 90.9% (11) 89.7%

Professionals 99.0% (12) 83.9% (13) 96.7% (11) 92.6%

All 98.4% 83.3% 93.8% 91.8%

There was a slight difference in the presence of plans between academics and

professionals as shown in Table 5.2 (3.1% difference in overall plan use) but again,

this was not significant in a t-test (t≈0.67, p≈0.35, df=58).

All experts achieved correct abutment (the correct ordering of plans) for all

problems. For example, no expert placed the output of a maximum before the

calculation of the maximum.

Table 5.3. Presence of plans for Problem 1

Plan Presence

Max Initialised 100%

Counter-Controlled Loop 100%

Input Plan 100%

Maximum Plan 100%

Output Plan 87%

Input Nested in Counter-Controlled Loop 100%

Max Plan Nested in Counter-Controlled Loop 100%

Solutions to Problem 1 showed almost universal conformity to the set plans (Table

5.3). 23 solutions were analysed. Three participants failed to include output and this

Experts and Explicit Strategies Chapter 5

 Page 56

may be due to the wording of the problem, which asked for the maximum to be

determined but did not specifically ask for an output.

Table 5.4. Presence of plans for Problem 2

Plan Presence

Sum Initialised 92%

Count Initialised 100%

Sentinel-Controlled Input 92%

Sentinel-Controlled Count 92%

Sentinel-Controlled Sum 92%

Guarded Division 33%

Output Plan 92%

Loop Plans Merged 100%

Inputs Nested in Sentinel-Controlled Loop 92%

Output Nested in Guarded Division 33%

Problem 2 showed most participants conforming to the expected plans (Table 5.4).

24 solutions were analysed. In some cases individual participants failed to show one

plan. Where a person failed to show a Sentinel-Controlled Loop, the looping plans

merged with this loop were considered as not being present, even though they may

have attempted to capture a count or sum. One obvious deficiency is shown by the

lack of use of Guarded Division. Only one third of participants' solutions contained a

Guarded Division plan.

Table 5.5. Presence of plans for Problem 3

Plan Presence

Counter-Controlled Loop (for Initialisation) 91%

Array Initialisation 100%

Sentinel-Controlled Input 86%

Count Set Plan 95%

Counter-Controlled Loop (for Output) 86%

Output Plan 100%

Initialisation nested in Counter-Controlled Loop 91%

Inputs nested in Sentinel-Controlled Loop 91%

Count Set nested in Sentinel-Controlled Loop 86%

Output Nested in Counter-Controlled Loop 95%

Problem 3 showed most participants conforming to the expected plans (Table 5.5).

22 solutions were analysed. This problem encouraged the greatest variation in

solutions; difference were found in how the data was stored (an array was expected,

but some participants used variables), initialisation of the data store (where an array

was used, a counter-controlled loop containing element initialisations was expected,

but some participants used set notation to initialise the array), and set-counting (the

user's input could have been used as index to the array, but some participants used a

'switch'-like construct to increment counts). These variations were allowed where the

expected plans were still found to be present.

Chapter 5 Experts and Explicit Strategies

 Page 57

5.6 Discussion

The two research questions posed earlier are answered by the results of this

experiment and addressed next. This is followed by discussion of a number of

possible flaws found with the problems during experimentation.

5.6.1 Identifiable Strategies

RQ3. Do experts exhibit identifiable plans in their solutions to problems?

The results show that, in most instances, experts produce solutions including

constructs that could be identified as plans. These findings are constrained to the

plans covered here, but may be consistent with other plans relevant to novices in

their initial study of programming.

5.6.2 Strategies Made Explicit

RQ4. Can an authentic set of strategies, used by experts, be represented in an

explicit form, suitable for instruction?

The results indicate that plans, when taken as a model of strategies, are a valid

description of programming strategies. Within the scope of this experiment,

strategies have been described that are relevant to novice programmers while being

consistent with those used by expert programmers.

The strategies have been expressed in a form that can be explicitly incorporated into

an introductory programming curriculum. These strategies can be described visually

and textually (see figures above and Appendix A). Specific examples of the

application of these strategies can be given in almost any target programming

language.

By identifying strategies by name and giving terms to the way they are integrated, a

vocabulary can be established that can be used to communicate these strategies

between instructor and student, among students and among instructors.

Students can be set problems that focus explicitly on these strategies, which may

help novices to develop programming strategy skills at a sub-algorithmic level.

By identifying such strategies it is possible to make programming strategy skill an

assessable component of an introductory programming course. Using Goal/Plan

Analysis, a solution can now be regarded as correct because it shows application of

expected strategies.

5.6.3 Possible Flaws in the Problems

In Problem 1, participants are asked to “determine” but not output the maximum,

which was part of an anticipated solution. Some participants did not output the

maximum and it is difficult to determine if this was because of the wording of the

problem or because they simply neglected to do so.

The poor showing of Guarded Division may have been a product of simplistic

problem statements. Participants may also have been affected by being out of their

normal programming environment and away from the tools they would use for

testing such boundary conditions. After participants had completed the three

Experts and Explicit Strategies Chapter 5

 Page 58

problems, the expected plans were discussed. At this stage the participants' solutions

had not been analysed; however, in some cases participants admitted neglecting to

include a Guarded Division and saw that it was required. This might be contrasted to

a novice who might not apply a Guarded Division plan because they are unable to, or

unaware that they need to.

5.7 Implications

In light of these positive findings the following issue is discussed.

RQ5. Does the potential to represent authentic programming strategies mandate

explicit instruction of programming strategies to novices?

The results of this experiment are a strong indication that programming strategies

applied by experts can be described and made explicit. With such a model of the

strategies, it should be possible to create a curriculum that explicitly involves

teaching of programming strategies.

Validate authentic
expert

programming
strategies

Explicitly
incorporate

programming
strategies

Test instruction
and assessment

in real intro
programming

setting

Measure novice
strategies in implicit-

only setting

Measure novice
strategies in implicit-

only setting

Figure 5.5. Overview of experiments in a process after second experiment

At this point it would be unjustified to claim that explicit inclusion of programming

strategies would definitively improve outcomes in student learning, but it would be

remiss not to attempt to incorporate such strategies into curricula and to examine the

effects.

Biederman and Shiffrar's chick sexing experiment (1987) showed that by taking the

tacit understanding of experts, making it explicit and using it in instruction, outcomes

for students can be improved. Although the setting and target of the chick sexing

study differs from programming, the use of the explicit strategies can be put to the

same use and may lead to similar improvements for novice programmers.

When compared to implicit-only instruction of strategies, the potential benefits of

explicit strategy instruction could be:

 faster learning of strategies,

 better performance by novices in solving problems,

 a better understanding of the underlying processes involved in solving a

problem at the sub-algorithmic level,

 potential to identify and assess students‟ programming strategy skills, and

 providing instructors and novices with a vocabulary for discussing and

learning strategies.

The programming strategies identified in this experiment should not be seen as

independent of programming knowledge. It is clear that these strategies are built

upon knowledge of basic programming constructs, data storage mechanisms and

language specific facilities. As such there are dependencies between these strategies

and the knowledge that underlies them. Any curriculum author who incorporates

these strategies explicitly would need to carefully consider the order in which

knowledge and strategy components are presented.

Chapter 5 Experts and Explicit Strategies

 Page 59

In the next stage of experimentation described in this dissertation a new curriculum,

including explicit instruction of programming strategies, is tested in an isolated

setting with a small cohort of students. This experiment attempts to measure the

impact of explicit instruction of programming strategies on novice outcomes. After

this, explicit instruction can be incorporated in an actual curriculum and student

performance can be compared to the baseline set in the initial experiment.

Incorporating Strategies Explicitly into an Artificial Curriculum Chapter 6

 Page 60

6. Incorporating Strategies Explicitly into an

Artificial Curriculum

“The principle goal of education is to create men who are capable of

doing new things, not simply of repeating what other generations have

done – men who are creative, inventive and discoverers.”

Jean Piaget

Overview

In an initial experiment (chapter 4) a number of programming strategy flaws were

detected in solutions created by novices. The novices had studied a curriculum that

required them to learn programming strategies implicitly.

Following the idea that explicit instruction can lead to improved student outcomes

(Baddeley, 1997), a model of programming strategies that can be explicitly

incorporated into an introductory programming curriculum was sought. Plans

proposed by Soloway (1986) are a model of programming strategies. An experiment

was conducted to validate that plans are an authentic representation of strategies

used by experts (chapter 5). This experiment showed that plans are used by experts.

Plans are a form of strategies that could be explicitly incorporated into a curriculum

for novice programmers.

The experiment described in this chapter was conducted to test a curriculum that

included programming strategies explicitly in lectures, written course materials,

exercises and assessment. A control curriculum was also established to allow for

comparison and isolation of effects. The two curricula were delivered to two groups

of volunteer students who had no previous programming experience. The

experimental group showed understanding and application of programming

strategies in generation tests (though not statistically significant), and in interviews

used plan terminology and showed greater confidence in their solutions to problems.

6.1 Introduction

A previous study (chapter 4) discovered weaknesses in an implicit-only curriculum

used in teaching an introductory programming course to novices. Students who

participated in the study were asked to create a solution to a simple averaging

problem. A number of common flaws were detected when students' solutions were

scrutinised under Goal/Plan Analysis.

Participating students were not consistently able to:

 initialise sum and/or count variables,

 use a correct looping strategy for the given problem,

 guard against events such as division by zero, or

 merge plans that should be achieved together.

Students, on average, were only able to demonstrate application of 57% of the

strategies required for a complete solution. These flaws implied weaknesses in the

curriculum being delivered to the students at the time

Chapter 6 Incorporating Strategies Explicitly into an Artificial Curriculum

 Page 61

Traditional curricula rely on novices acquiring programming strategies implicitly.

Past studies (Baddeley, 1997, Biederman and Shiffrar, 1987, Reber, 1993) have

shown that explicit instruction can be more powerful than implicit-only instruction,

so it was proposed that programming strategies be taught explicitly. A model for

describing programming strategies explicitly in an introductory programming

curriculum was sought. A second study (chapter 5) uncovered a model of expert

programming strategies at a sub-algorithmic level. These strategies can be explicitly

expressed and could be incorporated into introductory programming curricula. This

finding prompted the inclusion of explicit programming strategies in teaching as it

may:

 improve outcomes for students,

 establish a vocabulary for programming strategy dissemination, and

 allow students' programming strategy skills to be assessed.

The experiment described in this chapter was conducted to test if explicit

programming strategy instruction can be incorporated into a programming

curriculum, and, if this is possible, what effects can be observed. Two curricula were

designed to allow comparison and isolation of effects. An experimental curriculum

included explicit instruction of programming strategies while a control curriculum

excluded such instruction. These curricula were delivered over two separate weekend

periods, followed by a series of one-on-one interviews with participants.

6.1.1 Participants

Participants were volunteers from the student body at the University of Southern

Queensland who were recruited by two means:

 posters hung around the university campus, and

 emails sent to former students of two computing concepts courses for non-

computing students.

Participants were asked to undertake an initial survey which gathered demographic

data, computing experience, past programming experience and a measure of

computing confidence.

This initial data was used to filter students who had previous programming

experience. Students with no previous programming experience were sought in order

to set a common entry point for all participants. Volunteers with previous

programming experience were asked to withdraw.

A number of the volunteers withdrew from the weekend courses, mostly due to

personal reasons, giving notice before the start of the experiment. Some volunteers

unexpectedly failed to attend the course which reduced the group of volunteers to

eight, in two groups of four, divided on a self-selecting basis. One of the participants

who attended the first weekend had completed a previous course in computer

programming and arrived after being asked not to attend. Results were collected from

this participant but were not aggregated with results of other participants in this

experiment.

Incorporating Strategies Explicitly into an Artificial Curriculum Chapter 6

 Page 62

6.1.2 Setting

The two weekend courses were conducted in a computing lab. This room included

facilities for lecturing, computers for students to undertake practical exercises and

desk space between computers for students to complete paper-based exercises.

The two curricula were delivered on consecutive weekends. The curriculum without

explicit programming content, the control curriculum, was delivered first and this

was followed the next weekend by the curriculum with explicit programming

strategies. The ordering of the two curricula was arbitrary.

The weekends were divided into sessions with each session covering one to four

modules of the course (see the schedule in section 6.4.2). Each session consisted of

an initial lecture, with questions from students encouraged. This was followed by

paper tasks and practical programming tasks. Later in the course, tasks that involved

programming strategies were used. Students were given breaks between sessions.

6.2 Research Questions

This experiment was motivated by four related questions, which are answered in

section 6.6.

RQ6. Can programming strategies be explicitly incorporated into an

introductory programming curriculum?

RQ7. What is the significance of the time consumed by this additional

instruction?

RQ8. Can programming strategies, explicitly taught in an introductory

programming course, be assessed?

RQ9. What impact does explicit strategy instruction have on students and their

ability to apply strategies when compared to an implicit-only approach?

RQ10. Are there any other observable effects or contrasts between students of a

traditional curriculum and one with added explicit programming strategy

instruction?

6.3 Description of Curricula

An experimental curriculum was created which contained programming strategy

instruction explicitly. This curriculum is described further in this section and is

included in full in Appendix H. From this, a control curriculum was created by

identifying and removing programming strategy instruction components.

6.3.1 Explicitly Incorporating Programming Strategies

Programming strategies are explicitly incorporated into the curriculum in a number

of ways.

Identifying Strategies in the Curriculum

A book of written study materials was created and hardcopies were given to

participants. Lecture slides were also created, based on the content of the written

Chapter 6 Incorporating Strategies Explicitly into an Artificial Curriculum

 Page 63

study materials. The lecture slides were used during lectures. In written materials and

lectures the strategies incorporated in the curriculum were named, their benefits were

explained and examples of their application were shown. Figure 6.1 shows a section

of the written materials provided to students. In this example the Guarded Division

plan is identified. An explanation is given for why this plan is used, including a

reference to an earlier mention of the consequences of dividing by zero. The

description tells how the strategy is implemented, and an code example, applying

this strategy, is shown.

10.5 Guarding Division
One application of an if statement is to prevent code which could result in unpredictable

behaviour or cause the program to crash while being executed. Previously we saw how

dividing by zero can produce an unusable result. In some programming languages the effects

can be even more severe. It is recommended that you always test the divisor (the second,

right-hand operand) before a division operation takes place. If the divisor is zero, division

should be avoided.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

<html>

 <head>

 <script type="text/javascript">

 var number = 0;

 number = parseInt(prompt("Enter a number for division"));

 if(number != 0) {

 alert(100 / number);

 }

 else {

 alert("Dividing by zero causes problems");

 }

 </script>

 </head>

 <body>

 Guarding division example

 </body>

</html>

Code Example 10.5: The numerator of a division should always be tested before the division

E
x
e

rc
is

e
 1

0
.5

 Using your template, create a program that will prompt the user to enter a pre-

calculated sum of numbers and pre-calculated count of numbers. Calculate the

average (the sum divided by the count). How should your program behave if the

user enters zero for the count of numbers?

Figure 6.1. An extract from the written course materials showing

explicit incorporation of programming strategy instruction

As well as introducing strategies, the means of integrating these strategies through

abutment, merging and nesting (Soloway, 1986, p. 856) were also covered.

Incorporating Strategies Explicitly into an Artificial Curriculum Chapter 6

 Page 64

Figure 6.2. An example of a lecture slide showing incorporation of

explicit programming strategy instruction

Paper Exercises and Practical Computing Tasks

At the end of each module students were asked to complete paper exercises and

computer-based tasks to reinforce the content delivered in lectures and allow students

to experience the practical implementation of the strategies covered. Instructions for

these exercises and tasks were set out in the written materials, for example Exercise

10.5 shown in Figure 6.1. The exercise shown prompts users to explore Guarding

Division. In other exercises students are prompted to experiment with the outcome

achieved when the strategy is not applied or is poorly applied. During the course, as

with any normal introductory programming class, the instructor was on hand to

answer questions and guide students.

In most cases the exercises and tasks were common to both curricula. In the

curriculum without explicit programming strategies, students were expected to learn

the required programming strategies implicitly.

Chapter 6 Incorporating Strategies Explicitly into an Artificial Curriculum

 Page 65

Table 6.1. Comparison of the two curricula tested (items with strike through

were absent in the control curriculum)

Module Section Experimental Curriculum Control Curriculum

1 First JavaScript Program First JavaScript Program
 1.1. Hello World! Hello World!
 1.2. JavaScript and HTML JavaScript and HTML
 1.3. Statements Statements

2 Calling Functions Calling Functions
 2.1. alert() alert()

3 Values Values
 3.1. Numbers Numbers
 3.2. Strings Strings
 3.3. Booleans Booleans

4 Variables Variables
 4.1. What are Variables What are Variables
 4.2. Identifier Rules Identifier Rules
 4.3. Declaring Variables with var Declaring Variables with var
 4.4. Undefined Undefined

5 Assigning Values Assigning Values
 5.1. Dynamic Typing Dynamic Typing
 5.2. typeof typeof
 5.3. Initialising Variables Initialising Variables

6 Operations Operations
 6.1. Arithmetic Operators Arithmetic Operators
 6.2. Division by Zero – infinity Division by Zero – infinity
 6.3. Postfix Operators Postfix Operators
 6.4. Relational Operators (incl. Equality) Relational Operators (incl. Equality)
 6.5. Logical Operators Logical Operators
 6.6. String Operators String Operators

7 Abutment Abutment

8 Debugging Debugging
 Exercise 8.3 Exercise 8.3
9 Functions that Return Values Functions that Return Values
 9.1. prompt() prompt()
 9.2. parseInt() and parseFloat() parseInt() and parseFloat()

10 Selection Selection
 10.1. The if Statement The if Statement
 10.2. The if-else Statement The if-else Statement
 10.3. Indenting and Formatting Indenting and Formatting
 10.4. “Dangling else” “Dangling else”
 10.5. Guarding Division Guarding Division

11 Repetition (Loops) Repetition (Loops
 11.1. while Loop while Loop
 11.2. Sentinel-Controlled Loops Sentinel-Controlled Loops
 11.3. for Loop for Loop
 11.4. Counter-Controlled Loops Counter-Controlled Loops
 11.5. Finding the Maximum/Minimum Finding the Maximum/Minimum
 11.6. Nesting and Merging Nesting and Merging

12 Arrays Arrays
 12.1. Declaring Arrays Declaring Arrays
 12.2. Accessing Array Elements Accessing Array Elements
 12.3. Initialising Arrays Initialising Arrays
 12.4. Arrays for Values Arrays for Values
 12.5. Arrays for Categories Arrays for Categories
 12.6. Counting Values in a Set Counting Values in a Set

Assessment of Programming Strategies

At the end of the course, students were asked to complete the same three

programming tasks that were given to experts in the previous study with experts (see

section 5.3). These tasks were used as a formal assessment at the end of the course

under exam conditions. As well as testing participants' abilities, this was done to

Incorporating Strategies Explicitly into an Artificial Curriculum Chapter 6

 Page 66

explore the potential to assess programming strategies as part of a course. Strategies

necessary to solve the final assessment problems were shown as examples and in

exercises and programming tasks.

6.3.2 Format of the Curriculum

The curriculum follows a traditional format, which reveals parts of a given language

in a sequence, with new knowledge of language concepts being dependent on

previously covered knowledge. In this format, explicitly incorporating programming

strategies depend upon underlying knowledge being taught beforehand. For instance,

for the Guarded Division plan to be introduced, knowledge of variables, operators

and selection must be covered first. Table 6.1 shows the two curricula with elements

excluded from the control curriculum struck out.

Basing the experimental curriculum on a traditional curriculum allowed the creation

of a second curriculum without explicit programming strategies. In a non-

experimental setting, the format of the curriculum could change. For instance, the

strategies themselves, rather than the underlying language, could be used to govern

the structure of the course; in this case strategies could be introduced, then

underlying language knowledge could be taught. If an objects-first approach is taken,

strategies could be introduced at other stages.

6.3.3 Philosophy behind the Experimental Curriculum

The curriculum was designed to be short and allow students to reach programming

strategies as soon as possible. The curriculum would not be effective in teaching

longer courses, although the explicit incorporation of programming strategies could

be applied to longer curricula.

The curriculum was focused on programming strategies with only a minimal

covering of the dependent knowledge components. Knowledge content was included

if it was not fundamentally important for learning the later programming strategies.

The later exercises focused on the application of programming strategies. For those

who had not been explicitly instructed in programming strategies, exercise times

were their opportunity to implicitly learn the needed strategies. The assessment at the

end of the course focused on the analysis of programming strategy skill. In a non-

experimental course the focus of exercises and the weighting of examination

questions would likely be more balanced between programming knowledge

components and programming strategies.

6.3.4 Language Used with Experimental Curriculum

JavaScript was used as the language that supported the instruction of the curriculum.

In their essential form, programming strategies are language independent and

examples could be given in almost any language. Soloway and his colleagues used

Pascal and Lisp to illustrate programming strategies. The author has used C/C++ to

exemplify programming strategies in other work.

Reasons for choosing JavaScript for this experiment were as follows.

 Potential to reach important concepts rapidly
JavaScript has simple facilities for user input and output and a simple model

for data storage. This permits rapid progress through foundational knowledge

concepts that might take longer if a general purpose programming language

were used.

Chapter 6 Incorporating Strategies Explicitly into an Artificial Curriculum

 Page 67

 Simpler to practice than a compiled language
JavaScript is interpreted by a web browser as part of a web page with a

simple model of execution. Explaining a compiled model of execution was

not required. JavaScript programs can be as simple as a single statement and

do not need to be contained within a full program context.

 Attractive to volunteers

JavaScript is used to achieve dynamic client-side web pages. Even students

who are not studying computing are likely to be familiar with the name

„JavaScript‟ through use of the World-Wide Web. For this reason it was an

incentive to attract experimental volunteers.

 Expression of programming strategies in another language
Plans had not been expressed using JavaScript before. Using JavaScript

showed that plans could be demonstrated in another language, attesting to the

versatility of plans.

6.4 Methodology

The method of experimentation began with preliminary demographic, experience and

confidence measurements. An examination of programming strategies was

conducted at the end of each weekend. In the weeks that followed the two weekend

sessions, participants were invited to an interview in which they were asked

questions about their solutions to gauge their understanding of the strategies that

were being tested.

6.4.1 Demographic, Experience and Confidence Measures

A number of demographic, experience and confidence measures were conducted via

a web survey presented to students when they volunteered. Participants were asked

questions to determining the following.

 Gender

 Age

 Computing experience

 Previous programming experience

 Computing confidence

Details of specific questions are given in Appendix D. Computing confidence was

captured using a test created by Cretchley (2006) which has been proven as a reliable

predictor of computing confidence.

6.4.2 Schedule of Course Delivery

 The schedule for both weekends was identical except where programming strategy

content was covered. In Table 6.2, content covering programming strategies is

highlighted and was covered only in the course with explicit instruction of

programming strategies. Participants undertaking the course without explicit

programming strategy content were intended to be attempting practical exercises

during these times. One of the aims of the experiment was to determine if this

additional content would impact on the balance of lecture and exercise time. For this

reason the schedule was followed as closely as possible on both weekends.

Incorporating Strategies Explicitly into an Artificial Curriculum Chapter 6

 Page 68

Table 6.2. Schedule of courses (items greyed were not conducted with control curriculum)

Session Saturday Content Sunday Content

10:00 – 11:15

Introductions
1 First JS Program

1.1 Hello World
1.2 JavaScript and HTML

2 Calling Functions
2.1 alert()

11 Loops
11.1 while Loop
11.2 Sentinel-Controlled Loops
11.3 for Loop
11.4 Counter-Controlled Loops
11.5 Finding the Maximum
11.6 Nesting and Merging

11:30 – 13:00

3 Values
3.1 Numbers
3.2 Strings
3.3 Booleans
3.4 Undefined

4 Variables
4.1 What are Variables
4.2 Identifier Rules
4.3 Creating variables with var

5 Assigning Values
5.1 Dynamic typing
5.2 typeof
5.3 Initialising Variables

12 Arrays
12.1 Arrays for Values
12.2 Arrays for Categories
12.3 Counting Values in a Set

13:30 – 14:45

6 Operations
6.1 Arithmetic Operators
6.2 Division by Zero - Infinity
6.3 Postfix Operators
6.4 Relational Operators (incl. Equality)
6.5 Logical Operators
6.6 String Operators

7 Abutment
8 Debugging
9 Functions that Return Values

9.1 prompt()
9.2 parseInt()

Testing

15:00 – 16:00

10 Selection
10.1 The if Statement
10.2 The if-else Statement
10.3 Indenting and Formatting
10.4 “Dangling else”
10.5 Guarding Division

6.4.3 Administering the Final Assessment

After lunch on the Sunday of each weekend course, participants were asked to

complete the three programming tasks previously given to experts (see chapter 5).

Each problem was presented on a single sheet of paper, with lines below in which

students were to complete the solutions to the problems (solution sheets are shown in

Appendix C). Participants were able to use as much time as was needed to complete

problems.

 Problem 1

Read in 10 positive integers from a user. Assume the user will enter valid

positive integers only. Determine the maximum.

Problem 2

Read in any number of integers until the value 99999 is encountered. Assume

the user will enter valid integers only. Output the average.

Chapter 6 Incorporating Strategies Explicitly into an Artificial Curriculum

 Page 69

Problem 3

Input any number of integers between 0 and 9. Assume the user will enter

valid integers only. Stop when a value outside this range is encountered. After

input is concluded, output the occurrence of each of the values 0 to 9.

The solutions produced were examined using Goal/Plan Analysis to test for the

presence or absence of expected plans. This was conducted in the same manner as

the earlier experiment with experts, as described in section 5.4.1.

6.4.4 Post-Experiment Interviews with Participants

In the 23-day period after teaching, six participants gave a verbal, one-on-one

interview, at their earliest convenience. Students‟ solution sheets were used as a basis

for discussion. Interviews were structured, with set questions as listed in Appendix E.

The questions were used as a script, but were intended to encourage discussion

which was allowed to continue as long as necessary. The questions used were

designed not to be leading. Questions were aimed at discovering participants'

interpretations of the problem statements, the strategies understood by participants,

the articulation of their solution and their confidence in their solution. During

interviews participants‟ responses were recorded as audio files which were

transcribed. The interviewer was the teacher and also the author of this dissertation.

The interview transcripts were analysed by looking for references to strategies used

(correct or incorrect), use of terminology relating to plans and statements of

programming confidence (positive or negative).

6.5 Results

A number of results were gained from this experiment. First, data gathered during

registration are shown. During the experiment both curricula were delivered to

students. The potential to succeed in this delivery was judged by the time used to

deliver the more extensive curriculum, which explicitly incorporated programming

strategies within the schedule. At the end of each of these sessions participants were

asked to complete a set of problems that were examined under Goal/Plan Analysis.

Finally an inspection of post-course interviews provides deeper insights into the

programming strategy potential of the participants after the course.

6.5.1 Data Collected at Registration

The data gathered when participants volunteered for the course are shown in Table

6.3. These data show that the two groups were roughly balanced in gender, age and

computing confidence. The two groups differed in responses to computing and web

experience self-assessment questions. Experimental group participants showed

greater variance in their responses to these experience questions. It is likely that the

experimental group was affected more by individual differences. One of the

participants indicated they had no previous use of a web browser, even though they

used a computer daily. This may have been an error. Participant 29 left early during

the data collection period.

One of the intentions for gathering this data was to exclude volunteers who had

completed previous formal study in programming. A number of people signed up for

the experiment and were rejected because they had studied programming previously.

One participant, identified as Participant 14, who was asked not to attend, came

Incorporating Strategies Explicitly into an Artificial Curriculum Chapter 6

 Page 70

anyway. The results of this participant are not presented here. One other participant

(21) indicated they had some self-taught programming experience. After discussion

with the participant this experience was shown to be a limited amount of HTML

writing, which was not seen as significant in this experiment.

Table 6.3. Demographic, experience and confidence data gathered on registration

Group Participant Gender Age Group
Computing
Experience

Web Experience
Previous

Programming

Computing
Confidence

1=low to
5=high

Experimental
Group

12 male Less than 25 Daily use No use Never 3.0

21 male 26 – 35 Daily use Daily use Some self-taught 4.6

29 male 26 – 35 Weekly use Every few days Never 3.2

30 female Less than 25 Daily use Daily use Never 4.4

Average 3.8

Control
Group

1 male Less than 25 Daily use Daily use Never 3.6

6 female Less than 25 Daily use Daily use Never 3.5

13 male 26 – 35 Daily use Daily use Never 3.8

Average 3.6

6.5.2 Time Load of Explicit Programming Strategy Instruction

During teaching of the experimental curriculum that incorporated explicit

programming strategies, added content required additional time to teach (actual time

measures were not recorded), increasing the length of lecture sessions and reducing

the time allowed for students to undertake practical work. However, participants

undertaking the curriculum with explicit programming strategies were still able to

complete the set exercises during the time allocated in the schedule. It was possible

for the schedule to be followed in both instances of the curriculum.

6.5.3 Time to Complete Tests

While participants were completing solutions to the given problems, each was timed

and the times were recorded.

Table 6.4: Times for problems by group in minutes and seconds

 Prob. 1 Prob. 2 Prob. 3 Overall

Participant 12 12:10 07:20 11:30 31:00

Participant 21 15:00 04:05 07:35 26:40

Participant 29 Left early

Participant 30 10:30 13:00 16:40 40:10

Experimental Group Average 12:33 8:08 11:55 32:37

Participant 1 10:40 09:40 09:30 29:50

Participant 6 14:20 19:30 05:40 39:30

Participant 13 15:50 Not recorded

Control Group Average 13:37 14:35 7:35 34:40

All 13:05 10:43 10:11 33:38

Chapter 6 Incorporating Strategies Explicitly into an Artificial Curriculum

 Page 71

Table 6.4 shows the times taken by each participant to complete each problem,

collected together in groups. In the experimental group, Participant 29 left after

completing part of one solution, explaining that they wished to leave for personal

reasons. In the control group Participant 13 completed all problems but the times

taken to solve the second two problems were not recorded.

Participants in the experimental group were quicker on average, but both the longest

and shortest times were exhibited in the experimental group. There appeared to be no

relationship between times and the correctness of solutions presented. With the small

population, no generalisations can be made, but the results are reported here to

inform later results.

Experts who completed the same three problems took 16min 34sec on average (see

section 5.5) and constructed complete solutions. Most participants in this study were

not able to create complete solutions.

6.5.4 Goal/Plan Analysis of Participant Solutions

The following tables show results of the Goal/Plan Analysis for each problem.

Several of the solutions presented by novice participants in this experiment contained

English language text that described the code the participant would like to have

written in their solution when they were not sure how to implement these ideas in

code. Where this was the case, if the text sufficiently described a plan, it was

accepted as being present even if it was not described in code. The participants who

used text in their code did not create complete or near complete solutions.

Table 6.5. Presence of plans and integration for Problem 1

Plan

Presence of Plans/Integration

Exp. Participant Exp.
Group

Average

Control Participant Control
Group

Average
All

12 21 29 30 1 6 13

Max Initialised 0% 0% 0%

Counter-Controlled Loop Y Y Y 75% Y Y 67% 71%

Input Plan Y Y 50% Y Y Y 100% 71%

Maximum Plan Y 25% 0% 14%

Output Plan Y Y 50% Y 33% 43%

Input Nested in Counter-Controlled Loop Y Y 50% Y 33% 43%

Max Plan Nested in Counter-Controlled Loop Y 25% 0% 14%

Abutment Correct Y Y Y 75% Y Y 67% 71%

Overall 88% 63% 25% 0% 44% 50% 25% 38% 28% 41%

Table 6.5 shows the plans present in each participant's solution to Problem 1. The

correctness of the integration of the strategies, including abutment, is also recorded.

Unlike experts (see section 5.5), participants in this experiment did not always

integrate these plans correctly.

The best Problem 1 solution was created by Participant 12 from the experimental

group who, despite never previously undertaking programming study, was able to

produce a well coded solution that was nearly complete. This solution, together with

those presented by Participant 21, pushed the overall average correctness level for

Incorporating Strategies Explicitly into an Artificial Curriculum Chapter 6

 Page 72

the experimental group above that of the control group despite the abandoned

attempt and non-attempt of their group-mates.

One noticeable characteristic was the absence of the initialisation of the maximum

variable, which was crucial to the Maximum plan and is required when using

JavaScript. Initialisation was explicitly covered in the experimental curriculum.

Students undertaking the control curriculum were given the opportunity to learn this

plan implicitly. Initialisation was important to the later problems and was applied by

a number of participants for those problems. It is not clear why it is absent here.

Table 6.6. Presence of plans and integration for Problem 2

Plan

Presence of Plans/Integration

Participant Exp.
Group

Average

Participant Control
Group

Average
All

12 21 29 30 1 6 13

Sum Initialised Y
Le

ft
E

ar
ly

 33% Y Y 67% 50%

Count Initialised Y 33% Y 33% 33%

Sentinel-Controlled Input Y Y 67% 0% 33%

Sentinel-Controlled Count Y 33% Y 33% 33%

Sentinel-Controlled Sum Y 33% Y 33% 33%

Guarded Division 0% 33% 0%

Output Plan Y Y 67% Y Y Y 0% 83%

Loop Plans Merged Y 33% Y 100% 33%

Inputs Nested in Sentinel-Controlled Loop Y Y 67% 33% 33%

Output Nested in Guarded Division 0% 0% 0%

Abutment Correct Y Y 67% Y Y 67% 67%

Overall 82% 36% 0% 39% 45% 36% 18% 33% 36%

Table 6.6 shows the strategy correctness of participants' solutions to Problem 2.

Participant 29 left after abandoning an attempt at Problem 1, so this participant's

solutions were not included in results for this and the next problem.

Again in this problem, an outstanding solution was presented by Participant 12 who

correctly solved the problem, with the exception of the Guarded Division plan. No

participant in either group applied a Guarded Division plan. This shows that even

when it is explicitly incorporated into an introductory programming curriculum, and

the consequences of failing to apply the plan are discussed, it is still possible for

novice programmers to neglect this particular plan. This problem was a modified

version of the problem given to students in the first experiment (see chapter 4).

Students in the earlier study had completed a semester of instruction under a

traditional implicit-only model and achieved an average overall completeness of 57%

compared to the participants of this experiment who achieved 36%. In the problem

statements for Problem 1 and both other problems, students were told they could

assume inputs would be valid.

Chapter 6 Incorporating Strategies Explicitly into an Artificial Curriculum

 Page 73

Table 6.7. Presence of plans and integration for Problem 3

Plan

Presence of Plans/Integration

Participant Exp.
Group

Average

Participant Control
Group

Average
All

12 21 29 30 1 6 13

Counter-Controlled Loop (for Initialisation) Y

Le
ft

E
ar

ly

Y 67% 0% 33%

Array Initialisation Y Y Y 100% 0% 50%

Sentinel-Controlled Input Y 33% 0% 17%

Count Set Plan Y Y 67% 0% 33%

Counter-Controlled Loop (for Output) Y 33% Y Y 67% 50%

Output Plan Y Y 67% 0% 33%

Initialisation nested in Counter-Controlled Loop Y Y 67% 0% 33%

Inputs nested in Sentinel-Controlled Loop Y Y 67% 0% 33%

Count Set nested in Sentinel-Controlled Loop Y 33% 0% 17%

Output Nested in Counter-Controlled Loop 0% 0% 0%

Abutment Correct Y Y Y 100% Y Y Y 100% 100%

Overall 82% 36% 55% 58% 18% 18% 9% 15% 36%

Table 6.7 shows the plan application for the final problem, Problem 3. Again an

outstanding solution was presented by Participant 12 who correctly initialised and

filled an array to tally user inputs, but failed to output the content of the array using a

loop. Participant 30, who did not attempt Problem 1 and presented a confused

solution to Problem 2, managed to apply a number of plans for this problem.

Participants from the control group showed little ability to demonstrate any of the

plans that were needed to solve this problem. This problem is arguably the most

complex, and it would appear from these results that it is difficult to learn the

necessary plans implicitly.

One plan absent in all solutions was the Counter-Controlled Loop plan to output the

occurrences of numbers. This is not truly surprising as most of the solutions for this

problem were incomplete and the only near-complete solution did not apply this

particular strategy. Each of the participants from the experimental group applied a

counter-controlled loop to initialise the array used for tallying.

Incorporating Strategies Explicitly into an Artificial Curriculum Chapter 6

 Page 74

Table 6.8. Overall plan use by each group

 Overall Plan Use

Experimental Group 47%

Control Group 28%

All 38%

Table 6.8 shows a comparison of the overall correctness for all problems achieved by

each group. There is a distinction in overall results for the two groups, with the

experimental group, who were exposed to a curriculum that incorporated

programming strategies explicitly, achieving a greater result.

Participant 12 produced outstanding solutions to each of the problems. It may be that

the incorporation of explicit programming strategies suited this participant who,

might have performed better than he would have otherwise. One must wonder if they

would have done as well in the control group and perhaps reversed the results of the

experiment.

With the small number of participants in this experiment no statistically significant

evidence can be inferred for the superiority of one curriculum over another. These

results are useful as basis for the interviews that followed which allow a deeper and

more personal exploration of the participating students' strategy understandings.

6.5.5 Interviews

Following the course, participants were asked to attend an interview. Five of the

seven participants and Participant 14 (who had previous programming instruction)

attended interviews. The list of participants and the length of interviews is shown in

Table 6.9.

Table 6.9. Interview participants and interview times

Participant Group Time

12 Experimental 30:35

21 Experimental 22:44

30 Experimental 21:56

1 Control 17:40

6 Control 23:14

Average Time 23:14

The interviews probed the understandings of participants that they were perhaps

unable to express in code. The interviews followed a fixed script but allowed

participants to discuss matters freely. The list of questions is shown in Appendix E.

The questions were designed not to be leading. The questions posed to each

participant aimed to achieve the following.

 To explore the participant's interpretation of the problem statement

 To examine whether the participant understood the required strategies

 To allow the student to articulate their solution

 To elicit a level of confidence in the participant‟s solution

Chapter 6 Incorporating Strategies Explicitly into an Artificial Curriculum

 Page 75

Each interview was recorded and transcribed. From an analysis of the transcripts the

following observations were made.

Participants Misinterpreted the Validation Simplification Made to Each Problem

Each problem statement contained the text “Assume the user will enter valid integers

only.” This additional text was introduced to clarify that no attempt at validation

would be necessary. This change was made when these problems were used with

expert programmers, but for this experiment it may have confused participants. In

interviews, participants were asked what this sentence meant. Three of the five

participants misinterpreted this simplification; some felt validation was necessary

because of this statement. No participant attempted to validate inputs.

Other parts of the problem statements seemed to be comprehensible to each

participant, even if they did not know how to achieve a solution.

Participants Exhibited Understanding of Plans

As well as demonstrating a higher use of plans in their solutions to problems,

participants from the experimental group verbally described plans. For instance,

Participant 30 described her application of a Set-Counting plan as follows: “After

you've put a number that isn‟t in that range it concludes the program and tells the

person what numbers you've put into your little boxes. It goes through zero to nine

and it tells you how many are in each box.”

Rist (1995) showed that novices can expound and apply plans without explicit

instruction of programming strategies. Some control group participants did learn

plans implicitly. In an observable instance Participant 6 stated the following which

could be seen as a description of a Set-Counting plan using an array: “I've created an

array, because I think that for the program to calculate, between 0 and 9, how many

times it occurs, it has to have an array for, say if it‟s zero, then zero; for one it's one,

two three, four... So the array for zero is, like, zero, because arrays start from zero,

right? Then, so in the box for zero, say the user enters three times it will refer back to

this array zero, it will keep repeating itself in the loop, from then on how many times

it gets zero in that box it will get the output.”

Participants Failed to Learn Some Plans

It was clear that participants did not learn all the plans they were expected to learn.

This was true for participants from the control group who were expected to learn

strategies implicitly; for example, Participant 6 felt there must be some maximum

formula that would take care of the task of calculating maximums: “And probably

some formula to determine the highest number (which I don't know how)”.

Experimental group participants also failed to demonstrate application of some plans,

even though they had been explicitly exposed to them. For example Participant 30,

when asked how a maximum could be determined, responded, “Can you make the

program look at the digits I guess, so you could determine the maximum. I don't

know.” Participant 21, when asked, “What does it mean by determine the

maximum?”, responded with, “Perhaps the maximum sum. I'm not really sure.”

Experimental Group Participants Used Plan Terminology and Ideas

On a number of occasions participants from the experimental group (who were

exposed to plans and related terminology) referred to parts of their code using plan

Incorporating Strategies Explicitly into an Artificial Curriculum Chapter 6

 Page 76

terminology, or attempted to describe plan terminology without using specific

names.

Participant 12, while discussing the integration of counting with input in Problem 2

said “they have to merge with the loop”.

During the interview with Participant 21 discussing loops in Problem 2, the

participant cannot remember the terminology for a Sentinel-Controlled Loop but

describes it well: “…and then create a loop… get user input outside and inside so

that it's, I can't remember the name.” Later Participant 21, while interpreting part of

the problem statement, recalls the correct terms and says “Which I did recognise as a

sentinel loop.”

The use of Goal/Plan terminology was not universal by any means. Participants from

the experimental group still resorted to syntactical description when describing their

code and needed to be prompted further to elicit possible strategy understandings.

Participant 12, who delivered perhaps the best result stated the following syntactical

reading of code: “It's a loop, for loop. For counter equals zero. Start from zero again.

And counter smaller than numberNum. Counter++. And the message is

numArray[counter] equals zero.”

Experimental Group Participants showed Confidence in Solutions

Experimental group participants were more confident in their solutions, or their

ability to correct their solutions if given the chance. This is despite the fact that no

participant had created a fully complete solution to any of the problems. Participant

21 was confident about all his solutions, even though they were flawed. Participant

30 showed confidence in most of their attempted solutions even though they were

flawed; when asked “Does your solution solve the problem?”, she replied, “…Well

my solution in my head did, not like the first one, so yes. I did understand this

question so I could go through the steps of doing it.”

Participant 12, who was the closest of all participants to solving the problems

correctly, was realistic about the correctness of their solutions. During discussion

Participant 12 saw the flaws in two of three of his solutions. Interestingly this

participant explains his confidence in one of their problems as being the result of

understanding the required strategy: “I'm very confident in doing this question

because I know the right way to structure [it].”

Control Group Participants showed a Lack of Confidence

When asked if they believed if their solutions correctly solved each problem,

members of the control group almost universally showed a lack of confidence in the

solutions they had created.

Participant 1 lacks confidence in all his solutions except for Problem 2, where they

claim more time was needed, even though time was not restricted during the test.

When this participant was asked, “Does your solution solve the problem?”, he

answered, “Probably, if I got time to add up more things.” This same participant later

describes a lack of confidence in their general programming ability: “I'll probably

mess it up anyways, because I'm still not sure how to...”, and later expresses a typical

gap between design and implementation where plans can be applied: “I understand

the question. I was thinking through. I got everything right in my head. I just can't

put it onto codes.”

Chapter 6 Incorporating Strategies Explicitly into an Artificial Curriculum

 Page 77

The other control group participant interviewed, Participant 6, showed some

confidence in one solution, believing, correctly, that the remaining solutions were

flawed.

6.6 Discussion

The research questions posed earlier are answered by the results of this experiment

and observations made during the experiment.

6.6.1 Incorporating Explicit Programming Strategies

RQ6. Can programming strategies be explicitly incorporated into an

introductory programming curriculum?

Programming strategies can be explicitly incorporated into an introductory

programming curriculum. The curriculum used in this experiment, and its successful

delivery, is evidence that this can be done.

6.6.2 Balance of Lectures and Practice

RQ7. What is the significance of the time consumed by this additional

instruction?

As stated in section 6.5.2, the additional instruction in the experimental curriculum

did require more time in lecture sessions, but students were still able to complete set

exercises by the end of each session. It can therefore be asserted that this additional

instruction is balanced by an eased burden on students in completing practical

exercises.

This result is useful for our comparison of the curricula, however in regular teaching,

lectures and practicals are usually conducted in disjoint time slots, so extending the

length of a lecture would not normally impact on practice time.

Having more material in one curriculum over another would increase the burden on

student learning, with more content to process. This addition needs to be compared

with the effort a student would have to make to develop the needed programming

strategies in an implicit-only model.

6.6.3 Assessment of Programming Strategies

RQ8. Can programming strategies, explicitly taught in an introductory

programming course, be assessed?

Goal/Plan Analysis of students‟ solutions is far from new, but as a means of

assessment in a programming course it is novel. This experiment showed that

programming strategies applied to create solutions can be assessed using Goal/Plan

Analysis. A limitation of using Goal/Plan Analysis is that it requires students to

generate code before it can be assessed. In early stages, assessing generated code

might not be the best method of assessing programming strategies.

Incorporating Strategies Explicitly into an Artificial Curriculum Chapter 6

 Page 78

6.6.4 Impact on Programming Strategy Ability

RQ9. What impact does explicit strategy instruction have on students and their

ability to apply strategies when compared to an implicit-only approach?

From Goal/Plan Analysis of participants' solutions and through interviews it

appeared that students exposed to the experimental curriculum may be more likely to

understand and apply strategies than participants who were expected to learn

strategies implicitly.

It was by no means guaranteed that participants explicitly shown programming

strategies would understand and apply all of these strategies. It was also

demonstrated that, although less common, participants exposed to an implicit-only

curriculum can learn programming strategies.

6.6.5 Other Observed Effects

RQ10. Are there any other observable effects or contrasts between students of a

traditional curriculum and one with added explicit programming strategy

instruction?

Two other observations can be made from results shown.

A Vocabulary for Strategies

Some participants in the experimental group, who were exposed to plan terminology

during their instruction, went on to use this terminology during interviews. If this

were applied during an ordinary teaching period with multiple weeks of instruction

and assessment, being able to have students use a vocabulary of programming

strategy terms would be beneficial. Instructors would be able to describe the

strategies they expect students to apply in tasks. It would be possible to allocate

marks for the application of specific strategies. Instructors would have the potential

to describe and analyse code using such terminology.

Confidence in Solutions

A contrast was found in the confidence of participants. Participants from the

experimental group, who had been exposed to programming strategies explicitly,

were confident about the solutions they presented and the understanding of the

strategies needed to complete the solutions. Participants from the control group were

not so confident. It is not necessarily clear why this is the case. Perhaps because

experimental group participants had been exposed to a higher level of programming

thought, they might feel that the underlying syntactical implementation is less

difficult to achieve. Reber (1993) showed that students exposed to implicit-only

instruction can gain aptitude but fail to gain understanding of underlying systems.

This seems to be consistent with the experience of participants exposed to implicit-

only instruction of programming strategies in this experiment who were, in some

instances, able to produce partial solutions, but appeared to have a general lack of

understanding of programming strategies and the processes needed to solve the

problems presented.

Chapter 6 Incorporating Strategies Explicitly into an Artificial Curriculum

 Page 79

6.6.6 Flaws in the Experimental Approach

A number of flaws in the experimental approach were realised during and after the

experiment.

Size of Groups

The size of the experimental and control groups was sufficient to test the potential to

incorporate explicit programming strategy content into an introductory programming

curriculum and the timing of that incorporation. It was sufficient to allow a small

number of participants to experience these curricula and be interviewed on their

understandings that developed through this participation.

Although the Goal/Plan Analysis of participants' solutions showed differences

between the groups, the size of the population of participants was insufficient to

statistically infer the superiority of the experimental curriculum. It is not clear that

increasing the size of the participant population would produce consistent

reproducible results, which appears to be the bane of many explorations in

educational settings (see Hirsch (2002)).

Absorbing Concepts Rapidly

Participants in the study were diligent students. All students were able to follow the

course materials and achieve results in paper exercises and practical computer tasks.

However, complete solutions in the final assessment, involving generation of code to

novel problems, appear to have been more than could be expected from students at

the end of two days of instruction. Although exercises were given to reinforce

concepts covered, these may not have been as effective as if they were completed

days or weeks later.

The result of this experiment shows that the strategy ability of participants exposed

to the experimental curriculum produced an average overall completeness of 39% for

Problem 2 compared to students who had been exposed to a semester-long,

traditional introductory course in programming, who achieved an average overall

completeness of 57% on effectively the same problem.

Generation of Code can be a Poor Measure

The final assessment asked students to generate code to novel problems, applying

strategies they had learned. Most of the participants were unable to create complete

solutions to these problems. This may be attributable to a lag between:

1. exposure to a programming strategy,

2. the ability to comprehend that strategy, and eventually

3. the ability to generate an implementation that applies that strategy.

After only two days, asking participants to generate code might have been a less

accurate test than gauging their programming strategy skill by other means, such as

comprehension tests or cases involving errors.

6.7 Implications

This experiment showed that it is possible to create a curriculum that explicitly

incorporates sub-algorithmic programming strategies. The incorporation of such

additional instruction does not create an infeasible burden of time.

Incorporating Strategies Explicitly into an Artificial Curriculum Chapter 6

 Page 80

There were also noticeable effects on the students participating in the experiment and

exposed to this additional instruction. Participants who covered the experimental

curriculum appeared more likely to understand and apply the programming strategies

they had been exposed to. These students used terms from a programming strategy

vocabulary presented in the curriculum, which could be useful in teaching and

assessment if applied to a full-scale course. Participants who covered the

experimental curriculum claimed confidence in the solutions they had created and

their understanding of the strategies used to create them, while students not exposed

to explicit programming strategies doubted their abilities.

Validate authentic
expert

programming
strategies

Explicitly
incorporate

programming
strategies

Test instruction
and assessment

in real intro
programming

setting

Measure novice
strategies in implicit-

only setting

Measure novice
strategies in implicit-

only setting

Figure 6.3. Overview of experiments in a process after third experiment

Having described positive benefits from explicitly incorporating programming

strategy instruction in an artificial setting, the next stage of experimentation involves

applying this approach to an actual course and evaluating student outcomes.

Goal/Plan Analysis is a basic tool for analysing student code and detecting

deficiencies in student understanding. It has been used here to measure student

solutions and as a basis for a deeper exploration of novice understanding. However,

the use of Goal/Plan Analysis is limited and would not be appropriate to assess

students at all stages of a full introductory programming course. In an actual course

setting, multiple forms of assessment are needed to accurately and consistently

measure a student's strategy skill. Novices can be encouraged to apply specific

strategies in assignment instructions and exam questions. The marking criteria used

to judge assignments and exams can openly test for use of particular strategies and

reward their use with credit. Assigning marks for application of strategies in

assessments and exams will hopefully encourage students to value this component of

the curriculum, devoting study time to programming strategies.

Chapter 7 Teaching and Assessing Programming Strategies Explicitly in an Actual Setting

 Page 81

7. Teaching and Assessing Programming

Strategies Explicitly in an Actual Setting

“Good fortune is what happens when opportunity meets with planning.”

Thomas Alva Edison

Overview

Previous experiments, described in earlier chapters, led to the following conclusions.

 Under a curriculum relying on implicit instruction of programming strategies,

novices created solutions that demonstrated strategy-related flaws (chapter 4).

 A representation of sub-algorithmic programming strategies used by experts

can be expressed in a form that is appropriate for incorporation in an

introductory programming curriculum (chapter 5).

 It is possible to incorporate programming strategies explicitly into an

introductory programming curriculum with observable effects on novices

including use of strategies in solutions, confidence in solutions and use of a

vocabulary of strategies (chapter 6).

This chapter describes how programming strategies were explicitly incorporated and

assessed in an actual introductory programming course. The inclusion of explicit

programming strategy content began in the second half of 2005 and was refined over

a two-and-a-half-year period.

As well as describing how this integration was achieved, comparisons are made

between the outcomes of novices under the new curriculum, which included explicit

programming strategies, and results of novices learning under an implicit-only

strategy curriculum, as discovered in the initial experiment (chapter 4). Also

measured is the relationship between the programming knowledge and programming

strategy components of the course. This is achieved by comparing student results in

assessment items that targeted each area independently.

Strategies were successfully integrated into an actual course curriculum and assessed

in assignments and examinations. Measurement of novices‟ strategy skill under the

new curriculum showed improvement over the benchmark set under the previous

traditional curriculum. It was also found that student performance was consistent

between knowledge and strategy examination questions, validating the strategy

questions used.

7.1 Introduction

An initial experiment showed that novices learning programming strategies

implicitly created solutions that contained strategy-related flaws (chapter 4). Only a

single student out of 42 was able to achieve a complete solution containing all

expected plans for a classic averaging problem. Overall, students applied only 57%

of the expected plans.

The presence of these flaws indicated possible weaknesses in the curriculum used to

instruct the novices in programming strategies. To leverage the potential of explicit

Teaching and Assessing Programming Strategies Explicitly in an Actual Setting Chapter 7

 Page 82

instruction (see section 2.3.6) an authentic representation of programming strategies,

capable of being expressed explicitly to novices, was sought. Plans used by Soloway

(1986) are a model of programming strategies that are supposedly based on the tacit

understanding of experts. An experiment was conducted to validate that plans are a

representation of the sub-algorithmic strategies used by experts (chapter 5). This

experiment showed that plans are used by expert programmers.

Taking plans as an authentic representation of programming strategies, an

experiment was conducted (chapter 6) that compared two curricula: one including

programming strategies explicitly and a traditional curriculum that required students

to learn strategies implicitly. The curricula were delivered in an artificial setting. The

experiment showed that it is possible to incorporate strategies explicitly into a

curriculum. Results demonstrated that experimental participants, who had been

exposed to explicit strategy instruction, used strategies more than control group

participants (though not significantly so). Novices exposed to explicit strategy

instruction used a vocabulary of strategies to describe their solutions and showed

greater confidence than those exposed to a traditional curriculum.

The previous experiment was conducted in an artificial setting with a minimal

curriculum. Only a limited set of strategies were incorporated, and a greater set is

needed for a full introductory programming course held over a semester. A larger set

of programming strategies needs to be expressed and a method of explicitly

incorporating these strategies into a full curriculum needs to be developed and tested.

The main testing approach used to gauge strategy application in previous

experiments was Goal/Plan Analysis. With novices, this approach is limited to

analysing solutions generated at or near the end of an introductory programming

course. After the previous experiment (chapter 6) it was proposed that analysis of

strategy skill should be conducted in more flexible ways throughout the course by

taking the ideas inherent in Goal/Plan Analysis and using them to assess student

work in assignments and examinations. The following are ways strategies could be

incorporated in assignments and examinations.

 Encouraging students to use particular strategies when generating solutions

for assignments

 Awarding credit for application of strategies in assignment marking criteria

 Using problems that focus on programming strategies as part of the final

examination

 Analysing examination solutions in a Goal/Plan-Analysis-like manner

As well as encouraging the learning benefits suggested in literature and discovered in

the previous experiment, awarding credit for applying strategies in assessments may

encourage students to value this important component of programming and devote

more effort to learning it.

The Leeds group (Lister et al., 2004) attempted to isolate the cause of poor novice

results measured by the McCracken group (McCracken et al., 2001). The Leeds

group reported that many instructors attribute poor results to poor problem-solving

ability in novices. The group attempted to create programming questions that

required no problem-solving ability to answer. They felt that if novices succeeded in

the test it would confirm that novices can successfully acquire programming

knowledge so instructors could put this issue aside and focus their attention on

improving strategy instruction. If novices failed this test, it would indicate a failure

Chapter 7 Teaching and Assessing Programming Strategies Explicitly in an Actual Setting

 Page 83

in programming knowledge. The results of the Leeds group study, and the BRACElet

project (Whalley et al., 2006) that followed, showed that many novices exhibit a

fragile programming knowledge and very few can demonstrate programming strategy

understanding in a comprehension exercise.

After the McCracken, Leeds and BRACElet series of experiments, some concerns

still remain. It is not clear if programming knowledge instruction must precede

strategy instruction. It is not clear whether a student with a flawed programming

knowledge can learn and understand programming strategies. If it is possible to

isolate programming knowledge ability from strategy ability it may be possible to

define a clearer relationship between these aspects.

7.1.1 Participants

Participants in the current experiment were students studying in a first-year

introductory programming course at the University of Southern Queensland. Results

shown in this chapter were taken from two cohorts, those studying in second

semester of 2005 and those studying in the second semester of 2007.

Participants included a mix of students attending on-campus classes and those

studying externally. Results were drawn from examinations undertaken by all

students. The size of the 2005 and 2007 cohorts was lower than the 2003 cohort who

participated in the initial experiment described in chapter 4, however only on-campus

students were used in the initial experiment, so participant numbers are similar.

 2003 cohort included 42 participants

 2005 cohort included 36 participants

 2007 cohort included 45 participants

Participants included school leavers and mature-aged students. Students come from a

range of discipline areas but were primarily IT and Engineering students. The mix of

students and entry standard had not changed since the initial experiment.

7.1.2 Setting

The setting of the experiment described in this chapter is essentially the same as that

of the initial experiment described in chapter 4, except for the inclusion of explicit

strategy instruction in course materials and assessment items. These changes are

described in detail in section 7.3 and 7.4 respectively. The instructor was the

researcher and author of this dissertation.

7.2 Research Questions

The current experiment was motivated by the following questions which are

answered in section 7.7.

This section is divided into three parts related to the three perspectives taken when

conducting this experiment. This three-perspective structure is mirrored in the

Methodology, Results and Discussion sections of this chapter.

7.2.1 Integration

The first two questions of this chapter consider the possibility of instructing and

assessing programming strategies explicitly. Although this has been established on a

Teaching and Assessing Programming Strategies Explicitly in an Actual Setting Chapter 7

 Page 84

smaller scale in an artificial setting, it needs to be tested with a complete curriculum

in an actual introductory programming course.

RQ11. Can instruction of programming strategies be explicitly incorporated into

instruction in an actual introductory programming course?

RQ12. Can programming strategy skill be measured as part of the assessment in

an actual introductory programming course?

7.2.2 Impact

The third question relates to the effect of introducing explicit programming strategies

to novice programmers. This question will be answered by analysing novice

performance on assessments in the course and comparing this to the baseline

performance described by the initial experiment (from chapter 4).

RQ13. What is the impact on novice programmers of incorporating programming

strategy explicitly into instruction and assessment?

7.2.3 Consistency of Knowledge and Strategy Skill

The final question asks if it is possible and appropriate to separate assessment items

that relate to knowledge from those that relate to strategies. This is done by

comparing results of assessment items independently covering knowledge and

strategy, and checking they are consistent for novices. This comparison may also

shed light on the relationship between knowledge and strategy skill.

RQ14. Are novices’ results in assessment of programming strategies consistent

with their results in assessment of programming knowledge?

7.3 Integrating Strategy Instruction into Written Materials,
Lectures, Tutorials and Practical Classes

Over the two-and-a-half-year period between the second half of 2005 and the end of

2007, programming strategies have been incorporated into the curriculum of an

introductory programming course at the University of Southern Queensland.

The course is delivered to students on campus (approximately 40% of the student

cohort) and students studying externally (potentially anywhere in the world). On-

campus students are expected to attend two one-hour lectures followed later in the

week by an hour-long tutorial (in a normal classroom) and a two-hour practical class

with computers. External students study independently by reading the same written

materials, accessing lecture slides with audio online, and undertaking tutorial and

practical exercises at home.

Chapter 7 Teaching and Assessing Programming Strategies Explicitly in an Actual Setting

 Page 85

1.6.1 Design

An expert programmer will take time to

properly design a solution. It is tempting to

jump to implementation, but often, without a

reasonable design, a programmer can waste

time correcting a poor implementation and

take far longer than if they had spent a small

amount of time on design first.

From a problem statement a programmer will

identify the goals that need to be achieved.

These goals can usually be found through a

careful reading of the problem statement.

When the goals of the problem have

been identified, a programmer can

choose appropriate plans that satisfy

goals. A plan is a small, independent

strategy that the programmer has

applied in a past solution. During this

course we will be covering

programming knowledge and also the

strategies that you can use to apply

this knowledge. Look for the

STRATEGY sidebar to differentiate parts of this book that cover strategies.

Once plans have been identified they need to be combined together to form a solution. Plans

can be combined together in three possible ways.

 Abutment

Placing the plans one after another in the correct sequence that will solve the

problem.

 Merging
Integrating plans so that common parts are performed together

 Nesting
Placing one plan inside another plan

Depending on the scale of the solution a programmer will design a solution in their head, on

paper or using some computerised tool. The solution will show the programmer how to

implement the program.

S
T

R
A

T
E

G
Y

Problem

Goal Goal Goal…

Plan Plan Plan…

Solution

Figure 7.1. Introduction to strategies from the Study Book

Programming knowledge is presented in a similar manner to the traditional

curriculum presented with the first experiment (described in chapter 4). Strategies

are interwoven through the course in an explicit manner. In the beginning of the

course the distinction between knowledge and strategies is presented. Figure 7.1

shows an initial description of plans as strategies within a description of the

programming process. Strategies are a part of the curriculum and testing students‟

strategy skills forms part of the assessment. Students are informed of this.

Written materials provided to students include notes for each module of the course

and exercises for each week. Students are encouraged to read the written materials

before attending or listening to lectures provided online (with audio for external

students). The lectures complement the written materials and allow opportunities for

questions and further explanations. Each week students are expected to undertake

written and computer-based exercises, in tutorials and practicals, to reinforce the

material for the week.

Teaching and Assessing Programming Strategies Explicitly in an Actual Setting Chapter 7

 Page 86

The following sections describe how programming strategies were explicitly

incorporated into written materials, lectures and weekly exercises. Assessment of

students‟ strategy skills in assignments and in the course examination is described in

section 7.4.

7.3.1 Strategy Guide

The major component of written material provided to novices in the course is

referred to as a „Study Book‟. The bulk of the Study Book is divided into modules,

with one module being covered each week of the course. More detail about the Study

Book modules is given in section 7.3.2 below. At the end of the study book two

appendices are given: one is a syntax guide and the other collects together all the

strategies that are covered in the course. This „Strategy Guide‟ is included in this

dissertation as Appendix A.

The Strategy Guide begins by defining how strategies can be integrated. Abutment,

nesting and merging are discussed in this introduction. Each strategy is then

described as a plan (some later strategies are basic algorithms). The programming

knowledge required to apply each plan is stated at the beginning of each plan

description. Examples and diagrams are provided for most strategies. This Strategy

Guide forms a resource for novices studying in the course, and possibly after they

have completed the course. All strategies assessed in assignments and the

examination can be found in this guide; students are told this at the beginning of the

course and before the examination. Strategies are addressed individually in the

modules of the Study Book and lectures, often with a different context or example.

The Strategy Guide contains 18 plans ranging in scale from very simple plans such

as finding an average, through several sub-algorithmic plans such as a triangular

swap (see Figure 7.2 below for this example), and on to some algorithmic plans such

as sorting. The Strategy Guide has developed and been refined during its use and in

future it should grow and be modified as the need arises. The 18 strategies currently

in the Strategy Guide are listed below.

1. Average plan

2. Divisibility plan

3. Cycle Position plan

4. Number Decomposition plan

5. Initialisation plan

6. Triangular Swap plan

7. Guarded Exception plans (including Guarded Division plan)

8. Counter-Controlled Loop plan

9. Primed Sentinel-Controlled Loop plan

10. Sum and Count plans

11. Validation plan

12. Min/Max plans

13. Tallying plan

14. Search algorithm

Chapter 7 Teaching and Assessing Programming Strategies Explicitly in an Actual Setting

 Page 87

15. Bubble Sort algorithm

16. Command Line Arguments plan

17. File Use plan

18. Recursion plans (single- and multi-branching)

Teaching and Assessing Programming Strategies Explicitly in an Actual Setting Chapter 7

 Page 88

Plan 6. Triangular Swap Plan

This plan requires an understanding of variables and the assignment operator.

Consider how you swap two items. Imagine two pencils in front of you. To swap their positions you

would pick up one with one hand, the second with your other hand and then place each in their new

positions.

A computer can only perform one action at a time. Now, imagine that you only have one hand; how

would you swap the positions of the two pencils now? Keep in mind also that when a variable is

assigned a new value, the old value is replaced and cannot be accessed later. Attempting to swap

using the above method will result in two copies of the same value.

To achieve a swap a temporary position is needed. One of the pencils could be moved to the

temporary position; the second pencil could be moved to its new location; finally the first pencil could

be moved from the temporary position to its new position.

Here is an example in the context of a full program.

#include <stdio.h>

int main() {

 int firstPosition = 5; // First position containing value to swap

 int secondPosition = 6; // Second position containing value to swap

 int tempPosition; // Temporary position for swap

 // Output the numbers after the swap

 printf("Before Swap...\n");

 printf("First: %i, Second: %i\n", firstPosition, secondPosition);

 // Swap the two numbers in a triangular swap

 // 1. Copy the value from the second position to temp

 tempPosition = secondPosition;

 // 2. Copy the value from the first position to the second

 secondPosition = firstPosition;

 // 3. Copy the value from the temp position to the first

 firstPosition = tempPosition;

 // Output the numbers after the swap

 printf("After Swap...\n");

 printf("First: %i, Second: %i\n", firstPosition, secondPosition);

}

Here is the output of the above program.

Before Swap...

First: 5, Second: 6

After Swap...

First: 6, Second: 5

The above results show the values are swapped and not duplicated.

Position 1 Position 2

Temp Pos

Position 1 Position 2

1
Temp Pos

Position 1 Position 2

2

Temp Pos

Position 1 Position 2

3

Figure 7.2. An example of a plan from the Strategy Guide

Chapter 7 Teaching and Assessing Programming Strategies Explicitly in an Actual Setting

 Page 89

7.3.2 Explicit Incorporation in Written Notes

Within the 12 modules of the Study Book, programming strategies are introduced

after presenting the programming knowledge applied in each strategy. In this context

the strategies show immediately how the knowledge can be applied, which, in its

purest sense, is the nature of a strategy.

3.3.4 Triangular Swap Plan

Consider how you swap two items. Imagine two pencils in front of you. To swap their

positions you would pick up one with one hand, the second with your other hand and

then place each in their new positions.

Position 1 Position 2

A computer can only perform one action at a time. Now imagine that you only have

one hand; how would you swap the positions of the two pencils now? Keep in mind

also that when a variable is assigned a new value, the old value is replaced and cannot

be accessed later. Attempting to swap using the above method will result in two

copies of the same value.

Temp Pos

Position 1 Position 2

1
Temp Pos

Position 1 Position 2

2

Temp Pos

Position 1 Position 2

3

To achieve a swap a temporary position is needed. One of the pencils could be moved

to the temporary position; the second pencil could be moved to its new location;

finally the first pencil could be moved from the temporary position to its new

position.

S
T

R
A

T
E

G
Y

Figure 7.3. An example of part of a strategy from the Study Book within a teaching module

Figure 7.3 shows an extract from the Study Book including the same Triangular

Swap plan shown previously. This is followed by a code example showing the plan

applied. Note the bar down the left that distinguishes parts of the Study Book as

covering a programming strategy; other parts of the Study Book, covering

programming knowledge and other content, do not show this bar.

The Triangular Swap plan is shown after students cover variables and assignment as

programming knowledge components. This takes place in the third module, which is

covered during the third week of the course. This plan is discussed in lectures,

reinforced in tutorial and practical exercises and assessed in assignments and the

examination. The Triangular Swap plan appears again when the Bubble Sort

Algorithm is presented in a later module of the course. This demonstrates how

identifying strategies and creating a vocabulary for strategies can allow instructors to

Teaching and Assessing Programming Strategies Explicitly in an Actual Setting Chapter 7

 Page 90

use this vocabulary, and in doing so, reinforce strategies when they appear later in

the course.

7.3.3 Explicit Incorporation in Lectures

During lectures, strategies are presented and discussed after relevant programming

knowledge content had been covered. Lectures are presented in person to a class of

on-campus students. The lecture is also recorded and the slides and audio are

presented together as a „Breeze‟ flash presentation and placed on the course website.

Figure 7.4. Example of a lecture slide showing the Guarded Division plan (slide 1 of 2)

The example shown in Figure 7.4 is one of two related slides. On the left of the slide

the outline of the lecture is shown and the current topic, „Guarded Division‟, is

highlighted. Observe that much of the previous content of the lecture has covered

programming knowledge. Before a guarded division can be applied novices must be

aware of the if statement and the division operator (covered in a previous module).

In the following slide (shown in Figure 7.5 below) students are shown how to apply

this plan
2
. This strategy is reinforced in the tutorial class held later that same week

and is assessed in assignments and sometimes in the examination.

2
 The Guarded Division plan is covered early in the course (at week 3) so the implementation shown

in Figure 7.5 when the divisor is zero is a naive one. The function returns the average if a non-zero

count is given, but when the count is zero the function returns zero. Ideally an exception would be

generated in response to this event.

Chapter 7 Teaching and Assessing Programming Strategies Explicitly in an Actual Setting

 Page 91

Figure 7.5. Example of a lecture slide showing the Guarded Division plan (slide 2 of 2)

7.3.4 Strategies in Tutorial and Practical Exercises

Strategies are practiced in Tutorial and Practical classes. Exercises for these classes

are listed in the Study Book.

13. Fill in the blanks in the following code which swaps the values of two character variables
and then outputs the variables new values.

#include <stdio.h>

int main() {

 char letter1 = 'a'; // First letter

 char letter2 = 'b'; // Second letter

 char temp = '-'; // Temporary position

 // Swap the two letters in a triangular swap

 // Output the letters

}

Figure 7.6. Example exercise from Module 3 requiring Triangular Swap plan

The example shown in Figure 7.6 above requires students to apply a Triangular Swap

plan to swap two character values. The plan name is mentioned explicitly in the code

Teaching and Assessing Programming Strategies Explicitly in an Actual Setting Chapter 7

 Page 92

(in a comment) and three blanks imply the use of the triangular swap. Later in the

course this strategy is used again in an exercise where students write a function that

takes two pointers and orders the values to which they point.

Computer Exercises

6. Copy the Guarding Division function example from page 15 that will calculate an

average. Add a main() function that will call the average()function. It should still

work when the value passed to count is zero.

6.1 Remove the guarding if-else stateme nt so all that remains in the function is the

return statement. Now test the function sending zero as the value of count .

When the program is compiled and run, the operating system should shut the

program down and display an error.

6.2 Restore the guard to the function and test that it works correctly again.

Figure 7.7. Example exercise from Module 5 testing the Division by Zero plan

Figure 7.7 contains an example of an exercise that asks the students to experiment

with the Guarded Division plan. This exercise encourages novices to experience the

consequences (a program crash) resulting from dividing by zero. Through this,

novices will hopefully come to appreciate the necessity of protecting the division

with a guard.

In a description from an earlier instance of the same course, prior to adding strategy

content explicitly, the following exercise was given as an example.

Write a program that will allow the user to enter words. Use the %s format

sequence in a scanf() call to capture each word one at a time. Find the

length of each word using strlen(). To end the user input, the user will

enter the string “end”. At the end of the program, output the count of words

and the average length of the words.

This example was used in section 4.1.2 to demonstrate how novices were expected to

learn programming strategies implicitly in order to solve problems. The problem

statement describes what needs to be achieved, but does not suggest how a solution

should be constructed. As a contrast, a new version is shown in Figure 7.8 below. In

the new version students are given the same initial requirement with a few

programming knowledge embellishments (such as the size of an array). Following

this, in the third and fourth paragraphs of the problem statement, strategy instructions

are given. Students are expected to use a Primed Sentinel-Controlled Loop to achieve

repetition; this plan is named and its use is directed. The students are also reminded

to guard the division when calculating the average. Note that students are expected to

know what a sentinel-controlled loop and guarded division are at this stage. This

problem relies on students possessing a vocabulary that includes the term „sentinel‟,

which is used to define the value that, when encountered, will stop the repetition.

Students are deliberately led to practise application of particular strategies for these

problems in the same way that an instructor might encourage students to use a

particular language construct, such as a for loop. In the examination, students are

expected to apply required strategies without being led in this manner.

Chapter 7 Teaching and Assessing Programming Strategies Explicitly in an Actual Setting

 Page 93

Computer Exercises

8 Write a program that will allow the user to enter words. Use the %s format sequence in

a scanf() call to capture each word one at a time (this will skip whitespace between

words). You don't have to keep the user inputs in memory; you only need to deal with

each word one at a time. Create an array with 256 characters for the input word. Set the

maximum word size as a constant.

Find the length of each word using strlen(). To end the user input, the user will

enter the string "end" (you will have to use strcmp() to test for this). You will need

to include string.h to use these functions. Set the sentinel word as a constant.

At the end of the program, output the count of words, the total number of letters and the

average length of the words. Be sure to use a sentinel controlled loop and guard the

calculation of the average word length. Keep all numeric values as integers.

Your program should work if several words are entered before the sentinel, or if the

sentinel is entered as the first input. Test your program by entering "end" as the first

word. Try entering more than one word per line of input.

Figure 7.8. Example exercise from Module 8 requiring the Sentinel-Controlled Loop and

Guarded Division plans. Highlighting (added for this figure only) shows strategy content

7.4 Assessing Strategy Skill in Assignments and Examinations

As well as being introduced explicitly into instructional materials, programming

strategies also became explicitly assessed in the course. This section describes how

programming strategies have been included in assignment instructions and marking

criteria as well as how examinations have been designed and marked to include

testing of strategy-related abilities.

When teaching strategies explicitly, the challenge for instructors is to create

problems that focus on particular programming strategies. Achieving this allows

novices to demonstrate specific strategies in assignments and the examination.

7.4.1 Assignment Instructions

In assignment instructions students are given tasks that require them to apply specific

programming strategies. Figure 7.9 below is an extract from an assignment‟s

instructions where students are asked to use a Primed Sentinel-Controlled Loop to

input characters entered by a user until the end-of-line is encountered.

Teaching and Assessing Programming Strategies Explicitly in an Actual Setting Chapter 7

 Page 94

 In your program, create the following functions.

…

void decryptEncryptLine(int shift);

 This function will shift alphabetic characters by the amount of the shift. The

function performs in the same manner for encryption and decryption. If the

shift is a positive amount, this will shift characters forward (encrypt

characters) and if negative it will shift them back (decrypt characters).

 The function will input and process each character one at a time until a

newline character is detected. Use a primed sentinel controlled loop. Do not

try to store or process entire lines.

Figure 7.9. An extract from the instructions for a programming assignment highlighting the

requirement for a specific programming strategy

7.4.2 Assignment Marking Criteria

As well as requiring specific strategies to be applied in the creation of solutions, the

marking schema used to evaluate solutions also explicitly includes references to

specific strategies.

In the course described here students participate in electronic peer-review as part of

each assignment. Each marking scheme is constructed well in advance and released

as part of the assignment instructions. Students are therefore aware of how their

submission will be judged before they submit. They can see that they will receive

marks for applying specific programming strategies. Being involved in peer-review,

students are also expected to be able to judge if a peer-student has correctly applied a

specific strategy where required by criteria.

Criteria relating to programming strategies are mixed with other criteria in each

marking scheme. Figure 7.10 below is an extract from the marking scheme for the

same assignment that was used in the previous section.

…

Check that no variables are declared outside functions. This does not include

global constants.

 A Primed Sentinel Controlled Loop is used to process menu options in the

main() function

The function should contain a priming input before the loop and a subsequent

input at the end of the loop. If the user enters the quit option in the first instance,

the loop body should not be entered.

 A Primed Sentinel Controlled Loop is used to gather characters for input

until the end of a line in the decryptEncryptLine() function

The function should contain a priming input before the loop and a subsequent

input at the end of the loop. If the user enters a blank line, the loop body should

not be entered.

 Code is indented consistently and no line is longer than 80 characters

…

Figure 7.10. An extract from the marking scheme stating that a particular programming

strategy is required in the solution for a programming assignment

Chapter 7 Teaching and Assessing Programming Strategies Explicitly in an Actual Setting

 Page 95

7.4.3 Examination Questions

The philosophy used to create questions for the examination is based on the aspects

listed in section 2.3. Questions attempt to distinguish abilities in knowledge and

strategies, and separately test comprehension and generation. As noted in section

2.3.5, by combining these aspects, four types of question can be defined as shown in

Figure 7.11 (a reproduction of Figure 2.1).

Knowledge
Comprehension

Knowledge
Generation

Strategy
Comprehension

Strategy
Generation

Knowledge

Strategy

G
e
n
e
ra

tio
n

C
o
m

p
re

h
e
n
s
io

n

Figure 7.11. Four types of examination questions

based on novice instruction aspects

Targeting questions to one of these four areas is not always simple. Some questions

may stray over the boundaries between areas. The focus of the question can be

reinforced by criteria defining how the answer is awarded marks (see section 7.4.4).

Knowledge-Comprehension Questions

In order to test knowledge and comprehension an examination question must focus

on language syntax but not ask the novice to generate any code. The question should

test that the student understands an example shown to them, possibly by simulating

how the code would be executed. An example of a knowledge-comprehension

examination question is shown in Figure 7.12 below.

Teaching and Assessing Programming Strategies Explicitly in an Actual Setting Chapter 7

 Page 96

QUESTION 1 (10 marks, 12min)

What will the following output?

#include <stdio.h>

int testFunc(int *ptr, int num);

int main() {

 int x=7, y=3, z=5;

 printf("%i %i\n", x, y);

 z = testFunc(&y, x);

 printf("%i %i %i\n", x, y, z);

}

int testFunc(int *ptr, int num) {

 int temp;

 printf("%i %i\n", *ptr, num);

 temp = num;

 num = *ptr;

 *ptr = temp;

 printf("%i %i\n", *ptr, num);

 return num + (*ptr);

}

Figure 7.12. Example of a Knowledge-Comprehension examination question

Knowledge-Generation Questions

Knowledge-generation questions should require novices to generate code but not

solve a problem requiring any programming strategies. The question should prompt

the novice to create code that demonstrates their understanding of specific language

constructs. An example of such a question is given as Figure 7.13 below.

QUESTION 4 (10 marks, 17min)

Write a main() function that input an integer from a user and then use a switch statement to respond to

the user’s input with one of the following outputs:

Where 0 is entered, output hello

Where 1 is entered, output bye

Where any other value is entered, output invalid

Figure 7.13. Example of a Knowledge-Generation examination question

Strategy-Comprehension Questions

Strategy-comprehension questions are perhaps the most difficult to define. These

questions must test the strategy potential of a novice without asking them to generate

any code. Possible ways to achieve this include the following.

 Asking novices to identify or describe strategies used in a given solution

 Asking novices to relate common strategies applied across multiple solutions

 Asking novices to identify how a strategy has been incorrectly applied in, or

is absent from, a solution

Chapter 7 Teaching and Assessing Programming Strategies Explicitly in an Actual Setting

 Page 97

QUESTION 5 (5 marks, 18min)

The following function contains a logic error. In a few words, describe what the error is

and how you would remedy the error. Do not re-write the whole function.

int getAverage(int sum, int count) {

 return sum/count;

}

Figure 7.14. Example of a Strategy-Comprehension examination question

In Figure 7.14 we see an example of a strategy-comprehension question that asks the

novice to identify the strategy-related error in the code and state how the error could

be corrected. The error can occur when the argument count has a value of zero,

which would cause a division by zero. There is no guard to protect against this. To

remedy this problem the student should apply a guard against division by zero. The

exact „Guarded Division‟ terminology is not critical if the novice can express this

solution using other words.

Teaching and Assessing Programming Strategies Explicitly in an Actual Setting Chapter 7

 Page 98

QUESTION 6 (10 marks, 12min)

There are commonalities and differences in the strategies used in the following three functions. Read the

functions in the boxes below and answer the questions that follow.

int func1(int array[ARRAY_SIZE], int var) {

 int localVar = 0;

 int i;

 for(i=1; i<ARRAY_SIZE; i++) {

 if(array[i] == var) {

 localVar++;

 }

 }

 return localVar;

}

bool func2(int array[ARRAY_SIZE], int var) {

 int localVar = 0;

 bool localVar2 = false;

 while(!localVar2 && localVar<ARRAY_SIZE) {

 localVar2 = array[localVar]==var;

 localVar++;

 }

 return localVar2;

}

int func3(int array[ARRAY_SIZE]) {

 int localVar = 0;

 int i = 0;

 while(i<ARRAY_SIZE) {

 if(array[i] > localVar) {

 localVar = array[i];

 }

 i++;

 }

 return localVar;

}

a.

b.

a. What is the common strategy used in both func1() and func2()? (5 marks)

b. What is the common strategy used in both func1() and func3()? (5 marks)

Below is a list of some of the strategies covered in the course.

 Average Plan

 Divisibility Plan

 Cycle Position Plan

 Triangular Swap Plan

 Counter Controlled Loop Plan

 Primed Sentinel Controlled Loop Plan

 Sum and Count Plans

 Validation Plan

 Min/Max Plans

 Tallying Plan

 Search Algorithm

 Bubble Sort Algorithm

Figure 7.15. An example of a Strategy-Comprehension examination question

Figure 7.15 shows a second example of a strategy-comprehension question. Here

novices are asked to identify the strategies used in the three given functions and pick

the common strategies between the identified pairs. This is a challenging problem as

it requires novices to identify strategies even when they may be applied using

different syntax within the code.

Strategy-Generation Questions

Strategy-generation questions are probably what most instructors think of when they

write a generation question in an examination. It is important, though, that problems

allow novices to apply specific strategies they have learned in the course.

Chapter 7 Teaching and Assessing Programming Strategies Explicitly in an Actual Setting

 Page 99

QUESTION 7 (20 marks, 24min)

Write a function, using the following prototype, which will prompt the user and read in a

valid positive integer. If the user enters invalid input, or a negative integer, the function

will tell them their input was invalid and prompt them to enter another value. The function

will repeat this until the user enters a valid input.

int getValidPositiveInteger();

For your reference, the following lines of code will clear the standard input stream.

scanf("%*[^\n]");

scanf("%*c");

QUESTION 8 (20 marks, 24min)

Write a main() function that will read in integers and output their average. Input will be

gathered using the getValidPositiveInteger() function as described above (do not re-

write that function). Stop reading when the value 99999 is entered (this is not to be used as

an input).

Figure 7.16. Another example of Strategy-Generation examination questions

Figure 7.16 gives an example of two questions that formed a series from an

examination. The first question asks the novice to demonstrate a Validation plan. The

Validation plan involves a Sentinel-Controlled Loop plan where a valid input is the

sentinel.

The second question is essentially the same classic averaging problem defined by

Soloway (1986) and used in the initial experiment shown in chapter 4. This question

avoids the pitfalls found when this question was used in earlier experiments (chapters

4, 5 and 6): inputs are validated by the function they have attempted to answer earlier

(in question 7) and it is clear that the sentinel should not be used as an input. This

question requires novices to apply the following plans, each of which is covered

explicitly in the course.

 Primed Sentinel-Controlled Loop plan

 Sum plan

 Count plan

 Guarded Division plan

 Average plan

 Output plan

7.4.4 Marking the use of Strategies in the Examination

When assessing the use of strategies in an examination it is critical that the marking

scheme does not fall back on syntactical measures. The marking criteria for strategy

related questions should seek the application of specific strategies or comprehension

of those strategies. Strategy-generation questions should target specific strategies

and the marking scheme for these question should award marks where the required

strategies have been applied, rather than for syntactical correctness.

Teaching and Assessing Programming Strategies Explicitly in an Actual Setting Chapter 7

 Page 100

Distinguishing how knowledge-related and strategy-related questions are marked

forces a greater focus on particular areas from Figure 7.11 at the beginning of this

section.

7.5 Methodology

The experimentation described in this chapter can be considered from three

perspectives, which can be related back to the research questions stated earlier:

 to test the possibility of explicitly incorporating and assessing programming

strategies in an actual introductory programming course (RQ11 and RQ12);

 to measure the impact of explicit programming strategy instruction and

assessment on novices by comparing results produced under the new

curriculum with benchmark measurements from the initial experiment

(RQ13); and

 to measure the validity of strategy-related questions used to assess strategy

skill in students undertaking the new curriculum (RQ14).

The method for achieving these three aims is described in the following sub-sections.

7.5.1 Integration

The first and second research questions (RQ11 and RQ12) raised in section 7.1.1

consider the possibility of integrating strategy content into an actual introductory

programming course. The success of this integration, drawing on examples presented

earlier, is discussed in section 7.6.1. Observations are made on student response to

the newly incorporated materials and assessment.

7.5.2 Impact

The third research question (RQ13) seeks to measure impact of the new curriculum

relative to curriculum measured in the initial experiment (chapter 4). Students who

participated in the initial experiment had studied using a curriculum that required

them to learn strategies implicitly. In the initial experiment students were asked to

create a solution to a classic averaging problem. Several strategy gaps were detected

in student solutions indicating flawed understandings of the required strategies. Of

particular interest was the lack of application of a Guarded Division plan.

Comparison of performance under the new curriculum with the benchmark

performance was achieved through two examination questions. One question was

included in the examination that followed the first integration of explicit

programming strategy instruction in the second half of 2005 and another from the

most recent examination at the end of 2007.

Guarded Division Problem (2005 Examination)

One of the major flaws in novice strategy skill, detected in the initial experiment

(described in chapter 4), was poor use of guarded division. A 2005 examination

question shown as Figure 7.14 (section 7.4.3, page 97) is a strategy-comprehension

question that targets the Guarded Division plan. This question yields either a correct

or incorrect response. Student responses to this question were analysed and

compared to application of Guarded Division in the initial experiment.

Chapter 7 Teaching and Assessing Programming Strategies Explicitly in an Actual Setting

 Page 101

Averaging Problem (2007 Examination)

A 2007 examination question shown as Question 8 in Figure 7.16 (section 7.4.3,

page 99) was a strategy-generation question that repeated the averaging problem

given to novices in the initial experiment (described in chapter 4). Solutions to this

question were analysed using the same approach as used in the initial experiment.

Eight features were analysed in student solutions: seven plans, and the correct

merging of plans. The presence or absence of each of these features was checked in

all attempts. The features measured were as follows.

 Initialisation of a sum variable

 Initialisation of a count variable

 A Sum plan in a Primed Sentinel-Controlled Loop

 A Count plan in a Primed Sentinel-Controlled Loop

 A guard against division by zero

 An Average plan

 An Output plan

 Merging of the Sum and Count plans inside the Primed Sentinel-Controlled

Loop

For more detail on how these features can be identified in a solution, see section 4.4.

Results from this analysis are compared to results from the initial experiment to

gauge the impact of introducing explicit strategy instruction and assessment.

The circumstances surrounding the initial testing were slightly different to a final

examination. The initial experiment was conducted under examination-like

conditions (students were not permitted to talk to each other or draw on resource

materials), but in tutorial classes during the course. Final examinations are held at the

end of the course, giving students more time between exposure and testing of the

necessary plans. These differences need to be kept in mind when comparing

performance between these tests.

Results of these two examination question comparisons are shown in section 7.6.2.

Avoiding Bias

Neither of these two specific questions had been used in the course prior to the

examinations. The closest problem resembling the averaging problem was the

average word length exercise given in tutorials and shown in Figure 7.8 (section

7.3.4, page 93). The course materials covered each of the required strategies.

Students had opportunities to practice each of the required strategies. These

strategies were not emphasised more than any other strategies taught in the course.

In the two examination questions, students are not led to use any specific strategies;

they are expected to have learned which strategies to apply at this stage (during the

exam).

7.5.3 Consistency of Knowledge and Strategy Skill

The final research question (RQ14) sought to validate testing of strategy skill by

checking the consistency of students‟ performances in knowledge-related and

strategy-related questions. Using a controlled examination structure that focuses on

Teaching and Assessing Programming Strategies Explicitly in an Actual Setting Chapter 7

 Page 102

knowledge and strategies independently (see section 7.4.3) allows for a comparison

of skills between these two areas.

Examination questions from the 2005 and 2007 examinations were used; both

examinations were held following explicit instruction of strategies. Marks awarded

for questions targeting knowledge and strategies were compared proportionally and

correlations were noted. Using this information it was possible to compare the

relative performance of students between knowledge-related and strategy-related

questions. If the questions used to measure strategy skill are valid then student

performance should generally be consistent between these two question types.

Results of this comparison are shown in section 7.6.3.

The distinction between performance in knowledge and strategy potential in novices

is significant as previous research has dwelt upon this relationship (Lister et al.,

2004). A clearer picture of the relationship between these two aspects may help

instructors and computing education researchers in future.

7.6 Results

Results are presented below, again divided by the three perspectives used earlier.

First the success of integrating programming strategies in an actual introductory

programming course is discussed. Specific strategy-related responses elicited under

the traditional and new curriculum are then compared. Finally, the consistency of

students‟ knowledge and strategy performance is analysed.

7.6.1 Integration

Integrating explicit strategy instruction and assessment into an actual introductory

programming course was achieved. The examples of curricular materials shown in

section 7.3 and the assessment items described in section 7.4 demonstrate how this

was achieved. The Strategy Guide used is given as Appendix A. The assessment

items shown in section 7.4 were added to assignments and examinations during the

two-and-a-half-year period after the previous experiment. A full examination and

marking scheme are provided as appendices F and G respectively.

Perhaps the most arduous part of integrating strategies explicitly was in conceiving

well focused assessment items. It is challenging to create problems that required

students to apply specific plans, while maintaining interesting problems. Even so, a

set of problems was developed to assess strategy skill in assignments and

examinations. The validity of examination questions used to assess programming

strategy skill is discussed in section 7.7.3.

Students accepted the new instruction as part of the course; no student protested

against the inclusion of strategies as legitimate content. As each new cohort

undertook the new curriculum, they were not aware that it was different to the

traditional curriculum that preceded it. Students did not protest against having their

strategy skills assessed. As mentioned earlier (see section 7.4.2), assignments

involved peer review, so students were being asked to evaluate the work of their

peers. Students were asked to complete reviews that required them to judge the

presence or absence of strategies in the work of their peers.

Occasionally the author, as instructor, would quiz the class or individual students on

strategy-related comprehension during the course. For instance, when shown a piece

of code, such as a Bubble Sort, which contains plans covered earlier in the course,

Chapter 7 Teaching and Assessing Programming Strategies Explicitly in an Actual Setting

 Page 103

the instructor would ask, “What type of loop is this?”, or “What is this plan for

swapping a pair of variables called?” Students were able to use a vocabulary of

strategies to respond.

Tutorial and practical classes allowed for some observation of students working on

strategies in a face-to-face setting. Tutorials allowed students to occasionally answer

and discuss strategy-related questions and students showed no sign that strategy

instruction was to be appreciated differently to knowledge instruction in the course.

In practical classes it is possible to detect that a student has a flawed strategy

understanding and to challenge that flaw based on the strategy content expressed in

the course. For example, when a student fails to guard a division used to calculate an

average of user inputs, asking the student to test their program by providing no inputs

(providing a sentinel as the first input), then asking them why their program does not

work, inevitably causes them to recall the necessary plan.

7.6.2 Impact

Two specific questions were used to compare strategy skill under the previous and

new curricula. The questions were drawn from two examinations, one which took

place at the end of 2005 after the first instance of the course to include explicit

strategy instruction, and one in the most recent instance at the end of 2007.

Guarded Division Problem (2005 Examination)

During the initial experiment (from chapter 4) a particularly poorly applied plan was

the Guarded Division plan, with only four students out of 42 applying this plan. In

the second semester 2005 examination, under the new curriculum, the strategy-

comprehension question given as Figure 7.14 (section 7.4.3, page 97) was used to

specifically target comprehension of the Guarded Division plan after explicit

instruction. This question showed a function used to calculate an average; however,

there was no guard around the division so it was susceptible to failure if the count of

values was zero. Students were asked to identify the flaw and suggest a remedy.

Table 7.1. Change in Guarded Division ability under new curriculum

 Correct Proportion

Application in generation experiment (chapter 4) before explicit strategy instruction 4 of 42 10%

Comprehension in 2005 exam under new curriculum 25 of 36 69%

Results from Table 7.1 show the poor application of the Guarded Division plan under

implicit-only strategy instruction and the current potential of students to comprehend

this plan after explicit instruction. After explicit strategy instruction, correct answers

to the Guarded Division were provided by 25 of 36 students. This indicates that most

students had learned and could comprehend the Guarded Division plan, knowing

where it should be applied.

Testing comprehension of a strategy (as in this problem) is not directly comparable

to generation of that strategy (as with the initial experiment). However, knowing that

69% of students comprehend the Guarded Division plan should be kept in mind

when considering the results of a direct comparison using a generation task in the

next subsection. This direct comparison is achieved with a question that required

students to generate a solution that applies the Guarded Division plan within an

averaging problem.

Teaching and Assessing Programming Strategies Explicitly in an Actual Setting Chapter 7

 Page 104

Averaging Problem (2007 Examination)

During the examination from second semester 2007 the questions shown in Figure

7.16 (section 7.4.3, page 99) were used. From this figure Question 8 repeats the

averaging problem used in the initial experiment (chapter 4).

62% 64%

45% 43%

71%

10%

88% 88%

67%

78%

62%
67%

82%

38%

82%

91%

Initialise Sum Initialise
Counter

Sentinel
Controlled
Sum Loop

Plan

Sentinel
Controlled

Count Loop

Plan

Merged with
PSCIL plan

Guard
Against Div.

By Zero

Average Plan Output Plan

Implicit-only (2003) Explicit (2007)

Figure 7.17. Comparison of plan use in averaging problem under curricula including implicit-

only and explicit strategy instruction

Solutions to this problem were analysed under Goal/Plan Analysis, with the same list

of plans sought (and merging of the sum and count plans in the SCL). Figure 7.17

distinguishes results between the initial test, where novices learned programming

strategies in an implicit-only manner, and the examination under the new curriculum,

which included programming strategies explicitly. Student results show consistent

improvement in all plans except one. The Guarded Division plan is still the most

poorly applied plan, with only 38% of participants using this plan even after explicit

instruction in this plan. However, according to a chi-squared test, this is a significant

increase (χ
2
≈9.47, p≈0.002, k=1), almost fourfold from the initial experiment, and

this level is higher than the level demonstrated by experts (as seen in Table 5.4 from

chapter 5, page 56). There was also a significant chi-squared increase in use of the

Sentinel-Controlled Count Loop plan (χ
2
≈4.98, p≈0.03, k=1).

Chapter 7 Teaching and Assessing Programming Strategies Explicitly in an Actual Setting

 Page 105

2%

20%

31%

49%

All Plans All Except Guarded Div

Implicit-only (2003)

Explicit (2007)

Figure 7.18. Comparison of complete and near-complete

correctness in averaging problem with and

after without strategy instruction

Figure 7.18 compares the completeness (use of all expected plans) from the initial

experiment and results from the averaging question in an examination under a

curriculum with explicit programming strategies. Under the new curriculum, the

proportion of correct solutions increased from 2% (1 of 42) to 31% (14 of 45) which

is a significant chi-squared increase (χ
2
≈12.56, p≈0.0004, k=1). If the most poorly

applied plan, Guarded Division, is ignored the proportion of complete and near-

complete answers has increased from 20% (10/42) to 49% (22/45) which is also a

significant chi-squared increase (χ
2
≈5.88, p≈0.02, k=1).

Table 7.2. Testing for improvement between cohorts

Exam
Average Plan
Application

Implicit-only (2003) 4.0 of 7 plans (57%)

Explicit (2007) 4.8 of 7 plans (69%)

There is an improvement in the average proportion of application of the seven

expected plans between the student cohorts. As shown in Table 7.2, prior to explicit

instruction of programming strategies, students applied 57% of the expected plans

on average. With explicit instruction of programming strategies, this increased to

69% of the expected plans on average. Using a two-sample t-test (one-tailed) there is

evidence of a statistically significant improvement between the two cohorts (df=85,

t≈1.66, p≈0.02).

7.6.3 Consistency of Knowledge and Strategy Skill

By definition, a programming strategy is a way of applying programming knowledge

(Davies, 1993). This infers that strategy skill is dependent on knowledge skill. If this

inference holds, students should perform equally or better in knowledge-related

questions compared to strategy-related questions

Teaching and Assessing Programming Strategies Explicitly in an Actual Setting Chapter 7

 Page 106

Table 7.3. Testing dependency of strategies on knowledge

Exam n
Average

Knowledge
Performance

Average
Strategy

Performance

Pearson
Correlation

P Value

Explicit 2005 36 72% 68% 0.74 0.000001

Explicit 2007 45 64% 57% 0.81 0.000004

The results in Table 7.3 were calculated by grouping examination questions as either

knowledge questions or strategy questions according to the definitions given in

section 7.4.3 and finding each student‟s proportional marks for the two groups of

questions. The results are shown for two examinations. The first from2005 was the

first time strategies were explicitly incorporated into the curriculum (following the

experiment described in chapter 6). The second from 2007 is the most recent and the

semester from which student results were taken for section 7.6.2.

The results show that on average, students perform slightly better in knowledge

questions than in strategy questions. Results also show that there is a significant

correlation between novices‟ results on knowledge-related and strategy-related

questions in the both examinations. By combining these results we can say that a

novice will consistently perform slightly better in knowledge-related questions than

strategy-related questions, but in general, a novice who performs poorly will

generally perform poorly in both, and a student who performs well will perform well

in both. This observation is certainly not without exception. Some students did

perform better in strategy questions thank knowledge questions, but rarely so.

7.7 Discussion

In this section we use the experimental results from section 7.6 to answer the

research questions posed in section 7.2.

7.7.1 Integration

RQ11. Can instruction of programming strategies be explicitly incorporated into

instruction in an actual introductory programming course?

While it did take some time and effort to transform the traditional curriculum, adding

explicit strategy content, this was demonstrated to be possible. The amount of

strategy content is not necessarily fixed; it needs to be further refined. Sharing these

strategies with other instructors will allow this development. It is useful to reiterate

that strategies can be used with most imperative and object-oriented languages so

they would suit the majority of introductory programming courses, requiring little

change for different languages.

The author has been asked to reflect, from experience, how programming strategies

can be integrated well rather than poorly. The author has no evidence to support one

method over another, so the following are only suggestions.

 Students should be informed of the approach to learning they should take

when studying in a course. Students need to be told that they are expected to

learn the strategies covered in the course. If this is to be assessed, students

need to know this also.

Chapter 7 Teaching and Assessing Programming Strategies Explicitly in an Actual Setting

 Page 107

 If our objective is to teach programming strategies, then our assessments

should be constructively aligned (Biggs, 1999) with this expected learning

outcome. Reward students for applying strategies. Assessment is an

instructor‟s currency. Marks force surface learners (Biggs, 1987) to learn

what an instructor sees as important. Marks show deep learners what an

instructor sees as important. Pre-defined marking schemes, published with

assignment instructions, are an excellent way of showing students how they

will be assessed. Advanced students can be rewarded with bonus marks for

extension activities.

 Refer to programming strategies rather than underlying syntax where

possible. For instance, one could say “use a for loop to achieve that” when a

more strategic instruction would be “use a counter-controlled loop to achieve

that”.

 Like programming knowledge, strategies need to be practiced. Naming them

is not enough. Students need to see examples and undertake practical

exercises that focus on strategies.

RQ12. Can programming strategy skill be measured as part of the assessment in

an actual introductory programming course?

It is possible to measure programming strategy ability in novices with tests that

address both comprehension and generation. A number of different forms of

assessment have been demonstrated for programming assignments and examinations.

Most assessment methods used in the new curriculum resemble traditional

curriculum assessment items, but with careful problem design and objective criteria

for evaluation, assessment items can be used to focus testing of knowledge and

strategies independently.

7.7.2 Impact

RQ13. What is the impact on novice programmers of incorporating programming

strategy explicitly into instruction and assessment?

The results show a significant improvement in students‟ use of strategies under a

curriculum where strategies are covered explicitly. There is a strong improvement in

overall completeness of solutions to the averaging problem tested between the initial

experiment (chapter 4) and an examination under the new curriculum. There is a

specific improvement in the use of the most poorly applied strategy, the Guarded

Division plan, although its application is still relatively low.

7.7.3 Consistency of Knowledge and Strategy Skill

RQ14. Are novices’ results in assessment of programming strategies consistent

with their results in assessment of programming knowledge?

The tests show that results gained in strategy-related questions are consistent with

results gained in questions covering programming knowledge. This may be seen as a

measure of validity in the method of testing strategy skill. In overall performance,

there was consistency found between knowledge-related and strategy-related

responses.

Teaching and Assessing Programming Strategies Explicitly in an Actual Setting Chapter 7

 Page 108

A novice who performs poorly in knowledge questions will generally perform poorly

in strategy questions and a student who performs well in knowledge questions will

perform well (but slightly worse) in strategy questions. This finding supports the

assumption that programming knowledge is a prerequisite for programming

strategies.

7.8 Implications

This experiment has shown that it is possible to instruct and assess programming

strategies in an actual introductory programming course. Teaching programming

strategies in this way creates a vocabulary that can be used in teaching and

assessment. This vocabulary allows strategies to be reused and reinforced after they

are presented. Students learn and apply programming strategies more consistently

when they are presented in an explicit manner than when they are learned implicitly.

This study has also shown that strategies can be a valid part of assessment and can

therefore be a valued part of an introductory programming curriculum that aims to

train novice programmers to apply programming strategies. The methods of strategy

skill assessment used can be applied to both comprehension and generation exercises

and conducted throughout a course. Strategy-related questions in examinations can

elicit results consistent with questions that assess programming knowledge skill.

Strategy skill testing can also be achieved in regular assignments.

With a more precise vocabulary for defining a complete solution to a problem,

instructors can now avoid vague terms such as „elegance‟ and ‟connoisseurship‟

when evaluating the work of a novice; instead, instructors can point out what

strategies are absent or misapplied in novices‟ solutions.

Validate authentic
expert

programming
strategies

Explicitly
incorporate

programming
strategies

Test instruction
and assessment

in real intro
programming

setting

Measure novice
strategies in implicit-

only setting

Measure novice
strategies in implicit-

only setting

Figure 7.19. Overview of experiments in a process after the fourth experiment

As can be seen in Figure 7.19, this experiment brings to an end the series of four

experiments that form the core investigation of this dissertation.

Chapter 8 Findings and Contribution of this Study

 Page 109

8. Findings and Contribution of this Study

This study set out to create new curricular elements that could help overcome

barriers documented in literature and thus help to alleviate the poor outcomes for

students that are caused by these barriers. Encouraging novices to become better

programmers could ultimately benefit the programming profession and in turn

benefit the community that depends on programmers.
Programming Strategy Instruction

tacit

implicit

non-assessed

expressed

explicit

assessable

Figure 8.1. Including programming strategies in curricula

Figure 8.1 (reproduced from Figure 1.1) depicts the aims of this study: to improve

introductory programming curricula by plainly expressing programming strategies

and instructing and assessing these strategies explicitly.

Measure novice
strategies in implicit-

only setting

Validate authentic
expert

programming
strategies

Explicitly
incorporate

programming
strategies

Test instruction
and assessment

in real intro
programming

setting

Figure 8.2. Overview of experiments as a process

The aims of this study were explored in a series of four experiments summarised in

Figure 8.2 (reproduced from Figure 3.3), which contributed the core findings of the

study. Section 8.1 consolidates the experimental work described in chapters 4 to 7.

For each experiment research questions are revisited and results are described. In

section 8.2, the contribution of the work in this study is identified in the context of

computing education research. Finally, in section 8.3, suggestions are made for

future extensions to the work done in this study.

8.1 Findings of this Study

The results of experimentation, described as answers to research questions, form the

overall findings of this study. These can now be elaborated.

8.1.1 Initial Experiment

The initial experiment, described in chapter 4, set out to find a benchmark of

programming strategy skill for students learning under a traditional curriculum with

strategies taught implicitly. In this experiment the following research questions were

asked.

RQ1. What is the potential of students who have been exposed to an implicit-

only teaching of programming strategies to solve a sub-algorithmic

problem that requires application of a number of programming strategies

for a complete solution?

Findings and Contribution of this Study Chapter 8

 Page 110

When asked to create a solution for a classic averaging problem, many students

failed to demonstrate application of important strategies. Only a single student

was able to achieve a fully complete solution to the problem. On average, students

applied 57% of the expected plans.

In particular, participating students were not consistently able to:

 initialise sum and/or count variables,

 use a correct looping strategy for the given problem,

 guard against events such as division by zero, or

 merge plans that should be applied together.

RQ2. What are the deficiencies in the curriculum that are demonstrated by

students' solutions to the given problem?

The initial experiment showed that many novices had not learned the specific

programming strategies covered in the experiment. The curriculum relied on

implicit instruction of programming strategies and had not allowed most students

to learn plans to a level where they could demonstrate the application of these

plans.

The initial experiment found common programming strategy flaws in solutions

created by novices across an entire student cohort. The novices had studied a

curriculum that required them to learn programming strategies implicitly. Biederman

and Shiffrar (1987) found that explicit instruction can be far more effective than

implicit-only instruction. When considered in the context of an introductory

programming course, this suggested that if programming strategies could be

expressed and incorporated explicitly into an introductory curriculum, this might

improve the programming strategy potential of novices.

8.1.2 Expert Strategies Experiment

The findings of the initial experiment were used to justify instruction of strategies in

an explicit manner. But before this instruction could be undertaken, an authentic

representation of strategies, consistent with those found in solutions created by

experts, was needed.

The strategies used by experts were explored in the second experiment, described in

chapter 5. Plans proposed by Soloway (1986) were proposed as a model of the sub-

algorithmic programming strategies used by experts. To test this proposal, experts

were asked to solve three sub-algorithmic-level problems which were analysed to

answer the following questions.

RQ3. Do experts exhibit identifiable plans in their solutions to problems?

Experts‟ solutions to the three problems included code that could be identified as

applications of the expected plans. This finding indicated that plans are used by

expert programmers.

RQ4. Can an authentic set of strategies, used by experts, be represented in an

explicit form, suitable for instruction?

Chapter 8 Findings and Contribution of this Study

 Page 111

By finding that plans are consistent with the solutions of experts, it is justifiable

that plans be used as an expression of expert strategies. Plans are a simple form

of strategies that can be incorporated explicitly into an introductory programming

curriculum.

RQ5. Does the potential to represent authentic programming strategies mandate

explicit instruction of programming strategies to novices?

Based on the advantages of using explicit instruction (Biederman and Shiffrar,

1987, Baddeley, 1997, Berry and Dienes, 1993) and indications that novices can

become more effective by focusing on programming strategies (Robins et al.,

2003, Soloway, 1986), it is justifiable to incorporate programming strategies

explicitly into the introductory programming curriculum. Plans are an authentic

representation of experts‟ programming strategies at a sub-algorithmic level, and

can be used to explicitly represent strategies.

8.1.3 Artificial Curriculum Experiment

With justification and a validated set of strategies, an experiment was conducted to

measure the potential to incorporate programming strategies in an introductory

programming curriculum, initially in a limited manner. A third experiment, described

in chapter 6, was conducted in an artificial setting to test a curriculum that included

programming strategies explicitly in lectures, written course materials, exercises and

assessment. The following questions were used to guide this investigation.

RQ6. Can programming strategies be explicitly incorporated into an

introductory programming curriculum?

In the experiment, two groups (an experimental and control group) were trained

over separate weekend periods. Both groups were exposed to a common base

curriculum, which included programming knowledge content and exercises. The

experimental group were also exposed to additional content which explicitly

covered a limited set of programming strategies. By describing and using a

curriculum that included strategies explicitly, it was shown that such integration

can be achieved.

RQ7. What is the significance of the time consumed by this additional

instruction?

Introducing additional material did increase the time consumed by lecture

sessions. However, the same schedule was followed for the experimental and

control weekend sessions, even with the additional explicit instruction in the

experimental curriculum. All participating students were able to complete

exercises before the end of each session, indicating a reduction in the time taken

by experimental participants to complete exercises. This indicates that the

additional time needed for explicit strategy instruction was not significant and did

not cause undue burden on students or instructors.

Findings and Contribution of this Study Chapter 8

 Page 112

RQ8. Can programming strategies, explicitly taught in an introductory

programming course, be assessed?

Goal/Plan Analysis was used to measure all participants‟ application of

programming strategies in generation exercises at the end of the course.

Goal/Plan Analysis was found to be limited as an assessment method as it requires

students to generate code before strategy skill can be assessed, and is only useful

towards the end of a course.

RQ9. What impact does explicit strategy instruction have on students and their

ability to apply strategies when compared to an implicit-only approach?

This experiment found that when programming strategies are taught explicitly,

students may be more likely to understand and apply these strategies than when

students are expected to learn strategies implicitly. Novices taught programming

strategies explicitly used strategies more often in their solutions, although not

significantly so.

RQ10. Are there any other observable effects or contrasts between students of a

traditional curriculum and one with added explicit programming strategy

instruction?

Students shown programming strategies explicitly used strategy terms from the

strategy-related vocabulary presented in the curriculum during interviews. In an

actual introductory programming curriculum, such a vocabulary could be used

between instructors and students to aid teaching and assessment.

From interviews it was found that students who covered the curriculum containing

explicit strategies showed confidence in the solutions they had created and their

understanding of the strategies used to create them, while students not exposed to

this curriculum doubted their abilities.

These findings were justification for incorporating programming strategies in a full

introductory programming curriculum.

8.1.4 Explicit Programming Strategy Instruction in an Actual Course

Following the successful integration of explicit programming strategy content in an

artificial curriculum, and noting the effects of this integration, a full-scale integration

was undertaken with an actual introductory programming course. This integration is

described in chapter 7. The following questions were considered when measuring the

potential for, and effectiveness of, integrating programming strategies explicitly.

RQ11. Can instruction of programming strategies be explicitly incorporated into

instruction in an actual introductory programming course?

Programming strategies were successfully integrated as explicit content in an

actual introductory programming course. This integration was achieved by

inserting programming strategies at points following prerequisite programming

knowledge. Programming strategies were described in written materials, discussed

in lectures, and practised during tutorials and practicals. A Strategy Guide,

Chapter 8 Findings and Contribution of this Study

 Page 113

collating all of the strategies covered in the course, was also produced and given

to students.

RQ12. Can programming strategy skill be measured as part of the assessment in

an actual introductory programming course?

Programming strategy skill can be measured at different times during a course

through assignments and examinations. With careful problem design and

objective criteria for evaluation, assessment items can be used to focus on testing

knowledge and strategies independently.

RQ13. What is the impact on novice programmers of incorporating programming

strategy explicitly into instruction and assessment?

Student performance under the new curriculum was compared to the benchmark

measured in the initial experiment from chapter 4. Results showed significant

improvements in strategy-related performance under the new curriculum. There

was an improvement in overall completeness of plans applied in novices‟

solutions to the averaging problem.

RQ14. Are novices’ results in assessment of programming strategies consistent

with their results in assessment of programming knowledge?

Results from student responses to strategy-related questions are consistent with

questions covering programming knowledge. A novice who performs poorly in

knowledge questions will generally perform poorly in strategy questions. A

student who performs well in knowledge questions will generally perform well

(but slightly worse) in strategy questions. As well as adding credibility to testing

of programming strategies, this finding also adds evidence to the assumption that

programming knowledge is a prerequisite for programming strategies.

The inclusion of explicitly described programming strategies positively impacted the

programming strategy potential of novices who undertook this new curriculum. By

separating testing of programming knowledge and strategies, the consistency of the

method for assessing programming strategies was verified. Distinguishing

programming knowledge skill from programming strategy skill added evidence to the

fundamental tenet that programming knowledge is prerequisite to programming

strategies.

8.2 Contribution

Studies have shown universally poor results by novices on standardised tests

conducted at institutions across the world (McCracken et al., 2001). Novices produce

poor results in standardised program generation tests, with many novices having a

fragile knowledge (Lister et al., 2004) and most novices failing to demonstrate

programming strategies (Lister et al., 2006).

The work undertaken for this dissertation contributes to the field of computing

education research by:

 improving understanding of the distinction between programming knowledge

and programming strategies (§2.3.2, §7.5.3);

Findings and Contribution of this Study Chapter 8

 Page 114

 identifying a level of problems relevant to novices (§2.3.3);

 discovering that novices develop a flawed set of programming strategies

when learning strategies implicitly (RQ1, §4.6.1);

 describing deficiencies in a traditional implicit-only curriculum with respect

to instruction of programming strategies (RQ2, §4.6.2);

 demonstrating that plans are programming strategies that appear in solutions

created by experts (RQ3, §5.6.1);

 representing strategies in a form that can be explicitly incorporated into a

curriculum (RQ4, §5.6.2);

 demonstrating that programming strategies can be explicitly incorporated

into an introductory programming curriculum without undue time pressure

through a controlled experiment that compared a traditional implicit-only

strategy curriculum to a curriculum incorporating programming strategies

implicitly (RQ6, §6.6.1, RQ7, §6.6.2);

 experimentally testing the effects of instructing programming strategies

explicitly to novices, which including difference in performance (RQ9,

§6.6.4), increased confidence and use of a vocabulary of strategies (RQ10,

§6.6.5);

 describing how programming strategies can be explicitly incorporated into

teaching materials (RQ11, §7.3) and assessment items used for an actual

introductory programming course (RQ12, §7.4);

 measuring improved outcomes produced by explicitly instructing

programming strategies by comparing students‟ results with a baseline

standard set under an implicit-only curriculum (RQ13, §7.7.2); and

 adding evidence to the logical inference that programming knowledge must

precede programming strategies (RQ14, §7.7.3).

These contributions are intended to improve outcomes for novices by improving the

curricula delivered to novice programmers. With a well defined and justified method

for instructing novices in programming strategies, poor standards of performance,

measured around the world, might be improved.

Ultimately, assisting novice programmers to construct a more consistent and

coherent body of programming strategies may aid them in later programming study,

and guide their development as experts who can advance the art of programming.

8.3 Future Work

The experiment described in chapter 6, which was conducted in an artificial setting,

provided justification to incorporate explicit programming strategy instruction in an

actual introductory programming course. A number of flaws were identified in the

experimental methodology. Conducting the experiment again would allow for

reproduction of results, adding confidence to the findings of that experiment. If this

were to be undertaken the following changes could be made.

 Seek larger groups of participants

 Conduct the experiment over a longer period to allow absorption of concepts

 Use methods of assessment not limited to Goal/Plan Analysis throughout the

course to measure programming strategy skill

Chapter 8 Findings and Contribution of this Study

 Page 115

The set of plans used in the curriculum, described in chapter 7 and given in full in

Appendix A, might be useful to instructors. This set of plans could be further

developed and improved by:

 formalising the representation of plans,

 extending the set of plans, and

 developing a repository of assessment item examples that test programming

strategy skill.

To make programming strategies accessible, these ideas may be published in a

programming textbook, to be used by instructors and novices.

By explicitly teaching programming strategies and separating these strategies from

programming knowledge, it may be possible to investigate the impact of such

teaching on the learning styles and meta-cognition of novice programmers. The

following research questions could be explored.

 Can programming strategy performance be linked to a „deep approach‟ to

learning (Biggs, 1987)?

 Can students‟ potential to solve problems be explored without asking them to

generate solutions?

 Are students aware of which problems they can solve?

 Can gaps in programming strategy ability be identified and repaired before

summative assessment?

 Is there a lag between instruction, comprehension and generation of

programming knowledge and strategies, and if so, can this be measured?

Sub-algorithmic programming strategies could conceivably become as much a part

of future novice instruction as programming syntax. By turning away from failing

traditional curricula and creating new curricula with well justified content and

pedagogically sound delivery, programming instructors might begin to deliver more

acceptable student outcomes.

References Teaching Programming Strategies Explicitly to Novice Programmers

 Page 116

References

ANDERSON, L. W., KRATHWOHL, D. R., AIRASIAN, P. W., CRUIKSHANK, K. A.,

MAYER, R. E., PINTRICH, P. R., RATHS, R. & WITTROCK, M. C. (Eds.) (2001)

A Taxonomy for Learning, Teaching and Assessing. A Revision of Bloom’s

Taxonomy of Educational Objectives, New York, USA, Addison Wesley Longman,

Inc.

ANDREAE, P., BIDDLE, R., DOBBIE, G., GALE, A., MILLER, L. & TEMPERO, E.

(1998) Surprises in Teaching CS1 with Java (School of Mathematical and

Computing Sciences, Technical Report CS-TR-98/9). Wellington, Victoria

University of Wellington.

ASHENDEN, D. & MILLIGAN, S. (1999) The good universities guide: Universities, TAFE

and private colleges in 2000., Australia, Hobsons.

BADDELEY, A. (1997) Human Memory: Theory and Practice (Revised Edition), East

Sussex, UK, Psychology Press.

BAILIE, F. K. (1991) Improving the modularization ability of novice programmers. In

Papers of the twenty-second SIGCSE technical symposium on Computer science

education. p. 277 - 282.

BECK, K. (2001) Extreme Programming. Accessed October 6, 2008,

http://www.computerworld.com/softwaretopics/software/appdev/story/0,10801,6619

2,00.html

BEN-ARI, M. & SAJANIEMI, J. (2004) Roles of Variables as Seen by CS Educators. In

Proceedings of the 9th Annual Conference on Innovation and Technology in

Computer Science Education (ITiCSE 2004). p. 52 - 56.

BERGIN, J. (2000) Java-- GOOD, BAD, and NOT C++. Accessed 30th August, 2006,

http://csis.pace.edu/~bergin/Java/SomegoodthingsaboutJava.html

BERRY, D. C. & DIENES, Z. (1993) Implicit Learning: Theoretical and Empirical Issues,

East Sussex, UK, Lawrence Erlbaum Associates Ltd.

BIDDLE, R. & TEMPERO, E. (1998) Java pitfalls for beginners. ACM SIGCSE Bulletin, 30,

48 - 52.

BIEDERMAN, I. & SHIFFRAR, M. M. (1987) Sexing Day-Old Chicks: A Case Study and

Expert Systems Analysis of a Difficult Perceptual-Learning Task. Journal of

Experimental Psychology: Learning, Memory and Cognition, 13, 640 - 645.

BIGGS, J. B. (1987) Student Approaches to Learning and Studying, Melbourne, Australian

Council for Educational Research.

BIGGS, J. B. (1999) Teaching for Quality Learning at University, Buckingham, Open

University Press.

BIGGS, J. B. & COLLIS, K. F. (1982) Evaluating the quality of learning: The SOLO

taxonomy (Structure of the Observed Learning Outcome), New York, Academic

Press.

BROOKS, R. E. (1983) Towards a theory of the comprehension of computer programs.

International Journal of Man–Machine Studies, 18, 543 – 554.

BURJE, J. E. (1998) Knowledge Elicitation Tool Classification. Accessed 25 September,

2008, http://web.cs.wpi.edu/~jburge/thesis/kematrix.html

Teaching Programming Strategies Explicitly to Novice Programmers References

 Page 117

CARBONE, A., HURST, J., MITCHELL, I. & GUNSTONE, D. (2000) Principles for

designing programming exercises to minimise poor learning behaviours in students.

In Proceedings of the on Australasian computing education conference. p. 26 - 33.

CASPERSEN, M. E. & BENNEDSEN, J. (2007) Instructional design of a programming

course: a learning theoretic approach. In Proceedings of the third international

workshop on Computing education research (ICER2007). p. 111 - 122.

CHANDRA, S. S. & CHANDRA, K. (2005) A comparison of Java and C#. Journal of

Computing Sciences in Colleges, 20, 238 - 254.

CLANCY, M. J. & LINN, M. C. (1999) Patterns and Pedagogy. In The proceedings of the

thirtieth SIGCSE technical symposium on Computer science education. p. 37 - 42.

COLLINS, A., BROWN, J. S. & HOLUM, A. (1991) Cognitive apprenticeship: Making

thinking visible. Accessed 1 October, 2008,

http://pride.wilsonsd.org/pol/ri/collins.pdf

COLLINS, A., BROWN, J. S. & NEWMAN, S. E. (1987) Cognitive apprenticeship:

teaching the craft of reading, writing, and mathematics, Cambridge, Massachusetts,

USA, University of Illinois at Urbana-Champaign.

COOKE, N. J. (1994) Varieties of knowledge elicitation techniques. International Journal of

Human-Computer Studies, 41, 801 - 849.

CRETCHLEY, P. (2006) Does computer confidence relate to levels of achievement in ICT-

enriched learning models? Education and Information Technologies. New York,

USA, Springer.

DAVIES, S. P. (1993) Models and theories of programming strategy. International Journal

of Man-Machine Studies, 39, 237 - 267.

DE RAADT, M., TOLEMAN, M. & WATSON, R. (2005) Textbooks Under Inspection

(Working Paper). Accessed November 4, 2007,

http://www.sci.usq.edu.au/research/workingpapers/sc-mc-0715.ps

DE RAADT, M., WATSON, R. & TOLEMAN, M. (2002) Language Trends in Introductory

Programming Courses. In Proceedings of Informing Science and IT Education

Conference. p. 329 - 337.

DE RAADT, M., WATSON, R. & TOLEMAN, M. (2003a) Introductory programming

languages at Australian universities at the beginning of the twenty first century.

Journal of Research and Practice in Information Technology, 35, 163-167.

DE RAADT, M., WATSON, R. & TOLEMAN, M. (2003b) Language Tug-Of-War:

Industry Demand and Academic Choice. Australian Computer Science

Communications, 25, 137 - 142.

DE RAADT, M., WATSON, R. & TOLEMAN, M. (2004) Introductory Programming:

What's happening today and will there be any students to teach tomorrow?

Australian Computer Science Communications, 26, 277 - 284.

DECKER, R. & HIRSHFIELD, S. (1994) The Top 10 Reasons Why Object-Oriented

Programming Can't Be Taught in CS1. In Selected papers of the twenty-fifth annual

SIGCSE symposium on Computer science education. p. 51 - 55.

FIX, V., WIEDENBECK, S. & SCHOLTZ, J. (1993) Mental representations of programs by

novices and experts. In Proceedings of the Conference on Human Factors in

Computing Systems. p. 74 - 79.

GUZDIAL, M., HOHMANN, L., KONNEMAN, M., WALTON, C. & SOLOWAY, E.

(1998) Supporting Programming and Learning-to-Program with an IntegratedCAD

and Scaffolding Workbench. Interactive Learning Environments, 6, 143 - 180.

References Teaching Programming Strategies Explicitly to Novice Programmers

 Page 118

GUZDIAL, M. & SOLOWAY, E. (2002) Teaching the Nintendo generation to Program.

Communications of the ACM, 45, 17 - 21.

HADJERROUIT, S. (1998) Java as first programming language: a critical evaluation. ACM

SIGCSE Bulletin, 30, 43 - 47.

HIRSCH, E. D., JR. (2002) Classroom Research and Cargo Cults. Policy Review, 115, 51 -

69.

HITZ, M. & HUDEC, M. (1995) Modula-2 versus C++ as a first programming language--

some empirical results. In Papers of the 26th SISCSE technical symposium on

Computer science education. p. 317 - 321.

HOHMANN, L., GUZDIAL, M. & SOLOWAY, E. (1992) SODA: A computer-aided design

environment for the doing and learning of software design Lecture Notes in

Computer Science. Berlin / Heidelberg, Springer.

HUSIC, F. T., LINN, M. C. & SLOANE, K. D. (1989) Adapting Instruction to the Cognitive

Demands of Learning to Program. Journal of Educational Psychology, 81, 570 -

583.

JOHNSON, W. L. (1986) Intention Based Diagnosis of Novice Programming Errors, Los

Altos, California, USA, Morgan Kauffman Publishers, Inc.

JOHNSON, W. L. & SOLOWAY, E. (1984) PROUST: Knowledge-based program

understanding. In Proceedings of the 7th international conference on Software

engineering. p. 369 - 380.

JOHNSON, W. L., SOLOWAY, E., CUTLER, B. & DRAPER, S. (1983) Bug Catalogue: I

(Technical Report). Yale University, Computer Science Department.

KLAHR, D. & CARVER, S. M. (1988) Cognitive objectives in a LOGO debugging

curriculum: Instruction, learning, and transfer. Cognitive Psychology, 20, 362 - 404.

KÖLLING, M., KOCH, B. & ROSENBERG, J. (1995) Requirements for a first year object-

oriented teaching language. In Papers of the 26th SISCSE technical symposium on

Computer science education. p. 173 - 177.

KUITTINEN, M. & SAJANIEMI, J. (2003) First Results of An Experiment on Using Roles

of Variables in Teaching. In Papers from the Joint Conference at Keele University

(EASE & PPIG 2003). p. 347 - 357.

LISTER, R. (2000) On Blooming First Year Programming and its Blooming Assessment. In

Proceedings of the on Australasian computing education conference. p. 158 - 162.

LISTER, R., ADAMS, E. S., FITZGERALD, S., FONE, W., HAMER, J., LINDHOLM, M.,

MCCARTNEY, R., MOSTRÖM, J. E., SANDERS, K., SEPPÄLÄ, O., SIMON, B.

& THOMAS, L. (2004) A multi-national study of reading and tracing skills in

novice programmers. ACM SIGCSE Bulletin, 36, 119 - 150.

LISTER, R., SIMON, B., THOMPSON, E., WHALLEY, J. L. & PRASAD, C. (2006) Not

seeing the forest for the trees: novice programmers and the SOLO taxonomy. ACM

SIGCSE Bulletin, 38, 118 - 122.

MCCRACKEN, M., WILUSZ, T., ALMSTRUM, V., DIAZ, D., GUZDIAL, M., HAGAN,

D., KOLIKANT, Y. B.-D., LAXER, C., THOMAS, L. & UTTING, I. (2001) A

multi-national, multi-institutional study of assessment of programming skills of first-

year CS students. ACM SIGCSE Bulletin, 33, 125 - 180.

MULLER, O., HABERMAN, B. & GINAT, D. (2007) Pattern-Oriented Instruction and its

Influence on Problem Decomposition and Solution Construction. In Proceedings of

the 12th Annual Conference on Innovation and Technology in Computer Science

Education (ITiCSE 2007). p.

Teaching Programming Strategies Explicitly to Novice Programmers References

 Page 119

OLIVER, D., DOBELE, T., GREBER, M. & ROBERTS, T. (2004) This Course Has A

Bloom Rating Of 3.9. In Proceedings of the Sixth Australasian Computing

Education Conference (ACE2004). p. 227 - 231.

PENNINGTON, N. (1987) Comprehension Strategies in Programming. IN OLSON, G.,

SHEPPARD, S. & SOLOWAY, E. (Eds.) Emperical Studies of Programmers: 2nd

Workshop. Norwood, New Jersey, USA., Ablex Publishing Co.

PERKINS, D. N. & SALOMON, G. (1992) Transfer of Learning. International

Encyclopedia of Education, Second Edition. Oxford, England, Pergamon Press.

PHAM, B. (1996) The changing curriculum of computing and information technology in

Australia. In Proceedings of the Second Australasian Conference on Computer

Science Education. p. 149 - 154.

PINKER, S. (2007) The Stuff of Thought: Language As a Window Into Human Nature,

Viking Adult.

PORTER, R. & CALDER, P. (2003) A Pattern-Based Problem-Solving Process for Novice

Programmers. In Fifth Australasian Computing Education Conference (ACE2003).

p. 231 - 238.

PORTER, R. & CALDER, P. (2004) Patterns in learning to program: an experiment? In

Proceedings of the Sixth Conference on Australasian Computing Education. p. 241 -

246.

REBER, A. S. (1993) Implicit Learning and Tacit Knowledge, New York, USA, Oxford

University Press.

REID, R. J. (1993) The object oriented paradigm in CS1. In Proceedings of the Twenty-

fourth SIGCSE Technical Symposium on Computer Science Education. p. 265 -

269.

RIST, R. S. (1991) Knowledge Creation and Retrieval in Program Design: A Comparison of

Novice and Intermediate Student Programmers. Human-Computer Interaction, 6, 1 -

46.

RIST, R. S. (1995) Program Structure and Design. Cognitive Science, 19, 507 – 562.

ROBERTSON, L. A. (2004) Simple Program Design, Australia, Thompson Nelson.

ROBINS, A., HADEN, P. & GARNER, S. (2006) Problem distributions in a CS1 course. In

Proceedings of the 8th Austalian conference on Computing education (ACE2006). p.

165 - 173.

ROBINS, A., ROUNTREE, J. & ROUNTREE, N. (2003) Learning and Teaching

Programming: A Review and Discussion. Computer Science Education, 13, 137 -

173.

ROYCE, W. W. (1970) Managing the development of large software systems: concepts and

techniques. In Proceedings of IEEE WESCON, 1970. p. 328 - 338.

SAJANIEMI, J. (2002) An Empirical Analysis of Roles of Variables in Novice-Level

Procedural Programs. In Proceedings of IEEE 2002 Symposia on Human Centric

Computing Languages and Environments (HCC'02). p. 37 - 39.

SAJANIEMI, J. & KUITTINEN, M. (2005) An Experiment on Using Roles of Variables in

Teaching Introductory Programming. Computer Science Education, 15, 59 – 82.

SAJANIEMI, J. & PRIETO, R. N. (2005) Roles of Variables in Experts' Programming

Knowledge. In Proceedings of the 17th Workshop of the Psychology of

Programming Interest Group (PPIG2005). p. 145 - 159.

References Teaching Programming Strategies Explicitly to Novice Programmers

 Page 120

SHABO, A., GUZDIAL, M. & STASKO, J. (1996) Computer science apprenticeship:

creating support for intermediate computer science students. In Proceedings of the

1996 international conference on Learning sciences (ICLS'96). p. 308 - 315.

SOLOWAY, E. (1986) Learning to program = learning to construct mechanisms and

explanations. Communications of the ACM, 29, 850 - 858.

SOLOWAY, E. (1993) Should We Teach Students to Program? Communications of the

ACM, 36, 21 - 24.

SOLOWAY, E. (2003) Personal Communication.

SOLOWAY, E., BONAR, J. & EHRLICH, K. (1983a) Cognitive Strategies and Looping

Constructs: An Empirical Study. Communications of the ACM, 26, 853 - 860.

SOLOWAY, E., EHRLICH, K. & BLACK, J. B. (1983b) Beyond Numbers: Don't Ask

"How Many"... Ask "Why". In Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems. p. 240 - 246.

SOLOWAY, E., EHRLICH, K. & BONAR, J. (1982) Tapping into tacit programming

knowledge. In Proceedings of the Conference on Human Factors in Computers

Systems. p. 52 - 57.

SOLOWAY, E. & WOOLF, B. (1980) Problems, Plans and Programs. In Proceedings of the

Eleventh ACM Technical Symposium on Computer Science Education. p. 16 - 24.

SPARKE, G. (2003) The Java Way : An Introduction to Programming in Java, Australia,

Nelson ITP.

SPOHRER, J. C. & SOLOWAY, E. (1986) Novice mistakes, are the folk wisdoms correct.

Communications of the ACM, 29, 624 - 632.

SPOHRER, J. C., SOLOWAY, E. & POPE, E. (1985a) A goal/plan analysis of buggy Pascal

programs. Human-Computer Interaction, 1, 163 - 207.

SPOHRER, J. C., SOLOWAY, E. & POPE, E. (1985b) Where the bugs are. In Proceedings

of the CHI '85 conference on Human factors in computing systems. p. 47 - 53.

STROUSTRUP, B. (1999) Learning Standard C++ as a New Language. The C/C++ Users

Journal, May, 43 - 54.

WALLINGFORD, E. (1996) Toward a first course based on object-oriented patterns. In

Proceedings of the twenty-seventh SIGCSE technical symposium on Computer

science education. p. 27 - 31.

WALLINGFORD, E. (2007) The Elementary Patterns Home Page. Accessed 19th

November, 2007, http://cns2.uni.edu/~wallingf/patterns/elementary/

WHALLEY, J. L., LISTER, R., THOMPSON, E., CLEAR, T., ROBINS, P., KUMAR, P. K.

A. & PRASAD, C. (2006) An Australasian Study of Reading and Comprehension

Skills in Novice Programmers, using the Bloom and SOLO Taxonomies. In

Proceedings of the Eighth Australasian Computing Education Conference

(ACE2006). p. 243 - 252.

WHORF, B. L. (1956) Language, Thought and Reality, Cambridge, Mass, M.I.T. Press.

WINSLOW, L. E. (1996) Programming Pedagogy -- A Psychological Overview. SIGCSE

Bulletin, 28, 17 - 22.

WIRTH, N. (1971) The programming language Pascal. Acta Informatica, 1, 35 - 63.

WIRTH, N. (1974) On the Composition of Well-Structured Programs. ACM Computing

Surveys, 6, 247 - 259.

Teaching Programming Strategies Explicitly to Novice Programmers List of Figures

 Page 121

List of Figures

Figure 1.1. Including programming strategies in curricula ... 3

Figure 2.1. Creating programming assessments with consideration of novice

instruction aspects ... 16

Figure 3.1. Some computing education research areas showing focus of this

dissertation ... 24

Figure 3.2. How a solution is derived from goals and plans, reproduced from

(Soloway, 1986) .. 27

Figure 3.3. Overview of experiments in a process ... 29

Figure 4.1. Identified goals, associated plans and a potential solution 35

Figure 4.2. A solution showing no apparent plans .. 37

Figure 4.3. A solution where plans are not easily identifiable................................... 38

Figure 4.4. A solution with a number of flaws .. 39

Figure 4.5. A solution demonstrating the necessary plans .. 40

Figure 4.6. Presence or absence of plans and use of merging* in student's

solutions ... 41

Figure 4.7. Levels of completeness as judged by number of plans correctly

applied ... 42

Figure 4.8. Correctness and with exception for Guarded Division plan 42

Figure 4.9. Overview of experiments in a process after first experiment 44

Figure 5.1. A participant's solution to Problem 1 .. 51

Figure 5.2. An acceptable solution to Problem 2 ... 52

Figure 5.3. A poor solution to Problem 2 .. 53

Figure 5.4. A participant's solution to Problem 3 .. 54

Figure 5.5. Overview of experiments in a process after second experiment 58

Figure 6.1. An extract from the written course materials showing explicit

incorporation of programming strategy instruction .. 63

Figure 6.2. An example of a lecture slide showing incorporation of explicit

programming strategy instruction ... 64

Figure 6.3. Overview of experiments in a process after third experiment 80

Figure 7.1. Introduction to strategies from the Study Book 85

Figure 7.2. An example of a plan from the Strategy Guide 88

Figure 7.3. An example of part of a strategy from the Study Book within a

teaching module .. 89

Figure 7.4. Example of a lecture slide showing the Guarded Division plan

(slide 1 of 2) .. 90

List of Figures Teaching Programming Strategies Explicitly to Novice Programmers

 Page 122

Figure 7.5. Example of a lecture slide showing the Guarded Division plan

(slide 2 of 2) ... 91

Figure 7.6. Example exercise from Module 3 requiring Triangular Swap plan 91

Figure 7.7. Example exercise from Module 5 testing the Division by Zero plan 92

Figure 7.8. Example exercise from Module 8 requiring the Sentinel-Controlled

Loop and Guarded Division plans. Highlighting (added for this figure only)

shows strategy content .. 93

Figure 7.9. An extract from the instructions for a programming assignment

highlighting the requirement for a specific programming strategy 94

Figure 7.10. An extract from the marking scheme stating that a particular

programming strategy is required in the solution for a programming

assignment ... 94

Figure 7.11. Four types of examination questions based on novice instruction

aspects .. 95

Figure 7.12. Example of a Knowledge-Comprehension examination question 96

Figure 7.13. Example of a Knowledge-Generation examination question 96

Figure 7.14. Example of a Strategy-Comprehension examination question 97

Figure 7.15. An example of a Strategy-Comprehension examination question 98

Figure 7.16. Another example of Strategy-Generation examination questions 99

Figure 7.17. Comparison of plan use in averaging problem under curricula

including implicit-only and explicit strategy instruction 104

Figure 7.18. Comparison of complete and near-complete correctness in

averaging problem with and after without strategy instruction 105

Figure 7.19. Overview of experiments in a process after the fourth experiment 108

Figure 8.1. Including programming strategies in curricula 109

Figure 8.2. Overview of experiments as a process ... 109

Teaching Programming Strategies Explicitly to Novice Programmers List of Tables

 Page 123

List of Tables

Table 2.1.Count of reasons given for language choice in all universities

(reproduced from de Raadt et al., 2002) .. 8

Table 2.2. Paradigm used in teaching (reproduced from de Raadt et al., 2004) 8

Table 2.3. “Problem solving strategies” identified in 2003 Census. 9

Table 2.4. Problem solving content in textbooks discovered by 2003 Census 9

Table 2.5. Performance in the Leeds study (reproduced from Lister et al., 2004) 11

Table 2.6. SOLO Categorisation of Question 10 responses (reproduced from

Whalley et al., 2006) ... 14

Table 5.1. Average times for problems by expert type in minutes and seconds

(and number of each type) ... 55

Table 5.2. Average plan use problems by expert type ... 55

Table 5.3. Presence of plans for Problem 1 ... 55

Table 5.4. Presence of plans for Problem 2 ... 56

Table 5.5. Presence of plans for Problem 3 ... 56

Table 6.1. Comparison of the two curricula tested (items with strike through

were absent in the control curriculum) .. 65

Table 6.2. Schedule of courses (items greyed were not conducted with control

curriculum) .. 68

Table 6.3. Demographic, experience and confidence data gathered on

registration ... 70

Table 6.4: Times for problems by group in minutes and seconds 70

Table 6.5. Presence of plans and integration for Problem 1 71

Table 6.6. Presence of plans and integration for Problem 2 72

Table 6.7. Presence of plans and integration for Problem 3 73

Table 6.8. Overall plan use by each group... 74

Table 6.9. Interview participants and interview times ... 74

Table 7.1. Change in Guarded Division ability under new curriculum 103

Table 7.2. Testing for improvement between cohorts.. 105

Table 7.3. Testing dependency of strategies on knowledge 106

Appendices Teaching Programming Strategies Explicitly to Novice Programmers

 Page 124

Appendices

Appendices Table of Appendices

 Page 125

Table of Appendices

Appendix A. Programming Problem Solving Strategies Reference 126

Appendix B. Solution Sheet for Initial Goal/Plan Analysis Experiment 153

Appendix C. Answer Sheets for Problem Solving Experiments .. 154

Appendix D. Web Survey Demographics and Computing Confidence Questions 157

Appendix E. Post Experiment Interview Questions ... 159

Appendix F. Exam Questions for Assessment Experiment ... 160

Appendix G. Final Exam Answers for Assessment Experiment .. 167

Appendix H. Experimental Curriculum Written Materials .. 169

Programming Problem Solving Strategies Reference Appendix A

 Page 126

Appendix A. Programming Problem Solving Strategies
Reference

Introduction

This appendix contains a number of useful strategies relevant to an introductory

programming course, but also necessary to solve problems of a more complex nature. The

list is not complete, but contains strategies that are well defined and malleable enough be

manipulated to suit particular problems.

This appendix should be seen as a tool-kit for solving problems at a sub-algorithmic level.

The plans at this scale usually do not constitute an entire algorithm (although some approach

this level) but usually form part of a greater algorithm.

This reference is not meant to be a complete curriculum; it is merely a short reference guide.

Certain programming language knowledge (constructs and functions) are required before

each plan can be applied. These dependencies are listed in italics at the beginning of each

plan.

Strategies Reference Table of Contents

Plan Integration .. 127

Plan 1. Average Plan... 127

Plan 2. Divisibility Plan .. 128

Plan 3. Cycle Position Plan ... 130

Plan 4. Number Decomposition Plan .. 131

Plan 5. Initialisation Plan .. 131

Plan 6. Triangular Swap Plan ... 132

Plan 7. Guarded Exception Plans (including Guarded Division Plan) 133

Plan 8. Counter Controlled Loop Plan .. 135

Plan 9. Primed Sentinel Controlled Loop Plan ... 136

Plan 10. Sum and Count Plans .. 137

Plan 11. Validation Plan ... 138

Plan 12. Min/Max Plans ... 140

Plan 13. Tallying Plan .. 141

Plan 14. Search Algorithm .. 142

Plan 15. Bubble Sort Algorithm ... 143

Plan 16. Command Line Arguments Plan .. 147

Plan 17. File Use Plan ... 147

Plan 18. Recursion Plans (single- and multi-branching) .. 148

Strategies Index .. 152

Appendix A Programming Problem Solving Strategies Reference

 Page 127

Plan Integration

Before introducing the plans, it is important to discuss how plans can be integrated into a

whole solution. There are three ways of combining plans.

Abutment

Abutment is placing plans or steps within plans one after the other. The sequence of these

defines the necessary order that must be followed to be successful. For example, if we wish

to perform calculations on user inputs, we must first get the inputs before we can perform the

calculation.

Merging

Often two plans need to be achieved together. Step within the two plans may be intertwined

in their order so that they can be achieved together. A processor can only achieve one

instruction at a time so these steps cannot be achieved simultaneously, but the steps can be

placed one after another in arbitrary order. For example, if we were wishing to calculate an

average of a set of numbers we need to count the numbers and sum the numbers. Rather than

inputting and processing the set of numbers twice, we can merge these two plans and achieve

them together.

Nesting

Where one plan is contained within another, the inner plan is said to be nested inside the

outer plan. For example, if we were summing numbers we may nest the summing plan

within one of the specific looping plans. If we were to calculate an average, we may nest this

within a Guarded Division plan to avoid division by zero in the average calculation.

Plan 1. Average Plan

This plan requires an understanding of the division operator.

Finding the average of a series of numbers is a common task in programming. To calculate

the average we need the sum of the numbers and the count of the numbers. Assuming we

have these two values we calculate the average by dividing the sum by the count.

average = sum / count

Here is an example in the context of a full program.

#include <stdio.h>

int main() {

 int sum = 15; // Stores the some of some numbers

 int count = 3; // Stores the count of those numbers

 int average; // Will store the calculated average

 // Calculate the average

 average = sum / count;

 // Output the average

 printf("Average: %i\n", average);

}

Programming Problem Solving Strategies Reference Appendix A

 Page 128

Here is the output of the above program.

Average: 5

Plan 2. Divisibility Plan

This plan requires an understanding of the mod operator and selection statements.

If we wish to see if one number is evenly divisible by another, we can use the mod operator.

If this operator produces a result of zero we know that the first operand is divisible by the

second. The mod operator gives us the remainder after division. If there is no remainder we

know that the first operand is divisible by the second. In a real world application, if we were

to group objects, say apples, we may wish to know if we can form complete groups from the

number of apples at hand. If we have 12 apples we can divide this into 4 groups of 3 with no

remainder.

We can apply the same to numbers in code, for example…

12 % 3 results in 0 so we can say 12 is divisible by 3

We can also see when a number is not divisible by another. If we group 12 apples in to

groups of 5 we are left with 2 apples remaining.

Again we can apply the same to numbers in code, for example…

12 % 5 results in 2 so we can say 12 is not divisible by 5

Appendix A Programming Problem Solving Strategies Reference

 Page 129

Here is an example in the context of a full program.

#include <stdio.h>

int main() {

 int numberToCheck = 12; // A number to check for divisibility

 int firstDivisor = 3; // A sample divisor to use

 int secondDivisor = 5; // Another sample divisor to use

 int result; // Will store the result of mod operation

 // Check the divisibility using first divisor

 result = numberToCheck % firstDivisor;

 printf("Result using %i: %i\n", firstDivisor, result);

 // Check the divisibility using second divisor

 result = numberToCheck % secondDivisor;

 printf("Result using %i: %i\n", secondDivisor, result);

}

Here is the output of the above program.

Result using 3: 0

Result using 5: 2

The above results show that 12 is divisible by 3 but 12 is not divisible by 5.

Here is a program that tests if numbers are even. An even number is divisible by two.

#include <stdio.h>

int main() {

 int firstNumberToCheck = 4; // Number to check divisibility by 2

 int secondNumberToCheck = 5; // Another "

 // Check if first number is even

 if(firstNumberToCheck%2 == 0) {

 printf("%i is even\n", firstNumberToCheck);

 }

 else {

 printf("%i is not even\n", firstNumberToCheck);

 }

 // Check if second number is even

 if(secondNumberToCheck%2 == 0) {

 printf("%i is even\n", secondNumberToCheck);

 }

 else {

 printf("%i is not even\n", secondNumberToCheck);

 }

}

Here is the output of the above program.

4 is even

5 is not even

Programming Problem Solving Strategies Reference Appendix A

 Page 130

Plan 3. Cycle Position Plan

This plan requires an understanding of the mod operator.

It is possible to form a series of numbers into a cycle. Each

number will then have a relative position within the cycle.

For example we can to take a series of numbers beginning

with zero and group them by fours. Each number would

then have a relative position within each cycle from zero to

three. In the figure above we see such a cycle. The

numbers are in four groups and each group has a relative.

Numbers with position 0 are { 0, 4, 8, … }, numbers with

position 1 are { 1, 5, 9, … } and so on.

We can determine the position of a number in a cycle using

the mod operator. As a general rule numbers can be brought into a cycle of size n by

applying mod n.

x % n gives the position of x in a cycle of size n

For example if we want to create a size 3 we can apply mod 3 and we can then find positions

of numbers in this cycle.

...

 9 % 3 gives 0

10 % 3 gives 1

11 % 3 gives 2

12 % 3 gives 0 …and so on.

One useful application of this idea is to bring random numbers into a range. In the C/C++

language random numbers are generated in a range from 0 to the largest possible integer

value (with 4 byte integers this is 2147483647). If we want to generate a random number in

a specified range, we can take the random number given by the standard library function

rand() and find its position in a specified cycle.

x % n gives the a value in the range 0 to n-1

If we wanted to have a random number between 0 and 4 we can apply mod 5.

myRand = rand() % 5;

If we want a random number between 1 and 5 we can shift the previous range by adding 1 to

the result.

myRand = rand() % 5 + 1;

We can also shift such a range in a negative direction. The diagram below shows a range

and how it can be visualised when shifted.

0 1 2 3 4

51 2 3 4

0 1 2-2 -1

0 to 4

1 to 5

-2 to 2

x % 5

x % 5 + 1

x % 5 - 2

We can create a function that generates a random number between 1 and 10 as follows.

0

7

1

4

2

3

5
6

8

9

Appendix A Programming Problem Solving Strategies Reference

 Page 131

int rand1to10() {

 return rand()%10 + 1;

}

We can generalise this function to apply settable upper and lower limits.

int myRand(int lowerLimit, int upperLimit) {

 return rand()%(upperLimit-lowerLimit+1) + lowerLimit;

}

Plan 4. Number Decomposition Plan

This plan requires an understanding of the mod and division operators.

We can use the division and mod operators to tear numbers apart. For example, if we want

to find the last two digits of 12345 we can apply mod 100. For decimal digits the following

rules apply.

x % 10 gives the last digit

x % 100 gives the last two digits

x % 1000 gives the last three digits

x % 10000 gives the last four digits …and so on.

Applying a similar idea we can discover the first digits of a number using the division

operator. Using a 5 digit number, the following rules apply.

x / 10000 gives the first digit

x / 1000 gives the first two digits

x / 100 gives the first three digits

x / 10 gives the first four digits.

To find the third last digit of a decimal number we can apply the following operation.

thirdLastDigit = x % 1000 / 100;

Plan 5. Initialisation Plan

This plan requires an understanding of variables and the assignment operator.

Initialisation is commonly applied within other plans.

Failing to initialise variables before they are used can lead to errors.

It is recommended that you initialise all variables when you declare them.

In the following example sum is initialised to 0 as this is an appropriate sum before

summing commences.

int sum = 0;

Programming Problem Solving Strategies Reference Appendix A

 Page 132

In some plans it may be necessary to initialise an array of items. For instance, here we are

initialised an array used to tally letters in a message.

#include <stdio.h>

int main() {

 int letterCount[26]; // Array to store count of letters

 int i; // Iterative counter

 // Initialise array of counts

 for(i=0; i<26; i++) {

 letterCount[i] = 0;

 }

 ...

}

Plan 6. Triangular Swap Plan

This plan requires an understanding of variables and the assignment operator.

Consider how you swap two items. Imagine two pencils in front of you. To swap their

positions you would pick up one with one hand, the second with your other hand and then

place each in their new positions.

Position 1 Position 2

A computer can only perform one action at a time. Now, imagine that you only have one

hand; how would you swap the positions of the two pencils now? Keep in mind also that

when a variable is assigned a new value, the old value is replaced and cannot be accessed

later. Attempting to swap using the above method will result in two copies of the same value.

Temp Pos

Position 1 Position 2

1
Temp Pos

Position 1 Position 2

2

Temp Pos

Position 1 Position 2

3

To achieve a swap a temporary position is needed. One of the pencils could be moved to the

temporary position; the second pencil could be moved to its new location; finally the first

pencil could be moved from the temporary position to its new position.

Appendix A Programming Problem Solving Strategies Reference

 Page 133

Here is an example in the context of a full program.

#include <stdio.h>

int main() {

 int firstPosition = 5; // First position containing value to swap

 int secondPosition = 6; // Second position containing value to swap

 int tempPosition; // Temporary position for swap

 // Output the numbers after the swap

 printf("Before Swap...\n");

 printf("First: %i, Second: %i\n", firstPosition, secondPosition);

 // Swap the two numbers in a triangular swap

 // 1. Copy the value from the second position to temp

 tempPosition = secondPosition;

 // 2. Copy the value from the first position to the second

 secondPosition = firstPosition;

 // 3. Copy the value from the temp position to the first

 firstPosition = tempPosition;

 // Output the numbers after the swap

 printf("After Swap...\n");

 printf("First: %i, Second: %i\n", firstPosition, secondPosition);

}

Here is the output of the above program.

Before Swap...

First: 5, Second: 6

After Swap...

First: 6, Second: 5

The above results show the values are swapped and not duplicated.

Plan 7. Guarded Exception Plans
(including Guarded Division Plan)

This plan requires an understanding of the if statement.

When a program compiles and runs, there are still opportunities for things to go wrong.

Usually such logic errors occur around or outside boundaries of the data being worked on.

Such boundaries include:

 Absence of data where some is expected,

 Negatives or zero where positives are expected,

 Too much data where a finite amount is expected, and

 Values outside an acceptable range.

To create reliable, "bullet proof" programs, these boundary conditions need to be considered.

There are also time where a program may encounter data that, when used in operations, will

cause the operating to stop the program.

In mathematics, if a number is divided by zero the result is undefined. If a program attempts

to divide by zero, the operating system will close the program down. Whenever we perform

a division where the second operand could be zero, we must test the second operand before

performing the division and prevent the division from taking place if it is zero.

Here is an example in the context of a full program.

Programming Problem Solving Strategies Reference Appendix A

 Page 134

int main() {

 int firstOperand; // First operator for division

 int secondOperand; // Second operator for division

 // Gather inputs for division

 printf("Enter two integers for division: ");

 scanf("%i %i", &firstOperand, &secondOperand);

 // Test second operand

 if(secondOperand != 0) {

 // Perform division

 printf(

 "%i divided by %i is %i",

 firstOperand,

 secondOperand,

 firstOperand / secondOperand

);

 }

}

Here is the output of the above program when the value 5 is given as the second operand.

Enter two integers for division: 10 5

10 divided by 5 is 2

When a zero value is given for the second operand, no output is produced and the program

ends.

Enter two integers for division: 10 0

Here is another example that incorporates Guarded Division into a function which calculates

an average from a given sum and count.

int average(int sum, int count) {

 // Test against dividing by zero

 if(count == 0) {

 return 0;

 }

 // Perform division as normal

 else {

 return sum / count;

 }

}

Appendix A Programming Problem Solving Strategies Reference

 Page 135

Plan 8. Counter Controlled Loop Plan

This plan requires an understanding of looping constructs.

A Counter Controlled uses a counter variable which is incremented until a set number of

repetitions is achieved. The loop will continue regardless of any other event that may occur

during repetition.

The following example reads in 10 integers from a user and calculates the sum. The

program will continue regardless of what the user inputs. We usually use for loops to

achieve counter controlled loops.

#include <stdio.h>

const int NUMBER_OF_INPUTS = 10;

int main() {

 int i = 0; // Loop iterator

 int sum = 0; // Sum of numbers input

 int userInput; // Input from user

 // Calculate the sum

 for(i=0; i<NUMBER_OF_INPUTS; i++) {

 printf("Enter a number: ");

 scanf("%i", &userInput);

 sum += userInput;

 }

 // Output the sum

 printf("Sum: %i\n", sum);

}

Counter Controlled loops are often used with arrays. When this happens the loop iterator can

serve the dual purpose of being an index into the array. For an example of this see the

initialisation of an array in Plan 5.

Programming Problem Solving Strategies Reference Appendix A

 Page 136

Plan 9. Primed Sentinel Controlled Loop Plan

This plan requires an understanding of looping constructs.

A Primed Sentinel Controlled Loop allows repetition until an event takes place or some

target value (the sentinel) is discovered.

Here is an example including a primed sentinel-controlled loop. Not that the loop tests
userInput to determine if it should continue looping. The variable is being compared to
the sentinel value SENTINEL. The value of userInput is primed with an initial user input
before the loop begins. Although this adds some redundancy (the input statement appears
twice) there can be efficiency savings made when the user enters the sentinel value in the
first instance (which is not uncommon).

#include <stdio.h>

const int SENTINEL = 9999;

int main() {

 int sum = 0; // Sum of numbers input

 int userInput; // Input from user

 // Get the first user input

 printf("Enter a number (%i to end): ", SENTINEL);

 scanf("%i", &userInput);

 // Calculate the sum

 while(userInput != SENTINEL) {

 sum += userInput;

 printf("Enter a number (%i to end): ", SENTINEL);

 scanf("%i", &userInput);

 }

 // Output the sum

 printf("Sum: %i\n", sum);

}

If the user where to enter the sentinel value as their
first input, the loop would never be entered. The sum
will also be correct as we are checking each user input
before it is added to the sum. This avoids accidentally
including the sentinel value in the sum.

Success

Failure

Test

Input

Input

Body of Loop

Appendix A Programming Problem Solving Strategies Reference

 Page 137

Plan 10. Sum and Count Plans

This plan requires an understanding of looping

constructs and initialization.

Two frequently practiced programming activities are

summing or counting values. These simple processes

are easily achieved, but also easily messed up. Both

plans are achieved by using a variable to accumulate

the sum or count as values are encountered. The key

to both is assuring that the sum or count variable is

initialised to zero. Failing to initialise such a variable

will not stop your program from compiling. In many

instances an uninitialised variable will have a value of

zero so the program will work, but it will not work all

the time. Just remember:

INITIALISE SUM AND COUNT VARIABLES

Below is an example which inputs and sums 5 numbers from a user. Note a Counter

Controlled loop is used to control repetitions as we know how many are desired before the

looping begins.

#include <stdio.h>

const int NUMBER_OF_INPUTS = 5;

int main() {

 int userInput = 0; // Input from user

 int sum = 0; // Sum of inputs INITIALISED

 int i; // Iterative counter

 // Counter Controlled loop to repeat inputs

 for (i=0; i<NUMBER_OF_INPUTS; i++) {

 // Prompt for input

 printf("Please enter an integer: ");

 scanf("%i", &userInput);

 // Add input to sum

 sum += userInput;

 }

 // Output the sum

 printf("Sum of numbers entered: %i\n", sum);

}

The output of the above program will resemble the following.

Initialise Sum or Count to zero

CCL or SCL

Get Value

Add/Increment Sum/Count

…

Programming Problem Solving Strategies Reference Appendix A

 Page 138

Please enter an integer: 1

Please enter an integer: 2

Please enter an integer: 3

Please enter an integer: 4

Please enter an integer: 5

Sum of numbers entered: 15

The following is an example which counts numbers entered by a user unit the value 9999 is

encountered as a sentinel.

#include <stdio.h>

const int SENTINEL = 9999;

int main() {

 int userInput = 0; // Input from user

 int count = 0; // Count of inputs INITIALISED

 // Prompt for initial input

 printf("Please enter an integer: ");

 scanf("%i", &userInput);

 // Test for sentinel

 while(userInput != SENTINEL) {

 // Count input

 count++;

 // Subsequent input

 printf("Please enter an integer: ");

 scanf("%i", &userInput);

 }

 printf("You entered %i inputs\n", count);

}

The output of the above program will resemble the following.

Please enter an integer: 1

Please enter an integer: 2

Please enter an integer: 3

Please enter an integer: 9999

You entered 3 inputs

Plan 11. Validation Plan

This plan requires an understanding of loops and the scanf() function (or

equivalent).

 When dealing with inputs from users one can never

assume they will enter what is expected. It is therefore

important, for critical systems, to validate that users have

entered what they were expected to enter, and repeat

inputs, with appropriate messages, in the case where users

enter invalid inputs.

The plan shows here prompts the user and accepts an initial

input. The value is then tested as the condition of a Sentinel

Controlled loop where the sentinel is a valid input.

Initial Prompt

Test for Valid Input (SCL)

Clear Input Stream

Error Message Prompt

Initial Input

Subsequent Input

Clear Input Stream

Initial Prompt

Test for Valid Input (SCL)

Clear Input Stream

Error Message Prompt

Initial Input

Subsequent Input

Clear Input Stream

Appendix A Programming Problem Solving Strategies Reference

 Page 139

Testing for validity can take two forms:

 Testing if a valid input type has been entered, for instance, if an integer is expected,

it is important to know that one has been entered.

 Once the first test has been satisfied, and where a value within a specified range is

expected, then the value of the input should be tested.

The user will usually enter a valid input in the first instance, but if they do not, in the loop an

error message is output and a subsequent input is gathered. This looping can continue

indefinitely until the user enters a valid value.

After each input (within the loop and after the loop) the input stream is cleared. If the user

has entered additional, unwanted data, either accidentally or maliciously, then it will be

removed before the next input is sought.

Here is an example function that gathers a valid integer in a specified range.

int getValidIntegerInRange(int lowestAllowed, int highestAllowed) {

 int userInput = 0; // Input from user

 int inputsGathered = 0; // Number of inputs from scanf()

 // Prompt for initial input

 printf(

 "Please enter an integer between %i and %i: ",

 lowestAllowed, highestAllowed

);

 inputsGathered = scanf("%i", &userInput);

 // Test for valid input

 while(

 inputsGathered !=1 ||

 userInput < lowestAllowed ||

 userInput > highestAllowed

) {

 // Clear standard input

 scanf("%*[^\n]");

 scanf("%*c");

 // Error message prompt

 printf(

 "Invalid input. "

 "Please enter an integer between %i and %i: ",

 lowestAllowed, highestAllowed

);

 inputsGathered = scanf("%i", &userInput);

 }

 return userInput;

}

Note that where inputs are gathered from the user, the return value from scanf() is also

captured. The function scanf() will attempt to input values according to the format string,

storing the values at the addresses provided. The return value of scanf() is not an input

value, but the number of values that have been successfully input and stored. Using this we

can determine if an appropriate value has been entered by the user. See the description of

scanf() in Appendix 1 for more detail.

Programming Problem Solving Strategies Reference Appendix A

 Page 140

Plan 12. Min/Max Plans

This plan requires an understanding of looping constructs and the if statement.

To find the minimum or maximum from a number of

user inputs, it is not necessary to keep all candidates,

just the current min/max at any stage.

This process starts by selecting an initial value for the

min/max variable. If searching for a maximum,

initialise to the minimum possible value. If searching

for the minimum, initialise to the maximum possible

value. In that way the first value encountered will

become the new min/max. Alternately the first value

encountered (if it can be guaranteed there will be a

single value) can be used as the initial value for the

min/max.

As each candidate is presented within a loop (a counter controlled loop or sentinel controlled

loop) it needs to be compared with the current-max/min. If searching for a maximum and

the candidate is greater than the current maximum, then the candidate will be assigned as the

new current-maximum.

The following example inputs 5 numbers between 0 and the largest integer value allowed.

Inputs are gathered from a user using getValidIntegerInRange() as shown in Plan

11 above. The maxNumber variable is used to store the current maximum and it is

initialised to 0 which is the smallest input allowed.

#include <stdio.h>

#include <limits.h>

const int NUMBERS_TO_READ = 5;

int getValidIntegerInRange(int lowestAllowed, int highestAllowed);

int main() {

 int i; // Iterative counter

 int input; // Validated Input from user

 int maxNumber = 0; // Current maximum initialised to

 // minimum possible value

 // Get inputs from user

 for(i = 0; i < NUMBERS_TO_READ; i++) {

 input = getValidIntegerInRange(0,INT_MAX);

 // Compare with current max and assign if greater

 if(input>maxNumber) {

 maxNumber = input;

 }

 }

 // Output the max

 printf("The maximum was: %i\n", maxNumber);

}

int getValidIntegerInRange(int lowestAllowed, int highestAllowed) {

 ...

Note that each input is compared with the current maximum. Where a candidate is found to

be greater than the current maximum it replaces the current maximum and is used for future

comparisons.

Initialise Max/Min
to extreme opposite

CCL or SCL

Get Candidate

Test: Compare to Max/Min

…

Assign new Max/Min

Initialise Max/Min
to extreme opposite

CCL or SCL

Get Candidate

Test: Compare to Max/Min

…

Assign new Max/Min

Appendix A Programming Problem Solving Strategies Reference

 Page 141

A
B
C
D
E

The cat sat on the mat

F
G
H
I
J
K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

Plan 13. Tallying Plan

This plan requires an understanding of arrays

and looping constructs.

As well as being able to store individual values in

an array we can also use arrays to represent counts

of occurrences of a set of values.

For instance if I asked you to count each letter in

the sentence, "The cat sat on the mat", you could

set up a sheet and tally each letter in the sentence.

We start off with a blank sheet where the tally

each letter is empty (zero). We process each letter

in turn, crossing it off in the sentence as it is

processed. When we encounter a letter, we place a

tally mark in the box on our sheet that relates to

that letter. We can continue this until all the letters

are processed, at which stage the number of tally

marks next to each letter is the number of occurrences of that letter.

We can apply a similar strategy in code using an array.

We will create an array with enough elements to

represent the set of values we are counting. If we are

counting the letters of the alphabet we need an array

with 26 elements. Before we start counting we must

first initialise the array to be sure the count of all

values is zero.

We can then process the values, matching them to the

relevant element of our array and 'adding another tally

mark' (incrementing the count) for that value.

When we have processed all items of interest the

values in the array will be the counts of the items

encountered. If we wish we can output the counts of

the letters encountered.

CCL

Initialise Array Element to 0

CCL

Initialise Array Element to 0

…

…

CCL

Output Element

CCL

Output Element

CCL or SCL

Match Item to Array Element
and Increment Element

Input Item to Count

CCL or SCL

Match Item to Array Element
and Increment Element

Input Item to Count

Programming Problem Solving Strategies Reference Appendix A

 Page 142

The following code is an example of such a strategy.

#include <stdio.h>

#include <ctype.h>

const int SENTINEL = 9999;

int main() {

 int letters[26]; // Array for tallying letters encountered

 int i; // Iterative counter

 char inputLetter; // Letter from user

 // Initialise all array elements to 0

 for(i=0; i<26; i++) {

 letters[i] = 0;

 }

 // Process the user input until end of line

 printf("Please input a sentence...\n");

 scanf("%c", &inputLetter);

 while(inputLetter != '\n') {

 if(isalpha(inputLetter)) {

 letters[tolower(inputLetter)-'a']++;

 }

 scanf("%c", &inputLetter);

 }

 // Output occurrences of letters which have occured once or more

 for(i=0; i<26; i++) {

 if(letters[i] > 0) {

 printf("%c: %i\n", 'a'+i, letters[i]);

 }

 }

}

Notice first that the array is initialised, the values are counted and then the counts are output.

See the language reference for descriptions of isalpha() and tolower().

The array used is an array of integers, which is appropriate as we are storing counts of letters

and not the letters themselves. The array elements are referenced by index and the indices

are integers, so this means we have to translate each character into a number to find the array

element that relates to that letter. We can associate each alphabetic letter with a number in

order starting from 'a' being 0, 'b' being 1 and so on. To achieve this we can convert each

letter to lower case and deduct the value of 'a' as follows.

'a' – 'a' 0

'b' – 'a' 1

'c' – 'a' 2

...

'z' – 'a' 25

Once we have a letter's position in the alphabet we can use this as the index into the array to

access the array element that relates to that letter of the alphabet. When we are counting a

particular letter, we will translate it into a number, find the array element and increment its

value. This is achieved in the statement from the above example shown below.

 letters[tolower(inputLetter)-'a']++;

Plan 14. Search Algorithm

This plan requires an understanding of looping constructs and arrays.

Appendix A Programming Problem Solving Strategies Reference

 Page 143

This plan and the next are approaching the scale of a

full algorithm and could exist independently as useful

functions.

The key to efficient searching is to search only the

parts of the search space (say the elements of an

array) necessary to discover the value sought. Of

course, if the location of the target value is unknown

then the amount of searching required cannot be

predicted, but, if we are seeking the presence of a

target value we should be able to stop searching after

we discover the value. In the case that the target

value is not present, searching will continue until the

end of the search space is reached.

One way to achieve this is through a combination of

a sentinel controlled loop that searches for the target value as a sentinel and a counter

controlled loop that stops when the end of the search space is reached. We can use a Boolean

flag to control the test for the target value and the value of this flag after the search will tell

us if the target value is present. Here is an example function that searches an array for a

target value.

bool search(int targetValue, int array[], int arrayLength) {

 bool found = false; // Boolean search flag

 int i = 0; // Iterative counter

 // Search until found or end of array

 while(!found && i<arrayLength) {

 // Match array element to target value

 found = array[i]==targetValue;

 i++;

 }

 return found;

}

Of course, this approach will only work if we are seeking the presence of a target value. If

we wish to count the occurrences of a value we will need to search the entire search space, so

no saving can be made.

int countValues(int targetValue, int array[], int arrayLength) {

 int i; // Iterative counter

 int count=0; // Times targetValue has been encountered

 // Search entire array for occurrences of target value

 for(i = 0; i < arrayLength; i++) {

 if(array[i] == targetValue) {

 count++;

 }

 }

 // Return the count of occurrences

 return count;

}

Plan 15. Bubble Sort Algorithm

This plan requires an understanding of looping constructs and arrays.

Initialise found flag

Loop while found flag is false and
not at end of array

Get Candidate

Compare to target,
setting found flag

…

Use found flag

Programming Problem Solving Strategies Reference Appendix A

 Page 144

There are a many different algorithms

which can be used to put elements in

order. The Bubble Sort is presented here as

it is easy to comprehend and use.

This algorithm works by looping through

the array comparing each element with the

following one, and swapping the values

where necessary. Each pass through the

array brings it closer to being sorted. The

looping and swapping process must occur

as many times needed to ensure the array

is completely sorted. If we loop through

the array n-1 times (where n is the length of the array), it is guaranteed to be sorted.

The process can be summarized as follows.

 Start at beginning of the array

 Compare first and second elements

 If out of order swap

 Compare the second and third elements

 If out of order swap

 Continue comparing adjacent pairs in the array, from beginning to end; this

constitutes a single pass.

 Perform n-1 passes to completely sort the array.

CCL (n -1 passes)

CCL (a single pass)

Test if adjacent elements
are out of order

Swap out of order elements

Appendix A Programming Problem Solving Strategies Reference

 Page 145

Consider the following array.

7 8 4 5 2

Starting at the beginning we compare the first two values. They are in order so we do not

swap them. The second and third values are out of order and must be swapped. The

outcome is shown below.

7 4 8 5 2

We continue comparing and swapping adjacent values if needed until we get to the end of

the array.

7 4 5 8 2

7 4 5 2 8

The state of the array after one pass is shown above. We will complete four passes through

the array. The state of the array after each pass is shown below.

4 5 2 7 8

4 2 5 7 8

2 4 5 7 8

After second pass

After third pass

After fourth (final) pass

Programming Problem Solving Strategies Reference Appendix A

 Page 146

The following program will perform a bubble sort on an array of integers to put them in

ascending order.

#include <stdio.h>

const int MAX_LENGTH = 5;

int main() {

 int array[MAX_LENGTH] = {9,8,2,5,4}; // Unsorted array

 int i, j; // Loop iterators

 int temp; // For swapping

 // Pass through the array MAX_LENGTH-1 times

 for(i = 0; i < MAX_LENGTH-1; i++){

 // For each pair of consecutive numbers

 for(j = 0; j < MAX_LENGTH-1; j++) {

 // Test if the pair is out of order

 if (array[j] > array[j+1]) {

 // Swap using triangular swap

 temp = array[j];

 array[j] = array[j+1];

 array[j+1] = temp;

 }

 }

 }

 // Output the array after sorting

 for(i = 0; i < MAX_LENGTH; i++){

 printf("%i ",array[i]);

 }

 printf("\n");

}

Notice the above code contains two for loops, one inside the other. The outer loop ensures
that n-1 passes are performed. Each iteration of the outer loop, the inner nested loop
compared each adjacent value in the array and swaps it if necessary.

Bubble sort is not the most efficient sorting algorithm. For large and unordered data faster
sorting algorithms are available. The efficiency of the Bubble Sort algorithm can be
improved by applying the following two modifications.

 Reduce the number of comparisons by one for each pass. After the first pass the

greatest value will be pushed to the rightmost element. After two passes, the final

two elements will contain the two greatest values in sorted order and so on. To

achieve this, the value of i can be deducted from the upper limit of the inner loop.
j < MAX_LENGTH-1-i;

 For an array that contains values that are nearly already sorted, it is possible to reach

a sorted state before n-1 passes have been made. The array can be determined to be

in a sorted state when a complete pass has been performed in which no swaps are

made. A Boolean flag swapsMade can be used which is set to false at the

beginning of each pass. If it is still false at the end of the pass, no swaps have been

made and the array is in sorted order. This flag can be incorporated into the test of

the outer loop.

Appendix A Programming Problem Solving Strategies Reference

 Page 147

Plan 16. Command Line Arguments Plan

This plan requires an understanding of command line arguments and the if

statement.

If information provided to a program from the command line is crucial to the successful
running of the program, then the number of arguments needs to be checked at the beginning
of program execution.

#include <stdio.h>

int main(int argc, char *argv[]) {

 // Check for the correct number of arguments

 if (argc < 2) {

 printf("USAGE: %s secondArgument\n", argv[0]);

 exit(1);

 }

 // Rest of program

 ...

}

The arguments to the main() are argc (the number of command line arguments) and
argv (an array of strings, each containing and argument). The code above shows a test for
the minimum number of command line arguments needed. In this case the program expects
two arguments and any extras will be ignored. If the user runs the program and does not
supply a second argument, then an error message is output and the program exits. Note that
the name of the executable file will be stored in argv[0] and this is used in the error
message; the name of the executable could change, but the error message will always be
correct.

Once the number of command line arguments has been checked, the validity of the values

supplied may then also need to be checked.

Plan 17. File Use Plan

This plan requires an understanding of files and the if statement.

When using input files, where data sourced from those files is critical to the running of a

program, the following 5 Step Plan should be taken. This plan takes checks that the file is

available for use. It closes the stream when it is no longer needed; this is important to avoid

data loss.

1 Create a stream (FILE) pointer

FILE *inputStream;

2 Open a file and attach the stream

inputStream = fopen("myfile.txt","r");

3 Test the stream, this testing the file opening

if (inputStream == NULL) {

 printf("Error opening file");

 exit(1);

}

4 Use the stream for input or output (this will of course vary according to the needs of the

input stream)

Programming Problem Solving Strategies Reference Appendix A

 Page 148

5 Close the stream

fclose(inputStream);

Plan 18. Recursion Plans (single- and multi-branching)

This plan requires an understanding of the if statement and calling functions.

A recursive function is one which calls itself, either directly or indirectly. Recursive

functions are very simple, but can achieve quite complex solutions by solving a problem a

small part at a time. Recursion is a way of achieving repetition in a program.

Recursive functions have two parts: a stopping case and a recursive case. An if statement is

used to determine which case should be used as shown in the skeleton below.

int exampleRecursiveFunction(...ARGUMENTS...) {

 // Stopping case

 if(TEST TO SEE IF RECURSION SHOULD STOP) {

 ...;

 }

 // Recursive case

 else {

 ...

 exampleRecursiveFunction(...);

 ...

 }

}

The recursive case contains a recursive function call. Each time the recursive function is

called, the arguments passed should be slightly different to those used to call the current

function. In that way progress is made towards the end of recursion.

The stopping case is reached when some end has been achieved. It contains no further

recursive function calls.

The following function is a recursive function that counts down from any positive number to

zero.

void countDown(unsigned int number) {

 // Stopping case

 if(number == 0) {

 printf("0\n");

 }

 // Recursive case

 else {

 printf("%i\n", number);

 countDown(number - 1);

 }

}

The stopping case for this function occurs when the value of number is zero. If we called

this function once and passed it the value zero, it would use the stopping case immediately

and end. If a greater number is passed the recursive case will be used and the recursive

function call within that passes a number one less each time. In this way the stopping case

will eventually be reached.

Appendix A Programming Problem Solving Strategies Reference

 Page 149

We could start the recursive process, starting at the number 3, by calling the countDown()

function from the main() and passing the value 3.

int main() {

 // Start the count down at 3

 countDown(3);

}

The output of this program would be as follows.

% a.out

3

2

1

0

%

Below is an example of another recursive function that can be used to calculate factorials.

The factorial of an integer is the integer multiplied by all the positive integers less than it to

one. We denote the factorial of a number using an exclamation (!) like as follows.

5! = 5 x 4 x 3 x 2 x 1

The factorial for 4! can be expressed as follows.

4! = 4 x 3 x 2 x 1

If we wanted to, we could now express 5! as follows.

5! = 5 x 4!

You can see the recursive nature of this equation already. We can make this a general

equation as follows. This is our recursive case.

n! = n x (n-1)!

We also need to express a stopping case for this, which is when n is 1.

1! = 1

This is a mathematical definition of a recursive process. If we were to run it through for say

4! it would look as follows.

4! = 4 x 3!

3! = 3 x 2!

2! = 2 x 1!

We know that 1! is equal to one. We can now start working our way back up.

2! = 2 x 1! 2 x 1 2

3! = 3 x 2! 3 x 2 6

4! = 4 x 3! 4 x 6 24

So 4! is 24. We can write a function that calculates factorials using the process we have

described as follows.

Programming Problem Solving Strategies Reference Appendix A

 Page 150

int factorial(unsigned int number) {

 // Stopping case

 if (number <= 1) {

 return 1;

 }

 // Recursive case

 else {

 return number * factorial(number – 1);

 }

}

You will notice that with this function, as well as actions being achieved on the way to the

stopping case, calculations are happening through the return values after the stopping case

has been reached and while working back to the original function call. In order to complete

the expression in the recursive case…

 return number * factorial(number – 1);

…the factorial function needs to be called. We must wait for this function to end and return

a result before we can complete the expression.

This function is an example of single branching recursion. The recursive case contains only a

single function call, so the recursive process will continue until a single stopping case is

reached, after which the calls will roll back to the original function call.

A multi-branching recursive function contains more than one recursive function call in the

recursive case. This is useful for problems where from a particular point there may be

several following points that need to be probed and from each of those points further points

need to be probed and so on. There may be multiple stopping points that can be reached in

such cases also. Consider for example, a directed graph. A directed graph is described by its

points and the vertices between points that run in one direction only. The vertices are like

one-way streets that join one place to another.

The picture below describes a directed graph. The starting point is 1 and the ending point is

5. We can represent this information textually as shown with each vertex having a starting

and ending point and a series of directed vertices that make up the graph.

 1

5

1 2

1 3

2 5

3 5

1 4

1 5

1
2

3

5

4

Appendix A Programming Problem Solving Strategies Reference

 Page 151

Our task is to find how many paths lead from the starting point to the ending point assuming

that there are no cycles in the graph. We can represent a graph as follows.

struct directedGraph { // Describes a directed graph

 vertex vertices[MAX_VERTICES]; // The vertices that make up the graph

 int numVertices; // The number of vertices

 int startPoint; // The starting point

 int endPoint; // The end/target point

};

We can then create a recursive function that, when started at the start point, will discover

how many paths lead to the end point.

int countPaths(directedGraph graph, int currentPoint) {

 int countPathsFromHere=0; // Paths in the graph starting here

 // Stopping case

 if(currentPoint == graph.endPoint) {

 // A complete path has been found

 return 1;

 }

 else {

 // Probe all paths that start here

 for(int i=0; i<graph.numVertices; i++) {

 if(graph.vertices[i].from == currentPoint) {

 countPathsFromHere += countPaths(

 graph,

 graph.vertices[i].to

);

 }

 }

 // Return the number of completed paths staring here

 return countPathsFromHere;

 }

}

Assuming we have read in a graph into a structure variable called graph we could start this

recursive process as follows, printing out the number of paths returned.

printf("%i\n", countPaths(graph,graph.startPoint));

Recursion is a less efficient way of achieving repetition than when using loops. However

when a problem is being solved that is recursive by nature, writing recursive solutions can be

far simpler than writing an iterative solution for the same functionality. Where the depth of

recursion is on too deep, recursive solutions can be quite acceptable.

Programming Problem Solving Strategies Reference Appendix A

 Page 152

Strategies Index
Abutment.. 127

Algorithms

bubble sort ... 143

search .. 142

Average Plan .. 127

Bubble Sort Algorithm 143

Counter Controlled Loop Plan 135

Counting using arrays 141

Cycle Position Plan 130

Divisibility Plan ... 128

File Use Command Line Arguments Plan .. 147

File Use Plan .. 147

Five Step File Use Plan 147

Guarding Exceptions Plans 133

Guarded Division Plan 133

Incorporating Plans

abutment .. 127

merging ... 127

nesting ... 127

Initialisation Plan 131

Looping

fixed repitions .. 135

indefinitely .. 136

Merging .. 127

Min/Max Plans ... 140

Nesting ... 127

Number Decomposition Plan 131

Plan Integration .. 127

Plans

average .. 127

command line arguments....................... 147

count .. 137

count occurrences of values 141

counter controlled loop 135

cycle position ... 130

divisibility .. 128

file use ... 147

five step file use 147

guarded division 133

integration .. 127

intialisation .. 131

maximum ... 140

minimum.. 140

number decomposition 131

primed sentinel controlled loop 136

recursion .. 148

searching .. 142

sort ... 143

sum .. 137

tallying ... 141

triangular swap 132

validation ... 138

Primed Sentinel Controlled Loop Plan 136

Recursion .. 148

example.. 149

multi-branching 150

plans ... 148

single branching 150

Recursion Plans .. 148

Search Algorithm 142

Sum and Count Plans 137

Swapping .. 132

Tallying Plan .. 141

Triangular Swap Plan 132

Validation Plan ... 138

Appendix B Solution Sheet for Initial Goal/Plan Analysis Experiment

 Page 153

Appendix B. Solution Sheet for Initial Goal/Plan Analysis
Experiment

Write a program that will read in integers from a user and output their

average. Stop reading when the value 99999 is input.

Answer Sheets for Problem Solving Experiments Appendix C

 Page 154

Appendix C. Answer Sheets for Problem Solving Experiments

Read in 10 positive integers from a user. Assume the user will enter valid positive

integers only. Determine the maximum.

Appendix C Answer Sheets for Problem Solving Experiments

 Page 155

Read in any number of integers until the value 99999 is encountered. Assume the user will

enter valid integers only. Output the average.

Answer Sheets for Problem Solving Experiments Appendix C

 Page 156

Input any number of integers between 0 and 9. Assume the user will enter valid

integers only. Stop when a value outside this range is encountered. After input is

concluded, output the occurrence of each of the values 0 to 9.

Appendix D Web Survey Demographics and Computing Confidence Questions

 Page 157

Appendix D. Web Survey Demographics and Computing
Confidence Questions

To classify age, participants were asked “Which of the following ranges does your age fall

into?” The following age ranges were presented.

 Less than 25

 26 to 35

 36 to 45

 46 to 55

 56 or over

To gauge each participant's general computing experience the following questions were

asked.

 What is your level of computer use?

 How often would you use a web browser?

To each of these questions, the possible responses were as follows.

 No use

 Irregular use

 Weekly use

 Use every few days

 Daily use

It was desired for participants to have no previous programming experience. To distinguish

this, participants were asked “Have you programmed before (not including HTML)?” and

were able to select from the following answers.

 Never

 Some self-taught

 Formal training

Computing confidence was thought to be a possible differentiating factor in this experiment.

A series of statements were presented to participants to measure their confidence with

computers. The confidence statements were from a computing confidence test created by

Cretchley (2006) and were presented in an unmodified manner. Previous evaluation of this

test by Cretchley had proven it to be a reliable predictor of computing confidence. The

statements were presented as follows (with negatively phrased statements identified.

 I have less trouble learning how to use a computer than I do learning other things.

 When I have difficulties using a computer, I know I can handle them.

 I am not what I would call a computer person. (phrased negatively)

 I enjoy trying things on a computer.

 It takes me longer to understand computers than the average person. (phrased

negatively)

 I have never felt myself able to learn how to use computers. (phrased negatively)

 I find having to use computers frightening. (phrased negatively)

 I find many aspects of using a computer interesting and challenging.

 I don't understand how some people seem to enjoy so much time on a computer.

(phrased negatively)

 I have never been very excited about computers. (phrased negatively)

 I find using computers confusing. (phrased negatively)

Web Survey Demographics and Computing Confidence Questions Appendix D

 Page 158

Possible responses to these confidence statements were as follows.

 Strongly Disagree

 Disagree

 Neutral

 Agree

 Strongly Agree

Each response has a value from 1 to 5. For positively phrased questions a response of

“Strongly Disagree” is valued as 1, a “Neutral” response is 3 and a “Strongly Agree”

response is valued at 5. For negatively phrased questions, this is reversed. The value of each

response is summed to give a confidence measure that can be compared among participants.

As well as acting as a filter for volunteers who had previously completed a programming

course, one of the intentions of this initial data was to balance the representation of

participants in the control and experimental groups. Ultimately, balancing was unnecessary

as participants, who grouped themselves according to their preferred dates, showed an even

level of confidence between groups (there was no significant difference in average

confidence levels between the two groups).

Appendix E Post Experiment Interview Questions

 Page 159

Appendix E. Post Experiment Interview Questions

Questions about the Maximum Problem

1. What is this problem statement asking?

2. What is meant by “positive integers”?

3. What does it mean by the user entering “valid positive integers only”?

4. What does it mean by “Determine the maximum”?

Discussion about Participant's Solution to the Maximum Problem

1. Lead me through your solution ... what does this part do?

2. Does your solution solve the problem?

3. Are there any improvements that could be made?

Questions the Averaging Problem

1. What is this problem statement asking?

2. What is meant by “Read any number of integers”?

3. What does it mean by “until the value 9999 is encountered”?

4. What does it mean by “Output the average”?

Discussion about Participant's Solution to the Averaging Problem

1. Lead me through your solution ... what does this part do?

2. Does your solution solve the problem?

3. Are there any improvements that could be made?

Questions about the Set Counting Problem

1. What is this problem statement asking?

2. What is meant by “Stop when a value outside this range is encountered”?

3. What does it mean by “output the occurrence of each of the values 0 to 9”?

Discussion about Participant's Solution to the Set Counting Problem

1. Lead me through your solution ... what does this part do?

2. Does your solution solve the problem?

3. Are there any improvements that could be made?

Exam Questions for Assessment Experiment Appendix F

 Page 160

Appendix F. Exam Questions for Assessment Experiment

A cover page preceded this in the actual examination paper.

NOTE

There is a list of function specifications and other useful information on a page at the end of

this exam paper.

QUESTION 1 (10 marks, 12min)

What will the following output?

#include <stdio.h>

int testFunc(int *ptr, int num);

int main() {

 int x=7, y=3, z=5;

 printf("%i %i\n", x, y);

 z = testFunc(&y, x);

 printf("%i %i %i\n", x, y, z);

}

int testFunc(int *ptr, int num) {

 int temp;

 printf("%i %i\n", *ptr, num);

 temp = num;

 num = *ptr;

 *ptr = temp;

 printf("%i %i\n", *ptr, num);

 return num + (*ptr);

}

QUESTION 2 (10 marks, 12min)

There are errors on three lines of the code below. Identify the lines with errors by number

and give a corrected version for each of those lines.

01 #include <stdio.h>

02

03 const int NUM_ITEMS = 4;

04

05 int main() {

06 int i=0;

07 double items[NUM_ITEMS] = {1.2, 3.4, 5.6, 7.8}

08

09 for(i=0, i<=NUM_ITEMS, i++) {

10 printf("%d\n", items[i]);

11 }

12 }

13

Question 3 is on the next page.

Appendix F Exam Questions for Assessment Experiment

 Page 161

QUESTION 3 (10 marks, 12min)

The following code is relevant to the instructions that follow.

#include <stdio.h>

const int ROWS = 3;

const int COLS = 5;

void print2DArray(const int array[ROWS][COLS]);

int main() {

 int arrayToPrint[ROWS][COLS] = {

 {7,8,2,5,4},

 {5,9,2,5,4},

 {9,3,2,1,7}

 };

 print2DArray(arrayToPrint);

}

// Your function would go here

In the context of the code above, create the function print2DArray() with the

following prototype so that it prints the content of the array it is passed with a space

between each number and with each row on its own line.

void print2DArray(const int array[ROWS][COLS]);

Question 4 is on the next page.

Exam Questions for Assessment Experiment Appendix F

 Page 162

QUESTION 4 (10 marks, 12min)

The following code is relevant to the instructions that follow.

#include <stdio.h>

const int MAX_NAME_LENGTH = 256;

const int NUM_EMPLOYEES = 4;

enum EmployeeType {manager, underling};

struct Employee {

 EmployeeType eType;

 int employeeID;

 char name[MAX_NAME_LENGTH+1];

 double payRate;

};

void raise(Employee *empPtr, double amount);

int main() {

 int i=0; // Iterative counter

 Employee employees[NUM_EMPLOYEES] = {

 {underling, 324, "Phil In", 23.00},

 {manager, 327, "Boss Hog", 59.00},

 {underling, 329, "Joe Dirt", 22.00},

 {manager, 332, "Phil King", 78.50}

 };

 for(i=0; i<NUM_EMPLOYEES; i++) {

 raise(&employees[i], 1.50);

 printf("%s %.2lf\n", employees[i].name, employees[i].payRate);

 }

}

// Your function would go here

In the context of the code above, create the function raise() with the following

prototype so that it increases the payRate of a single employee by the given

amount, but only if they are a manager.

void raise(Employee *empPtr, double amount);

Question 5 is on the next page.

Appendix F Exam Questions for Assessment Experiment

 Page 163

QUESTION 5 (10 marks, 12min)

Read the following code to answer the questions that follow.

#include <stdio.h>

int mysteryFunction(int num1, int num2);

int main() {

 printf("%i\n", mysteryFunction(3,4));

}

int mysteryFunction(int num1, int num2) {

 // Stopping case

 if(num2 <= 0) {

 return 0;

 }

 // Recursive case

 else {

 return num1 + mysteryFunction(num1, num2-1);

 }

}

a. What will the code above output? (6 marks)

b. What would be a better identifier for the function mysteryFunction()? (4

marks)

Question 6 is on the next page.

Exam Questions for Assessment Experiment Appendix F

 Page 164

QUESTION 6 (10 marks, 12min)

There are commonalities and differences in the strategies used in the following three

functions. Read the functions in the boxes below and answer the questions that follow.

int func1(int array[ARRAY_SIZE], int var) {

 int localVar = 0;

 int i;

 for(i=1; i<ARRAY_SIZE; i++) {

 if(array[i] == var) {

 localVar++;

 }

 }

 return localVar;

}

bool func2(int array[ARRAY_SIZE], int var) {

 int localVar = 0;

 bool localVar2 = false;

 while(!localVar2 && localVar<ARRAY_SIZE) {

 localVar2 = array[localVar]==var;

 localVar++;

 }

 return localVar2;

}

int func3(int array[ARRAY_SIZE]) {

 int localVar = 0;

 int i = 0;

 while(i<ARRAY_SIZE) {

 if(array[i] > localVar) {

 localVar = array[i];

 }

 i++;

 }

 return localVar;

}

a.

b.

a. What is the common strategy used in both func1() and func2()? (5

marks)

b. What is the common strategy used in both func1() and func3()? (5

marks)

Below is a list of some of the strategies covered in the course.

 Average Plan

 Divisibility Plan

 Cycle Position Plan

 Triangular Swap Plan

 Counter Controlled Loop Plan

 Primed Sentinel Controlled Loop Plan

 Sum and Count Plans

 Validation Plan

 Min/Max Plans

 Tallying Plan

 Search Algorithm

 Bubble Sort Algorithm

Question 7 is on the next page.

Appendix F Exam Questions for Assessment Experiment

 Page 165

QUESTION 7 (20 marks, 24min)

Write a function, using the following prototype, which will prompt the user and read

in a valid positive integer. If the user enters invalid input, or a negative integer, the

function will tell them their input was invalid and prompt them to enter another

value. The function will repeat this until the user enters a valid input.

int getValidPositiveInteger();

For your reference, the following lines of code will clear the standard input stream.

scanf("%*[^\n]");

scanf("%*c");

QUESTION 8 (20 marks, 24min)

Write a main() function that will read in integers and output their average. Input

will be gathered using the getValidPositiveInteger() function as described

above (do not re-write that function). Stop reading when the value 99999 is entered

(this is not to be used as an input).

There is a list of function specifications and other information is on the next page.

Exam Questions for Assessment Experiment Appendix F

 Page 166

Relevant functions from stdio.h

int printf(char *format, ...);

Produces output to standard output according to string format. Returns the number of characters

printed.

int scanf(char *format, ...);

Reads from standard input according to the string format, assigning data to the variables pointed to

by the second and subsequent arguments. Returns the number of input items assigned.

Format Sequences

%c char

%i int

%s string

%u unsigned int

%li long int

%lu long unsigned int

%hi short int

%hu short unsigned int

%f float

%lf double

%% percentage symbol

Field Width

For Integers
Placing a number between the % and format specifier for a format sequence will cause the integer to

be output right-justified in a field width with that number of spaces. For example %3i will output

numbers in a field width of 3 spaces. If the integer being output is longer than the field width, the

field width will be 'pushed out' to accommodate the integer.

For Floating Point Numbers
A field width can be created in the same way as with integers. A precision (number of decimal places

after the decimal point) can be specified by putting a point after the field width and a number of

decimal places after that. For example %5.2lf will output a double with a field width of 5 spaces

and a precision of two digits. It is possible to specify precision without a field with, for example

%.2lf.

Format Flags

- left justify

+ force printing sign

0 (zero) pads field width with spaces

Escape Sequences

\n newline

\t tab

\" double quotes

\\ backslash

End of paper

Appendix G Final Exam Answers for Assessment Experiment

 Page 167

Appendix G. Final Exam Answers for Assessment Experiment

A1 (2 marks each for first 3 lines, 4 marks for final line) Total 10

7 3

3 7

7 3

7 7 10

A2 (Lines 7, 9 and 10 contain errors, corrected versions below, 2 marks for missing ; at

end of 7, 4 marks for using ; instead of , and using < instead <= at 9 (alt change

NUM_ITEMS to NUM_ITEMS-1), 2 marks for %lf instead of %d) Total 10

01 #include <stdio.h>

02

03 const int NUM_ITEMS = 4;

04

05 int main() {

06 int i=0;

07 //double items[NUM_ITEMS] = {1.2, 3.4, 5.6, 7.8}

 double items[NUM_ITEMS] = {1.2, 3.4, 5.6, 7.8};

08

09 //for(i=0, i<=NUM_ITEMS, i++) {

 for(i=0; i<NUM_ITEMS; i++) {

10 //printf("%d\n", items[i]);

 printf("%lf\n", items[i]);

11 }

12 }

A3 (2 marks for counter variables, 4 marks for nested loos, 2 marks for correct printf

in inner loop, 2 marks for printf at end of line) Total 10

void print2DArray(const int array[ROWS][COLS]) {

 int i=0, j=0;

 for (i=0; i<ROWS; i++) {

 for(j=0; j<COLS; j++) {

 printf("%i ", array[i][j]);

 }

 printf("\n");

 }

}

A4 (2 marks for if, 2 marks for correct use of enumerated type, 3 marks for

empPtr->eType, 3 marks for increase in pay rate) Total 10

void raise(Employee *empPtr, double amount) {

 if(empPtr->eType == manager) {

 empPtr->payRate += increase;

 }

}

Final Exam Answers for Assessment Experiment Appendix G

 Page 168

A5 (6 for correct answer to a, 4 marks for correct answer to b) Total 10

a. 12
b. multiply() (or a name with an equivalent meaning)

A6 (5 marks for each correct answer) Total 10

a. SEARCH ALGORITHM

Both functions are searching for a value. func1() returns count of occurrences, func2()

returns its presence.

b. PRIMED SENTINEL CONTROLLED LOOP

Both functions use a counter-controlled loop

A7 (5 marks for initial input, 4 marks for checking correct number of inputs, 2 marks

for validating input is positive, 4 marks for clearing standard input after invalid input,

5 marks for subsequent input) Total 20

int getValidPositiveInteger() {

 int input=0;

 int valuesInput=0;

 printf("Enter an integer: ");

 valuesInput = scanf("%i",&input);

 while(valuesInput==0 || input<0) {

 scanf("%*[^\n]");

 scanf("%*c");

 printf("Invalid input. Enter an integer: ");

 valuesInput = scanf("%i",&input);

 }

 scanf("%*[^\n]");

 scanf("%*c");

 return input;

}

A8 (2 marks for initalising sum, 2 marks for initialising count, 2 marks for initial input, 2 marks

for checking input is not sentinel, 2 marks for sum plan, 2 marks for count plan, 2 marks for

subsequent input, 4 marks for guard on division, 2 marks for average calculation) Total 20

int main() {

 int input;

 int sum=0;

 int count=0;

 input = getValidPositiveInteger();

 while(input != SENTINEL) {

 sum += input;

 count++;

 input = getValidPositiveInteger();

 }

 if(count>0) {

 printf("Average: %i\n", sum/count);

 }

 else {

 printf("No numbers input\n");

 }

}

Appendix H Experimental Curriculum Written Materials

 Page 169

Appendix H. Experimental Curriculum Written Materials

The curriculum is presented over the following pages as it was presented to students during

the experiment described in chapter 6. In the document, highlighting shows explicit strategy

content elements that were removed to create the control curriculum.

Appendix H Experimental Curriculum Written Materials

 Page 170

JavaScript Reference

Author: Michael de Raadt

 University of Southern Queensland

Email: deraadt@usq.edu.au

Last Updated: Tuesday 31
st
 May, 2005

Curriculum: A

 Exercise 1.1 172

 Exercise 1.2 173

 Exercise 2.1 174

 Exercise 3.1 175

 Exercise 4.1 176

 Exercise 4.2 177

 Exercise 5.1 179

 Exercise 5.2 179

 Exercise 5.3 179

 Exercise 6.1 181

 Exercise 6.2 182

 Exercise 6.3 182

 Exercise 6.4 183

 Exercise 6.5 183

 Exercise 7.1 184

 Exercise 8.1 186

 Exercise 8.2 187

 Exercise 9.1 188

 Exercise 9.2 189

 Exercise 9.3 189

 Exercise 10.1 190

 Exercise 10.2 191

 Exercise 10.3 192

 Exercise 10.4 193

 Exercise 10.5 193

 Exercise 11.1 194

 Exercise 11.2 196

 Exercise 11.3 197

 Exercise 11.4 197

 Exercise 11.5 199

 Exercise 12.1 201

 Exercise 12.2 201

 Exercise 12.3 203

Appendix H Experimental Curriculum Written Materials

 Page 171

1. First JavaScript Program .. 172
1.1. Hello World! ... 172
1.2. JavaScript and HTML ... 172
1.3. Statements ... 173

2. Calling Functions ... 174
2.1. alert() .. 174

3. Values ... 175
3.1. Numbers .. 175
3.2. Strings ... 175
3.3. Booleans .. 175

4. Variables .. 176
4.1. What are Variables .. 176
4.2. Identifier Rules .. 176
4.3. Declaring Variables with var .. 177
4.4. Undefined .. 177

5. Assigning Values ... 178
5.1. Dynamic Typing ... 178
5.2. typeof .. 178
5.3. Initialising Variables ... 179

6. Operations .. 180
6.1. Arithmetic Operators ... 180
6.2. Division by Zero – infinity .. 181
6.3. Postfix Operators ... 181
6.4. Relational Operators (incl. Equality) .. 182
6.5. Logical Operators .. 182
6.6. String Operators .. 183

7. Abutment .. 184

8. Debugging .. 185

9. Functions that Return Values ... 188
9.1. prompt() ... 188
9.2. parseInt() and parseFloat() .. 189

10. Selection ... 190
10.1. The if Statement .. 190
10.2. The if-else Statement .. 191
10.3. Indenting and Formatting .. 191
10.4. "Dangling else" .. 192
10.5. Guarding Division ... 193

11. Repetition (Loops) ... 194
11.1. while Loop ... 194
11.2. Sentinel Controlled Loops ... 195
11.3. for Loop .. 196
11.4. Counter Controlled Loops ... 197
11.5. Finding the Maximum/Minimum .. 197
11.6. Nesting and Merging ... 197

12. Arrays ... 200
12.1. Declaring Arrays ... 200
12.2. Accessing Array Elements .. 200
12.3. Initialising Arrays ... 200
12.4. Arrays for Values .. 201
12.5. Arrays for Categories .. 202
12.6. Counting Values in a Set ... 203

Experimental Curriculum Written Materials Appendix H

 Page 172

1. First JavaScript Program
The process of writing a program in JavaScript is as follows.

1. Open a text editor (like Notepad)

2. Enter the JavaScript program within an HTML document

3. Save the document with a ".html" extension

4. Open the HTML document in a web browser.

When the browser opens the document it will run the JavaScript program or

report errors in the code.

Writing programs is usually accomplished iteratively in small chunks. Start with

a very basic program; save and open in a browser. Make a small change to the

program, save then refresh the browser.

1.1. Hello World!

A traditional program to start programmers in a new language is one which

outputs the message "Hello World!"

E
xe

rc
is

e
1.

1 Copy the following code (Code Example 1.1) into your text editor taking

care not to introduce changes. The line numbers to the left of each line need

not be entered; they are there so we can refer to a specific line in the code.

Also, two symbols appear in the example which should be used as follows.

 Where the » symbol appears, press the TAB key; and

 Where the ¶ symbol appears, press the ENTER key.

In future examples, these symbols will not be shown explicitly, but will be

used will be used when you write such code.

Save it as an HTML document with a filename like "hello.html"; open the

document in your web browser.

01

02

03

04

05

06

07

<html>¶

» <head>¶

» » <script type="text/javascript">¶

» » » alert("Hello World!");¶

» » </script>¶

» </head>¶

</html>¶

Code Example 1.1: Hello World!

1.2. JavaScript and HTML

HTML stands for HyperText Markup Language. Locating JavaScript code in an

HTML document allows us to write and run simple programs easily.

An HTML document starts with an opening <html> tag and ends with a closing

</html> tag. The document is divided into two parts.

The second part is the body, enclosed in <body>...</body> tags. The body

contains text that will be shown in the browser window. Learning how to format

and organised text in the body is interesting, but will not be covered here. In

Appendix H Experimental Curriculum Written Materials

 Page 173

later examples we will use the body to add a label describing what JavaScript

code we are testing.

The first part of an HTML document is the head, enclosed in <head>...</head>

tags. The head contains extra information not shown in the browser window. It

is here that we locate our JavaScript code. Within the head we add

<script>...</script> tags to identify the start and end of our code. We also

identify the scripting language used by adding the type="text/javascript"

attribute to the starting <script> tag.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

<html>

 <head>

 <script type="text/javascript">

 </script>

 </head>

 <body>

 </body>

</html>

Code Example 1.2: JavaScript in an HTML document

E
xe

rc
is

e
1.

2 As we progress through this study, we will use the above format repeatedly.

We will enter JavaScript code in the block identified by the label "JavaScript

Code Here" and possibly add a simple label in the block identified by

"HTML Here".

Using the file you created in Exercise 1.1 (called "hello.html") remove the

line containing alert(...); and replace it with a blank line. This will be

the section label "JavaScript Code Here" in Code Example 1.2.

Below the </head> tag, add a new line, press TAB and type <body>. Add

a blank line and on another new line press TAB and then add a closing

</body> tag. The blank line will be the section labelled "HTML Here"

above. We will use this section to write a simple description of future

programs.

Choose "Save As..." from the File menu and name the file "template.html".

When creating a new JavaScript program, open the template and save it

under a new name, then start adding code.

1.3. Statements

A JavaScript program is made up of statements. A statement usually starts at the

beginning of a line and ends with a semi-colon (;). In Code Example 1.1 there is

a single statement at line 04. Most programs have several statements.

JavaScript Code Here

HTML Here

Experimental Curriculum Written Materials Appendix H

 Page 174

2. Calling Functions
Built into JavaScript are a number of functions which achieve common, basic

tasks like:

 Gathering input data from a user

 Displaying output to a user

 Discovering information about data

 Converting data from one form to another

To use a function, it is not necessary to know how it is constructed or how it

achieves its task, you just need to know how to call the function. To call a

function you need to know:

1. Its name (which very briefly describes the function's purpose)

2. What arguments (inputs to the function) are needed

3. What you might get back from the function

2.1. alert()

There are a number of functions a JavaScript program can use to get information

to a user. One such function is alert().This function takes a message and

outputs it in a window that pops up within the user's browser. An example of

such a window is show in Figure 2.1.

Figure 2.1: An output window produced by a call to alert()

In Code Example 1.1 (the first code example in this document) the alert()

function is used on line 04 to produce the window above.

The alert() function has only one argument, the message to be output. As we

will see later, it is possible to combine values together to form a single message

output by this function.

E
xe

rc
is

e
2.

1 Open "template.html" and add a call to alert() in the JavaScript section.

As an argument to the function, in between the parentheses () add your

name surrounded by double quotes (""). Be sure the statement (the line)

ends with a semi-colon (;).

In the HTML section (on the line after the opening <body> tag) Add text

describing what the JavaScript program does. Text in this section is not part

of the JavaScript program; only text between the opening <script> and

closing </script> tags is regarded as JavaScript code. What text you add

in the HTML section is up to you.

Appendix H Experimental Curriculum Written Materials

 Page 175

3. Values
In any programming language it is useful to distinguish different types of values so

they can be treated differently in different circumstances.

3.1. Numbers

Numbers include integers (whole numbers like 1) and floating point numbers

(numbers with a fraction after a decimal point like 1.23).

3.2. Strings

A string is a series of characters. A string can have many characters, a single

character, or no characters at all (an empty string). To create a string, we use

quotes to show the start and end of a string. Single or double quotes can be used

as long as the same quotation mark is used at the start and end.

3.3. Booleans

There are only two Boolean values: true and false. These values do not need

to be surrounded by quotes.

In Code Example 3.1 an example of each of the values above is output using

alert(). On lines 04 and 05 strings are output using double and single quotes.

On line 06 a number is output. On line 07 a Boolean value is output.

01

02

03

04

05

06

07

08

09

10

11

12

13

<html>

 <head>

 <script type="text/javascript">

 alert("string content in double quotes");

 alert('string content in single quotes');

 alert(123);

 alert(true);

 </script>

 </head>

 <body>

 Values example

 </body>

</html>

Code Example 3.1: An example showing different values

E
xe

rc
is

e
3.

1 Using your template file, replicate Code Example 3.1. Does it output the

values you expected it to?

Make the following changes.

1. On line 06 change the number from 123 to 123.456. What

happens?

2. On line 07 change the value of true to false. What happens?

3. Remove the quotes from around the string in the first call to

alert() on line 04. What happens? Put the quotes back. What

happens now?

4. Add another call to alert() with the argument abc (not in quotes).

What happens?

Experimental Curriculum Written Materials Appendix H

 Page 176

4. Variables

4.1. What are Variables

A variable allows the storage of a value for later in the program. A variable can

store any of the values shown in section 3. A variable is a piece of information

named by an identifier. Where the identifier of a variable is located in a program,

the value of the variable will be looked-up and used in its place.

4.2. Identifier Rules

There are some rules which constrain the identifiers you use.

1. Can contain:

a. alphabetic characters A to Z and a to z

b. numerals 0 to 9

c. underscores _

2. Cannot contain spaces, punctuation, quotes, or any characters not shown

in 1 above.

3. Can start with:

a. an alphabetic character A to Z and a to z

b. an underscore _

4. Cannot start with a numeral or any character not shown in 3 above.

It should also be noted that identifiers are case sensitive, so a variable with an

identifier userName will be a completely separate variable to one with an

identifier UserName. Be careful; it is easy to accidentally misspell an identifier.

It is a good programming practice to use meaningful identifiers for variables.

While it may be easier to name a variable x or myVar, such identifiers carry no

description of the value they contain. It is better to identify a variable with a

description of its contents. Multiple words can be used with second and

subsequent words in the identifier staring with an uppercase letter. For example

if one wished to store the name of the user, possible identifiers include

nameOfUser or userName. Programmers tend to develop their own style for

such aspects of programming and use the same style consistently.

E
xe

rc
is

e
4.

1 Are the following identifiers legal or not? If not, why not?

1. example-number

2. exampleNumber1

3. 1exampleNumber

4. example_number

5. example number

Appendix H Experimental Curriculum Written Materials

 Page 177

4.3. Declaring Variables with var

If you wish to declare a variable, the best place to do this is at the start of your

program. If you do this, the declaration will easy to find later.

The following form can be used to declare variables.

var variableIdentifer;

or

var variableIdentifier = value;

In the examples above variableIdentifier would be replaced by the

identifier of the variable and value would be replaced with an initial value.

Initialising variables will be discussed further in section 5. Examples of variable

declarations are shown in Code Example 4.1.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

<html>

 <head>

 <script type="text/javascript">

 var exampleString = "string content in quotes";

 var exampleNumber = 123;

 var exampleBoolean = true;

 var exampleVariable;

 alert(exampleString);

 alert(exampleVariable);

 </script>

 </head>

 <body>

 Variables example

 </body>

</html>

Code Example 4.1: Declaring variables

4.4. Undefined

If a variable is declared and not given an initial value, it will not be given a

default value. If a variable is given no value and an attempt is made to get the

value out of the variable, the value undefined will be given. In Code Example

4.1 a variable is declared without an initialisation at line 07. In line 10 the value

of the variable is accessed to be output. As the variable has not yet been assigned

a value, the value undefined will be output.

E
xe

rc
is

e
4.

2 Before you start writing any code, look at Code Example 4.1. On a piece of

paper, write what you think the program will output.

Using your template to replicate Code Example 4.1. Does it output the

values as you expected it to?

Make the following changes.

1. Add another call to alert() to output exampleNumber.

2. Add another call to alert() to output exampleBoolean.

3. Create a new variable which will contain your name. Use an

appropriately descriptive identifier which follows the rules shown in

section 4.2. Assign the new variable a string (use quotes or double

quotes) containing your name. Add another call to alert() to

output the value of the variable.

Experimental Curriculum Written Materials Appendix H

 Page 178

5. Assigning Values
It is possible to give a variable a value when it is declared, and also to change its

value later in the program. The form of an assignment is as follows.

variableIdentifier = value;

The value on the right is determined first. This could be from a number of sources.

This value is then assigned to the variable identified on the left.

5.1. Dynamic Typing

Not only can the value of a variable change during the course of a program, but

also the type of value may change. So a variable initialised with a string can later

be assigned a number or a Boolean value. An example of this is show in Code

Example 5.1.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

<html>

 <head>

 <script type="text/javascript">

 var exampleVariable;

 exampleVariable = "string content in quotes";

 alert(exampleVariable);

 exampleVariable = 123;

 alert(exampleVariable);

 exampleVariable = true;

 alert(exampleVariable);

 </script>

 </head>

 <body>

 Dynamic typing example

 </body>

</html>

Code Example 5.1: The value and type of a variable can change

5.2. typeof

It is possible to determine if a variable currently contains a number, a string, a

Boolean value, or no value at all (an undefined value). To do this, put the

word typeof before the variable name (separated by a space). Code Example

5.2 is the same as the previous example, except instead of outputting the new

values, the type of the variable is output at each stage.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

<html>

 <head>

 <script type="text/javascript">

 var exampleVariable;

 alert(typeof exampleVariable);

 exampleVariable = "string content in quotes";

 alert(typeof exampleVariable);

 exampleVariable = 123;

 alert(typeof exampleVariable);

 exampleVariable = true;

 alert(typeof exampleVariable);

 </script>

 </head>

 <body>

 typeof() example

 </body>

</html>

Code Example 5.2: Discovering the type of a variable

Appendix H Experimental Curriculum Written Materials

 Page 179

E
xe

rc
is

e
5.

1 On a piece of paper write down the identifier, value and type of the

following variables.

1. var exampleInteger = 5;

2. var myName = "Michael";

3. var myLetter = 'M';

4. var emptyString = ""

5. var exampleTruthValue = true;

6. var exampleVariable;

E
xe

rc
is

e
5.

2 On a piece of paper create variable declarations based on the following

descriptions.

1. A number with identifier maxFound and value 0.

2. A string called name with your name as the value.

3. A Boolean variable called found with initial value false.

E
xe

rc
is

e
5.

3 Look at Code Example 5.2. On a piece of paper, write what you think the

program will output.

Using your template to replicate Code Example 5.2. Does it output the

values as you expected it to?

Make the following changes.

1. Change the double quotes on line 07 to single quotes. What

happens?

2. Remove the contents of the string leaving only the quotes. What

happens?

3. Change the number on line 09 to 123.456. What happens?

4. Change the Boolean value on line 11 from true to false. What

happens?

5.3. Initialising Variables

When a variable is created its value is undefined until it is assigned a value.

Using a variable that contains an undefined value can cause errors. Also, using

value of one type (like a string) where another is expected (like a number) can

have unexpected effects. It is therefore good practice to always initialise

variables when they are created.

Not in implicit curriculum

Experimental Curriculum Written Materials Appendix H

 Page 180

6. Operations
Operations are used to perform calculations and to combine values. There are four

types of operators: arithmetic, relational, logical and string operators.

6.1. Arithmetic Operators

The form of operations you are probably most familiar with are arithmetic

operations; operations on numbers. The following table describes the arithmetic

operators available in JavaScript.

Operator Name Purpose
+ Plus To add two numbers
- Minus To subtract one number from another
* Multiply To multiply two numbers
/ Divide To divide two numbers
% Mod To find the remainder after integer division

Table 6.1: Arithmetic Operators

Each of the operators above can be used with two values (operands), one on each

side. We call these binary operators. The Minus operator can also be used to

negate the sign of a single variable from positive to negative and vice-versa. In

this case we refer to the Minus operator as a unary operator.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

<html>

 <head>

 <script type="text/javascript">

 var number = 5;

 alert(1.2 + 3.4);

 alert(1.2 - 3.4);

 alert(1.2 * 3.4);

 alert(1.2 / 3.4);

 alert(12 % 5);

 alert(-number);

 </script>

 </head>

 <body>

 Operations example

 </body>

</html>

Code Example 6.1: Examples of arithmetic operators

The Mod (or Modulo) operator provides the remainder after a division. For

example, say we had 12 apples and we wanted to divide this into groups of 5;

how many would we have left-over? The 12 apples can give two full groups of 5

with 2 apples left-over.

Using the Mod operator we are able to bring large numbers to a

position in a cycle. The Mod operator is sometimes called the

clock operator. Consider a clock which shows the time at 10

o'clock. If asked what time will it be in 80 minutes, we do not

say 10:80, we say it will be 11:20. We can use Mod to perform

such a calculation as follows.

endMinute = (startMinute + minutesSpent)%60;

The Mod operator only works with whole numbers which we refer to as integers.

Appendix H Experimental Curriculum Written Materials

 Page 181

E
xe

rc
is

e
6.

1 On paper, write down what the following JavaScript statements will output.

1. alert(1 + 2.5);

2. alert(1 – 2.5);

3. alert(2 * 3);

4. alert(1 / 2);

5. alert(5 % 3);

6. alert(9 % 3);

6.2. Division by Zero – infinity

When a number is divided by zero, the mathematical result is irrational. In

JavaScript when a number is divided by zero, the special value infinity is

given as the result. Care must be taken to avoid using infinity later in another

operation as this may crash your program.

01

02

03

04

05

06

07

08

09

10

<html>

 <head>

 <script type="text/javascript">

 alert(123 / 0);

 </script>

 </head>

 <body>

 Division by zero example

 </body>

</html>

Code Example 6.2: Dividing by zero results in infinity

6.3. Postfix Operators

A common operation is increasing a variable's value by one (increment) or

reducing its value by one (decrement). One way to achieve an increment as

follows.

numberVariable = numberVariable +1;

A simpler short form is provided using the unary ++ operator.

numberVariable++;

A similar operator (--) is provided for decrementing. Both operators are

demonstrated in Code Example 6.3.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

<html>

 <head>

 <script type="text/javascript">

 var number = 0;

 alert(number);

 number++;

 alert(number);

 number--;

 alert(number);

 </script>

 </head>

 <body>

 Postfix operations example

 </body>

</html>

Code Example 6.3: Increment and decrement operators

Not in implicit curriculum

Experimental Curriculum Written Materials Appendix H

 Page 182

E
xe

rc
is

e
6.

2 On paper, write down what the Code Example 6.3 will output.

6.4. Relational Operators (incl. Equality)

A relational operator takes two values (usually numbers) and compares them.

The result of such an operation will be a Boolean value of true or false.

Operator Name How it works
> Greater than true if left value is greater than right
>= Greater or equal true if left value is equal or greater than right
< Less than true if left value is less than right
<= Less or equal true if left value is equal or less than right
== Equal true if left and right values are equal
!= Not equal true if left and right values are not equal

Table 6.2: Relational Operators

Examples of relational operators are shown in Code Example 6.4.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

<html>

 <head>

 <script type="text/javascript">

 var x = 1;

 var y = 2;

 alert(x > y);

 alert(x >= y);

 alert(x < y);

 alert(x <= y);

 alert(x == y);

 alert(x != y);

 </script>

 </head>

 <body>

 Relational operations example

 </body>

</html>

Code Example 6.4: Relational operators

E
xe

rc
is

e
6.

3 On paper, write down what Code Example 6.4 will output.

6.5. Logical Operators

Logical operators combine two Boolean values. The resulting value will be

true or false.

Operator Name How it works
&& And true if both values are true
|| Or true if one or both values are true
! Negate true becomes false, false becomes true

Table 6.3:Logical Operators

Examples of relational operations are show in Code Example 6.5.

Appendix H Experimental Curriculum Written Materials

 Page 183

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

<html>

 <head>

 <script type="text/javascript">

 var x = 1;

 var y = 2;

 var testValue = false;

 alert(x==1 && y==2);

 alert(x==1 && y==1);

 alert(x==1 || y==1);

 alert(x==0 || y==0);

 testValue = x>0;

 alert(testValue);

 alert(!testValue);

 </script>

 </head>

 <body>

 Logical operations example

 </body>

</html>

Code Example 6.5: Logical operators

E
xe

rc
is

e
6.

4 On paper, write down what Code Example 6.5 will output.

6.6. String Operators

The + operator can be used to join two strings. It can also be used to append

other values (numbers or Booleans) to the end of a string.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

<html>

 <head>

 <script type="text/javascript">

 var message = "Hello";

 var number = 5;

 message = message + " World!";

 alert(message);

 alert("Mambo No. " + number);

 </script>

 </head>

 <body>

 String operations example

 </body>

</html>

Code Example 6.6: String operations

E
xe

rc
is

e
6.

5 On paper, write the following program (you only need the part that goes

between the <script>...</script> tags.)

1. Declare a variable called message and initialise it with the string

"Hello".

2. Add a space to the end of the string value using a + operation.

3. In a call to alert() output the value of message and append your

name as a string in quotes.

Experimental Curriculum Written Materials Appendix H

 Page 184

7. Abutment
Most computers can only achieve one action at a time. With modern operating

systems, computers can run multiple programs at the same time, but actually these

programs must take turns accessing the computer's processor to complete their next

action. Within programs, only a single statement can be processed at a time.

Statements are processed in order from top to bottom. It is therefore important to

recognise that to achieve a certain goal or goals, the steps required to achieve this

must be discovered and the order in which they are put into action must be

understood.

Take, for example, the simple goal of adding two numbers for a user. We can plan

the steps involved as follows.

1. Declare two variables

2. Input two numbers

3. Perform calculation

4. Output result

To complete the required goal, the steps above cannot be ordered in any other way.

In a program each of the steps will be performed in order and never out of sequence.

Placing these steps adjacent to each other, one after the other, is referred to as

abutment.

If this goal were part of some larger goal, the simple plan shown above would need

to be abutted with other plans.

E
xe

rc
is

e
7.

1 On paper, order the following steps to create the message "Hello XXX" for a

user who's name will replace XXX.

a. Append user's name to message variable.

b. Declare a message variable initialised to "Hello "

c. Get the user's name and assign to userName.

d. Output message.

e. Declare a variable with identifier userName.

Not in implicit curriculum

Appendix H Experimental Curriculum Written Materials

 Page 185

8. Debugging
An important skill in programming is to find problems on code that:

1. Stop the program from running at all, or

2. Don't stop the program running, but cause the program to perform

incorrectly.

When writing code, you will be initially concerned with the first of these two.

01

02

03

04

05

06

07

08

09

10

11

12

13

<html>

 <head>

 <script type="text/javascript">

 var number = 1;

 number = number + 1;

 number = number 2;

 number = number * 3;

 </script>

 </head>

 <body>

 Debugging example

 </body>

</html>

Code Example 8.1: A program containing a bug (line 06)

The code you write in JavaScript is interpreted by the Web Browser that is

displaying the page. Different Web Browsers will deal with bugs in JavaScript code

in different ways. The code in Code Example 8.1 contains an error on line 06; an

operator is missing between the variable identifier number and the value 2. After

reaching this point in the program, the Web Browser would stop and the remaining

program will not be executed. Using Mozilla Firefox (v1.0) the JavaScript Console

reports errors. The JavaScript Console can be accessed from the Tools menu.

Figure 8.1: The JavaScript Console from Mozilla Firefox v1.0

Try to work on one error at a time. Error messages are the Web Browsers best guess

at the program author's intention. Quite often they are incorrect and often confusing.

What we can determine is:

 What line the error appeared on, and

 Roughly where in the line the error was located.

Knowing where the error has occurred is a good start. Return to the source code of

the program and find the location. Sometimes the error is obvious and relying on

what you have learned so far, it should be possible to correct the error. If the error

does not jump out at you, and you find yourself staring indefinitely, ask for help.

Experimental Curriculum Written Materials Appendix H

 Page 186

When you have changed the source code, save the file, go to the JavaScript console

and press the "Clear" button, then go to the Web Browser and click "Refresh". On

returning to the JavaScript Console, hopefully the error will be gone.

01

02

03

04

05

06

07

08

09

10

11

12

13

<html>

 <head>

 <script type="text/javascript">

 var exampleString = a string value;

 var number 1;

 alert(exampleString " and some more");

 </script>

 </head>

 <body>

 Debugging example for exercise

 </body>

</html>

Code Example 8.2: A program containing several bugs

E
xe

rc
is

e
8.

1 The code in Code Example 8.2 contains three errors. Before you enter the

code into your computer, attempt (on paper) to identify the line numbers

containing errors, give a description of the error and say how you would fix

it.

Using your template, enter the code exactly as shown. Open the file in your

Web browser. Open the JavaScript Console (Tools JavaScript Console)

and attempt to locate and fix the errors one at a time. If you get stuck, ask for

help.

A strategy for discovering faults in a program that is running but produces incorrect

results is referred to as "print-lining". As a program runs, the variables in the

program change. If the end result is incorrect, the point at which the program

deviated from your intended route needs to be discovered. At points in your program

it is possible to add calls to the alert() function to output the value of a variable

(or variables) at that point. Usually it is best to start near the beginning, moving the

line containing the call to alert() to later points in the program until the place

where things start to go wrong is identified.

01

02

03

04

05

06

07

08

09

<html>

 <head>

 <script type="text/javascript">

 var exampleVariable;

 alert(3 + exampleVariable);

 </script>

 </head>

</html>

Code Example 8.3: Code contains an error, but where

Not in implicit curriculum

Appendix H Experimental Curriculum Written Materials

 Page 187

E
xe

rc
is

e
8.

2 Code Example 8.3 contains an error. Use your template to create this

example.

 What does this program produce as output?

 Use a call to alert() to output the value of exampleVariable

before line 06.

 What is the error?

 What can be done to remedy the error?

Experimental Curriculum Written Materials Appendix H

 Page 188

9. Functions that Return Values
The alert() function produces output to the user, but does not gather or create any

information that can be used in our program. Many functions in JavaScript perform

some action, then return a value that can be used in your program.

9.1. prompt()

The function prompt() is an example of a function which returns a value. This

function, as the name implies, prompts the user to enter some information. That

information is captured and can then be used in the program. The function

prompt() returns a string value. To use this string we can either:

 Store the value in a variable;

 Use the value in an operation; or

 Pass the value on to another function as an argument (input).

01

02

03

04

05

06

07

08

09

10

11

12

<html>

 <head>

 <script type="text/javascript">

 var name = "";

 name = prompt("Enter your name");

 alert("Hello " + name);

 </script>

 </head>

 <body>

 Input example

 </body>

</html>

Code Example 9.1: Example using the prompt() function

In Code Example 9.1 the prompt() function is used at line 05. The user is

prompted to enter their name. A text box is given to do this as shown in Figure

2.1. When complete the user presses the ENTER key or clicks the OK button.

Figure 9.1: The effect of a call to prompt()

Still on line 05 of Code Example 9.1 the string returned from prompt() (the

string entered by the user) is stored in the variable name. On the next line, the

message "Hello" followed by the name the user entered is output.

E
xe

rc
is

e
9.

1 Using your template, create a program that will ask the user their age using

the prompt() function. Store the age in a variable called age. Output the

message "You are XXX years old" where XXX is the age entered by the user.

Appendix H Experimental Curriculum Written Materials

 Page 189

9.2. parseInt() and parseFloat()

The function prompt() returns a string. This is good where a string is needed,

but a string cannot be used in arithmetic operations. Two functions are provided

which can take a value (including a string) and turn it into a number. The

function parseFloat() will return a number with a fraction expressed in

decimal places. The function parseInt() will return a number without any

decimal places. It should be noted that it does not round a number, it truncates it

(just chops off the decimal places). So sending the value 1.9 to parseInt()

would result in a value of 1.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

<html>

 <head>

 <script type="text/javascript">

 var number = 0;

 number = prompt("Enter a number");

 alert(typeof number + " " + number);

 number = parseInt(prompt("Enter a number"));

 alert(typeof number + " " + number);

 number = parseFloat(prompt("Enter a number"));

 alert(typeof number + " " + number);

 </script>

 </head>

 <body>

 parseInt() and parseFloat() example

 </body>

</html>

Code Example 9.2: Using parseInt() and parseFloat() to get an numeric input

E
xe

rc
is

e
9.

3 Using the code you wrote in Exercise 9.1 take the result returned by the

prompt() function and pass it to parseInt() to convert the user's age

from a string to a number in integer form and store this in age. Increment

the value of age. Output the message to say "Soon you will be XXX years

old" where XXX is the incremented age.

E
xe

rc
is

e
9.

2 Answer to the following on paper first, then confirm your answer by creating

and testing the program. Assuming a user entered 4.56 for each input, what

would the program in Code Example 9.2 output?

Experimental Curriculum Written Materials Appendix H

 Page 190

Test

Body

Success

Failure
Test

Body

Success

Failure

10. Selection
In the programs we have seen so far, there has been only one path of execution

through the program. Sometimes we may wish to execute some statements only

when certain conditions are met. Sometimes we may wish to have two possible sets

of statements of which only one will be executed according to certain conditions.

Choosing whether or not to execute a body of statements is referred to as selection.

A number of structures are provided for us to achieve selection.

10.1. The if Statement

The if statement can be used to execute a body of

statements when certain conditions are met. We use a test

to determine if these conditions have been met. The test

will result in a true or false value. Relational (>, <,

==...) and logical (&&, ||, !) operators are often used in

such a test to obtain a Boolean value.

if(TEST) {

 BODY

}

In the syntax description above we see an if statement

starting with the word if. This is followed by the test which is always enclosed

in parentheses (). The body contains statements that will be executed if the test

results in a true value. The body is enclosed in curly braces { }. If the test

fails (results in a false value) the body will be skipped and the next statement

after the body will be executed as shown diagrammatically in Figure 10.1.

In Code Example 10.1 we see an example of an if statement starting on line 05

and ending on line 07. The test compares the string the user entered with the

string "hi". If they are the same, a true value results and the body will be

executed.

01

02

03

04

05

06

07

08

09

10

11

12

13

<html>

 <head>

 <script type="text/javascript">

 var input = "";

 input = prompt("Enter a string");

 if(input == "hi") {

 alert("Well hello to you too.");

 }

 </script>

 </head>

 <body>

 if example

 </body>

</html>

Code Example 10.1: Example using if

E
xe

rc
is

e
10

.1
 Using your template create a program that will prompt the user for a number.

Convert the user's input to an integer using parseInt() and store in a

variable. Using an if statement test the input; if the value is greater or equal

to zero, output the message "Number was positive".

Figure 10.1: How if works

Appendix H Experimental Curriculum Written Materials

 Page 191

10.2. The if-else Statement

The if-else statement is similar to if but provides a second body which is

executed when the test fails.

Only one body is executed as shown in Figure 10.2. After the appropriate body

of statements is executed, there is a jump to the next statement after the if-else

statement.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

<html>

 <head>

 <script type="text/javascript">

 var input = "";

 input = prompt("Enter a string");

 if(input == "hi") {

 alert("Well hello to you too.");

 }

 else {

 alert("You entered: "+input);

 }

 </script>

 </head>

 <body>

 if-else example

 </body>

</html>

Code Example 10.2: Example using if-else

10.3. Indenting and Formatting

In programming indenting is used to visually display structure in a program.

Indenting is not required for the program to work and has no effect on how the

program is executed. However it is good programming practice to use indenting

so code is easily readable by humans.

The key to know where to use indenting usually lies in where curly braces { }

are placed. The content enclosed in braces should be indented one level further

than the surrounding code.

if(TEST) {

 BODY

}

else {

 BODY

}

E
xe

rc
is

e
10

.2
 Change the program you created for Exercise 10.1 so that if a user enters a

negative number, the message "Number is negative" will be displayed.

Test

Body

Success Failure

Body

Test

Body

Success Failure

Body

Figure 10.2: How if-else works

Experimental Curriculum Written Materials Appendix H

 Page 192

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

<html>

 <head>

 <script type="text/javascript">

 var input = "";

 var number = 0;

 input = prompt("Enter a string");

 number = parseInt(prompt("Enter a number"));

 if(input == "hi") {

 if(number > 0) {

 alert("You are a positive person");

 }

 else {

 alert("You entered: " + number);

 }

 }

 </script>

 </head>

 <body>

 Indenting example

 </body>

</html>

Code Example 10.3: How indenting is used to show the structure of a program

In Code Example 10.3 an if statement is used and inside this is another if

statement. The content of the outer (first) if is indented one level. Within the

inner (second) if-else statement the bodies of the if and else are indented

again.

10.4. "Dangling else"

Code without indenting is harder to read. In Code Example 10.4 two if

statements are shown without curly braces or indenting. This code achieves the

same result as the previous example but is harder to read.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

<html>

 <head>

 <script type="text/javascript">

 var input = "";

 var number = 0;

 input = prompt("Enter a string");

 number = parseInt(prompt("Enter a number"));

 if(input == "hi")

 if(number > 0)

 alert("You are a positive person");

 else

 alert("You entered: " + number);

 </script>

 </head>

 <body>

 Dangling else example

 </body>

</html>

Code Example 10.4: Without indenting code is harder to read

E
xe

rc
is

e
10

.3
 Answer the following on paper. What will happen when a user enters:

a. A string other than "hi"?

b. The string "hi" and a number greater than zero?

c. The string "hi" and a number less than zero?

d. The string "hi" and the number zero?

Appendix H Experimental Curriculum Written Materials

 Page 193

10.5. Guarding Division

One application of an if statement is to prevent code which could result in

unpredictable behaviour or cause the program to crash while being executed.

Previously we saw how dividing by zero can produce an unusable result. In

some programming languages the effects can be even more severe. It is

recommended that you always test the divisor (the second, right-hand operand)

before a division operation takes place. If the divisor is zero, division should be

avoided.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

<html>

 <head>

 <script type="text/javascript">

 var number = 0;

 number = parseInt(prompt("Enter a number for division"));

 if(number != 0) {

 alert(100 / number);

 }

 else {

 alert("Dividing by zero causes problems");

 }

 </script>

 </head>

 <body>

 Guarding division example

 </body>

</html>

Code Example 10.5: The numerator of a division should always be tested before the division

E
xe

rc
is

e
10

.4
 Answer the following on paper.

a. What if does the else belong to?

b. What would happen if a statement was inserted after the second if

and before the call to alert()?
E

xe
rc

is
e

10
.5

 Using your template, create a program that will prompt the user to enter a

pre-calculated sum of numbers and pre-calculated count of numbers.

Calculate the average (the sum divided by the count). How should your

program behave if the user enters zero for the count of numbers?

Not in implicit curriculum

Experimental Curriculum Written Materials Appendix H

 Page 194

11. Repetition (Loops)
Often it is desirable to repeat the execution of statements. One way to achieve this is

to have the same statements repeated in a program. This can be undesirable because:

 If a change is needed, each repeated statement will need to be changed. This

effort could result in errors.

 It is not possible to achieve a number of repetitions which is determined as

the program is running (indefinite repetitions).

A number of structures are provided for achieving repetition.

11.1. while Loop

A while loop works like an if statement except the

body of the loop is executed repeatedly while the test

results in a true value (in other words, until it results in

a false value).

while(TEST) {

 BODY

}

When the loop starts, the test is performed; if a true value results, the body of

the loop is executed, otherwise the body is skipped and the next statement after

the loop is executed. When the end of the body is reached, the test is run again

and this process continues.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

<html>

 <head>

 <script type="text/javascript">

 var number = 5;

 while(number > 0) {

 alert("Countdown: "+number);

 number--;

 }

 alert("BLASTOFF!");

 </script>

 </head>

 <body>

 while loop example

 </body>

</html>

Code Example 11.1: Example of a while loop

E
xe

rc
is

e
11

.1
 Using your template, create a program that determine if a number is divisible

by 2 (number%2 == 0) and (using &&) divisible by 3 (number%3 == 0). If

this is the case, output the value and add the number to a sum variable.

Repeat this testing within a loop. Start testing at the number 1. Stop looping

when the sum is greater or equal to 50. At the end, output the final sum

value.

Test

Body

Success

Failure

Appendix H Experimental Curriculum Written Materials

 Page 195

11.2. Sentinel Controlled Loops

One application of a while loop is to repeat code until a certain value referred to

as a sentinel is discovered. Code Example 11.2 shows a poor attempt at

achieving a Sentinel Controlled Loop. The program is attempting to count inputs

entered by a user before the sentinel is reached.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

<html>

 <head>

 <script type="text/javascript">

 var input;

 var countOfInputs = 0;

 var message = "Enter a number (999 to end): ";

 while(input != 999) {

 input = parseInt(prompt(message));

 countOfInputs++;

 }

 alert("Counted "+countOfInputs+" numbers");

 </script>

 </head>

 <body>

 Bad loop example

 </body>

</html>

Code Example 11.2: Repeating until a sentinel is found – this example will produce an incorrect result

This example is deficient because:

 The value of input is not initialised or set before it is used in the test at

line 08. This could have unpredictable consequences.

 The goal of the code is to count numbers before the sentinel is

encountered. In this example, when the sentinel is entered by the user it

will be included in the count.

A correct solution is shown in Code Example 11.3. In this example, a value for

input is gathered before the test is conducted. If the first number entered is the

sentinel, the body of the loop is never executed, which is efficient. On successive

inputs the value is always tested before the count is incremented. This will

produce the correct answer in the most efficient fashion.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

<html>

 <head>

 <script type="text/javascript">

 var input = 0;

 var countOfInputs = 0;

 var message = "Enter a number (999 to end): ";

 input = parseInt(prompt(message));

 while(input != 999) {

 countOfInputs++;

 input = parseInt(prompt(message));

 }

 alert("Counted "+countOfInputs+" numbers");

 </script>

 </head>

 <body>

 Sentinel controlled loop example

 </body>

</html>

Code Example 11.3: Repeating until a sentinel is found –allows for the sentinel in the first instance and correctly counts inputs

Not in implicit curriculum

Experimental Curriculum Written Materials Appendix H

 Page 196

11.3. for Loop

A for loop is a loop construct with commonly used components conveniently

'built-in'. A for loop has a number of parts as show in the following syntax

description. Note: parts , and are separated by semicolons (;).

for(INITIALISATION ; TEST ; STEP) {

 BODY

}

The parts of a for loop are executed in the following order.

 INITIALISATION An opportunity to initialise a counter

 TEST Determines if loop should continue (while true)

 BODY Actions repeated each time the loop iterates

 STEP An opportunity to move the counter towards the loop end

Note that:

 The initialisation () is only performed once;

 If the test () fails, parts and are skipped and the next statement

after the loop body is executed; and

 The step () is always followed by the test ().

The following code repeats the previous while loop example using a for loop.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

<html>

 <head>

 <script type="text/javascript">

 var counter = 0;

 for(counter = 5; counter > 0; counter--) {

 alert("Countdown: "+counter);

 }

 alert("BLASTOFF!");

 </script>

 </head>

 <body>

 for loop example

 </body>

</html>

Code Example 11.4: Example of a for loop

E
xe

rc
is

e
11

.2
 First plan your solution to the following problem on paper, then implement

the program using the template.

Sum floating point numbers collected from a user until they enter 999.

Consider:

a. What variables will be needed? How will they be initialised?

b. How will the loop work? How will the input be collected/converted?

c. When will the output be performed?

Appendix H Experimental Curriculum Written Materials

 Page 197

11.4. Counter Controlled Loops

One application for a for loop is to repeat a body of statements a pre-set number

of times. Rather than testing each time to see if the last repetition has been

reached, a counter is used. For each repetition, the counter is incremented.

When the counter reaches a pre-set value, repetition stops. This happens

regardless of the content of the loop.

For example, if five values need to be collected, a Counter Controlled Loop could

be used to achieve this. The number of repetitions and the termination of the

repetition will be controlled by a counter and not by the values collected.

11.5. Finding the Maximum/Minimum

A common task is to find the maximum or minimum in a set of values. The

following plan can be used to achieve a search for a maximum.

1. Initialisation

A variable should be used to store the value of the maximum as the

search progresses. Only a single variable is needed.. The variable

should be set so when the first value is encountered it will become the

new maximum. When searching for a maximum, the variable should be

initialised to the minimum possible value. For example, if we were

searching for a maximum positive integer (numbers zero or greater), the

variable should be initialised to zero.

2. Repetition

When searching a set of values of a know size, a Counter Controlled

Loop is used. When the set size is unknown, a Sentinel Controlled

Loop is used where the sentinel is a special value at the end of the set,

or possibly the absence of any more values.

3. Comparison

Each value of the set needs to be compared with the one stored in the

variable. If value from the set is the new maximum it should be

assigned to the variable.

11.6. Nesting and Merging

When presented with a problem, a series of goals will emerge which need to be

achieved in order to solve the problem.

E
xe

rc
is

e
11

.3
 Using your template, create a program that will use a sum and a counter. Set

the counter to 1 and loop until it reaches 100 (counter <= 100). In each

repetition add the value of counter to the sum. At the end output the value of

the sum.

E
xe

rc
is

e
11

.4
 Using your template, create a program to find the maximum of 5 numbers

entered by a user.

Not in implicit curriculum

Not in implicit curriculum

Experimental Curriculum Written Materials Appendix H

 Page 198

Abutment

Often the goals may need to be achieved in a certain order, in which case

abutment is used as shown in Section 7. As an example, when searching for a

minimum or maximum, a variable used to store the current max/min must be

initialised before the search can start and the search must be completed before

output can take place; this is abutment.

1. Initialise maximum variable

2. Search for maximum variable

3. Output maximum variable

Nesting

Sometimes sub-goals may need to be achieved to accomplish a greater goal.

Sub-goals may be the body of a selection (if or if-else) statement or the body

of a loop (while or for). This sub-goal is nested within a greater goal. In the

example of finding a maximum or minimum, the comparison between each value

in a set and the current max/min must happen within the repetition which gathers

each value of the set. The comparison is nested in the repetition.

1. Initialise maximum variable

2. Counter Controlled Loop (Search in set of known size)

a. Input

b. Test for maximum

3. Output maximum variable

Merging

Often two goals can be achieved at the same time; we can merge the two goals.

Say we were searching a set of a size unknown before the program began. We

may want to count how many values are in the set, as well as determining the

minimum or maximum. We could gather the same set of inputs twice, but a

better solution would be to merge the counting of values with the comparison for

a min/max.

1. Initialise maximum variable

2. Initialise counter

3. Input (prime loop)

4. Sentinel Controlled Loop (Search in set of unknown size)

a. Test for maximum

b. Increment counter

c. Input

5. Output maximum variable

When two plans are merged, the order in which their commonly located parts are

performed is usually not important. For instance, when we merge the maximum-

Appendix H Experimental Curriculum Written Materials

 Page 199

search and count plans above, the initialisation of the variables (steps 1 and 2)

could be re-ordered without affecting the outcome. Also the steps "Test for

maximum" (a) and "Increment counter" (b) could be performed in the opposite

order.

E

xe
rc

is
e

11
.5

 Using your template, create a program to allow a user to enter positive

integers until the user enters the sentinel 999. Determine the maximum value

entered and the count of values (the value 999 will not be included).

Experimental Curriculum Written Materials Appendix H

 Page 200

12. Arrays
Often it is necessary to store several similar values, for instance:

 10 numbers entered by a user, or

 The counts of occurrences of each alphabet letter in some text,

...

We could create variables to store each of these values, but a better solution is to

store them together in array.

12.1. Declaring Arrays

Arrays are declared in a slightly different way to a normal variable.

var arrayIdentifier = new Array();

...where arrayIdentifier would be replaced with the identifier for the array,

for example...

var exampleArray = new Array();

...would create an array as follows...

00 11 22 33 44

exampleArray

12.2. Accessing Array Elements

Arrays are a collection of individual elements. Once we have created the array

we can access each of the elements in an array by using an index. Indices are

positive integers starting at 0. The identifier of the array is followed by the index

in square brackets [], for example...

exampleArray[0]

...would allow us to access the first element of exampleArray. We can assign a

value there as follows...

exampleArray[0] = 5;

...or read a value from that element...

alert(exampleArray[0]);

In JavaScript arrays are quite flexible.

 Arrays grow as you add to them.

 You can have more than one type of value in the same array.

12.3. Initialising Arrays

It is possible to initialise an array when it is declared. This is done by placing the

initial values in the parentheses, with commas in-between each value. The

following initialises an array of numbers.

Appendix H Experimental Curriculum Written Materials

 Page 201

var monthArray = new Array(31,28,31,30,31,30,31,31,30,31,30,31);

The following initialises an array of strings.

var labelArray = new Array("Apples","Oranges","Banannas");

You can later change the values in the array or add more.

12.4. Arrays for Values

One of the advantages of using arrays is we can perform actions on elements

using a loop. Consider the goal of inputting then outputting three numbers. We

could create three variables, input values into the three variables, then output the

value of each. Alternately we can create an array, we can ask for input in a loop

which is repeated three times, then use a loop to output the values of the array

(see Code Example 12.1). Now consider what would be required if our goal

were extended to 100 numbers. Using variables, this would become quite

cumbersome and prone to error. With an array and loops, we merely have to

increase the number of repetitions (changing the value of numbersToStore on

line 05 of Code Example 12.1 would achieve this.)

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

<html>

 <head>

 <script type="text/javascript">

 var inputArray = new Array();

 var numbersToStore = 3;

 var counter;

 var message = "Please enter a number";

 for(counter=0; counter<numbersToStore; counter++) {

 inputArray[counter] = parseInt(prompt(message));

 }

 for(counter=0; counter<numbersToStore; counter++) {

 alert("Input "+(counter+1)+": "+inputArray[counter]);

 }

 </script>

 </head>

 <body>

 Array for values example

 </body>

</html>

Code Example 12.1: Storing values in individual array elements

E
xe

rc
is

e
12

.1
 Using your template, declare an array initialised with the names of the days

of the week stored as strings. Ask the user to enter a number between 1 and 7

(be sure to convert the input to an integer). Deduct 1 from the input value to

get a value between 0 and 6. Use the decremented input as the index to the

array and output the day name corresponding to the user's input.

E
xe

rc
is

e
12

.2
 Using your template, create a program will allow the user to enter 5 floating

point numbers (use parseFloat()). Store each value in an array and add it

to a sum at the same time. When input is complete, calculate the average by

dividing the sum by 5. For each value in the array output the difference

between the average and that value (average–numberArray[counter]).

Some values may be negative and some positive.

Experimental Curriculum Written Materials Appendix H

 Page 202

12.5. Arrays for Categories

Another use for arrays is to count occurrences of items in a set. For instance, we

could count "Apples","Oranges" and "Banannas" and store the count of each in

an element of an array. The way we could do this is to refer to each item of the

set using a number from 0 to 2, say 0 for Apples, 1 for Oranges and 2 for

Banannas. We can then use this number as an index to an element in an array.

01

02

03

04

05

06

07

08

09

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

<html>

 <head>

 <script type="text/javascript">

 var labelArray = new Array("Apples","Oranges","Banannas");

 var numFruits = 3;

 var message = "Please enter:\n";

 var fruitCountArray = new Array();

 var counter = 0;

 var input = 0;

 for(counter=0; counter<numFruits; counter++) {

 message = message+counter+" for "+labelArray[counter]+", ";

 }

 message = message + "9 to Quit";

 for(counter=0; counter<numFruits; counter++) {

 fruitCountArray[counter] = 0;

 }

 input = parseInt(prompt(message));

 while(input != 9) {

 fruitCountArray[input]++;

 input = parseInt(prompt(message));

 }

 for(counter=0; counter<numFruits; counter++) {

 alert(labelArray[counter]+": "+fruitCountArray[counter]);

 }

 </script>

 </head>

 <body>

 Array for categories example

 </body>

</html>

Code Example 12.2: Using an array to count occurrences of a set of elements

In Code Example 12.2 we count occurrences of fruit. The list of fruit is given in

the array labelArray declared on line 04. We use an array here for the labels

reasons:

1. We can declare the labels in one place and refer to them later, and

2. Declaring them in an array gives them order from 0 to 2.

On line 07 we declare the array which we will use to keep a count of the

occurrences of each fruit.

On lines 11 to 14 we create a message which we can use later to prompt a user to

enter the code number for a particular fruit. We could use the simpler prompt,

"Enter the fruit code", but here we are giving the code numbers as well.

On lines 16 to 18, we initialise the count of fruit by setting each array element to

zero.

Between lines 20 to 24 is where the action is. The loop will continue until the

user enters a 9. On line 22 we see how we are using the code number specified

by the user as the index to the array. If the user enters a zero they are referring to

Apples so we go to the array element containing the count of Apples

(fruitCountArray[0]) and increment (add one to) the value there. If the user

Appendix H Experimental Curriculum Written Materials

 Page 203

entered 1 or 2, the appropriate fruitCountArray element would be

incremented.

Finally on lines 26 to 28 we output the count of each fruit.

12.6. Counting Values in a Set

Code Example 12.2 contains the biggest JavaScript program we have seen so far.

Let's look at this solution in terms of the plans used.

1. Initialisation

Before we can start counting set members we need to initialise the count of

each element to zero.

2. Counter Controlled Loop

We know how many elements there are in fruitCountArray. We will

therefore use a counter controlled loop (as opposed to a sentinel controlled

loop) to initialise each array element.

3. Input (twice)

We need to input fruit code numbers from a user. We do this once to prime

the sentinel controlled loop and again at the end of the loop.

4. Sentinel Controlled Loop

There is no limit to the number of times a user could enter a fruit code

number. They could enter several code numbers, they could enter 1, or they

could enter none by entering the sentinel (menu option 9) in the first

instance. A sentinel controlled loop is therefore used to achieve this

repetition.

5. Set Counting

We are not entering the value entered by the user directly into our array.

Instead we are using a code number that relates to an element in a set (the

set of fruit). We are keeping a count of each fruit set member in an element

of an array. For convenience we have made use of fruit code numbers (0 to

2) that are equivalent to the indices of the relevant array elements. We can

therefore access the appropriate array element by using the value entered by

the user. We can then increment the count in that array element using the

statement (from line 22)...

fruitCountArray[input]++;

E
xe

rc
is

e
12

.3
 Using your template, create a program will input five integers between 0 and

9. For each input increment the corresponding array element. At the end,

output the occurrences of values which were input 1 or more times. For

instance, if input was...

6, 2, 4, 2, 2

...output would be...

2: 3

4: 1

6: 1

Not in implicit curriculum

Experimental Curriculum Written Materials Appendix H

 Page 204

6. Output

We need to output the counts stored in the fruitCountArray.

7. Counter Controlled Loop

As we know how many elements there are in the fruitCountArray a

counter controlled loop can be used to repeat the output.

Plan Integration

Abutment and nesting can be used to

integrate the plans above in a way that

will solve the problem.

 Initialisation (1) is nested in the

first Counter Controlled Loop

(2).

 Set Counting (3) and Input (5)

are nested in a Sentinel

Controlled Loop (4).

 Output (6) is nested in a

Counter Controlled Loop (7).

These plans are abutted in the order (1

to 7) as they appear above.

Counter Controlled Loop

Sentinel Controlled Input Sequence

Counter Controlled Loop

Initialisation

Input

Count Set

Input

Output

