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Abstract 

The traditional approach to training novice programmers has been to provide explicit 

programming knowledge instruction but to rely on implicit instruction of 

programming strategies. Studies, reported in literature, have discovered universally 

poor results on standardised tests for novices studying under this traditional 

approach. 

This dissertation describes the explicit integration of programming strategies into 

instruction and assessment of novice programmers, and the impact of this change on 

their learning outcomes. 

An initial experiment was used to measure the performance of students studying 

under a traditional curriculum with implicitly taught programming strategies. This 

experiment uncovered common flaws in the strategy skills of novices and revealed 

weaknesses in the curriculum. Incorporation of explicit strategy instruction was 

proposed. 

To validate a model of strategies as being authentic and appropriate for novice 

instruction, an experiment with experts was conducted. Experts were asked to solve 

three problems that a novice would typically be expected to solve at the end of an 

introductory programming course. Experts‟ solutions were analysed using Goal/Plan 

Analysis and it was discovered that experts consistently applied plans, the sub-

algorithmic strategies suggested by Soloway (1986). It was proposed that plans 

could be adapted for explicit inclusion in an introductory programming curriculum. 

Initially a curriculum incorporating explicit strategy instruction was tested in an 

artificial setting with a small number of volunteers, divided into control and 

experimental groups. The control group was taught using a simplified traditional 

curriculum and the experimental group were exposed to a curriculum which 

explicitly included programming strategies. Testing revealed that experimental group 

participants applied plans more than control group participants, who had been 

expected to learn these strategies implicitly. In interviews, experimental participants 

used strategy-related terminology and were more confident in the solutions they had 

created. These results justified a trial of the curriculum in an actual introductory 

programming course. 

When explicit instruction of programming strategies was incorporated into an actual 

introductory programming curriculum, novices achieved superior results when 

compared to results from the initial experiment. Novices used strategies significantly 

more when these strategies were incorporated explicitly into instructional materials 

and assessment items. 

This series of experiments focussed on explicitly teaching specific programming 

strategies rather than teaching problem-solving more generally. These experimental 

results demonstrate that explicit incorporation of programming strategies may 

improve outcomes for novices and potentially improve the potential of expert 

programmers in future. 
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Glossary 

The following terms are used throughout this dissertation. They are presented here to 

clarify their meaning. The terms are described and explored more deeply in Chapter 

2 with references to sources. The terms are presented in alphabetic order. 

 Comprehension 

In the context of programming, comprehension is the ability to read and 

understand code or program related information. This may involve simulating 

execution of a program to manually compute a result. 

 Course 
A single period of instruction, usually contained within a semester. 

Equivalent to the terms unit, paper or subject used in some institutions. 

 Curriculum 
Teaching materials, assessment items and method of delivery, related to a 

single course (see above). 

 Expert 
A programmer who writes programs on a regular or daily basis. For the 

purposes of this dissertation it is not important when a novice programmer 

(see below) becomes an expert is not critical, as comparisons are made only 

between programmers at the extremes of this scale. 

 Explicit Instruction 
Instruction where the the instructor openly describes, usually in some 

documented form, what the student is to learn and how to go about that 

learning. 

 Generation 
In the context or programming, generation involves the creation of code or 

program related information, potentially implementing a solution to a 

problem. 

 Goal 

An identified part of a solution that needs to be achieved for a programming 

problem. 

 Implicit Instruction 
Instruction within a scenario where a student is expected to undertake 

learning without being given a full context for what it is they are to learn or 

how. 

 Knowledge 

See Programming Knowledge below. 

 Novice 
A programmer learning how to program for the first time. In this dissertation 

novices are students undertaking a first course (see above) in programming. 

 Plan 
A fundamental form of programming strategy (see below). The means of 
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achieving a goal (see above) within a solution to a programming problem. 

Plans are normally contained in the tacit knowledge of experts. 

 Problem Solving 
A mechanism for achieving a solution to a programming problem. Within the 

scope of this document, problem solving is not intended to be interpreted 

more generally. 

 Programming Knowledge 
A programmer‟s understanding and potential to apply the syntax and 

semantics of a programming language and any related language features. 

 Programming Strategy 
A general term for a range of programming problem solving approaches 

including plans (see above), patterns, algorithms and other methodologies. A 

programming strategy is an abstracted method for applying programming 

knowledge to solve a problem. 

 Strategy 

See Programming Strategy above. 
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1. Introduction 

As an information society we rely on computers and software used on computers. 

The potential to create new software governs our progress as an information society. 

The responsibility for creating software falls on information technology professionals 

and key among these are programmers. 

Like computers, the art of programming is relatively new, yet it is fundamentally 

entrenched in our information-dependent world. Expert programmers have the 

potential to solve many information-related problems. Programmers have the 

potential to overcome new problems and advance the world of computing a little 

further with each new solution. 

Guiding novices to gain expertise builds a stronger field of expert programmers and 

strengthens our potential as an information society into the future. Constructing more 

complex and higher quality software relies on instructors training expert 

programmers who are more capable and more confident. 

1.1 Motivation 

Programming is a cognitively demanding task and training novices can be a 

challenging undertaking. Novices must learn the programming knowledge (syntax 

and language features) and programming strategies (ways to apply this knowledge in 

order to solve programming problems). 

For many years introductory programming instructors have anecdotally reported 

failure rates that are higher than most institutions generally tolerate (Lister, 2000, 

Carbone et al., 2000, Guzdial and Soloway, 2002). Much research in computing 

education has focused on ways to overcome high failure rates in introductory 

programming. 

Seeking concrete evidence, a number of studies have attempted to quantify the level 

of skill of novice programmers at the end of an introductory programming course. A 

multinational study of novice programmers (McCracken et al., 2001) showed 

universally poor results on a standardised test conducted at institutions across the 

world. This study did not identify sources of the inadequacies demonstrated, but it 

did offer an opportunity to accept the failings of the past and a chance to begin to 

develop new curricula which could better encourage novices to reach expected 

standards. 

Observed novices have produced poor results in standardised program generation 

tests, with many novices demonstrating a fragile knowledge (Lister et al., 2004) and 

most novices failing to demonstrate programming strategies (Lister et al., 2006). 

There are at least two possible causes for this behaviour. 

One possibility is that there are some bright students, but most students simply do not 

possess the mental capacity to meet the standard set for them. 

Another possibility is the curricula used in traditional introductory programming 

courses, and the methods used to deliver them, fail to adequately teach most students 

programming knowledge and strategies. 
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It is likely that both of these causes are contributing in some way; however blaming 

novices for their own failure will not improve outcomes so we must consider ways of 

improving curricula to address these failings. 

Kuittinen and Sajaniemi (2003) contend that many attempts to ease novice 

difficulties have simply sought to teach a traditional curriculum in more exciting 

ways. Increased student enthusiasm resulting from such innovations does not seem to 

have improved the outcomes of struggling students around the world. Rather than 

making ad-hoc changes to parts of an aging curriculum in the hope of finding some 

magic formula, a better objective is to systematically discover the conceptual barriers 

that cause novices to struggle and to consider new curricula elements that encourage 

novices to overcome these barriers. 

Ultimately, the underlying motivation for attempting to improve introductory 

programming curricula is to support the development of more competent novices 

who will hopefully go on to become better expert programmers, creating superior 

software and benefiting the greater community. 

1.2 Aims 

Traditional curricula include explicit instruction of programming knowledge. 

Novices are taught the constructs and associated facilities of a language in a well 

expressed manner. By contrast, programming strategies, the means of applying 

programming knowledge to solve problems, are taught implicitly (Soloway, 1986). It 

is expected that novices will construct their own programming strategies by 

obtaining programming knowledge, solving problems, then reflecting on this process. 

It has been shown that some novices can successfully develop programming 

strategies over a period of implicit learning (Rist, 1991). However, outcomes for the 

majority of novices remain poor (McCracken et al., 2001, Lister et al., 2004, Lister et 

al., 2006). 

Explicit instruction has been shown to be far more powerful than implicit instruction. 

When compared with implicit instruction, explicit instruction has been proven to 

produce faster learning, higher accuracy and an understanding of the underlying 

principles of the concepts being learnt in specific disciplines (Baddeley, 1997). 

Expressing and instructing programming strategies in a more explicit fashion may 

improve outcomes for novices. Before this can be achieved, an set of programming 

strategies, used by experts but relevant to novices, needs to be expressed. 

It has been suggested that experts hold programming strategies in a tacit form in 

their minds (Soloway, 1986). Experts build this tacit collection of strategies over 

time and apply and adapt it for new problems as they arise. If a concrete set of 

strategies is proposed for teaching, it needs to be validated against the strategies 

applied by experts. 
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Programming Strategy Instruction

tacit

implicit

non-assessed

expressed

explicit

assessable
 

Figure 1.1. Including programming strategies in curricula 

The aim of work described in this dissertation is to improve the curricula and 

pedagogy used for training novice programmers by adding curricular elements 

designed to overcome difficulties faced by novices. The transition from an implicit 

traditional approach to an explicit approach, pictured in Figure 1.1, aims to: 

1. use the tacit programming strategies of experts to validate an expressed set of 

strategies, suitable for novice programmers; 

2. move from the implicit delivery of strategies to curricula and methods of 

delivery that explicitly teach authentic programming strategies to novices, 

and test the impact of this move; and 

3. target the application of specific strategies in assessment of novices‟ skills, 

thus promoting the value of strategies. 

To accomplish these aims, the following tasks were proposed and undertaken. 

 Measure the programming strategy skill level of novices trained using a 

traditional curriculum. This can then be used as a benchmark for later 

comparison with new curricula. 

 Identify authentic expert programming strategies that are relevant to novice 

programmers. 

 Create a curriculum that explicitly integrates programming strategy 

instruction with programming knowledge instruction. 

 Determine the impact of explicitly teaching programming strategies, 

comparing this to the skill level of novices trained under a traditional 

curriculum. 

 Demonstrate how programming strategies can be assessed as part of regular 

assignments and examinations. 
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1.3 Dissertation Structure 

This dissertation is divided into three parts. The introductory chapters set the stage 

for the experimental work described in subsequent core chapters, and findings are 

brought together in the concluding chapter. 

Introduction, Overview and Methodology 

The body of this dissertation begins in chapter 2 by exploring research related to 

introductory programming instruction. A history of introductory programming 

teaching is given. A number of terms, focusing on aspects relevant to teaching in this 

area, are defined. Areas where there is a need for further exploration are identified 

and the potential for the contribution made by this study is explained. 

Chapter 3 then outlines the scope of experiments undertaken in this study. Research 

questions are discussed and Goal/Plan Analysis, the main methodological tool for 

measuring novice programming strategy skill, is described in detail. 

Description of Experiments 

The core of the work described in this dissertation was achieved through four 

experiments. The experiments were conducted in sequence, with the findings of each 

study leading to a need for the following experiment. 

Chapter 4 describes an experiment where Goal/Plan Analysis was applied to the code 

of novices who had studied programming with implicit-only programming strategy 

instruction. Results of this study justify the aim to explicitly express programming 

strategies in the curriculum used. These results also served as a basis for the 

comparison of results of later experiments. 

Chapter 5 presents an experiment which attempted to identify strategies used by 

expert programmers. The experiment targeted strategies that are relevant to novice 

programmers and could be explicitly incorporated into introductory programming 

curricula. 

Chapter 6 describes an experiment that compared two introductory programming 

curricula: one that explicitly included programming strategy instruction and another 

that followed a traditional implicit strategy instruction approach. The experiment 

explored the feasibility of using a curriculum including programming strategy 

instruction, and attempted to measure and compare the impact of the two curricula on 

novices. 

Chapter 7 shows how programming strategies were included in an actual university 

level introductory programming course. This chapter describes how strategies were 

incorporated in instructional material and how they were assessed for grading 

purposes. Results of this approach are compared to the benchmark set in the initial 

experiment showing an increase in the use of strategies. 

Conclusions and Statement of Contribution 

Conclusions are made in chapter 8. Implications of these conclusions for the field of 

computing education are discussed and the original contribution of this dissertation is 

identified. Finally, future work is suggested. 
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2. Problem Solving and Novice Programmers 

In the previous chapter the rationale and aims of the study described in this 

dissertation were presented. This chapter establishes a context for the experiments 

described in later chapters. The first sections review areas of computing education 

relevant to this investigation. Then a number of important terms are defined; these 

terms will be used throughout the dissertation. Programming strategies can be 

expressed in a number of forms; two of these are compared, and the form used in 

experimentation is identified. Having established a context, the need for investigation 

in this area is expressed and justified. 

2.1 A Brief History of Programming Instruction 

“If you ask me what accomplishment I'm most proud of, the answer would 

be all the young people I've trained over the years; that's more important 

than writing the first compiler.” 

Grace Hopper 

Computer programming became a practised discipline as computing technologies 

began to develop. Initially computer programmers were self-taught as there were no 

educational programs covering programming in the early days of computing. 

Computing science, which includes computer programming, surfaced as an offspring 

of other academic disciplines such as mathematics. “Computing education emerged 

from a few optional units in mathematics or engineering to establish its own 

discipline as Computer Science (CS) in the 60s” (Pham, 1996). Early computing 

curricula focused primarily on creating programs for data processing as this was the 

origin of computing, but over time the discipline grew and divided into substantial 

sub-disciplines (Pham, 1996). As computing technologies have become relevant to 

more than a handful of specialists, the discipline, and education within the discipline, 

has been forced to change and adapt. 

In 1971 Niklaus Wirth introduced the language Pascal, primarily for teaching novice 

programmers (Wirth, 1971, Wirth, 1974). Pascal was simple and well structured, and 

allowed instructors to focus on fundamental concepts involved in the task of 

programming. Although other academic languages had been presented and used, 

none have had the impact of Pascal, which during a period of 23 years was taught at 

some stage in almost all Australian universities (de Raadt et al., 2002). 

During the 1980s and into the 1990s the advent of personal computers brought 

computing within reach of non-computing professionals and this new group of 

computer users required training. Initially, the best way to provide end-user 

computing skills was thought to be training in programming. A notion developed that 

all computer users could benefit from some amount of programming literacy. 

Because of this, programming was referred to as “the New Latin” (Soloway, 1993). 

Through the act of learning programming it was believed that students would 

develop general problem-solving and design skills that could be applied to the 

remaining facets of their lives. Novices being trained as the expert programmers of 

the future were joined by students who would be exposed to not more than a 

semester or two of programming instruction. A new approach was considered 
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necessary to teach both groups. As many tertiary institutions of the era did not have 

the resources to teach both groups independently, compromises were made which 

generally involved teaching as many of the features of the Pascal programming 

language as was practical within an introductory course and hoping students would 

learn problem solving along the way. 

Programming is no longer „the New Latin‟. While computing skills are even more 

valuable today general computer users are more commonly directed to learn 

application skills rather than programming. Current courses for non-programmers 

attempt to instil capabilities in applications such as word processors, spreadsheets 

and presentation graphics packages. The teaching of programming is now largely 

directed once more to students who will later take on computing study and strive to 

become expert programmers or at least require some programming skills as part of 

their professional training. 

Since 2003, Pascal is no longer taught in any Australian university – choosing a 

language that will attract students is considered, by most instructors, as a higher 

priority than the pedagogical benefits a language can give (de Raadt et al., 2002). 

Languages used in introductory programming courses are most commonly industry-

relevant languages. A large number of papers have suggested that one language is 

superior to another because it possesses desirable features (eg. Bergin, 2000, Biddle 

and Tempero, 1998, Chandra and Chandra, 2005, Hadjerrouit, 1998, Stroustrup, 

1999) or because changing to the new language seemed to encourage better results 

from students (eg. Hitz and Hudec, 1995, Andreae et al., 1998). What is shown in 

literature is likely to be a reflection of the debates that have undoubtedly taken place 

within the meeting rooms and corridors of teaching institutions. 

In the late 1980s and early 1990s programmers began to explore Object-Oriented 

Programming (OOP), a new programming paradigm that combines data with 

behaviour related to that data. Many instructors felt that this paradigm was more 

analogous to natural human understanding and therefore could benefit novices. Many 

papers during the 1990s debated just that (eg. Reid, 1993, Decker and Hirshfield, 

1994, Kölling et al., 1995). A new language, Java, introduced in 1994, embodied the 

object-oriented paradigm. Java was immediately successful because it also provided 

strong integration with the World Wide Web, which was rapidly growing at the same 

time. Java became popular and students wanted to learn it. Universities within 

Australia were facing competition and strict government funding regulations (Pham, 

1996). Attracting students by teaching them what they wanted to learn contributed 

largely to the curricula of the late 1990s. 

2.1.1 Failure Rates 

Many anecdotal reports state failure rates in introductory programming courses are 

higher than acceptable, gaining attention within tertiary institutions. Seeking 

empirical evidence the „McCracken group‟, involving multinational participants from 

the UK, USA, Israel, Poland and Australia, came together as an ITiCSE 2001 

working group (McCracken et al., 2001). The group studied competency of novices 

after a one- or two-semester introductory course in programming. The group 

established a set of standard test questions with set evaluation criteria which were 

applied at participating institutions. The average score was 21% leading to a 

conclusion that “many students do not know how to program at the conclusion of 

their introductory courses” (p. 125). The study did not identify sources of the 

inadequacies demonstrated by novices or potential fixes for these problems. 
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However, the McCracken group did offer an understanding that these problems are 

universal and there is now an opportunity to develop new curricula which could 

produce better outcomes in novices. 

2.2 Recent teaching in Australian and New Zealand 

As preliminary work for this study an investigation was made into several aspects of 

introductory programming courses within universities in Australia and New Zealand. 

The work was referred to as the „Census‟ as it attempted to capture information about 

all such courses in the region
1
. The Census was first conducted in 2001 and covered 

57 introductory programming courses at 37 Australian universities (de Raadt et al., 

2002, de Raadt et al., 2003b, de Raadt et al., 2003a). The second Census was 

conducted in 2003 and covered 85 courses from 39 Australian and eight New 

Zealand universities (de Raadt et al., 2004). Both instances of the Census covered 

languages and paradigms taught, tools used and numbers of students. A third census 

is being conducted in 2008. 

2.2.1 Declining Student Numbers 

A trend showing a reduction in the number of students undertaking introductory 

programming courses was observed between the 2001 Census and 2003 Census. The 

average decline in students between the two instances of the Census was 28% (de 

Raadt et al., 2004). 

While having fewer students does not diminish the importance of improving 

instruction of programming, it does place pressure on instructors, many of whom are 

at risk of losing their jobs. 

2.2.2 Industry-Relevant Languages 

In both undertakings of the Census the most popular languages used in introductory 

programming courses were Java, C/C++, Visual Basic and Haskel. The first three of 

these languages could be classified as industry-relevant languages as they were 

widely used in industry at the time (de Raadt et al., 2003b) and not primarily 

designed with teaching in mind. The three non-commercial languages found by the 

2001 Census (Haskel, Eiffel and Ada) were taught predominantly in sandstone 

universities (Australian universities established before 1950 (Ashenden and Milligan, 

1999)). 

Instructors participating in the 2001 Census were asked why they chose their current 

language. The responses (summarised in Table 2.1) showed that instructors chose a 

language either because they perceived it to have industry relevance, or because they 

believed it would be attractive to students who perceived that it was industry-

relevant. This reason appears to have been more important than choosing a language 

for its pedagogical benefits. At sandstone universities, which can attract students 

more easily through traditional reputations, pedagogical benefits of a language where 

mentioned more often as a reason than industry-relevance. 

                                                 

1
 Australasia is an excellent location for such research as social and educational standards match those 

in other developed countries, yet the scale and number of institutions in this region makes it possible 

to contact almost all introductory programming instructors. 
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Table 2.1.Count of reasons given for language choice in  

all universities (reproduced from de Raadt et al., 2002) 

Reason Count 

Industry-relevance/Marketable/Student demand 33 

Pedagogical benefits of language 19 

Structure of degree/Department politics 16 

OOP language wanted 15 

GUI interface 6 

Availability/Cost to students 5 

Easy to find appropriate texts  2 

2.2.3 Paradigm 

The list of languages taught in introductory programming courses, as discovered by 

the Census, was dominated by object-oriented languages, with over 80% of 

instructors choosing an OO language. However, many instructors teaching OO 

languages did not use an objects-first approach in their teaching, instead remaining 

with a procedural approach. 

Table 2.2. Paradigm used in teaching (reproduced from de Raadt et al., 2004) 

Paradigm 
Australia New Zealand 

By Lang. Taught By Lang. Taught 

Procedural 11.7% 53.0% 8.3% 34.0% 

Object-oriented 82.2% 36.6% 91.7% 66.0% 

Functional 6.1% 10.3% 0% 0% 

2.2.4 Approaches to Problem Solving 

In the 2003 Census, participants were asked to estimate what percentage of time (in 

lectures and tutorials) was spent on the teaching of “problem-solving strategies”. 

Estimates of the proportion of lecture time devoted to the instruction varied greatly 

between participating instructors. Some participants responded that problem-solving 

strategies were not part of their course, with several indicating that problems used in 

their teaching were not of a large enough scale to warrant teaching problem-solving 

strategies. Other participants reported that their entire lecture time covered problem-

solving strategies. Participants were asked what strategies they teach to their 

students. From the 108 responses given, there were 74 identifiable strategies 

differing in scale and complexity. As summarised in Table 2.3, the majority of 

participating instructors described a waterfall problem solving strategy, but even in 

this there was no consensus. The use of patterns in one course comes closest to the 

approach described in this dissertation. 
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Table 2.3. “Problem solving strategies” identified in 2003 Census. 

Strategy Type Different strategies 
identified 

Instructors 
using 

Waterfall problem solving strategies (analyse, design, implement) 39 66 

Non-waterfall problem solving strategies (eg test-driven design) 6 6 

Learning Strategies (eg working backwards, involving patterns) 6 6 

Teaching strategies (eg, showing examples) 12 5 

Unclassified 18 18 

Total 75 108 

This variation in time spent and forms of problem-solving instruction may be due to 

instructors not having a common definition of what is involved in the teaching of 

problem-solving strategies at the novice level. 

2.2.5 Problem Solving in Textbooks 

During the 2003 Census instructors reported using zero (some instructors prescribe 

no text), one, or more of 49 textbooks discovered by the Census. A copy of each text 

was requested from publishers and the content of the 40 texts that were delivered was 

analysed (de Raadt et al., 2005). 

The most widely used text is Simple Program Design (Robertson, 2004). This text is 

not targeted at a specific language, but rather covers problem-solving aspects related 

to programming. This text is used together with a language-based text in most cases. 

Problem-solving instruction was presented in varying degrees between the analysed 

texts (see Table 2.4). Some texts avoid problem solving as a specific topic altogether, 

focusing only on language syntax instruction. Some authors rely on large numbers of 

examples and provide little explicit instruction of problem solving. One author 

bluntly stated “Students learn to program by example” (Sparke, 2003, p. xi). Some 

texts offer a brief mention of algorithmic problem solving in an early chapter, but 

this teaching is not obviously integrated in the remainder of the text. Other texts offer 

instruction in high-level systems analysis or software engineering but little 

algorithmic problem solving; object-oriented software engineering is a common 

topic. There are a small number of texts that describe problem solving and attempt to 

integrate this teaching throughout the text using case studies and examinations of 

problems. 

Table 2.4. Problem solving content in textbooks discovered by 2003 Census 

Integration of Problem Solving Number of texts Proportion of texts 

Problem solving integrated throughout 6 15% 

Cursory or no content on problem solving 34 85% 

Total texts examined 40  

2.3 Aspects of Novice Instruction 

A review of literature related to introductory programming was conducted by 

Robins, Rountree, & Rountree (2003). This review investigated attempts to apply 

cognitive psychology research to programming instruction. Robins et al. propose the 
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following aspects of a programmer‟s ability and use them to compare research in the 

area. 

 expert-novice 

 knowledge-strategy 

 comprehension-generation 

These three aspects will be used and expanded in the following subsections. They are 

clearly related, although definitive links between these aspects have not been proven. 

Within the knowledge-strategy aspect, levels of problems are described by the author 

of this dissertation to allow the scope of study to be clearly defined. 

As well as these aspects, another important distinction is made between implicit and 

explicit instruction. Section 2.3.6 describes this distinction and discusses the value of 

explicit instruction. These aspects will be referred to in the remainder of the 

dissertation. 

2.3.1 Experts and Novices 

An expert programmer was defined by Winslow (1996) as a programmer with 

roughly 10 years experience. Winslow argued that “turning a novice into an expert is 

impossible in a four year program” and suggests the best product of a three or four 

year degree is “competence”. Rist (1995) argued that programmers demonstrate 

themselves to be experts when they can produce the best designed solutions to 

particular problems. For the purposes of this dissertation the assumption is made that 

students in an introductory course are novices, most of whom will be learning 

programming for the first time. An expert is assumed to be someone who has 

experience in programming and practices programming on a regular or daily basis. In 

experiments described in this dissertation, the point at which a novice becomes an 

expert is not critical as comparisons are made between complete novices and experts. 

In this dissertation the means of capturing expertise is through discovering experts‟ 

tacit knowledge and representing this in a form that can be understood by novices. 

Another method for passing expert knowledge to novices through a cognitive 

apprenticeship (Collins et al., 1987). In a cognitive apprenticeship, “learners can see 

the processes of work” (Collins et al., 1991, p. 1) as achieved by an expert. The idea 

of using the cognitive apprenticeship model in programming instruction has been 

proposed in a number of theoretical papers (Caspersen and Bennedsen, 2007, Shabo 

et al., 1996). 

2.3.2 Knowledge and Strategies 

Unlike the expert-novice aspect, which can be represented on a continuum, 

knowledge and strategy are disparate, but related entities. They are dependent on 

each other; however they need to be distinguished. 

Knowledge involves the “declarative nature” (the syntax and semantics) of a 

programming language while strategies describe how programming knowledge is 

applied (Davies, 1993). 

Programming knowledge relates to specific constructs and facilities of a given 

language. A novice usually acquires programming knowledge in a single language. 

Such knowledge may be transferable to another language if that language is 

syntactically similar, but new learning is required when a novice encounters a 

dissimilar language or paradigm. 
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Programming strategies relate to the application of programming knowledge to solve 

a problem. Ideas expressed in such strategies are more abstract than programming 

knowledge and are usually applicable to multiple languages within the same 

programming paradigm. Programming strategies can also be applied between similar 

paradigms; for instance strategies (such as looping strategies) learned in an 

imperative paradigm can often be applied in an object paradigm, but would not be as 

easy to apply in functional or event-driven paradigms. 

The term strategy is a generic term exemplified by problem solving ideas such as 

plans (1986), patterns (Wallingford, 1996), algorithms and other methodologies, 

together with means of integrating these ideas to form a single solution. 

Robins et al. (2003) define a distinction between novices who are effective or 

ineffective. Effective novices learn to program with little assistance, while ineffective 

novices fail to learn how to program, or do so only with a great deal of assistance. 

Robins et al. suggest that the key to novices becoming effective lies in them learning 

programming strategies rather than acquiring programming knowledge. Along a 

similar line, Soloway (1986) states: 

…language constructs do not pose major stumbling blocks for novices... 

rather, the real problems novices have lie in “putting the pieces together,” 

composing and coordinating components of a program. (p. 850) 

Soloway then proposes that teaching should reach beyond a focus on syntax (as 

programming knowledge) and focus on programming strategies. 

Recent studies have attempted to quantify the ability of novices after an introductory 

programming course. The „Leeds group‟ brought together researchers from the UK, 

USA, Denmark, Finland, Sweden, Australia and New Zealand as an ITiSCE 2004 

working group (Lister et al., 2004). The group was attempting to isolate the cause of 

poor novice results measured by the McCracken group (McCracken et al., 2001) 

mentioned earlier (§ 2.1.1). The group used a set of multiple-choice questions that 

focused on program comprehension (reading and understanding code). The Leeds 

authors contended that no problem solving would be required to answer the 

questions, so if students failed this test, it would indicate a failure in programming 

knowledge. If novices succeeded in the test this would confirm that novices can 

successfully acquire programming knowledge so instructors could put this issue aside 

and focus their attention on how to improve strategy instruction. 

Table 2.5. Performance in the Leeds study (reproduced from Lister et al., 2004) 

Quartile Score Range No. of Students Percent of Students 

1st (top) 10 – 12 152 27% 

2nd 8 – 9 135 24% 

3rd 5 – 7 142 25% 

4th (bottom) 0 – 4 127 23% 

Novices who participated in the Leeds study did not perform as poorly as those who 

participated in the McCracken study, nor did they perform universally well. The 

distinction between the third and fourth quartiles in the Leeds group study (shown in 

Table 2.5) is between 4 and 5 correct answers out of the set of 12; a performance 

little better than guessing. 
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Suppose the students who participated in this study were all studying their 

first semester of programming at a single institution. Suppose further they 

were given these 12 MCQs as their exam, and the institution regarded a 

25% failure rate as the upper limit of what was acceptable. Then students 

who scored 5 out of 12 on these MCQs would be progressing to the second 

semester programming course (Lister et al., 2004, p. 128). 

The Leeds group concluded that many novices possess only fragile programming 

knowledge. The study can be criticised due to a fault in the underlying assumption, 

made by the authors, that comprehension questions do not require problem-solving 

ability. The comprehension-generation and knowledge-strategy aspects are probably 

related but, to the authors knowledge, it has not been proven that these aspects are 

dependent. The Leeds group studied novice program comprehension, but made 

conclusions about novice programming knowledge. Regardless, there is undoubtedly 

some truth in the conjecture that the programming knowledge of many novices is 

flawed. 

A following study, the „BRACElet project‟ (Whalley et al., 2006), extended the 

Leeds study, using a set of questions created using Bloom's Revised Taxonomy 

(Anderson et al., 2001) to test programming skill over an identifiable cognitive 

range. The BRACElet study included questions that were categorised in the Bloom's 

levels of apply, understand and analyse, with specified sub-categories for each 

question. More correct answers were given for these better defined questions when 

compared to results from the Leeds group, but again many novices demonstrated 

gaps in their programming knowledge. 

2.3.3 Levels of Problems 

Problems that a programmer may face can be differentiated in their level of 

complexity. The following three classes of problem form a scale according to the 

complexity of problems. This taxonomy is the invention of the author. 

System-Level Problems 

Problems at the system level are large, complex and usually unique. Examples of 

problems at this level might be designing an accounting system for a large 

corporation, developing a web interface for a government department or developing 

a widely used end-user application such as an email client. Well established 

strategies have been formulated for designing and implementing solutions to 

problems of this scale, usually following a Waterfall software development process 

(analyse, design, implement, test, maintain) (Royce, 1970). New processes such as 

Extreme Programming (Beck, 2001) might also be useful at this level. Problem 

solving at this level is too complex for novices in their initial study of programming. 

Algorithmic-Level Problems 

Problems at the algorithmic level are identifiable parts of a greater problem. (In an 

academic setting they may be addressed independently.) For such problems, a 

solution is usually achieved by adopting established algorithms, widely used in the 

programming community. Solutions to problems of this scale may individually form 

functions. Generic forms of these functions may be included in standard libraries and 

perform tasks such as sorting, searching, or maintaining data structures. A novice 

may be able to start using such strategies at the end of an initial course in 
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programming and may use them in greater depth in a second or third course in 

programming. 

Sub-algorithmic-Level Problems 

Problems at the sub-algorithmic level are at their most basic. Attempting to 

decompose and describe a problem below this scale will lead to syntactical 

definitions of specific language constructs. Solutions to sub-algorithmic problems 

form parts of more complex solutions. Coded solutions to individual problems at this 

scale will not usually form entire functions, but several sub-algorithmic solutions 

may be combined to reach this size. Examples of problems at this scale include 

guarding a division to avoid division by zero, achieving repetition until a sentinel is 

found, or swapping the values of a pair of variables. This level of problem is 

particularly relevant to novices in an initial exposure to programming. While 

problems are basic at this level, they are still regularly encountered by experts and 

are therefore relevant to programmers at all levels of expertise. 

2.3.4 Comprehension and Generation 

In the context of programming, comprehension is the ability to read and understand 

the outcomes of an existing piece of code; generation is the ability to create a piece 

of code that achieves certain outcomes. In studies of how novices learn the roles of 

variables, Kuittinen and Sajaniemi (2003) refer to simulation (tracing through code 

and predicting its output) as separate to comprehension (to “describe what is the 

purpose of the given program and how it works” (p. 6)). Although there is a subtle 

difference, for the purposes of this dissertation simulation will be considered as 

comprehension. 

Whalley et al. (2006) contend that “a vital step toward being able to write programs 

is the capacity to read a piece of code and describe it” (p. 249) meaning that a novice 

must be able to comprehend a solution (and the knowledge and strategies within it) 

before they can generate a solution at the same level of difficulty. In other words, 

novices are more likely to take some time building comprehension of a problem 

solution and later attempting to generate a solution to the same or a similar problem; 

this may happen concurrently with several programming concepts. This assumption 

seems natural, perhaps due to the similarity between learning a programming 

language and learning a natural language where a child will generally learn to read 

words before they can write them.  

Program comprehension can be thought of as less cognitively demanding than 

generation. According to the Bloom‟s Revised Taxonomy (Anderson et al., 2001) 

comprehension tasks can be classified at the lower understand and apply levels while 

generation involves the cognitively higher create level. Oliver, Dobele, Greber, & 

Roberts (2004) measured the cognitive difficulty of assessments of six courses in an 

undergraduate computing degree program. The courses included three programming 

courses studied in first year and early in second year and three networking courses 

studied in second year. For each course the cognitive difficulty of assessments was 

measured using Bloom‟s Taxonomy, with each course being given a single rating 

between 1.0 and 6.0 according to the average difficulty of its assessment tasks. While 

this study can be criticised for applying Bloom‟s Taxonomy as a linear scale, it did 

conclude that first-year programming courses include assessment tasks more 

cognitively demanding than those encountered in the later networking courses. This 

was because assessment tasks in the programming courses frequently reach higher 
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cognitive levels including apply, analyse and create. So while both comprehension 

and generation of programs are important skills for a novice, traditional curriculum 

assessments focus strongly on generation, perhaps assuming that comprehension will 

be developed as a prerequisite skill. 

2.3.5 Relationships between Aspects 

The expert-novice, knowledge-strategy and comprehension-generation aspects are 

clearly related. According to Brooks (1983), experts and novices can be 

distinguished by how they undertake comprehension. Rist (1995) suggests novices 

and experts can be differentiated by how they undertake program generation. During 

program generation an expert can rely on a tacit body of programming plans 

developed through solving past problems (Soloway, 1986), while a novice has 

traditionally been expected to conceive and apply plans, with varying degrees of 

success (Rist, 1991). A distinction of expertise by use of strategy is proposed by 

Bailie (1991, p. 277): “one feature clearly distinguishing the novice from the expert 

programmer is the ability to plan.” 

An instructor might present an example problem, say a loop that repeats a fixed 

number of times. The instructor may then display and describe a coded solution to 

the problem. A novice might say “I understand how the for loop works and I can 

see your program solves the problem, but I don't think I could have dreamed up that 

solution myself.” This novice has distinguished between their programming 

knowledge and their programming strategies (or lack thereof). They have also shown 

they can comprehend the solution presented by the instructor but do not feel 

confident in their ability to generate that solution themselves. 

In the BRACElet project (mentioned earlier in section 2.3.2), as well as asking 

novices to predict the outcome of code in a number of questions, participants were 

also shown a piece of code and asked to “In plain English, explain what the 

following segment of code does” (Whalley et al., 2006, p. 248). This last question 

has been referred to as “Question 10” and is sometimes quoted by this name. The 

responses to Question 10 were categorised according to levels of the SOLO 

Taxonomy (Biggs and Collis, 1982) which distinguishes levels of understanding. 

Responses were categorised as shown in Table 2.6. 

Table 2.6. SOLO Categorisation of Question 10 responses (reproduced from Whalley et al., 2006) 

SOLO category  Description  

Relational [R] Provides a summary of what the code does in terms of the code’s purpose.  

Multistructural [M] A line by line description is provided of all the code. Summarisation of individual 
statements may be included  

Unistructural [U] Provides a description for one portion of the code (i.e. describes the if statement)  

Prestructural [P] Substantially lacks knowledge of programming constructs or is unrelated to the question  

Blank Question not answered  

Performance on Question 10 was consistent with other questions in the study. 

Approximately 30% of participants in the BRACElet study were able to give a 

SOLO Relational response for Question 10; 55% gave a Multistructural response; 

13% gave a Unistructural response; a small remaining percentage showed only a 

Prestructural response. These results mean that 70% of novice participants were 

describing code line-by-line at best. Less than a third of novices were able to identify 
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the overall purpose of the code. The BRACElet project authors propose that novices 

would need to give a SOLO Relational response to Question 10 before they could 

generate the same solution themselves (Whalley et al., 2006). Considering the 

comprehension-generation and knowledge-strategy aspects, this means that before a 

novice can generate code involving strategies, they must first show comprehension 

of the strategies in an equivalent piece of code. The results show that only 30% of 

the participants could comprehend the strategies applied in the solution while the 

remaining participants were relying on programming knowledge. 

A follow-up paper from the BRACElet project group (Lister et al., 2006) asked 

instructors (as expert programmers) to explain the code previously given to students. 

Their responses were then analysed according to the SOLO categorisation given in 

Table 2.6. Seven of eight participating instructors gave a Relational response, 

suggesting that the ability to comprehend code at this level is related to programming 

expertise. This expertise seems to be lacking in 70% of the novices tested in the 

BRACElet project. This finding is consistent with that of Fix, Wiedenbeck and 

Scholtz (1993) who identified a contrast between the ability of novices and experts 

on program comprehension. Fix et al. suggest that experts can discover goals, relate 

goals to previous experience, recall plans, and integrate these to form a program. The 

BRACElet group went on to suggest that while their study has examined novice and 

expert potential to think in abstract ways about code, it does not identify how novices 

could be better trained to perform this task. 

Assessment and Aspects of Novice Instruction 

When assessing students it is possible to target skills in comprehension or 

generation. In a comprehension task, novices are given a piece of code and asked 

questions about it. For example a novice might be shown a piece of code and asked 

to predict its output. A novice might be asked to identify problems in a flawed piece 

of code. To test generation skills, novices can be asked to create a solution to a given 

problem. 

It is also possible to assess knowledge and strategies independently. Knowledge tasks 

focus on the syntax and semantics of a language but do not require a novice to solve 

a problem. Strategy questions might ask a novice to identify a strategy used to create 

a problem solution (for example Question 10 from the BRACElet project) or apply 

strategies when solving a problem. 
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Figure 2.1. Creating programming assessments with 

consideration of novice instruction aspects 

By combining the knowledge-strategy aspect with the comprehension-generation 

aspect, four types of assessment tasks can be identified, as shown in Figure 2.1. This 

division is the author‟s invention. 

Exercises can be used to target programming knowledge by asking a novice to 

comprehend a piece of code, where strategies have not been applied. Knowledge-

comprehension can be tested by asking novices to describe the effect of a particular 

language construct, such as an if statement, given in simple context. 

Knowledge-generation can be assessed by asking novices to apply a particular 

language construct in a certain way. For example a novice could be asked to write a 

for loop that counts from 0 to 9. Such tasks can be designed without asking novices 

to solve a problem. 

Strategy-comprehension can be assessed by showing novices solutions and asking 

them to identify strategies that were applied in creating the solution. 

Strategy-generation can be tested by asking novices to generate a solution that 

requires the application of certain strategies. In programming assignments, strategy-

generation is perhaps the most commonly assessed combination. 

For examples of questions that target individual areas, see section 7.4.3. 

2.3.6 Implicit and Explicit Instruction 

The previous sections have addressed aspects on which computing education 

research can be classified, according to Robins et al. (2003). Another important 

aspect relevant to this dissertation is how instruction is delivered, which can be 

described as being implicit, explicit, or a combination of these. 

Explicit instruction involves the instructor openly describing, usually in some 

documented form, what the student is to learn and how to go about that learning. 

Implicit instruction creates a scenario where a student is expected to undertake 

learning without being given a full context for what it is they are to learn or how. 
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The following is an example of the distinction between explicit and implicit 

instruction. 

My four year old son enjoys playing Uno (a card game) against the 

computer. Being a father I naturally coach him on how to play. The goal of 

a player in Uno is to be the first to discard all their cards. In a turn a 

player must play a card with either the same colour or number as that on 

the top of the discard pile. If a player cannot match the colour or number 

of the top card on the discard pile they must draw a card from the pick-up 

pile or play a Wild card.  

For many of the turns a player takes the choice of card to play is simple. 

Occasionally a player must choose from a number of alternatives, and 

choosing one option over another can give the player an advantage later 

in the game. Determining the best option is a strategic decision. For 

example, when a player cannot follow the colour or number of the card at 

the top of the discard pile they may play a Wild card. When a player uses a 

Wild card they can choose one of four colours to follow in the subsequent 

turns. To make an appropriate choice of colour I can coach my son in one 

of two ways. 

I can examine the 

cards my son has and 

simply tell him which 

colour to choose. If we 

were to repeat such 

coaching several times 

my son might learn to 

generalise the advice I 

am giving him and 

extrapolate a strategy 

for choosing a colour 

after playing a Wild 

card. This is an 

implicit approach. 

I can inform my son that a good strategy to follow after playing a Wild 

card is to determine which colour is in the largest majority of his cards 

and nominate that colour for subsequent turns. Giving my son this strategy 

in this manner is an example of explicit instruction. After instructing my 

son in this way, when the opportunity arises, I encourage my son to 

practice this strategy. 

The Sapir-Whorf Hypothesis (Whorf, 1956) proposes that language determines 

thought: “We dissect nature along lines laid down by our native languages” (p. 212). 

In order to be able to think about something you need some term to describe it. This 

proposal might not be entirely true (particularly in light of ambiguity (Pinker, 2007)), 

but humans are driven to take what is tacit and make it explicit in order to describe it. 

During an introductory programming course, novices are expected to develop 

knowledge and strategies to allow them to comprehend and generate solutions. 
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Novices will not become experts during an introductory course, but can be expected 

to reach a level of competency. A traditional form of programming problem-solving 

instruction begins with a worked example: novices are shown a simple problem 

solution from an instructor (or a textbook). Following exposure to a range of problem 

solutions, a novice is given a problem definition requiring a solution similar to those 

presented in examples. The novice is expected to devise a solution; they are expected 

to build strategies by undertaking problem solving, applying reasoning about the 

examples presented. Typically no framework is given to the novice to assist them in 

building the strategies required for a solution. This is an implicit approach to 

learning strategies. By contrast, explicit strategy instruction presents concrete 

techniques that a novice can use to take a problem definition and create a solution. 

An explicit approach guides the novice to learn and apply strategies. 

Rist (1991) observed novices in an implicit-only setting as they attempted to 

construct strategies to solve problems and noted that many of the novices succeeded. 

He also noted that some novices were able to re-apply strategies they had developed 

earlier to new problems in order to solve them more quickly (Rist, 1995). However, 

achieving this may be possible for only a small group of novices. McCracken et 

al.(2001) and later studies (Whalley et al., 2006, Lister et al., 2004) have shown that 

many novices have a fragile programming knowledge and lack programming 

strategies at the end of an introductory course. 

Beyond computing education a number of studies have compared the outcomes of 

students under implicit and explicit education. A comparison of explicit and implicit 

instruction, undertaken by Biederman and Shiffrar (1987), showed a stark 

quantifiable difference between these two approaches. Chick-sexing is a profession 

that involves determining the gender of day-old chicks at commercial egg hatcheries. 

The distinction between male and female chicks remains hard to determine by visual 

examination of genitalia until one month of age. However, being able to determine 

the gender of chicks early avoids feed wastage on unwanted males. Professional 

sexers can classify over 1000 chicks per day and can identify gender in less than a 

second, with a required level of accuracy. Traditional training of sexers involves six 

to twelve weeks of implicit instruction, standing along-side an expert instructor, 

making observations, then attempting the task through trial and error. It can take 

years for novice chick sexers to achieve the experience and accuracy of an expert 

professional. In this context Biederman and Shiffrar established an experiment to 

measure the effectiveness of implicit instruction and compare it to explicit 

instruction. Initially a benchmark of accuracy was attained through a group of 

volunteers with no sexing experience who were asked to identify the gender of 18 

chicks from genitalia photographs. Performance of these subjects was 60.5%, slightly 

greater than chance. The same photographs were shown to five sexers, who had been 

trained in the traditional implicit fashion, who achieved an average performance of 

72%. A sexer with vast experience (quoted as 50 years and 55 million chicks) was 

recruited to identify the gender of chicks from the series of photos. Biederman and 

Shiffrar then interviewed this man and asked him to explain the visual aspects that 

prompted his decisions. From this interview a single instruction sheet was created 

which explicitly described key visual aspects. The volunteers were split into control 

and experimental groups. The instruction sheet was given to the experimental group 

to study for one minute. After instruction both groups of volunteers were retested 

using a second set of photographs. Control subjects showed no improvement in their 

accuracy over the original measurement. Volunteers in the experimental group, who 
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had read the explicit instruction sheet, averaged accuracy of 84%, which was above 

that of trained sexers in the initial test. An important aspect of this experiment is that 

the volunteers are not learning a skill which needed to be generalised before it could 

be used. The participants were taught strategies which could be applied directly to 

the task they were being tested on. According to Baddeley (1997) the findings of this 

chick-sexing experiment demonstrate that a brief period of explicit instruction can be 

more effective than months of implicit learning. 

Studies have shown that implicit-only learning can improve a student's performance 

but it does not create an understanding of underlying systems. In a study closer to 

programming, Reber (1993) examined implicit learning in the context of language 

acquisition. According to Reber, children learn the greater part of their native 

language through implicit means. Second-language instruction is usually achieved 

through explicit study of the grammar of a new language. Reber used a small, finite-

state artificial grammar to test the effectiveness of implicit learning of a second 

language. An experiment was established involving volunteers divided into control 

and experimental groups. The experimental group was shown sequences generated 

from the grammar without being shown the rules of the grammar used to construct 

the sequences. The control group was shown sequences that were randomly 

generated and not part of the grammar. After training, both groups were shown 44 

sequences, half of which were grammatically correct according to the grammar. The 

participants were asked to determine which were well formed according to the 

grammar. Experimental subjects achieved 79% accuracy while members of the 

control group showed no capacity to accurately distinguish sequences. The results 

showed that the experimental group had learned the grammar and were able to 

recognise sequences from it. However, when the experimental group participants 

were interviewed and asked to describe the grammar they had been exposed to, they 

were unable to express any understanding of the rules used to generate sequences.  

Berry and Dienes conducted a similar experiment (Berry and Dienes, 1993) which 

asked participants to learn the workings of a simulated transport system through 

implicit instruction only. Participants showed learning and an ability to operate the 

system, but when asked to describe the underlying rules of the system, participants 

were not able to show any understanding. 

The previously described experiments indicate the weakness of implicit-only 

learning and the strength of explicit instruction. It is not the purpose of this 

dissertation to suggest that explicit instruction be adopted at the expense of implicit 

learning; programming is still a practical, creative art and much benefit can still be 

gained through self-discovery. Novice programmers can learn programming 

strategies over time though implicit instruction, but it may be possible to improve the 

outcomes of novices by adding explicit instruction of programming strategies. Husic, 

Linn and Sloan (1989) discuss how teaching practices influence how students solve 

problems. If syntax is the focus, students will attempt to solve problems by 

syntactical means only. “Instructors must achieve a delicate balance between 

providing opportunities for independent problem-solving and modelling explicit 

problem-solving strategies” (p. 581). According to Soloway (1986, p. 851), 

“strategies that experts use need to be made explicit and taught explicitly to students 

in introductory programming courses.” 
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In light of previous research, adding explicit instruction to introductory programming 

curricula may: 

 increase student learning speed; 

 create a more structured understanding of the problem-solving processes; 

 create an enriched vocabulary for describing problems and how to solve 

them; and 

 enable instructors to undertake deeper analysis and assessment of novice 

programming strategy skill. 

Another important requirement, suggested by previous research such as the chick 

sexing experiment, is need to be specific about which strategies will be included in 

the curriculum rather than teaching problem solving as a general abstract task. So not 

only is there a need to teach programming strategies in an explicit manner, the 

strategies to be taught needs to be specifically defined also. 

2.4 Explicit Programming Strategies 

If it is desirable to include explicit instruction of programming strategies in 

introductory curricula, an instructor must first capture and document these in a form 

that can be delivered explicitly to novices. Robins et al. (2006) portray strategies as 

being important but ill-defined in literature. A number of attempts have been made to 

represent strategies; these include plans, schema and patterns. This section describes 

attempts to create explicit representations of programming strategies which can be, 

or are being, delivered to students. 

According to Soloway (1986), programming strategies are made up of plans and the 

associated means of incorporating these into a single solution. Goal/Plan Analysis is 

the process of describing an ideal solution, which contains appropriate plans, and 

comparing this with the solution of a novice. This analysis allows an instructor to see 

if a novice has succeeded in learning and applying specific plans. Much of the 

research by Soloway and his colleagues used the idea of plans to explore 

misconceptions that novices exhibit (Spohrer and Soloway, 1986, Spohrer et al., 

1985a). PROUST (Johnson and Soloway, 1984) was one of a series of intelligent 

tutoring systems including the GPCEditor (Guzdial et al., 1998) and SODA 

(Hohmann et al., 1992). PROUST could perform Goal/Plan Analysis on a Pascal 

program, comparing its plan structure to a structure established by an instructor. 

Johnson (1986) gave a description of the inner workings of PROUST and also 

released a catalogue of goals and related plans. Plans, as a form of programming 

strategy, are a candidate for explicit instruction to novices. 

The idea of the schema/plan was not widely used by instructors for many years until 

the rise of the object paradigm, which brought with it a new sense of reuse and a new 

term to computing: patterns (Wallingford, 1996). According to Clancy and Linn 

(1999), “learning programming means learning patterns and strategies that enable 

rapid learning of new programming languages” (p. 37), but novices do not infer 

patterns naturally, and so instructors  should “create appropriate exercises and 

supports so students extract patterns, reuse patterns, develop a disposition to use 

patterns, and create patterns of their own” (p. 41). Porter and Calder (2003) have 

proposed A Pattern-Based Problem-Solving Process for Novice Programmers. Their 

approach shows students how to apply patterns. Porter and Calder also use a pattern 

language for applying patterns to problems and refining solutions. They believe 
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patterns have enhanced their curriculum and pedagogical approach. “Patterns lend 

themselves to the learning of a skill like programming, because they provide the 

static knowledge plus the means to apply it” (p. 236). Porter and Calder tested their 

approach on a small number of volunteers divided into control and experimental 

groups (Porter and Calder, 2004). Participants were asked to undertake an exercise 

under test conditions. This study showed slightly better outcomes in participants who 

had been exposed to patterns and the pattern language, however none of the 

participants in either group demonstrated any obvious use of the patterns or the 

pattern language during testing. A later study by Muller, Haberman and Ginat 

(2007) showed novices to be more competent in problem decomposition and solution 

construction after studying under a pattern-oriented instruction approach. In this 

study novices were shown how patterns can be used and were instructed in 

algorithmic patterns. There is a growing community of instructors interested in the 

pattern approach (Wallingford, 2007). 

Based on the plan ideas of Soloway, Sajaniemi has been refining an explicit 

description of the roles of variables which is being incorporated in introductory 

programming curricula (Sajaniemi, 2002). Sajaniemi‟s categorisation of variables by 

their role (for instance constant, stepper, most-recent holder and so on) is claimed to 

cover 99% of variables encountered in examples in an introductory programming 

course. When code is shown to students the role of each variable is identified. A 

standard visualisation of variable roles has also been created. Kuittinen & Sajaniemi 

(2003) describe an experiment involving novices divided into three groups, a control 

group (receiving traditional instruction) and two experimental groups (who were 

explicitly instructed in roles, with one experimental group also being exposed to 

animation of roles in examples). After an exam involving comprehension and 

generation exercises, an analysis of results found no significant difference between 

groups on questions. However, when asked to give explanations of their answers, 

novices in the control group tended to give “operation level descriptions” while 

novices in the experimental groups gave “data level” descriptions, which reflect a 

deeper knowledge of a program and represent better comprehension (Pennington, 

1987). Sajaniemi & Kuittinen (2005) conclude that novices are able to learn the roles 

of variables and apply them to new situations. They believe this allows novices to 

generate solutions which contain fewer errors and demonstrate superior 

programming skills. 

Related to programming, Klahr and Carver (1988) found that students explicitly 

instructed and assess in debugging strategies showed improved debugging ability in 

later programming courses. 

An experimental curricula, described later in this dissertation, uses Soloway‟s plans. 

Plans were chosen over patterns, even though patterns have become more 

widespread in recent years. Patterns are commonly used in the object paradigm and 

require a pattern language for application. Plans can be used in multiple paradigms, 

including the object paradigm. Plans can be expressed simply, particularly at a sub-

algorithmic level. In saying this, the focus of this research is not on the types of 

strategy that are taught but on how they are taught, and the consequent outcomes for 

students. It is likely that patterns, or another strategy representation, could be used to 

achieve the same programming strategy understanding for students as plans. 

From this point on the term plan is used to represent a specific form of strategy and 

the term strategy is used in its more generic sense. 
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2.5 Need for Further Research 

Programming instruction is a relatively new practice. Programming curricula have 

evolved as student cohorts and technologies have changed, and have followed the 

shifting standards of the computing industry (§2.1). Currently student numbers in 

computing courses are dwindling, which places pressure on instructors to perform 

(§2.2). 

Instructors do not have a common definition of what constitutes problem solving 

instruction in an introductory programming course and differ greatly on the extent to 

which problem solving should be incorporated into courses at this level (§2.2.4). 

Most existing textbooks contain little content addressing problem solving and most 

do not integrate this throughout (§0). 

Introductory programming instruction is cognitively demanding, with many novices 

failing to reach expected standards at the end of an initial period of instruction. 

Studies have shown that novices perform poorly on standardised program generation 

tests (§2.1.1). In program comprehension tests, novice performance is better, but still 

poorer than expected by instructors. This may indicate that the programming 

knowledge of novices is fragile (§2.3.2). When asked to explain the purpose of a 

given piece of code only 30% of novices were able to give a SOLO Relational 

response, indicating a possible lack of programming strategy skill (§2.3.5). These 

strategy-related deficiencies could be compounding the effect of poor programming 

knowledge in generation exercises. 

The traditional approach to teaching programming to novices in an introductory 

course has been to gradually reveal the constructs and features of a programming 

language. Most attempts to enhance this approach, in order to improve outcomes for 

novices, have simply been novel ways of teaching the same curriculum. 

New efforts to ease and enhance learning have varied in their general 

approach to improve learning: most studies report effects of new teaching 

methods and new ways of presenting teaching materials, while 

reorganization of topics and introduction of new concepts have been far 

more rare. (Kuittinen and Sajaniemi, 2003, p. 347) 

Considering new concepts and ways of integrating these concepts may improve the 

potential of novices. 

2.5.1 Strategies Appropriate for a Curriculum 

Goal/Plan Analysis has been used as a tool for determining weaknesses in a student‟s 

code and identifying gaps in their application of plans (§2.4). Expressing strategies 

as plans provides a representation of strategies that can be explicitly incorporated 

into a curriculum. However, while plans are claimed to be based on the tacit 

strategies of experts, this has not been authenticated. Any proposed set of strategies 

needs to be validated as authentic by comparing them to the strategies used by expert 

programmers.  

2.5.2 Integrating Strategies into a Curriculum 

Studies have investigated the incorporation of programming strategies explicitly into 

introductory programming curricula as patterns (Wallingford, 1996, Porter and 

Calder, 2003) and the roles of variables (Sajaniemi, 2002, Ben-Ari and Sajaniemi, 
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2004). Integration of plans as strategies was never attempted by Soloway, the 

initiator of plans, or his colleagues, but it was something they intended to do 

(Soloway, 2003). Once a set of strategies has been validated as authentic, and 

expressed in a form that us suitable for dissemination to novices, it can be explicitly 

integrated into an introductory programming curriculum. The usefulness of the 

curriculum and its impact on novices needs to be measured and contrasted to those of 

a traditional curriculum. 

2.5.3 Assessing Strategy Ability in Novices 

Goal/Plan Analysis is a tool for measuring the strategy skill of a novice programmer. 

However, it is not an appropriate tool for regular assessment in an introductory 

programming course. Testing novices' programming strategy skills, as a means of 

assessment, can be achieved by isolating programming knowledge and programming 

strategies in assessment items and measuring these separately. The consistency of 

tasks used for such assessment needs to be measured. 

The next chapter describes the overall methodology followed in the experiments that 

form the core of investigation described in this dissertation. The scope of 

experimentation is defined using the terminology given earlier in this chapter. 

Research questions are discussed and the method used to answer these questions is 

given. This leads into later chapters which describe each of the experiments in detail. 
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3. Experimental Methodology 

Chapter 1 of this dissertation identified a rationale and aims for study. Relevant 

research was described in chapter 2, which also identified important aspects of 

introductory programming instruction and a need for further research. 

This chapter discusses the methodology of the four experiments that were conducted 

for the purpose of this dissertation. The scope of these experiments is defined in 

section 3.1. The method of analysis is described in section 3.2. The experiments were 

undertaken to address a series of research questions which are discussed in section 

3.3. Finally a preview of the experiments described in the following four chapters is 

given in section 3.4. 

3.1 Scope of Experimentation  

This dissertation studies instruction of problem solving to novice programmers. A 

categorisation of existing research into teaching of programming within computing 

education, encountered by the author, is given in Figure 3.1. 

CURRICULUM

"What should be 

in an 

(Introductory) 

Programming 

Course?"

NOVEL 

APPROACHES

"I tried this and 

students liked it."

DEBUGGING 

SKILLS

"Novices make  

errors 

because…"

FUTURE OF 

PROGRAMMING 

INSTRUCTION

"Should we be 

teaching 

programming 

to…?"

LANGUAGE/ 

PARADIGM

"This language/ 

paradigm is 

better 

because…"

PLAGIARISM

"Students cheat 

because…"

PREDICTING 

SUCCESS

"Students will do 

better if they 

have 

previously…"

ASSESSING 

PROGRAMMING 

SKILLS

"This tests 

student ability 

best…"

TOOLS

"Using these 

tools we can 

teach 

programming 

better…"

Focus of Study

DEBUGGING 

TOOLS

"These tools help 

novices learn to 

fix the errors."

PROBLEM 

SOLVING

"How do we 

teach students 

better problem 

solving?"

EXPERT & 

NOVICE

"What do Experts 

have that 

Novices don't?"

KNOWLEDGE & 

STRATEGY

"This 

distinguishes 

ability to solve 

problems."

GENERATION & 

COMPREHENSION

"There is a 

difference between 

reading and writing 

code."

 

Figure 3.1. Some computing education research areas showing focus of this dissertation 

This dissertation focuses on the area, highlighted in red in Figure 3.1, relating to the 

teaching of problem solving to novice programmers. Klahr and Carver (1988) found 

some success in transferring debugging skills learned in a programming context to a 
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non-programming context. However, as described by Perkins (1992) transfer of 

learning is limited to contexts closely associated to the learning context. Achieving 

“near transfer” is far more likely than achieving “far transfer”, if transfer can be 

achieved at all. In this dissertation problem solving is considered only in a 

programming context rather than in its general sense. Strategies suggested are 

intended only for use in programming and are not expected to benefit students‟ 

problem solving skills in other disciplines. 

Specifically within this problem-solving area, experimentation is targeted at sectors 

of the following aspects (defined in section 2.3). 

 Expert-Novice 
Experimentation will focus on exploring this area for the benefit of novices 

learning programming in their initial exposure (that is in an introductory 

programming course, sometimes referred to as CS1). Experimentation 

involving experts will be conducted for the purpose of advancing the quality 

of novice instruction. 

 Knowledge-Strategy 

This dissertation primarily explores the instruction of programming strategy 

although programming knowledge instruction is considered as it is related to 

(if not required for) the application of programming strategies. The level of 

problems solved by novice programmers in their initial exposure is sub-

algorithmic, sometimes reaching simpler problems at the algorithmic level. 

 Comprehension-Generation 

Both strategy-comprehension and strategy-generation are considered and 

explored in this dissertation. The focus of the first three experiments is 

strategy-generation, driven by the method of analysis (Goal/Plan Analysis see 

section 3.2.1). In the final experiment, approaches for teaching and assessing 

both strategy-comprehension and strategy-generation are tested. 

In relation to teaching approach along the implicit-explicit aspect (defined in section 

2.4), this dissertation: 

 measures the effect of implicit-only teaching on novices' programming 

strategies (chapter 4); 

 describes authentic strategies that can be used in explicit instruction (chapter 

5); and, 

 observes the impact of explicitly teaching programming strategies in artificial 

and actual instruction settings (chapters 6 and 7). 

The representation of programming strategies chosen for the experiments described 

here include plans used by Johnson and Soloway (1984). 

3.2 Experimental Approach 

A binding feature of the four experiments described in this dissertation was a 

common method for experimentation. The common instrument for determining 

impact of a curriculum on novices was Goal/Plan Analysis, which is described in 

section 3.2.1 below. This method of analysis was used to study novices‟ solutions 

and also to study the solutions of experts in validating the authenticity of the plans as 

an explicit form of programming strategies. In the final experiment, alternatives to 
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Goal/Plan Analysis are suggested as tools for assessing programming strategy in 

novices. 

3.2.1 Applying Goal/Plan Analysis 

Goals and Plans, and the ability to compose plans into a solution, form an enriched 

vocabulary of programming strategies (Soloway, 1986). “Goals and plans –

stereotypical, canned solutions – are two key components in representing problems 

and program solutions” (p. 851). 

Goal/Plan Analysis is a method for analysing code created by a novice to determine 

if they have understood and applied appropriate strategies in the code's construction. 

Goal/Plan Analysis was proposed by Elliot Soloway and his colleagues in early 

papers (Soloway and Woolf, 1980, Soloway et al., 1982, Soloway et al., 1983b) but 

arguably the definitive description of Goal/Plan Analysis is given in Soloway (1986). 

After justifying the motivation for using goals and plans, a description of the 

application of Goal/Plan Analysis is shown through a number of examples in this 

seminal paper. 

As a knowledge elicitation technique involving experts (Cooke, 1994) Goal/Plan 

Analysis can be classified as content analysis, a form of protocol analysis. Protocol 

analysis is an appropriate tool for directly capturing expert‟s problem solving 

strategies (Burje, 1998). 

With a given problem, the process begins with the instructor determining the goals 

that need to be achieved to solve the problem. These goals are then mapped to plans. 

In this context, a plan is a stereotypical abstract solution to a sub-algorithmic 

problem. A small set of plans are illustrated in Soloway (1986). A more complete set 

is published in Johnson and Soloway (1984) with the description of the programming 

tutor PROUST. Some plans and other strategies were added to create a fuller 

curriculum for experimentation. A list of strategies referred to in this dissertation is 

given in Appendix A. 

Soloway (1986) used the following averaging problem as an example. 

Write a program that will read in integers and output their average. Stop 

reading when the value 99999 is input. (p. 851) 

Soloway gives a model solution for this problem, which is reproduced in Figure 3.2. 
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Figure 3.2. How a solution is derived from goals and plans, reproduced from (Soloway, 1986) 

The instructor must also define how the plans should be integrated to form a 

solution. Soloway gives the following methods as “gluing together plans [that] have 

been identified” (p. 856): 

 Abutment 
Plans, or parts of plans, are glued together in sequence, as illustrated on the 

right-hand-side of the averaging problem shown in Figure 3.2. 

 Nesting 
One plan is completely surrounded by another plan. For example, in the 

averaging program (in Figure 3.2), the OUTPUT PLAN, the plan that realises 

the goal of writing out the average, is nested within the SKIP-GUARD 

PLAN, which realises the goal of preventing division by zero in the average 

calculation, which can occur if the count of inputs is zero. 

 Merging 
At least two plans are interleaved. For example, to solve the averaging 

problem, the input, summing and counting plans are merged. 

Soloway also suggests that plans need to be tailored to meet the specific goals of a 

problem. “After all, we do call it „software‟” (p. 856). 

Once a model solution is created from plans composed together using the integration 

methods put forward by Soloway, this model can be compared to a solution given by 

a novice. The presence or absence of plans in the novice's solution, and the correct 

application of integration methods is noted. Flaws in the novice's solution emerge 

where plans are missing or poorly integrated. The goal/plan vocabulary can be useful 

in describing these bugs and correcting a novice's solution. 
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3.3 Research Questions 

Past research presented in chapter 2 showed a need for curricular development which 

can be linked to the aims of this study, specifically: 

 validation of an authentic set of strategies that are suitably expressed for 

explicit instruction to novices (aim 1); 

 development and testing of a curriculum that incorporates programming 

strategies (aim 2); and 

 development and testing of forms of assessments designed to test knowledge 

and strategy ability independently (aim 3). 

Four experiments were conducted and are described in the following four chapters. A 

set of research questions was associated with each experiment, and used to guide the 

design and evaluation of each experiment. The experiments were conducted in a 

series with the conclusions of each experiment dictating the research questions to be 

answered in the next. 

The research questions relevant to each experiment are listed in an initial section of 

the chapter relating to that experiment. These questions are also re-stated in section 

8.1, where the answers to the questions are presented together. A brief overview of 

the questions asked for each experiment is now given. 

3.3.1 Initial Experiment 

Initially a baseline for student learning under a traditional curriculum needed to be 

measured. The questions listed in section 4.2 directed the experiment described in 

chapter 4 and are answered in section 4.6. The questions ask about the strategy skills 

of novices trained using implicit-only instruction of programming strategies and 

what this implies about the curriculum used at the time. 

3.3.2 Validation of Strategies 

In order to establish an appropriate set of authentic programming strategies that can 

be incorporated explicitly into an introductory programming curriculum, the tacit 

strategies of experts needed to be explored. The questions listed in section 5.2 relate 

to the experiment described in chapter 5 and are answered in sections 5.6 and 5.7. 

The questions ask if plans are consistent with strategies applied by experts when 

solving problems. 

3.3.3 Use in an Artificial Course 

An attempt to incorporate programming strategies explicitly into an introductory 

course was attempted, initially in an artificial setting. The questions listed in section 

6.2 drove the experiment described in chapter 6 and are answered in section 6.6. The 

questions ask about the feasibility and impact of explicit instruction of strategies and 

the potential to assess novices using Goal/Plan Analysis. 

3.3.4 Use in an Actual Course 

After successful testing in an artificial setting, the curriculum was used in an actual 

course. The questions listed in section 7.1.1 relate to experiment described in chapter 

7 and are answered in section 7.7. The questions ask about the feasibility and impact 
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of explicitly teaching strategies in an actual programming course, and the use of 

assessment items that attempt to separate knowledge and strategy skills. 

3.4 Overview of Experimentation 

There are four main experiments described in this dissertation. The experiments were 

conducted in sequence with the results of each experiment informing questions to be 

answered in the next. Retrospectively the sequence of experiments can be viewed as 

shown in Figure 3.3. 

Measure novice 
strategies in implicit-

only setting

Validate authentic 
expert 

programming 
strategies

Explicitly 
incorporate 

programming 
strategies

Test instruction 
and assessment 

in real intro 
programming 

setting  

Figure 3.3. Overview of experiments in a process 

Each experiment is described in one of the following four chapters. 

In chapter 4 an experiment is described that attempted to measure the effect of 

implicit-only teaching on novices' programming strategies. 

Chapter 5 describes an experiment that sought to capture and make explicit strategies 

that can be held as authentic and used by experts. 

In chapter 6 an experiment is described that involved the delivery of two curricula, 

one containing explicit instruction of programming strategies and another taking an 

implicit-only approach. These curricula were delivered in an artificial setting. The 

impact of the two curricula were measured and compared. 

Chapter 7 describes the implementation of a curriculum including explicit instruction 

of programming strategies in an actual setting and the subsequent impact on novices. 

Following the description of each experiment the main findings are recapitulated in 

chapter 8 and are used to offer the contribution made. 

The experiments described in chapters 5 and 6 were conducted with individuals, 

outside normal teaching environments. For these experiments, permission was sought 

and ethical approval was granted by the USQ Human Research Ethics Committee to 

proceed under controlled circumstances that protected participants. 
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4. Goal/Plan Analysis of Programs created by 

Novices with No Explicit Strategy Instruction 

“In the beginner's mind there are many possibilities, but in the expert's 

mind there are few.” 

Shunryu Suzuki 

Overview 

This chapter describes an experiment conducted with 42 introductory programming 

students. The students had received little explicit instruction in general problem 

solving (see section 4.1.2) and had not been explicitly exposed to sub-algorithmic 

programming strategies in any form. At the end of a semester of programming 

instruction, students were asked to write a solution to an averaging problem. 

Solutions created by students were analysed using Goal/Plan Analysis. Results 

showed gaps in students‟ programming strategies, implying weaknesses in the 

curriculum. 

4.1 Introduction 

Goal/Plan Analysis is a tool for identifying weaknesses in the solutions of novice 

programmers (see section 3.2.1). Goal/Plan analysis has been used to find common 

bugs or misconceptions present in the programming strategies of a cohort of novices 

(Spohrer et al., 1985a, Johnson, 1986), but to the author‟s knowledge, no previous 

study has applied Goal/Plan Analysis to an entire cohort of students to find the 

general programming strategy skill levels of those students. The aim of the 

experiment described in this chapter was to achieve this and discern from this 

weaknesses in the curriculum being delivered. 

4.1.1 Participants 

Participants were students studying in a first-year introductory programming course. 

All participating students were attending on-campus classes. Participants included 

school leavers (recent high school graduates) and mature-aged students. Students 

were enrolled in a range of discipline areas but were primarily IT and Engineering 

students. 

4.1.2 Setting 

This experiment refers to an introductory programming course taught at the 

University of Southern Queensland. The course was designed for students with no 

previous programming experience. 

At the time of the experiment, the curriculum for the course was focused on the 

syntactic constructs and facilities of the C programming language, with little 

coverage of problem solving and no explicit instruction in programming strategies. 

The topics covered in the course were listed as follows. 

 Programming Concepts 

 Developing Programs with Functions 
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 Storing Data 

 Writing Functions 

 Conditions 

 Pointers 

 Input 

 Repetition 

 Arrays 

 Text Files 

 Structures and Abstract Data Types 

 Recursion 

Each of these topics was covered by a single module in the study materials. One 

module was taught each week of the course. Study materials consisted of a written 

„Study Book‟ and lecture notes delivered during on-campus lectures and posted on 

the course website afterward. Each module included paper-based and computer-

based tutorial exercises. Some of the exercises required students to solve problems 

and implicitly learn programming strategies. There were three major assignments 

during the course and each covered a number of modules. 

None of the modules was devoted to programming strategies; however a description 

of the problem-solving process was given in the initial module. The context of 

problem solving was described as Design, Implementation, Compilation and Testing. 

The lecture notes described Design within the problem-solving process as follows. 

Before the programmer can solve a problem, they must know precisely what 

the problem is. A good programmer will take time to properly define the 

problem, including the inputs and outputs the program has. When this is 

defined, the programmer will design an algorithm on paper or using some 

computerised tool. An algorithm is a finite sequence of precise instructions 

that leads to a solution. 

Other than this, a number of programming conventions and tips were discussed in the 

study materials, though they could not be seen as forming programming strategies. 

These were as follows. 

 The “Dangling Else” problem 

 Clearing Standard Input 

 Meaningful Identifiers 

 When to Use What Loop (for, while, do-while) 

The final sub-topic above (When to Use What Loop) is closest to a programming 

strategy. This topic referred to each looping construct available in the C 

programming language and showed examples of the typical use of each construct. 

The materials did not suggest how a student should apply loops in general, or the set 

of goals that loops can be applied to achieve. 

No sub-algorithmic programming strategies (defined in section 2.3.3) were explicitly 

covered in the course; students were expected to learn these implicitly through 
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exercises. The following is a problem students were asked to solve in a practical 

session at the end of the Repetition module. 

Write a program that will allow the user to enter words. Use the %s format 

sequence in a scanf() call to capture each word one at a time. Find the 

length of each word using strlen(). To end the user input, the user will 

enter the string “end”. At the end of the program, output the count of words 

and the average length of the words. 

In the problem description the student is not asked to reflect on the strategies needed 

to solve the problem, nor how to integrate these strategies. The wording of the 

problem focuses on the syntactical nature of the problem: what functions to use, what 

format sequence to use. Students are expected to implicitly learn how to create a loop 

that will stop when the word “end” is encountered. They are expected to discover 

implicitly how to count the words, sum their lengths and produce an average. 

Students would not be familiar with any of these strategies as they were not covered 

explicitly in the course. They are expected to merge these ideas into a coherent 

solution. The strategies are not suggested in the problem itself as no vocabulary to 

express such strategies had been established between the instructor and students. 

A complete solution would include: 

 a sum and count variable both initialised to zero; 

 inputs gathered until the sentinel word is encountered (the sentinel should not 

be included as an input); 

 counting of words; 

 summing of word lengths; 

 merging of input, counting and summing so that the words only need to be 

entered once; and 

 calculation of the average (being sure that the division does not take place if 

there is a zero count caused by the word “end” being entered as the first 

input). 

From this perspective, the strategies required to solve the problem are the same as 

those needed for the problem used in the experiment described in this chapter. 

Therefore students had been given the opportunity to learn the strategies required to 

solve the experimental problem through implicit means. 

The task described in this experiment required students to complete a solution on 

paper. Students had experienced writing solutions to programming problems on 

paper during tutorial classes, so they were familiar with generating code in the 

experimental context. 

4.2 Research Questions 

This experiment was motivated by two related questions which are answered in 

section 4.6. 

RQ1. What is the potential of students who have been exposed to an implicit-

only teaching of programming strategies to solve a sub-algorithmic 
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problem that requires application of a number of programming strategies 

for a complete solution? 

RQ2. What are the deficiencies in the curriculum that are demonstrated by 

students' solutions to the given problem? 

If it is seen as desirable to incorporate explicit instruction into an introductory 

programming curriculum, answers to the above questions will provide a benchmark 

for future comparison of student results. 

4.3 The Experimental Problem 

The following problem is taken verbatim from a paper by Elliot Soloway (1986). 

Write a program that will read in integers and output their average. Stop 

reading when the value 9999 is input. 

In his paper Soloway used this problem to demonstrate how Goal/Plan Analysis can 

be applied. Examples of student solutions were used to show correct and incorrect 

application of the specific set of required plans. No statistics on the success of any 

particular cohort was given, so there was no pre-existing benchmark for the 

problem‟s difficulty. 

This problem was chosen for this experiment because of its previous use, with a well 

described method of analysis. Using Goal/Plan Analysis it is simple to identify plans 

within a solution to this problem. The problem is simple in its wording, allowing 

students to complete the problem without needing to refer to further information. The 

problem itself is language independent. It can be solved using any language under 

any paradigm. The examples and solutions given below are in C, but this is not the 

only language that has been used to solve the problem for Goal/Plan Analysis. In 

chapter 6 of this dissertation a version of the problem is shown in the JavaScript 

language. The original problem solution (Soloway, 1986) was shown in Pascal 

(Figure 3.2). 

A correct solution to this problem will demonstrate programming knowledge and 

programming strategies that a student would be expected to demonstrate at the end 

of a semester of programming instruction, in order to be awarded a passing grade. 

The problem includes the ideas of sequence, selection and repetition, input and 

output, and simple operations, which are likely to appear in any introductory 

programming curriculum, even in courses that avoid programming strategy 

instruction. To create a complete solution to this problem certain goals would need to 

be recognised, and these goals would need to be mapped to plans, integrated 

correctly to form a single solution. The goals and plans and an integration example 

are described in the following subsections.  

Goals 

A number of goals are alluded to in the problem description. The goals should be 

apparent to novices through reading the problem description and without lengthy 

analysis. 
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 Input the numbers 

 Compute the sum of the numbers 

 Compute the count of the numbers 

 Calculate the average from the sum and the count (keeping in mind that the 

count of values could be zero) 

 Output the average 

Plans 

There are a number of plans that are needed to completely solve the problem. The 

absence of any of the following plans would reduce the level of completeness. The 

plans needed to completely solve the problem are also listed in Figure 4.1. 

 Sentinel-Controlled Input plan 

 Sum plan 

 Count plan 

 Average plan 

 Guarded Division plan 

 Output plan 
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Figure 4.1. Identified goals, associated plans and a potential solution 
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Figure 4.1 shows a flow of design starting with an identification of the goals that 

need to be achieved. The goals are then mapped to plans that can be used to achieve 

the goals. Each plan on its own can achieve little and needs to be correctly integrated 

into a whole solution; for this problem, it is necessary for plans to be abutted to form 

a correct sequence. Some plans are merged; for instance the Input, Sum and Count 

plans need to be applied to the same set of input and thus the Summing and Counting 

are merged with the Primed Sentinel-Controlled Input Loop plan. Some plans are 

nested, for instance the Average and Output plans which are nested inside the 

Guarded Division plan. 

4.4 Methodology 

Students were asked to solve the problem on paper (without computers) as an exam-

like activity during tutorial classes, conducted in an ordinary class room. Students 

were not given any warning and were not expected to have prepared for the activity. 

Students were not allowed access to resources during the activity. 

All students in the course attending classes on-campus were asked to participate. The 

experiment was conducted during the third last week of the course and two weeks 

after the module covering Repetition, which contained relevant knowledge content 

and exercises (including the exercise shown in 4.1.2 above). 

Each student was given a piece of paper with the problem statement printed at the top 

and a number of lines for the student to write their solution to the problem (see 

Appendix B). The following statement was then read aloud to the participating 

students. 

Please follow the instructions on the paper as closely as possible when writing 

your program. This task is not graded and will not contribute to your 

assessment. Completing this task is not required in order to complete the 

course. By completing the task you will allow us to improve the course for you 

and other students. You do not need to write your name on the paper. The 

program should take 10 to 15 minutes to complete. 

There were three tutorial classes during the week. The experiment was consistently 

conducted and overseen by a single instructor. All students attending these classes 

accepted the invitation to participate. Although an estimation of time was given in 

the statement read to students, no time limit was applied; this estimate was made by 

the instructor before the experiment was started. Specific times were not measured, 

however, most students required longer than estimated, taking between 15 to 20 

minutes to create a solution. 

Students were asked not to speak while solving the problem, unless it was to ask a 

question. A number of students asked questions to clarify the problem statement and 

these students were answered individually. 

4.4.1 Goal/Plan Analysis 

Each solution was analysed using Goal/Plan Analysis (see section 3.2.1). According 

to the plans given for a complete solution in Figure 4.1 above, each of the following 

plan features (and merging of the sum and count plans*) was judged to be present or 

absent in each student's solution. 
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 Initialisation of a sum variable (for Sum plan) 

 Initialisation of a count variable (for Count plan) 

 A Sum plan in a Primed Sentinel-Controlled Loop 

 A Count plan in a Primed Sentinel-Controlled Loop 

 A guard against division by zero (for Average plan) 

 An Average plan 

 An Output plan 

 Merging of the Sum and Count plans inside the Primed Sentinel-Controlled 

Loop* 

There are a number of acceptable variations to the example solution shown in Figure 

4.1. In some languages variables are automatically initialised; solutions in this 

experiment were written in C where initialisation is not automatic. The average 

calculation and output could be combined. A different looping construct, other than 

while, could be used in the solution. However even with such variation, it is still 

possible to recognise the required plans. 

4.4.2 Examples of Analysis 

The following examples show where students have demonstrated, or failed to 

demonstrate, use of plans within their solutions. 

 

Figure 4.2. A solution showing no apparent plans 

Some students handed in solutions in which no plans could be identified. This may 

have been because the student produced very little code as in Figure 4.2, or code 

from which plans could not be isolated, as in Figure 4.3 where the student appears to 

have misinterpreted the instructions given. 
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Figure 4.3. A solution where plans are not easily identifiable 
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Figure 4.4. A solution with a number of flaws 

The majority of students created a solution that, on the surface, contained the main 

ingredients for calculating an average, but also contained a number of flaws that 

would prevent the program from working in some instances, or from working at all. 

Figure 4.4 is a typical example. The following flaws can be noted. 

 The count variable i is initialised, but the sum variable is not; this would 

result in a solution that produces an incorrect answer in most or all 

executions. 

 The user input is not primed; if the user enters the sentinel value at the first 

opportunity, the loop would still be entered. The sentinel will also be included 

in the sum and for this, the solution is forced to compensate when calculating 

the average. 

 There is also a slight possibility that the uninitialised value of the user input 

could be equal to the sentinel, in which case the user would never be given 

the opportunity to provide input. While the chance of this is exceptionally 

small, programs used regularly by a number of users will eventually 

encounter such circumstances and produce an error that is difficult to identify 

during testing. 

 The division used to calculate the average is not guarded, so if the user has 

entered the sentinel at the first opportunity, a division by zero would take 

place and the program would crash, or, worse, produce a false result. 
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Figure 4.5. A solution demonstrating the necessary plans 

In Figure 4.5 we see a demonstration of the required plans. 

 The sum and count variables are initialised. 

 The loop is primed with an initial user input. 

 The sum and count plans are within the Primed Sentinel-Controlled Loop and 

merged so only one set of user input is required. 

 The count is tested to guard against division by zero before the average is 

calculated and output. 

4.5 Results 

Solutions of 42 participating students were analysed for the presence or absence of 

the plans and of associated strategies for incorporating the plans. 
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Figure 4.6. Presence or absence of plans and use of merging* in student's solutions 

Figure 4.6 shows that some plans were present in almost all students' solutions while 

others were seldom applied. 

 Most students, but not all, used division to calculate the average and output 

that amount. 

 About a quarter of students failed to merge the summing of inputs with the 

counting. This is consistent with the findings of Spohrer et al. (1985b) who 

found students unable to merge such plans created “buggier” solutions. 

 About a third of students failed to initialise the sum or count or both. 

 Less than half of students produced correct primed sentinel-controlled loops 

for the summing or counting or both. Many students included the sentinel in 

their sum and count and would not handle the possibility of the first input 

being the sentinel. 

 Less than 10% of students guarded against a division by zero. 
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Figure 4.7. Levels of completeness as judged by number of plans correctly applied 

There were seven plans needed for a correct solution (incorporation of the sum and 

count plans in the sentinel controlled loop is not counted here). Figure 4.7 shows the 

levels of completeness and the number of students reaching each level. Only one 

single student of 42 applied all seven expected plans. Most students applied between 

three and six plans. 
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All Plans
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Figure 4.8. Correctness and with exception for Guarded Division plan 

A complete solution to Soloway‟s problem would include all plans (see section 

4.4.1). Only one student created a fully complete solution. Guarded division is 

clearly the least applied plan. If guarded division is excluded, 23% of students 

created an acceptable solution (as shown in Figure 4.8). During tool tests, the 

PROUST tool discovered bugs in 89% of 206 novice solutions (Johnson, 1986) of 

the “rainfall problem” (Johnson et al., 1983), which includes the averaging problem 

used here together with maximum and validation components. So high levels of 

misconceptions is consistent with previous measures of plan use. 

Programming strategies were not an assessable part of the course. The assignments 

and the exam focused on knowledge components of the course. Applying complete 

correctness may be appropriate for experts, but it is not commonly applied to 

novices. If this problem were judged in the same way as a normal exam, with each 

required plan being worth a fraction of a total mark, then the average mark would be 

4/7 plans or 57%. If the passing mark were 50% then 62% of participants would 

have received a passing mark. Over 70% of the students actually passed the course. 
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4.6 Discussion 

The two questions that motivated this experiment (see section 4.2) are discussed in 

the next two sub-sections. This is followed by a number of possible flaws found with 

the problem during experimentation. 

4.6.1 Potential of Students 

RQ1. What is the potential of students who have been exposed to an implicit-

only teaching of programming strategies to solve a sub-algorithmic 

problem that requires application of a number of programming strategies 

for a complete solution? 

Students failed to demonstrate application of certain important strategies. Only one 

student was able to achieve a fully complete solution to the averaging problem. 

Students, on average, demonstrated 57% of the expected plans. 

Participating students were not consistently able to: 

 initialise sum and/or count variables, 

 use a correct looping strategy for the given problem, 

 guard against events such as division by zero, or 

 merge plans that should be achieved together. 

4.6.2 Weaknesses of Curriculum 

RQ2. What are the deficiencies in the curriculum that are demonstrated by 

students' solutions to the given problem? 

This experiment demonstrated weaknesses in the existing teaching approach. Within 

an implicit-only approach to programming strategy instruction, poor looping 

strategies may reflect the unnatural form of looping constructs in modern 

programming languages. According to Soloway, Bonar, and Ehrlich (1983a), 

programming looping structures available in programming languages do not reflect 

the way students envisage repetition. Such misconceptions of looping constructs are 

described as a poor “cognitive fit” to the looping plans required in this experiment. It 

is not feasible to change the language‟s looping constructs, so students must be given 

strategies for using existing constructs when solving problems. 

It is likely that few students would have experienced the effect of dividing by zero as 

simple practical exercises can protect students from having to deal with this problem. 

Rather than being sheltered from encountering errors such as division by zero, 

novices should be explicitly taught strategies that deal with boundary conditions. 

This experiment shows that many students had not learned certain programming 

strategies implicitly. The curriculum used, containing only implicit instruction of 

programming strategies, had not allowed those students to learn the required plans 

and demonstrate the application of these plans. 
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4.6.3 Possible Flaws in the Problem 

This section raises concerns with the problem statement that arose during the 

experiment. These possible flaws are not seen as having affected the results observed 

in this experiment, but could be considered in future replications of the experiment. 

 Wording of the problem is very simplistic. This could imply that a less than 

fully complete solution is acceptable. Checking that there is a sufficient count 

to calculate an average might be neglected due to the simple wording of the 

problem. 

 Students were allowed to ask questions while completing the task and some 

showed confusion over whether the sentinel value should be included as an 

input or not, as this is only implied by the problem description. Stating that 

the sentinel should not be counted as an input would make the problem 

statement clearer, but it may also be too suggestive of the strategies required. 

 The problem statement asks for an average to be calculated which means that 

numbers need to be input, counted and summed. There is no request within 

the wording of the problem statement that these three actions need to take 

place simultaneously, or that it is desirable for a user to be asked to enter the 

numbers once only, or that a solution that asks the user to enter the numbers 

twice or more is deficient. It is assumed that the novice will draw these 

conclusions. 

 There is no mention of input validity in the problem statement. Assuming that 

the user enters some value, should the input be validated or not? To achieve 

validation requires another, more complex, strategy. An input validation 

strategy was not desired, yet the problem does not state that valid input can 

be assumed. If validation was required it would double the length and 

complexity of any correct solution and require twice the time to complete. No 

student attempted validation in solutions analysed for this experiment. 

4.7 Implications 

This experiment has shown that a cohort of students exposed to an implicit-only 

teaching of sub-algorithmic programming strategies do not produce solutions that 

consistently demonstrate the required programming strategies. Improvements to the 

curriculum may yield better outcomes for students, overcoming the detected flaws. 

Past research has shown explicit instruction can be more powerful than implicit 

instruction (Baddeley, 1997). A more explicit focus on the poorly used strategies 

from this experiment, and programming strategies in general, may produce improved 

outcomes. 

Validate authentic 
expert 

programming 
strategies

Explicitly 
incorporate 

programming 
strategies

Test instruction 
and assessment 

in real intro 
programming 

setting

Measure novice 
strategies in implicit-

only setting

Measure novice 
strategies in implicit-

only setting

 

Figure 4.9. Overview of experiments in a process after first experiment 

The next stage of this study attempts to capture a relevant set of programming 

strategies that can then be incorporated explicitly into an introductory programming 

curriculum. According to Soloway and his colleagues, the source of goals and plans 

are experts themselves who have developed a tacit set of canned solutions (Soloway, 

1986). In his description of the PROUST system, Johnson (1986) gives a catalogue 
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of plans. Chapter 5 describes a comparison of an adapted set of plans from this 

catalogue with the strategies demonstrated by experts. This study seeks to confirm 

that plans are an authentic representation of expert strategies. 

With a set of authentic, concrete, strategies it may be possible to explicitly 

incorporate programming strategies into an introductory programming curriculum. 

The feasibility of such instruction needs to be tested and the impact on students 

needs to be measured. Chapter 6 describes an experimental curriculum that was 

tested with students in an artificial setting. 

If programming strategies can be explicitly incorporated into introductory 

programming curricula they can possibly be assessed. Methods of assessing 

programming strategy skill may yield a better measurement of the outcomes of 

students in an introductory programming course than traditional methods. A study of 

instruction and assessment of programming strategies in an actual introductory 

programming setting is described in chapter 7. Student performance after explicit 

strategy instruction is compared with the results shown in this chapter. 
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5. Experts and Explicit Strategies 

“An expert is a man who has made all the mistakes which can be made, in 

a narrow field.” 

Niels Bohr 

Overview 

A previous experiment (chapter 4) showed a number of common programming 

strategy flaws in novices‟ solutions to a simple averaging problem. The curriculum 

used to instruct the novices required the novices to learn programming strategies in 

an implicit way. Including explicit instruction of programming strategies in the 

curriculum might improve outcomes for students. To achieve this, a set of concrete, 

authentic sub-algorithmic strategies was sought. Biederman and Shiffrar (1987) used 

interviews with an expert chick sexer to gather descriptions that could be presented 

in an explicit form (see section 2.3.6). Expert programmers are a source of 

programming strategies that could be taught explicitly to novices. 

An experiment was conducted with 25 experts, who were asked to solve three well 

defined problems. Plans identified in expert solutions were compared with plans 

used by Soloway and his colleagues (Soloway, 1986, Johnson and Soloway, 1984) 

through Goal/Plan Analysis. Results showed plans appear in solutions created by 

experts, thus validating Soloway‟s  plans as a model of expert programming 

strategies. These strategies could be explicitly included in introductory programming 

curricula to overcome previously identified weaknesses. 

5.1 Introduction 

An initial experiment (described in chapter 4) showed weaknesses in novices‟ 

programming strategy skills, exposed by the flaws in solutions to a set programming 

task. The novices had been instructed using a curriculum that required learning of 

programming strategies implicitly. 

The presence of these flaws indicated possible weaknesses in the curriculum used to 

instruct the novices in programming strategies. Expecting students to learn strategies 

implicitly resulted in students acquiring an incomplete set of programming strategies 

and a poor understanding of how to integrate them. This was consistent with results 

presented by Reber (1993), who examined implicit learning in the context of 

language acquisition. Reber found that experimental subjects could learn through 

implicit-only means but when interviewed and asked to describe the underlying 

system they had been exposed to, they were unable to express any understanding. 

Rist (1991) observed novices in an implicit-only setting as they attempted to 

construct their own strategies to solve problems and noted that many of the novices 

succeed. Yet, later research (Whalley et al., 2006) has shown that only 30% of 

novices at the end of an introductory programming course could comprehend and 

describe the strategies applied in a given piece of code; the remaining students 

described code line-by-line, relying on programming knowledge. 

An experiment conducted by Biederman and Shiffrar (1987) showed that taking the 

tacit understanding of expert chick sexers and providing an explicit representation of 

this to novice chick sexers greatly improved learning outcomes. This experiment 
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showed that minutes of exposure to explicit instruction can be more effective than 

weeks of implicit training (Baddeley, 1997). 

While chick sexing is far removed from the task of programming, and learning an 

artificial grammar is trivial by comparison, the implicit-only approach to instruction 

is similar to the way programming strategies are traditionally taught in an 

introductory programming course. Students are given the basic knowledge of a 

programming language and are then expected to develop programming strategies and 

an understanding of the problem solving processes implicitly through practical 

exercises. 

To overcome programming strategy weaknesses discovered in novices, taking 

programming strategies from being instructed in an implicit-only manner and adding 

explicit instruction may improve outcomes. 

Biederman and Shiffrar interviewed a single expert chick sexer and from this were 

able to create explicit instruction for novice chick sexers. Chick sexing requires only 

a small number of strategies for the identification of chick gender. By comparison, 

problem solving in programming is a more diverse task. Sub-algorithmic 

programming strategies are at the level most relevant to novice programmers in an 

introductory course (see section 2.3.3). Even at this simple level there are many 

strategies. It is therefore unlikely that an interview with a single expert programmer 

would yield all programming strategies relevant to novices. 

Two well developed forms of programming strategy that could be seen as models of 

expert strategies are plans and patterns (see section 2.4 for more details on 

representations of strategies). Patterns can be applied to a range of problems from 

sub-algorithmic through algorithmic to system-level problems, but tend to be used to 

define solutions at the algorithmic level and above. Patterns are commonly used in 

the object-oriented paradigm. While the OO paradigm is widely used in industry, and 

many introductory programming courses adopt an OO language, the majority of 

Australasian introductory programming courses still introduce programming using 

the procedural paradigm (see section 2.2.3). Plans can be used to describe solutions 

at sub-algorithmic and algorithmic levels. Plans may not be the most suitable form 

for describing system-level problem solutions. It is the sub-algorithmic level that is 

most relevant to novice programmers in their first exposure to programming 

(however, programmers must use sub-algorithmic strategies at all stages of 

expertise). Plans can be described without a great deal of extraneous information. No 

system is needed to describe plans or how they are applied. Most plans are simply 

labels for parts of a concise solution along with a description of how these parts are 

integrated. Plans can be applied in almost any paradigm. For this reason, plans have 

been chosen as the form of strategy used in the experiments in this and later chapters. 

However, in stating this, it is likely that these experiments could be replicated using 

patterns or some other representation of strategies. 

Soloway and his colleagues state that plans were identified based on the tacit 

expertise of programmers (Soloway et al., 1982, p. 52). 

We, as expert programmers, have constructed a set of such plans, which 

cover the type of simple looping problems used in introductory 

programming courses. 
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No report of the sourcing of these strategies is published so it is assumed that these 

strategies were the product of discussion among academics who were instructors of 

novice programmers. This experiment sets out to test if plans are used by expert 

programmers. If this model is consistent  then plans can be viewed as an appropriate 

form of strategies to be instructed explicitly in a curriculum. 

In programming related work, Sajaniemi and Prieto (2005) used a card sorting 

exercise and interviews to validate their model of the roles of variables with experts. 

In this study professional programmers were asked to organise variables used in set 

programs into groups. The variables covered six of the previously identified roles 

(Sajaniemi, 2002) and experts‟ groupings matched these roles with 85% accuracy. 

5.1.1 Participants 

As discussed in section 2.3.1 there are several levels of expertise between a novice 

and an expert programmer. In this study participants were qualified as experts if they 

were generating publicly used code on a regular or daily basis. The participants were 

14 paid professional programmers and 11 academics who were instructors of 

programming courses. 

5.1.2 Setting 

The experiment was conducted in the place of work of the participants involved. 

Where participants were professional programmers the experiment was conducted in 

a meeting room, or similar, within their normal work building. Where participants 

were university academics the experiment was conducted in their office away from a 

computer. 

5.2 Research Questions 

This experiment was motivated by two related questions which are answered in 

section 5.6. 

RQ3. Do experts exhibit identifiable plans in their solutions to problems? 

RQ4. Can an authentic set of strategies, used by experts, be represented in an 

explicit form, suitable for instruction? 

If the answer to these two questions is positive then it is possible to consider the 

following issue which is discussed in section 5.7. 

RQ5. Does the potential to represent authentic programming strategies mandate 

explicit instruction of programming strategies to novices? 

5.3 The Problems 

The aim of this experiment was to explore sub-algorithmic strategies in solutions 

created by experts that are relevant to novice programmers. Although the problems 

used here are small in scale, the strategies being elicited could be used by experts on 

a regular basis within solutions to larger problems. Three problems were chosen that 

a novice would be expected to solve at the end of an initial semester of 

programming. For each, the problem statement, identifiable goals and expected plans 

are shown. The problems increase slightly in complexity from Problem 1 to Problem 
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3. The problems are sufficiently generic to permit solutions in a broad range of 

languages. 

5.3.1 Problem 1 

Read in 10 positive integers from a user. Assume the user will enter valid 

positive integers only. Determine the maximum. 

Goals 

 Input 10 numbers 

 Determine maximum 

 Output maximum 

Plans 

 

2. Counter Controlled Loop

1. Initialisation (maximum)

3. Input

4. Maximum

5. Output
 

5.3.2 Problem 2 

This problem is similar to that presented to novices in the previous experiment (see 

section 4.3). The problem was refined to eliminate the need for validation, which 

would otherwise double the complexity of the problem. 

Read in any number of integers until the value 99999 is encountered. Assume 

the user will enter valid integers only. Output the average. 

Goals 

 Input the numbers (initial and subsequent inputs) 

 Compute the sum of the numbers 

 Compute the count of the numbers 

 Calculated the average from the sum and the count (keeping in mind that the 

count of values could be zero) 

 Output the average 
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Plans 

4. Sentinel Controlled Input Sequence

8. Guarded Division

3. Priming Input

5. Count

7. Input

9. Calculate Average

2. Initialisation

(sum)

1. Initialisation

(count)

6. Sum

10. Output
 

5.3.3 Problem 3 

Input any number of integers between 0 and 9. Assume the user will enter 

valid integers only. Stop when a value outside this range is encountered. After 

input is concluded, output the occurrence of each of the values 0 to 9. 

Goals 

 Input numbers (initial and subsequent inputs) 

 Count set (tally each number) 

 Output set tallies 

Plans 

 

1. Counter Controlled Loop

4. Sentinel Controlled Input Sequence

7. Counter Controlled Loop

2. Initialisation (count set item)

3. Priming Input

5. Count Set (Tally)

6. Input

8. Output

 

5.4 Methodology 

As with Biederman and Shiffrar's (1987) chick sexing experiment (see section 2.3.6), 

participants were asked to solve problems on paper, away from a computer (solution 
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sheets are shown in Appendix C). The focus of analysis of solutions was not on the 

syntactical correctness of the solutions, but on which strategies experts used to solve 

the problems. Using paper was a means of enforcing this focus. 

The three problems were presented on a single sheet of paper each, with the problem 

statement at the top and lines for answering the problem below this. 

Participants were timed to see how long they took to solve each problem. 

Participants were asked not to rush. Where two or more programmers were 

participating simultaneously, participants were asked not to collaborate, or race to 

complete the problem. 

A card sorting exercise and interviews have been used as a knowledge elicitation 

exercise to validate the roles of variables with experts (Sajaniemi and Prieto, 2005). 

Here, the knowledge elicitation technique used is to apply Goal/Plan Analysis to 

experts‟ solutions to set programming problems. 

5.4.1 Goal/Plan Analysis 

Results were analysed by checking for: 

 the presence of each of the relevant plans (shown above), 

 nesting and merging in appropriate locations, and 

 an overall correctness measure of abutment. 

Analysis of Solutions to Problem 1 

In most cases the presence of a plan is easily determined. For instance when 

searching for a maximum plan, two features are sought: first, an initialisation of a 

maximum variable; second, a test comparing the current maximum with a new 

candidate and an assignment if appropriate. With counter-controlled loops, only 

loops including a test of an incrementing counter variable were accepted. 

 

Figure 5.1. A participant's solution to Problem 1 
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In Figure 5.1 a solution to Problem 1 created by a participant is presented. When 

performing Goal/Plan analysis on this solution the following features were identified. 

 The maximum is initialised; the first input will become the new maximum. 

 There is a counter-controlled loop; the for loop using the counter i will 

repeat 10 times regardless of user input. 

 The user is able to enter input. 

 Each input is compared with the current maximum and retained if greater. 

 The maximum is output at the end of the program. 

 The input and maximum plans are nested inside the counter-controlled loop. 

Analysis of Solutions to Problem 2 

Sentinel-Controlled Loops were considered to be present only if there was a priming 

input and the looping construct tested if the first or most recent input could be the 

sentinel before using it as an input. In this way the sentinel will not be included as an 

input for summing and counting purposes. A Guarded Division requires a selection 

construct that will prevent division if the divisor is zero. 

 

Figure 5.2. An acceptable solution to Problem 2 

Figure 5.2 shows a participant's solution to Problem 2. From this solution the 

following features can be identified. 

 The sum and count (i) are initialised. 

 The loop is a Sentinel-Controlled Loop as the test is primed by an initial input 

and the sentinel will not be included in the sum or count. 

 If the count of inputs is zero, the calculation of the average (including a 

division by the count) will not be performed. 
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Figure 5.3. A poor solution to Problem 2 

Figure 5.3 shows another participant's solution to Problem 2. This solution fails to 

demonstrate a number of elements that were being identified. 

 The loop is not a proper Sentinel-Controlled Loop; the input value used in 

testing is initialised but it is not primed with user input (which could be the 

sentinel in the first instance). The sum and count will include the sentinel 

value. 

 The division operation used to calculate the average is not guarded. 

Analysis of Solutions to Problem 3 

For a Set-Counting plan, only methods of classifying and counting inputs, as 

opposed to capturing and keeping the user's input, were accepted. In some languages 

initialisation of variables and arrays is done automatically; where this was the case, 

participants were seen as having fulfilled the initialisation components of the plans. 
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Figure 5.4. A participant's solution to Problem 3 

In Figure 5.4 a participant's solution to Problem 3 is shown. From this solution the 

following features can be identified. 

 A count of numbers 0 to 9 is being kept in an array. The array elements are 

initialised to zero using a Counter-Controlled Loop at the start of the 

program. 

 The second loop is a Sentinel-Controlled Loop as the test is primed by an 

initial input and the sentinel (any value outside the range 0 to 9) will not be 

counted. 

 Each input is tallied using the input as an index into the array. 

 The counts are output using a Counter-Controlled Loop at the end. 

5.5 Results 

Two measures were recorded: the times taken by each participant to complete each 

problem and the presence or absence of the expected strategies in each solution. 

In one instance a participant used an event-driven paradigm to solve the problems. 

Goal/Plan Analysis could not be applied in this case as many of the underlying 

constructs, such as loops, were not used. This demonstrates that Goal/Plan Analysis 

is not applicable to all paradigms. The solutions of this participant were not used in 

the analysis. In three instances participants created a solution to some different 

problem. In these cases it was clear the experts had misread the instructions rather 
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than being unable to solve the problem. These solutions were disqualified from 

analysis, but the remaining solutions from these participants were used. This 

occurred with one professional in Problem 1 and two professionals in Problem 2. 

Table 5.1. Average times for problems by expert type in 

minutes and seconds (and number of each type) 

 Prob. 1 Prob. 2 Prob. 3 Overall 

Academics 4:50 (11) 4:52 (11) 6:17 (11) 15:58 

Professionals 5:33 (12) 5:17 (13) 6:16 (11) 17:06 

All 5:13 5:05 6:16 16:34 

Table 5.1 shows times taken by participants to solve the problems The number of 

solutions included for each problem and each expert type is shown in parentheses. 

The average time to complete all three problems was 16min 34sec. To give a 

comparison, the initial study described chapter 4 showed novices at the end of a 

semester's instruction taking 15 to 20 minutes to solve the equivalent of Problem 2 

alone. There was a difference in times between participants who were academics and 

those who were professional programmers, although it was not proven to be 

significant in a t-test of this sample (t≈0.47, p≈0.32, df=22). The six fastest times 

were contributed by academics. This may have been due to the simple nature of the 

problems, which would be familiar to academics but less so to professionals. 

Table 5.2. Average plan use problems by expert type 

 Prob. 1 Prob. 2 Prob. 3 Overall 

Academics 97.7% (11) 82.6% (11) 90.9% (11) 89.7% 

Professionals 99.0% (12) 83.9% (13) 96.7% (11) 92.6% 

All 98.4% 83.3% 93.8% 91.8% 

There was a slight difference in the presence of plans between academics and 

professionals as shown in Table 5.2 (3.1% difference in overall plan use) but again, 

this was not significant in a t-test (t≈0.67, p≈0.35, df=58). 

All experts achieved correct abutment (the correct ordering of plans) for all 

problems. For example, no expert placed the output of a maximum before the 

calculation of the maximum. 

Table 5.3. Presence of plans for Problem 1 

Plan Presence 

Max Initialised 100% 

Counter-Controlled Loop 100% 

Input Plan 100% 

Maximum Plan 100% 

Output Plan 87% 

Input Nested in Counter-Controlled Loop 100% 

Max Plan Nested in Counter-Controlled Loop 100% 

Solutions to Problem 1 showed almost universal conformity to the set plans (Table 

5.3). 23 solutions were analysed. Three participants failed to include output and this 
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may be due to the wording of the problem, which asked for the maximum to be 

determined but did not specifically ask for an output. 

Table 5.4. Presence of plans for Problem 2 

Plan Presence 

Sum Initialised 92% 

Count Initialised 100% 

Sentinel-Controlled Input 92% 

Sentinel-Controlled Count 92% 

Sentinel-Controlled Sum 92% 

Guarded Division 33% 

Output Plan 92% 

Loop Plans Merged 100% 

Inputs Nested in Sentinel-Controlled Loop 92% 

Output Nested in Guarded Division 33% 

Problem 2 showed most participants conforming to the expected plans (Table 5.4). 

24 solutions were analysed. In some cases individual participants failed to show one 

plan. Where a person failed to show a Sentinel-Controlled Loop, the looping plans 

merged with this loop were considered as not being present, even though they may 

have attempted to capture a count or sum. One obvious deficiency is shown by the 

lack of use of Guarded Division. Only one third of participants' solutions contained a 

Guarded Division plan. 

Table 5.5. Presence of plans for Problem 3 

Plan Presence 

Counter-Controlled Loop (for Initialisation) 91% 

Array Initialisation 100% 

Sentinel-Controlled Input 86% 

Count Set Plan 95% 

Counter-Controlled Loop (for Output) 86% 

Output Plan 100% 

Initialisation nested in Counter-Controlled Loop 91% 

Inputs nested in Sentinel-Controlled Loop 91% 

Count Set nested in Sentinel-Controlled Loop 86% 

Output Nested in Counter-Controlled Loop 95% 

Problem 3 showed most participants conforming to the expected plans (Table 5.5). 

22 solutions were analysed. This problem encouraged the greatest variation in 

solutions; difference were found in how the data was stored (an array was expected, 

but some participants used variables), initialisation of the data store (where an array 

was used, a counter-controlled loop containing element initialisations was expected, 

but some participants used set notation to initialise the array), and set-counting (the 

user's input could have been used as index to the array, but some participants used a 

'switch'-like construct to increment counts). These variations were allowed where the 

expected plans were still found to be present. 
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5.6 Discussion 

The two research questions posed earlier are answered by the results of this 

experiment and addressed next. This is followed by discussion of a number of 

possible flaws found with the problems during experimentation. 

5.6.1 Identifiable Strategies 

RQ3. Do experts exhibit identifiable plans in their solutions to problems? 

The results show that, in most instances, experts produce solutions including 

constructs that could be identified as plans. These findings are constrained to the 

plans covered here, but may be consistent with other plans relevant to novices in 

their initial study of programming. 

5.6.2 Strategies Made Explicit 

RQ4. Can an authentic set of strategies, used by experts, be represented in an 

explicit form, suitable for instruction? 

The results indicate that plans, when taken as a model of strategies, are a valid 

description of programming strategies. Within the scope of this experiment, 

strategies have been described that are relevant to novice programmers while being 

consistent with those used by expert programmers. 

The strategies have been expressed in a form that can be explicitly incorporated into 

an introductory programming curriculum. These strategies can be described visually 

and textually (see figures above and Appendix A). Specific examples of the 

application of these strategies can be given in almost any target programming 

language. 

By identifying strategies by name and giving terms to the way they are integrated, a 

vocabulary can be established that can be used to communicate these strategies 

between instructor and student, among students and among instructors. 

Students can be set problems that focus explicitly on these strategies, which may 

help novices to develop programming strategy skills at a sub-algorithmic level. 

By identifying such strategies it is possible to make programming strategy skill an 

assessable component of an introductory programming course. Using Goal/Plan 

Analysis, a solution can now be regarded as correct because it shows application of 

expected strategies. 

5.6.3 Possible Flaws in the Problems 

In Problem 1, participants are asked to “determine” but not output the maximum, 

which was part of an anticipated solution. Some participants did not output the 

maximum and it is difficult to determine if this was because of the wording of the 

problem or because they simply neglected to do so. 

The poor showing of Guarded Division may have been a product of simplistic 

problem statements. Participants may also have been affected by being out of their 

normal programming environment and away from the tools they would use for 

testing such boundary conditions. After participants had completed the three 
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problems, the expected plans were discussed. At this stage the participants' solutions 

had not been analysed; however, in some cases participants admitted neglecting to 

include a Guarded Division and saw that it was required. This might be contrasted to 

a novice who might not apply a Guarded Division plan because they are unable to, or 

unaware that they need to. 

5.7 Implications 

In light of these positive findings the following issue is discussed. 

RQ5. Does the potential to represent authentic programming strategies mandate 

explicit instruction of programming strategies to novices? 

The results of this experiment are a strong indication that programming strategies 

applied by experts can be described and made explicit. With such a model of the 

strategies, it should be possible to create a curriculum that explicitly involves 

teaching of programming strategies. 

Validate authentic 
expert 

programming 
strategies

Explicitly 
incorporate 

programming 
strategies

Test instruction 
and assessment 

in real intro 
programming 

setting

Measure novice 
strategies in implicit-

only setting

Measure novice 
strategies in implicit-

only setting

 

Figure 5.5. Overview of experiments in a process after second experiment 

At this point it would be unjustified to claim that explicit inclusion of programming 

strategies would definitively improve outcomes in student learning, but it would be 

remiss not to attempt to incorporate such strategies into curricula and to examine the 

effects. 

Biederman and Shiffrar's chick sexing experiment (1987) showed that by taking the 

tacit understanding of experts, making it explicit and using it in instruction, outcomes 

for students can be improved. Although the setting and target of the chick sexing 

study differs from programming, the use of the explicit strategies can be put to the 

same use and may lead to similar improvements for novice programmers. 

When compared to implicit-only instruction of strategies, the potential benefits of 

explicit strategy instruction could be: 

 faster learning of strategies, 

 better performance by novices in solving problems, 

 a better understanding of the underlying processes involved in solving a 

problem at the sub-algorithmic level, 

 potential to identify and assess students‟ programming strategy skills, and 

 providing instructors and novices with a vocabulary for discussing and 

learning strategies. 

The programming strategies identified in this experiment should not be seen as 

independent of programming knowledge. It is clear that these strategies are built 

upon knowledge of basic programming constructs, data storage mechanisms and 

language specific facilities. As such there are dependencies between these strategies 

and the knowledge that underlies them. Any curriculum author who incorporates 

these strategies explicitly would need to carefully consider the order in which 

knowledge and strategy components are presented. 
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In the next stage of experimentation described in this dissertation a new curriculum, 

including explicit instruction of programming strategies, is tested in an isolated 

setting with a small cohort of students. This experiment attempts to measure the 

impact of explicit instruction of programming strategies on novice outcomes. After 

this, explicit instruction can be incorporated in an actual curriculum and student 

performance can be compared to the baseline set in the initial experiment. 
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6. Incorporating Strategies Explicitly into an 

Artificial Curriculum 

“The principle goal of education is to create men who are capable of 

doing new things, not simply of repeating what other generations have 

done – men who are creative, inventive and discoverers.” 

Jean Piaget 

Overview 

In an initial experiment (chapter 4) a number of programming strategy flaws were 

detected in solutions created by novices. The novices had studied a curriculum that 

required them to learn programming strategies implicitly.  

Following the idea that explicit instruction can lead to improved student outcomes 

(Baddeley, 1997), a model of programming strategies that can be explicitly 

incorporated into an introductory programming curriculum was sought. Plans 

proposed by Soloway (1986) are a model of programming strategies. An experiment 

was conducted to validate that plans are an authentic representation of strategies 

used by experts (chapter 5). This experiment showed that plans are used by experts. 

Plans are a form of strategies that could be explicitly incorporated into a curriculum 

for novice programmers. 

The experiment described in this chapter was conducted to test a curriculum that 

included programming strategies explicitly in lectures, written course materials, 

exercises and assessment. A control curriculum was also established to allow for 

comparison and isolation of effects. The two curricula were delivered to two groups 

of volunteer students who had no previous programming experience. The 

experimental group showed understanding and application of programming 

strategies in generation tests (though not statistically significant), and in interviews 

used plan terminology and showed greater confidence in their solutions to problems. 

6.1 Introduction 

A previous study (chapter 4) discovered weaknesses in an implicit-only curriculum 

used in teaching an introductory programming course to novices. Students who 

participated in the study were asked to create a solution to a simple averaging 

problem. A number of common flaws were detected when students' solutions were 

scrutinised under Goal/Plan Analysis. 

Participating students were not consistently able to: 

 initialise sum and/or count variables, 

 use a correct looping strategy for the given problem, 

 guard against events such as division by zero, or 

 merge plans that should be achieved together. 

Students, on average, were only able to demonstrate application of 57% of the 

strategies required for a complete solution. These flaws implied weaknesses in the 

curriculum being delivered to the students at the time 
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Traditional curricula rely on novices acquiring programming strategies implicitly. 

Past studies (Baddeley, 1997, Biederman and Shiffrar, 1987, Reber, 1993) have 

shown that explicit instruction can be more powerful than implicit-only instruction, 

so it was proposed that programming strategies be taught explicitly. A model for 

describing programming strategies explicitly in an introductory programming 

curriculum was sought. A second study (chapter 5) uncovered a model of expert 

programming strategies at a sub-algorithmic level. These strategies can be explicitly 

expressed and could be incorporated into introductory programming curricula. This 

finding prompted the inclusion of explicit programming strategies in teaching as it 

may: 

 improve outcomes for students, 

 establish a vocabulary for programming strategy dissemination, and 

 allow students' programming strategy skills to be assessed. 

The experiment described in this chapter was conducted to test if explicit 

programming strategy instruction can be incorporated into a programming 

curriculum, and, if this is possible, what effects can be observed. Two curricula were 

designed to allow comparison and isolation of effects. An experimental curriculum 

included explicit instruction of programming strategies while a control curriculum 

excluded such instruction. These curricula were delivered over two separate weekend 

periods, followed by a series of one-on-one interviews with participants. 

6.1.1 Participants 

Participants were volunteers from the student body at the University of Southern 

Queensland who were recruited by two means: 

 posters hung around the university campus, and 

 emails sent to former students of two computing concepts courses for non-

computing students. 

Participants were asked to undertake an initial survey which gathered demographic 

data, computing experience, past programming experience and a measure of 

computing confidence. 

This initial data was used to filter students who had previous programming 

experience. Students with no previous programming experience were sought in order 

to set a common entry point for all participants. Volunteers with previous 

programming experience were asked to withdraw. 

A number of the volunteers withdrew from the weekend courses, mostly due to 

personal reasons, giving notice before the start of the experiment. Some volunteers 

unexpectedly failed to attend the course which reduced the group of volunteers to 

eight, in two groups of four, divided on a self-selecting basis. One of the participants 

who attended the first weekend had completed a previous course in computer 

programming and arrived after being asked not to attend. Results were collected from 

this participant but were not aggregated with results of other participants in this 

experiment. 
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6.1.2 Setting 

The two weekend courses were conducted in a computing lab. This room included 

facilities for lecturing, computers for students to undertake practical exercises and 

desk space between computers for students to complete paper-based exercises. 

The two curricula were delivered on consecutive weekends. The curriculum without 

explicit programming content, the control curriculum, was delivered first and this 

was followed the next weekend by the curriculum with explicit programming 

strategies. The ordering of the two curricula was arbitrary. 

The weekends were divided into sessions with each session covering one to four 

modules of the course (see the schedule in section 6.4.2). Each session consisted of 

an initial lecture, with questions from students encouraged. This was followed by 

paper tasks and practical programming tasks. Later in the course, tasks that involved 

programming strategies were used. Students were given breaks between sessions. 

6.2 Research Questions 

This experiment was motivated by four related questions, which are answered in 

section 6.6. 

RQ6. Can programming strategies be explicitly incorporated into an 

introductory programming curriculum? 

RQ7. What is the significance of the time consumed by this additional 

instruction? 

RQ8. Can programming strategies, explicitly taught in an introductory 

programming course, be assessed? 

RQ9. What impact does explicit strategy instruction have on students and their 

ability to apply strategies when compared to an implicit-only approach? 

RQ10. Are there any other observable effects or contrasts between students of a 

traditional curriculum and one with added explicit programming strategy 

instruction? 

6.3 Description of Curricula 

An experimental curriculum was created which contained programming strategy 

instruction explicitly. This curriculum is described further in this section and is 

included in full in Appendix H. From this, a control curriculum was created by 

identifying and removing programming strategy instruction components. 

6.3.1 Explicitly Incorporating Programming Strategies 

Programming strategies are explicitly incorporated into the curriculum in a number 

of ways. 

Identifying Strategies in the Curriculum 

A book of written study materials was created and hardcopies were given to 

participants. Lecture slides were also created, based on the content of the written 
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study materials. The lecture slides were used during lectures. In written materials and 

lectures the strategies incorporated in the curriculum were named, their benefits were 

explained and examples of their application were shown. Figure 6.1 shows a section 

of the written materials provided to students. In this example the Guarded Division 

plan is identified. An explanation is given for why this plan is used, including a 

reference to an earlier mention of the consequences of dividing by zero. The 

description tells how the strategy is implemented, and an code example, applying 

this strategy, is shown. 

 

10.5 Guarding Division 
One application of an if statement is to prevent code which could result in unpredictable 

behaviour or cause the program to crash while being executed.  Previously we saw how 

dividing by zero can produce an unusable result.  In some programming languages the effects 

can be even more severe.  It is recommended that you always test the divisor (the second, 

right-hand operand) before a division operation takes place.  If the divisor is zero, division 

should be avoided. 
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<html> 

 <head> 

  <script type="text/javascript"> 

   var number = 0; 

 

   number = parseInt(prompt("Enter a number for division")); 

   if(number != 0) { 

    alert(100 / number); 

   } 

   else { 

    alert("Dividing by zero causes problems"); 

   } 

  </script> 

 </head> 

 <body> 

  Guarding division example 

 </body> 

</html> 

Code Example 10.5: The numerator of a division should always be tested before the division 

E
x
e

rc
is

e
 1

0
.5

 Using your template, create a program that will prompt the user to enter a pre-

calculated sum of numbers and pre-calculated count of numbers.  Calculate the 

average (the sum divided by the count).  How should your program behave if the 

user enters zero for the count of numbers? 

 
 

Figure 6.1. An extract from the written course materials showing 

explicit incorporation of programming strategy instruction 

As well as introducing strategies, the means of integrating these strategies through 

abutment, merging and nesting (Soloway, 1986, p. 856) were also covered. 
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Figure 6.2. An example of a lecture slide showing incorporation of 

explicit programming strategy instruction 

Paper Exercises and Practical Computing Tasks 

At the end of each module students were asked to complete paper exercises and 

computer-based tasks to reinforce the content delivered in lectures and allow students 

to experience the practical implementation of the strategies covered. Instructions for 

these exercises and tasks were set out in the written materials, for example Exercise 

10.5 shown in Figure 6.1. The exercise shown prompts users to explore Guarding 

Division. In other exercises students are prompted to experiment with the outcome 

achieved when the strategy is not applied or is poorly applied. During the course, as 

with any normal introductory programming class, the instructor was on hand to 

answer questions and guide students. 

In most cases the exercises and tasks were common to both curricula. In the 

curriculum without explicit programming strategies, students were expected to learn 

the required programming strategies implicitly. 
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Table 6.1. Comparison of the two curricula tested (items with strike through 

were absent in the control curriculum) 

Module Section Experimental Curriculum Control Curriculum 
  

1  First JavaScript Program First JavaScript Program 
 1.1. Hello World! Hello World! 
 1.2. JavaScript and HTML JavaScript and HTML 
 1.3. Statements Statements 

2  Calling Functions Calling Functions 
 2.1. alert() alert() 

3  Values Values 
 3.1. Numbers Numbers 
 3.2. Strings Strings 
 3.3. Booleans Booleans 

4  Variables Variables 
 4.1. What are Variables What are Variables 
 4.2. Identifier Rules Identifier Rules 
 4.3. Declaring Variables with var Declaring Variables with var 
 4.4. Undefined Undefined 

5  Assigning Values Assigning Values 
 5.1. Dynamic Typing Dynamic Typing 
 5.2. typeof typeof 
 5.3. Initialising Variables Initialising Variables 

6  Operations Operations 
 6.1. Arithmetic Operators Arithmetic Operators 
 6.2. Division by Zero – infinity Division by Zero – infinity 
 6.3. Postfix Operators Postfix Operators 
 6.4. Relational Operators (incl. Equality) Relational Operators (incl. Equality) 
 6.5. Logical Operators Logical Operators 
 6.6. String Operators String Operators 

7  Abutment Abutment 
  

8  Debugging Debugging 
  Exercise 8.3 Exercise 8.3 
9  Functions that Return Values Functions that Return Values 
 9.1. prompt() prompt() 
 9.2. parseInt() and parseFloat() parseInt() and parseFloat() 

10  Selection Selection 
 10.1. The if Statement The if Statement 
 10.2. The if-else Statement The if-else Statement 
 10.3. Indenting and Formatting Indenting and Formatting 
 10.4. “Dangling else” “Dangling else” 
 10.5. Guarding Division Guarding Division 

11  Repetition (Loops) Repetition (Loops 
 11.1. while Loop while Loop 
 11.2. Sentinel-Controlled Loops Sentinel-Controlled Loops 
 11.3. for Loop for Loop 
 11.4. Counter-Controlled Loops Counter-Controlled Loops 
 11.5. Finding the Maximum/Minimum Finding the Maximum/Minimum 
 11.6. Nesting and Merging Nesting and Merging 

12  Arrays Arrays 
 12.1. Declaring Arrays Declaring Arrays 
 12.2. Accessing Array Elements Accessing Array Elements 
 12.3. Initialising Arrays Initialising Arrays 
 12.4. Arrays for Values Arrays for Values 
 12.5. Arrays for Categories Arrays for Categories 
 12.6. Counting Values in a Set Counting Values in a Set 

Assessment of Programming Strategies 

At the end of the course, students were asked to complete the same three 

programming tasks that were given to experts in the previous study with experts (see 

section 5.3). These tasks were used as a formal assessment at the end of the course 

under exam conditions. As well as testing participants' abilities, this was done to 
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explore the potential to assess programming strategies as part of a course. Strategies 

necessary to solve the final assessment problems were shown as examples and in 

exercises and programming tasks. 

6.3.2  Format of the Curriculum 

The curriculum follows a traditional format, which reveals parts of a given language 

in a sequence, with new knowledge of language concepts being dependent on 

previously covered knowledge. In this format, explicitly incorporating programming 

strategies depend upon underlying knowledge being taught beforehand. For instance, 

for the Guarded Division plan to be introduced, knowledge of variables, operators 

and selection must be covered first. Table 6.1 shows the two curricula with elements 

excluded from the control curriculum struck out. 

Basing the experimental curriculum on a traditional curriculum allowed the creation 

of a second curriculum without explicit programming strategies. In a non-

experimental setting, the format of the curriculum could change. For instance, the 

strategies themselves, rather than the underlying language, could be used to govern 

the structure of the course; in this case strategies could be introduced, then 

underlying language knowledge could be taught. If an objects-first approach is taken, 

strategies could be introduced at other stages. 

6.3.3 Philosophy behind the Experimental Curriculum 

The curriculum was designed to be short and allow students to reach programming 

strategies as soon as possible. The curriculum would not be effective in teaching 

longer courses, although the explicit incorporation of programming strategies could 

be applied to longer curricula. 

The curriculum was focused on programming strategies with only a minimal 

covering of the dependent knowledge components. Knowledge content was included 

if it was not fundamentally important for learning the later programming strategies. 

The later exercises focused on the application of programming strategies. For those 

who had not been explicitly instructed in programming strategies, exercise times 

were their opportunity to implicitly learn the needed strategies. The assessment at the 

end of the course focused on the analysis of programming strategy skill. In a non-

experimental course the focus of exercises and the weighting of examination 

questions would likely be more balanced between programming knowledge 

components and programming strategies. 

6.3.4 Language Used with Experimental Curriculum 

JavaScript was used as the language that supported the instruction of the curriculum. 

In their essential form, programming strategies are language independent and 

examples could be given in almost any language. Soloway and his colleagues used 

Pascal and Lisp to illustrate programming strategies. The author has used C/C++ to 

exemplify programming strategies in other work. 

Reasons for choosing JavaScript for this experiment were as follows. 

 Potential to reach important concepts rapidly 
JavaScript has simple facilities for user input and output and a simple model 

for data storage. This permits rapid progress through foundational knowledge 

concepts that might take longer if a general purpose programming language 

were used. 
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 Simpler to practice than a compiled language 
JavaScript is interpreted by a web browser as part of a web page with a 

simple model of execution. Explaining a compiled model of execution was 

not required. JavaScript programs can be as simple as a single statement and 

do not need to be contained within a full program context. 

 Attractive to volunteers  

JavaScript is used to achieve dynamic client-side web pages. Even students 

who are not studying computing are likely to be familiar with the name 

„JavaScript‟ through use of the World-Wide Web. For this reason it was an 

incentive to attract experimental volunteers. 

 Expression of programming strategies in another language 
Plans had not been expressed using JavaScript before. Using JavaScript 

showed that plans could be demonstrated in another language, attesting to the 

versatility of plans. 

6.4 Methodology 

The method of experimentation began with preliminary demographic, experience and 

confidence measurements. An examination of programming strategies was 

conducted at the end of each weekend. In the weeks that followed the two weekend 

sessions, participants were invited to an interview in which they were asked 

questions about their solutions to gauge their understanding of the strategies that 

were being tested. 

6.4.1  Demographic, Experience and Confidence Measures 

A number of demographic, experience and confidence measures were conducted via 

a web survey presented to students when they volunteered. Participants were asked 

questions to determining the following. 

 Gender 

 Age 

 Computing experience 

 Previous programming experience 

 Computing confidence 

Details of specific questions are given in Appendix D. Computing confidence was 

captured using a test created by Cretchley (2006) which has been proven as a reliable 

predictor of computing confidence. 

6.4.2 Schedule of Course Delivery 

 The schedule for both weekends was identical except where programming strategy 

content was covered. In Table 6.2, content covering programming strategies is 

highlighted and was covered only in the course with explicit instruction of 

programming strategies. Participants undertaking the course without explicit 

programming strategy content were intended to be attempting practical exercises 

during these times. One of the aims of the experiment was to determine if this 

additional content would impact on the balance of lecture and exercise time. For this 

reason the schedule was followed as closely as possible on both weekends. 
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Table 6.2. Schedule of courses (items greyed were not conducted with control curriculum) 

Session Saturday Content Sunday Content 

10:00 – 11:15 

Introductions 
1 First JS Program 

1.1 Hello World 
1.2 JavaScript and HTML 

2 Calling Functions 
2.1 alert() 

11 Loops 
11.1 while Loop 
11.2 Sentinel-Controlled Loops 
11.3 for Loop 
11.4 Counter-Controlled Loops 
11.5 Finding the Maximum 
11.6 Nesting and Merging 

11:30 – 13:00 

3 Values 
3.1 Numbers 
3.2 Strings 
3.3 Booleans 
3.4 Undefined 

4 Variables 
4.1 What are Variables 
4.2 Identifier Rules 
4.3 Creating variables with var 

5 Assigning Values 
5.1 Dynamic typing 
5.2 typeof 
5.3 Initialising Variables 

12 Arrays 
12.1 Arrays for Values 
12.2 Arrays for Categories 
12.3 Counting Values in a Set 

13:30 – 14:45 

6 Operations 
6.1 Arithmetic Operators 
6.2 Division by Zero - Infinity 
6.3 Postfix Operators 
6.4 Relational Operators (incl. Equality) 
6.5 Logical Operators 
6.6 String Operators 

7 Abutment 
8 Debugging 
9 Functions that Return Values 

9.1 prompt() 
9.2 parseInt() 

Testing 

15:00 – 16:00 

10 Selection 
10.1 The if Statement 
10.2 The if-else Statement 
10.3 Indenting and Formatting 
10.4 “Dangling else” 
10.5 Guarding Division 

 

6.4.3  Administering the Final Assessment 

After lunch on the Sunday of each weekend course, participants were asked to 

complete the three programming tasks previously given to experts (see chapter 5). 

Each problem was presented on a single sheet of paper, with lines below in which 

students were to complete the solutions to the problems (solution sheets are shown in 

Appendix C). Participants were able to use as much time as was needed to complete 

problems. 

 Problem 1 

Read in 10 positive integers from a user. Assume the user will enter valid 

positive integers only. Determine the maximum. 

Problem 2 

Read in any number of integers until the value 99999 is encountered. Assume 

the user will enter valid integers only. Output the average. 
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Problem 3 

Input any number of integers between 0 and 9. Assume the user will enter 

valid integers only. Stop when a value outside this range is encountered. After 

input is concluded, output the occurrence of each of the values 0 to 9. 

The solutions produced were examined using Goal/Plan Analysis to test for the 

presence or absence of expected plans. This was conducted in the same manner as 

the earlier experiment with experts, as described in section 5.4.1. 

6.4.4 Post-Experiment Interviews with Participants 

In the 23-day period after teaching, six participants gave a verbal, one-on-one 

interview, at their earliest convenience. Students‟ solution sheets were used as a basis 

for discussion. Interviews were structured, with set questions as listed in Appendix E. 

The questions were used as a script, but were intended to encourage discussion 

which was allowed to continue as long as necessary. The questions used were 

designed not to be leading. Questions were aimed at discovering participants' 

interpretations of the problem statements, the strategies understood by participants, 

the articulation of their solution and their confidence in their solution. During 

interviews participants‟ responses were recorded as audio files which were 

transcribed. The interviewer was the teacher and also the author of this dissertation. 

The interview transcripts were analysed by looking for references to strategies used 

(correct or incorrect), use of terminology relating to plans and statements of 

programming confidence (positive or negative). 

6.5 Results 

A number of results were gained from this experiment. First, data gathered during 

registration are shown. During the experiment both curricula were delivered to 

students. The potential to succeed in this delivery was judged by the time used to 

deliver the more extensive curriculum, which explicitly incorporated programming 

strategies within the schedule. At the end of each of these sessions participants were 

asked to complete a set of problems that were examined under Goal/Plan Analysis. 

Finally an inspection of post-course interviews provides deeper insights into the 

programming strategy potential of the participants after the course. 

6.5.1 Data Collected at Registration 

The data gathered when participants volunteered for the course are shown in Table 

6.3. These data show that the two groups were roughly balanced in gender, age and 

computing confidence. The two groups differed in responses to computing and web 

experience self-assessment questions. Experimental group participants showed 

greater variance in their responses to these experience questions. It is likely that the 

experimental group was affected more by individual differences. One of the 

participants indicated they had no previous use of a web browser, even though they 

used a computer daily. This may have been an error. Participant 29 left early during 

the data collection period. 

One of the intentions for gathering this data was to exclude volunteers who had 

completed previous formal study in programming. A number of people signed up for 

the experiment and were rejected because they had studied programming previously. 

One participant, identified as Participant 14, who was asked not to attend, came 
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anyway. The results of this participant are not presented here. One other participant 

(21) indicated they had some self-taught programming experience. After discussion 

with the participant this experience was shown to be a limited amount of HTML 

writing, which was not seen as significant in this experiment. 

Table 6.3. Demographic, experience and confidence data gathered on registration 

Group Participant Gender Age Group 
Computing 
Experience 

Web Experience 
Previous 

Programming 

Computing 
Confidence 

1=low to 
5=high 

Experimental 
Group 

12 male Less than 25 Daily use No use Never 3.0 

21 male 26 – 35 Daily use Daily use Some self-taught 4.6 

29 male 26 – 35 Weekly use Every few days Never 3.2 

30 female Less than 25 Daily use Daily use Never 4.4 

Average       3.8 

Control 
Group 

1 male Less than 25 Daily use Daily use Never 3.6 

6 female Less than 25 Daily use Daily use Never 3.5 

13 male 26 – 35 Daily use Daily use Never 3.8 

Average       3.6 

6.5.2 Time Load of Explicit Programming Strategy Instruction 

During teaching of the experimental curriculum that incorporated explicit 

programming strategies, added content required additional time to teach (actual time 

measures were not recorded), increasing the length of lecture sessions and reducing 

the time allowed for students to undertake practical work. However, participants 

undertaking the curriculum with explicit programming strategies were still able to 

complete the set exercises during the time allocated in the schedule. It was possible 

for the schedule to be followed in both instances of the curriculum. 

6.5.3 Time to Complete Tests 

While participants were completing solutions to the given problems, each was timed 

and the times were recorded. 

Table 6.4: Times for problems by group in minutes and seconds 

 Prob. 1 Prob. 2 Prob. 3 Overall 

Participant 12 12:10 07:20 11:30 31:00 

Participant 21 15:00 04:05 07:35 26:40 

Participant 29 Left early 

Participant 30 10:30 13:00 16:40 40:10 

Experimental Group Average 12:33 8:08 11:55 32:37 

Participant 1 10:40 09:40 09:30 29:50 

Participant 6 14:20 19:30 05:40 39:30 

Participant 13 15:50 Not recorded 

Control Group Average 13:37 14:35 7:35 34:40 

All 13:05 10:43 10:11 33:38 
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Table 6.4 shows the times taken by each participant to complete each problem, 

collected together in groups. In the experimental group, Participant 29 left after 

completing part of one solution, explaining that they wished to leave for personal 

reasons. In the control group Participant 13 completed all problems but the times 

taken to solve the second two problems were not recorded. 

Participants in the experimental group were quicker on average, but both the longest 

and shortest times were exhibited in the experimental group. There appeared to be no 

relationship between times and the correctness of solutions presented. With the small 

population, no generalisations can be made, but the results are reported here to 

inform later results. 

Experts who completed the same three problems took 16min 34sec on average (see 

section 5.5) and constructed complete solutions. Most participants in this study were 

not able to create complete solutions. 

6.5.4 Goal/Plan Analysis of Participant Solutions 

The following tables show results of the Goal/Plan Analysis for each problem. 

Several of the solutions presented by novice participants in this experiment contained 

English language text that described the code the participant would like to have 

written in their solution when they were not sure how to implement these ideas in 

code. Where this was the case, if the text sufficiently described a plan, it was 

accepted as being present even if it was not described in code. The participants who 

used text in their code did not create complete or near complete solutions. 

Table 6.5. Presence of plans and integration for Problem 1 

Plan 

Presence of Plans/Integration 

Exp. Participant Exp. 
Group 

Average 

Control Participant Control 
Group 

Average 
All 

12 21 29 30 1 6 13 

Max Initialised     0%    0% 0% 

Counter-Controlled Loop Y Y Y  75% Y Y  67% 71% 

Input Plan Y Y   50% Y Y Y 100% 71% 

Maximum Plan Y    25%    0% 14% 

Output Plan Y Y   50%   Y 33% 43% 

Input Nested in Counter-Controlled Loop Y Y   50% Y   33% 43% 

Max Plan Nested in Counter-Controlled Loop Y    25%    0% 14% 

Abutment Correct Y Y Y  75% Y  Y 67% 71% 

Overall 88% 63% 25% 0% 44% 50% 25% 38% 28% 41% 

Table 6.5 shows the plans present in each participant's solution to Problem 1. The 

correctness of the integration of the strategies, including abutment, is also recorded. 

Unlike experts (see section 5.5), participants in this experiment did not always 

integrate these plans correctly. 

The best Problem 1 solution was created by Participant 12 from the experimental 

group who, despite never previously undertaking programming study, was able to 

produce a well coded solution that was nearly complete. This solution, together with 

those presented by Participant 21, pushed the overall average correctness level for 
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the experimental group above that of the control group despite the abandoned 

attempt and non-attempt of their group-mates. 

One noticeable characteristic was the absence of the initialisation of the maximum 

variable, which was crucial to the Maximum plan and is required when using 

JavaScript. Initialisation was explicitly covered in the experimental curriculum. 

Students undertaking the control curriculum were given the opportunity to learn this 

plan implicitly. Initialisation was important to the later problems and was applied by 

a number of participants for those problems. It is not clear why it is absent here. 

Table 6.6. Presence of plans and integration for Problem 2 

Plan 

Presence of Plans/Integration 

Participant Exp. 
Group 

Average 

Participant Control 
Group 

Average 
All 

12 21 29 30 1 6 13 

Sum Initialised Y  
Le

ft 
E

ar
ly

 
 33% Y Y  67% 50% 

Count Initialised Y   33% Y   33% 33% 

Sentinel-Controlled Input Y Y  67%    0% 33% 

Sentinel-Controlled Count Y   33%  Y  33% 33% 

Sentinel-Controlled Sum Y   33%  Y  33% 33% 

Guarded Division    0%    33% 0% 

Output Plan Y Y  67% Y Y Y 0% 83% 

Loop Plans Merged Y   33% Y   100% 33% 

Inputs Nested in Sentinel-Controlled Loop Y Y  67%    33% 33% 

Output Nested in Guarded Division    0%    0% 0% 

Abutment Correct Y Y  67% Y  Y 67% 67% 

Overall 82% 36% 0% 39% 45% 36% 18% 33% 36% 

Table 6.6 shows the strategy correctness of participants' solutions to Problem 2. 

Participant 29 left after abandoning an attempt at Problem 1, so this participant's 

solutions were not included in results for this and the next problem. 

Again in this problem, an outstanding solution was presented by Participant 12 who 

correctly solved the problem, with the exception of the Guarded Division plan. No 

participant in either group applied a Guarded Division plan. This shows that even 

when it is explicitly incorporated into an introductory programming curriculum, and 

the consequences of failing to apply the plan are discussed, it is still possible for 

novice programmers to neglect this particular plan. This problem was a modified 

version of the problem given to students in the first experiment (see chapter 4). 

Students in the earlier study had completed a semester of instruction under a 

traditional implicit-only model and achieved an average overall completeness of 57% 

compared to the participants of this experiment who achieved 36%. In the problem 

statements for Problem 1 and both other problems, students were told they could 

assume inputs would be valid. 



Chapter 6 Incorporating Strategies Explicitly into an Artificial Curriculum 

 Page 73 

Table 6.7. Presence of plans and integration for Problem 3 

Plan 

Presence of Plans/Integration 

Participant Exp. 
Group 

Average 

Participant Control 
Group 

Average 
All 

12 21 29 30 1 6 13 

Counter-Controlled Loop (for Initialisation) Y  

Le
ft 

E
ar

ly
 

Y 67%    0% 33% 

Array Initialisation Y Y Y 100%    0% 50% 

Sentinel-Controlled Input Y   33%    0% 17% 

Count Set Plan Y Y  67%    0% 33% 

Counter-Controlled Loop (for Output)   Y 33% Y Y  67% 50% 

Output Plan Y Y  67%    0% 33% 

Initialisation nested in Counter-Controlled Loop Y  Y 67%    0% 33% 

Inputs nested in Sentinel-Controlled Loop Y  Y 67%    0% 33% 

Count Set nested in Sentinel-Controlled Loop Y   33%    0% 17% 

Output Nested in Counter-Controlled Loop    0%    0% 0% 

Abutment Correct Y Y Y 100% Y Y Y 100% 100% 

Overall 82% 36% 55% 58% 18% 18% 9% 15% 36% 

Table 6.7 shows the plan application for the final problem, Problem 3. Again an 

outstanding solution was presented by Participant 12 who correctly initialised and 

filled an array to tally user inputs, but failed to output the content of the array using a 

loop. Participant 30, who did not attempt Problem 1 and presented a confused 

solution to Problem 2, managed to apply a number of plans for this problem. 

Participants from the control group showed little ability to demonstrate any of the 

plans that were needed to solve this problem. This problem is arguably the most 

complex, and it would appear from these results that it is difficult to learn the 

necessary plans implicitly. 

One plan absent in all solutions was the Counter-Controlled Loop plan to output the 

occurrences of numbers. This is not truly surprising as most of the solutions for this 

problem were incomplete and the only near-complete solution did not apply this 

particular strategy. Each of the participants from the experimental group applied a 

counter-controlled loop to initialise the array used for tallying. 
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Table 6.8. Overall plan use by each group 

 Overall Plan Use 

Experimental Group 47% 

Control Group 28% 

All 38% 

Table 6.8 shows a comparison of the overall correctness for all problems achieved by 

each group. There is a distinction in overall results for the two groups, with the 

experimental group, who were exposed to a curriculum that incorporated 

programming strategies explicitly, achieving a greater result. 

Participant 12 produced outstanding solutions to each of the problems. It may be that 

the incorporation of explicit programming strategies suited this participant who, 

might have performed better than he would have otherwise. One must wonder if they 

would have done as well in the control group and perhaps reversed the results of the 

experiment. 

With the small number of participants in this experiment no statistically significant 

evidence can be inferred for the superiority of one curriculum over another. These 

results are useful as basis for the interviews that followed which allow a deeper and 

more personal exploration of the participating students' strategy understandings. 

6.5.5 Interviews 

Following the course, participants were asked to attend an interview. Five of the 

seven participants and Participant 14 (who had previous programming instruction) 

attended interviews. The list of participants and the length of interviews is shown in 

Table 6.9. 

Table 6.9. Interview participants and interview times 

Participant Group Time 

12 Experimental 30:35 

21 Experimental 22:44 

30 Experimental 21:56 

1 Control 17:40 

6 Control 23:14 

Average Time 23:14 

The interviews probed the understandings of participants that they were perhaps 

unable to express in code. The interviews followed a fixed script but allowed 

participants to discuss matters freely. The list of questions is shown in Appendix E. 

The questions were designed not to be leading. The questions posed to each 

participant aimed to achieve the following. 

 To explore the participant's interpretation of the problem statement 

 To examine whether the participant understood the required strategies 

 To allow the student to articulate their solution 

 To elicit a level of confidence in the participant‟s solution 
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Each interview was recorded and transcribed. From an analysis of the transcripts the 

following observations were made. 

Participants Misinterpreted the Validation Simplification Made to Each Problem 

Each problem statement contained the text “Assume the user will enter valid integers 

only.” This additional text was introduced to clarify that no attempt at validation 

would be necessary. This change was made when these problems were used with 

expert programmers, but for this experiment it may have confused participants. In 

interviews, participants were asked what this sentence meant. Three of the five 

participants misinterpreted this simplification; some felt validation was necessary 

because of this statement. No participant attempted to validate inputs. 

Other parts of the problem statements seemed to be comprehensible to each 

participant, even if they did not know how to achieve a solution. 

Participants Exhibited Understanding of Plans 

As well as demonstrating a higher use of plans in their solutions to problems, 

participants from the experimental group verbally described plans. For instance, 

Participant 30 described her application of a Set-Counting plan as follows: “After 

you've put a number that isn‟t in that range it concludes the program and tells the 

person what numbers you've put into your little boxes. It goes through zero to nine 

and it tells you how many are in each box.” 

Rist (1995) showed that novices can expound and apply plans without explicit 

instruction of programming strategies. Some control group participants did learn 

plans implicitly. In an observable instance Participant 6 stated the following which 

could be seen as a description of a Set-Counting plan using an array: “I've created an 

array, because I think that for the program to calculate, between 0 and 9, how many 

times it occurs, it has to have an array for, say if it‟s zero, then zero; for one it's one, 

two three, four... So the array for zero is, like, zero, because arrays start from zero, 

right? Then, so in the box for zero, say the user enters three times it will refer back to 

this array zero, it will keep repeating itself in the loop, from then on how many times 

it gets zero in that box it will get the output.” 

Participants Failed to Learn Some Plans 

It was clear that participants did not learn all the plans they were expected to learn. 

This was true for participants from the control group who were expected to learn 

strategies implicitly; for example, Participant 6 felt there must be some maximum 

formula that would take care of the task of calculating maximums: “And probably 

some formula to determine the highest number (which I don't know how)”. 

Experimental group participants also failed to demonstrate application of some plans, 

even though they had been explicitly exposed to them. For example Participant 30, 

when asked how a maximum could be determined, responded, “Can you make the 

program look at the digits I guess, so you could determine the maximum. I don't 

know.” Participant 21, when asked, “What does it mean by determine the 

maximum?”, responded with, “Perhaps the maximum sum. I'm not really sure.” 

Experimental Group Participants Used Plan Terminology and Ideas 

On a number of occasions participants from the experimental group (who were 

exposed to plans and related terminology) referred to parts of their code using plan 
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terminology, or attempted to describe plan terminology without using specific 

names. 

Participant 12, while discussing the integration of counting with input in Problem 2 

said “they have to merge with the loop”. 

During the interview with Participant 21 discussing loops in Problem 2, the 

participant cannot remember the terminology for a Sentinel-Controlled Loop but 

describes it well: “…and then create a loop… get user input outside and inside so 

that it's, I can't remember the name.” Later Participant 21, while interpreting part of 

the problem statement, recalls the correct terms and says “Which I did recognise as a 

sentinel loop.” 

The use of Goal/Plan terminology was not universal by any means. Participants from 

the experimental group still resorted to syntactical description when describing their 

code and needed to be prompted further to elicit possible strategy understandings. 

Participant 12, who delivered perhaps the best result stated the following syntactical 

reading of code: “It's a loop, for loop. For counter equals zero. Start from zero again. 

And counter smaller than numberNum. Counter++. And the message is 

numArray[counter] equals zero.” 

Experimental Group Participants showed Confidence in Solutions 

Experimental group participants were more confident in their solutions, or their 

ability to correct their solutions if given the chance. This is despite the fact that no 

participant had created a fully complete solution to any of the problems. Participant 

21 was confident about all his solutions, even though they were flawed. Participant 

30 showed confidence in most of their attempted solutions even though they were 

flawed; when asked “Does your solution solve the problem?”, she replied, “…Well 

my solution in my head did, not like the first one, so yes. I did understand this 

question so I could go through the steps of doing it.” 

Participant 12, who was the closest of all participants to solving the problems 

correctly, was realistic about the correctness of their solutions. During discussion 

Participant 12 saw the flaws in two of three of his solutions. Interestingly this 

participant explains his confidence in one of their problems as being the result of 

understanding the required strategy: “I'm very confident in doing this question 

because I know the right way to structure [it].” 

Control Group Participants showed a Lack of Confidence 

When asked if they believed if their solutions correctly solved each problem, 

members of the control group almost universally showed a lack of confidence in the 

solutions they had created. 

Participant 1 lacks confidence in all his solutions except for Problem 2, where they 

claim more time was needed, even though time was not restricted during the test. 

When this participant was asked, “Does your solution solve the problem?”, he 

answered, “Probably, if I got time to add up more things.” This same participant later 

describes a lack of confidence in their general programming ability: “I'll probably 

mess it up anyways, because I'm still not sure how to...”, and later expresses a typical 

gap between design and implementation where plans can be applied: “I understand 

the question. I was thinking through. I got everything right in my head. I just can't 

put it onto codes.” 
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The other control group participant interviewed, Participant 6, showed some 

confidence in one solution, believing, correctly, that the remaining solutions were 

flawed. 

6.6 Discussion 

The research questions posed earlier are answered by the results of this experiment 

and observations made during the experiment. 

6.6.1 Incorporating Explicit Programming Strategies 

RQ6. Can programming strategies be explicitly incorporated into an 

introductory programming curriculum? 

Programming strategies can be explicitly incorporated into an introductory 

programming curriculum. The curriculum used in this experiment, and its successful 

delivery, is evidence that this can be done. 

6.6.2 Balance of Lectures and Practice 

RQ7. What is the significance of the time consumed by this additional 

instruction? 

As stated in section 6.5.2, the additional instruction in the experimental curriculum 

did require more time in lecture sessions, but students were still able to complete set 

exercises by the end of each session. It can therefore be asserted that this additional 

instruction is balanced by an eased burden on students in completing practical 

exercises. 

This result is useful for our comparison of the curricula, however in regular teaching, 

lectures and practicals are usually conducted in disjoint time slots, so extending the 

length of a lecture would not normally impact on practice time. 

Having more material in one curriculum over another would increase the burden on 

student learning, with more content to process. This addition needs to be compared 

with the effort a student would have to make to develop the needed programming 

strategies in an implicit-only model. 

6.6.3 Assessment of Programming Strategies 

RQ8. Can programming strategies, explicitly taught in an introductory 

programming course, be assessed? 

Goal/Plan Analysis of students‟ solutions is far from new, but as a means of 

assessment in a programming course it is novel. This experiment showed that 

programming strategies applied to create solutions can be assessed using Goal/Plan 

Analysis. A limitation of using Goal/Plan Analysis is that it requires students to 

generate code before it can be assessed. In early stages, assessing generated code 

might not be the best method of assessing programming strategies. 
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6.6.4 Impact on Programming Strategy Ability 

RQ9. What impact does explicit strategy instruction have on students and their 

ability to apply strategies when compared to an implicit-only approach? 

From Goal/Plan Analysis of participants' solutions and through interviews it 

appeared that students exposed to the experimental curriculum may be more likely to 

understand and apply strategies than participants who were expected to learn 

strategies implicitly. 

It was by no means guaranteed that participants explicitly shown programming 

strategies would understand and apply all of these strategies. It was also 

demonstrated that, although less common, participants exposed to an implicit-only 

curriculum can learn programming strategies. 

6.6.5 Other Observed Effects 

RQ10. Are there any other observable effects or contrasts between students of a 

traditional curriculum and one with added explicit programming strategy 

instruction? 

Two other observations can be made from results shown. 

A Vocabulary for Strategies 

Some participants in the experimental group, who were exposed to plan terminology 

during their instruction, went on to use this terminology during interviews. If this 

were applied during an ordinary teaching period with multiple weeks of instruction 

and assessment, being able to have students use a vocabulary of programming 

strategy terms would be beneficial. Instructors would be able to describe the 

strategies they expect students to apply in tasks. It would be possible to allocate 

marks for the application of specific strategies. Instructors would have the potential 

to describe and analyse code using such terminology. 

Confidence in Solutions 

A contrast was found in the confidence of participants. Participants from the 

experimental group, who had been exposed to programming strategies explicitly, 

were confident about the solutions they presented and the understanding of the 

strategies needed to complete the solutions. Participants from the control group were 

not so confident. It is not necessarily clear why this is the case. Perhaps because 

experimental group participants had been exposed to a higher level of programming 

thought, they might feel that the underlying syntactical implementation is less 

difficult to achieve. Reber (1993) showed that students exposed to implicit-only 

instruction can gain aptitude but fail to gain understanding of underlying systems. 

This seems to be consistent with the experience of participants exposed to implicit-

only instruction of programming strategies in this experiment who were, in some 

instances, able to produce partial solutions, but appeared to have a general lack of 

understanding of programming strategies and the processes needed to solve the 

problems presented. 



Chapter 6 Incorporating Strategies Explicitly into an Artificial Curriculum 

 Page 79 

6.6.6 Flaws in the Experimental Approach 

A number of flaws in the experimental approach were realised during and after the 

experiment. 

Size of Groups 

The size of the experimental and control groups was sufficient to test the potential to 

incorporate explicit programming strategy content into an introductory programming 

curriculum and the timing of that incorporation. It was sufficient to allow a small 

number of participants to experience these curricula and be interviewed on their 

understandings that developed through this participation. 

Although the Goal/Plan Analysis of participants' solutions showed differences 

between the groups, the size of the population of participants was insufficient to 

statistically infer the superiority of the experimental curriculum. It is not clear that 

increasing the size of the participant population would produce consistent 

reproducible results, which appears to be the bane of many explorations in 

educational settings (see Hirsch (2002)). 

Absorbing Concepts Rapidly 

Participants in the study were diligent students. All students were able to follow the 

course materials and achieve results in paper exercises and practical computer tasks. 

However, complete solutions in the final assessment, involving generation of code to 

novel problems, appear to have been more than could be expected from students at 

the end of two days of instruction. Although exercises were given to reinforce 

concepts covered, these may not have been as effective as if they were completed 

days or weeks later. 

The result of this experiment shows that the strategy ability of participants exposed 

to the experimental curriculum produced an average overall completeness of 39% for 

Problem 2 compared to students who had been exposed to a semester-long, 

traditional introductory course in programming, who achieved an average overall 

completeness of 57% on effectively the same problem. 

Generation of Code can be a Poor Measure 

The final assessment asked students to generate code to novel problems, applying 

strategies they had learned. Most of the participants were unable to create complete 

solutions to these problems. This may be attributable to a lag between: 

1. exposure to a programming strategy, 

2. the ability to comprehend that strategy, and eventually 

3. the ability to generate an implementation that applies that strategy. 

After only two days, asking participants to generate code might have been a less 

accurate test than gauging their programming strategy skill by other means, such as 

comprehension tests or cases involving errors. 

6.7 Implications 

This experiment showed that it is possible to create a curriculum that explicitly 

incorporates sub-algorithmic programming strategies. The incorporation of such 

additional instruction does not create an infeasible burden of time. 
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There were also noticeable effects on the students participating in the experiment and 

exposed to this additional instruction. Participants who covered the experimental 

curriculum appeared more likely to understand and apply the programming strategies 

they had been exposed to. These students used terms from a programming strategy 

vocabulary presented in the curriculum, which could be useful in teaching and 

assessment if applied to a full-scale course. Participants who covered the 

experimental curriculum claimed confidence in the solutions they had created and 

their understanding of the strategies used to create them, while students not exposed 

to explicit programming strategies doubted their abilities. 

Validate authentic 
expert 

programming 
strategies

Explicitly 
incorporate 

programming 
strategies

Test instruction 
and assessment 

in real intro 
programming 

setting

Measure novice 
strategies in implicit-

only setting

Measure novice 
strategies in implicit-

only setting

 

Figure 6.3. Overview of experiments in a process after third experiment 

Having described positive benefits from explicitly incorporating programming 

strategy instruction in an artificial setting, the next stage of experimentation involves 

applying this approach to an actual course and evaluating student outcomes. 

Goal/Plan Analysis is a basic tool for analysing student code and detecting 

deficiencies in student understanding. It has been used here to measure student 

solutions and as a basis for a deeper exploration of novice understanding. However, 

the use of Goal/Plan Analysis is limited and would not be appropriate to assess 

students at all stages of a full introductory programming course. In an actual course 

setting, multiple forms of assessment are needed to accurately and consistently 

measure a student's strategy skill. Novices can be encouraged to apply specific 

strategies in assignment instructions and exam questions. The marking criteria used 

to judge assignments and exams can openly test for use of particular strategies and 

reward their use with credit. Assigning marks for application of strategies in 

assessments and exams will hopefully encourage students to value this component of 

the curriculum, devoting study time to programming strategies. 
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7. Teaching and Assessing Programming 

Strategies Explicitly in an Actual Setting 

“Good fortune is what happens when opportunity meets with planning.” 

Thomas Alva Edison 

Overview 

Previous experiments, described in earlier chapters, led to the following conclusions. 

 Under a curriculum relying on implicit instruction of programming strategies, 

novices created solutions that demonstrated strategy-related flaws (chapter 4).  

 A representation of sub-algorithmic programming strategies used by experts 

can be expressed in a form that is appropriate for incorporation in an 

introductory programming curriculum (chapter 5). 

 It is possible to incorporate programming strategies explicitly into an 

introductory programming curriculum with observable effects on novices 

including use of strategies in solutions, confidence in solutions and use of a 

vocabulary of strategies (chapter 6). 

This chapter describes how programming strategies were explicitly incorporated and 

assessed in an actual introductory programming course. The inclusion of explicit 

programming strategy content began in the second half of 2005 and was refined over 

a two-and-a-half-year period. 

As well as describing how this integration was achieved, comparisons are made 

between the outcomes of novices under the new curriculum, which included explicit 

programming strategies, and results of novices learning under an implicit-only 

strategy curriculum, as discovered in the initial experiment (chapter 4). Also 

measured is the relationship between the programming knowledge and programming 

strategy components of the course. This is achieved by comparing student results in 

assessment items that targeted each area independently. 

Strategies were successfully integrated into an actual course curriculum and assessed 

in assignments and examinations. Measurement of novices‟ strategy skill under the 

new curriculum showed improvement over the benchmark set under the previous 

traditional curriculum. It was also found that student performance was consistent 

between knowledge and strategy examination questions, validating the strategy 

questions used. 

7.1 Introduction 

An initial experiment showed that novices learning programming strategies 

implicitly created solutions that contained strategy-related flaws (chapter 4). Only a 

single student out of 42 was able to achieve a complete solution containing all 

expected plans for a classic averaging problem. Overall, students applied only 57% 

of the expected plans. 

The presence of these flaws indicated possible weaknesses in the curriculum used to 

instruct the novices in programming strategies. To leverage the potential of explicit 
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instruction (see section 2.3.6) an authentic representation of programming strategies, 

capable of being expressed explicitly to novices, was sought. Plans used by Soloway 

(1986) are a model of programming strategies that are supposedly based on the tacit 

understanding of experts. An experiment was conducted to validate that plans are a 

representation of the sub-algorithmic strategies used by experts (chapter 5). This 

experiment showed that plans are used by expert programmers. 

Taking plans as an authentic representation of programming strategies, an 

experiment was conducted (chapter 6) that compared two curricula: one including 

programming strategies explicitly and a traditional curriculum that required students 

to learn strategies implicitly. The curricula were delivered in an artificial setting. The 

experiment showed that it is possible to incorporate strategies explicitly into a 

curriculum. Results demonstrated that experimental participants, who had been 

exposed to explicit strategy instruction, used strategies more than control group 

participants (though not significantly so). Novices exposed to explicit strategy 

instruction used a vocabulary of strategies to describe their solutions and showed 

greater confidence than those exposed to a traditional curriculum. 

The previous experiment was conducted in an artificial setting with a minimal 

curriculum. Only a limited set of strategies were incorporated, and a greater set is 

needed for a full introductory programming course held over a semester. A larger set 

of programming strategies needs to be expressed and a method of explicitly 

incorporating these strategies into a full curriculum needs to be developed and tested. 

The main testing approach used to gauge strategy application in previous 

experiments was Goal/Plan Analysis. With novices, this approach is limited to 

analysing solutions generated at or near the end of an introductory programming 

course. After the previous experiment (chapter 6) it was proposed that analysis of 

strategy skill should be conducted in more flexible ways throughout the course by 

taking the ideas inherent in Goal/Plan Analysis and using them to assess student 

work in assignments and examinations. The following are ways strategies could be 

incorporated in assignments and examinations. 

 Encouraging students to use particular strategies when generating solutions 

for assignments 

 Awarding credit for application of strategies in assignment marking criteria 

 Using problems that focus on programming strategies as part of the final 

examination 

 Analysing examination solutions in a Goal/Plan-Analysis-like manner 

As well as encouraging the learning benefits suggested in literature and discovered in 

the previous experiment, awarding credit for applying strategies in assessments may 

encourage students to value this important component of programming and devote 

more effort to learning it. 

The Leeds group (Lister et al., 2004) attempted to isolate the cause of poor novice 

results measured by the McCracken group (McCracken et al., 2001). The Leeds 

group reported that many instructors attribute poor results to poor problem-solving 

ability in novices. The group attempted to create programming questions that 

required no problem-solving ability to answer. They felt that if novices succeeded in 

the test it would confirm that novices can successfully acquire programming 

knowledge so instructors could put this issue aside and focus their attention on 

improving strategy instruction. If novices failed this test, it would indicate a failure 



Chapter 7 Teaching and Assessing Programming Strategies Explicitly in an Actual Setting 

 Page 83 

in programming knowledge. The results of the Leeds group study, and the BRACElet 

project (Whalley et al., 2006) that followed, showed that many novices exhibit a 

fragile programming knowledge and very few can demonstrate programming strategy 

understanding in a comprehension exercise. 

After the McCracken, Leeds and BRACElet series of experiments, some concerns 

still remain. It is not clear if programming knowledge instruction must precede 

strategy instruction. It is not clear whether a student with a flawed programming 

knowledge can learn and understand programming strategies. If it is possible to 

isolate programming knowledge ability from strategy ability it may be possible to 

define a clearer relationship between these aspects. 

7.1.1 Participants 

Participants in the current experiment were students studying in a first-year 

introductory programming course at the University of Southern Queensland. Results 

shown in this chapter were taken from two cohorts, those studying in second 

semester of 2005 and those studying in the second semester of 2007. 

Participants included a mix of students attending on-campus classes and those 

studying externally. Results were drawn from examinations undertaken by all 

students. The size of the 2005 and 2007 cohorts was lower than the 2003 cohort who 

participated in the initial experiment described in chapter 4, however only on-campus 

students were used in the initial experiment, so participant numbers are similar. 

 2003 cohort included 42 participants 

 2005 cohort included 36 participants 

 2007 cohort included 45 participants 

Participants included school leavers and mature-aged students. Students come from a 

range of discipline areas but were primarily IT and Engineering students. The mix of 

students and entry standard had not changed since the initial experiment. 

7.1.2 Setting 

The setting of the experiment described in this chapter is essentially the same as that 

of the initial experiment described in chapter 4, except for the inclusion of explicit 

strategy instruction in course materials and assessment items. These changes are 

described in detail in section 7.3 and 7.4 respectively. The instructor was the 

researcher and author of this dissertation. 

7.2 Research Questions 

The current experiment was motivated by the following questions which are 

answered in section 7.7. 

This section is divided into three parts related to the three perspectives taken when 

conducting this experiment. This three-perspective structure is mirrored in the 

Methodology, Results and Discussion sections of this chapter. 

7.2.1 Integration 

The first two questions of this chapter consider the possibility of instructing and 

assessing programming strategies explicitly. Although this has been established on a 



Teaching and Assessing Programming Strategies Explicitly in an Actual Setting Chapter 7 

 Page 84 

smaller scale in an artificial setting, it needs to be tested with a complete curriculum 

in an actual introductory programming course. 

RQ11. Can instruction of programming strategies be explicitly incorporated into 

instruction in an actual introductory programming course? 

RQ12. Can programming strategy skill be measured as part of the assessment in 

an actual introductory programming course? 

7.2.2 Impact 

The third question relates to the effect of introducing explicit programming strategies 

to novice programmers. This question will be answered by analysing novice 

performance on assessments in the course and comparing this to the baseline 

performance described by the initial experiment (from chapter 4). 

RQ13. What is the impact on novice programmers of incorporating programming 

strategy explicitly into instruction and assessment? 

7.2.3 Consistency of Knowledge and Strategy Skill  

The final question asks if it is possible and appropriate to separate assessment items 

that relate to knowledge from those that relate to strategies. This is done by 

comparing results of assessment items independently covering knowledge and 

strategy, and checking they are consistent for novices. This comparison may also 

shed light on the relationship between knowledge and strategy skill. 

RQ14. Are novices’ results in assessment of programming strategies consistent 

with their results in assessment of programming knowledge? 

7.3 Integrating Strategy Instruction into Written Materials, 
Lectures, Tutorials and Practical Classes 

Over the two-and-a-half-year period between the second half of 2005 and the end of 

2007, programming strategies have been incorporated into the curriculum of an 

introductory programming course at the University of Southern Queensland. 

The course is delivered to students on campus (approximately 40% of the student 

cohort) and students studying externally (potentially anywhere in the world). On-

campus students are expected to attend two one-hour lectures followed later in the 

week by an hour-long tutorial (in a normal classroom) and a two-hour practical class 

with computers. External students study independently by reading the same written 

materials, accessing lecture slides with audio online, and undertaking tutorial and 

practical exercises at home. 
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1.6.1 Design 

An expert programmer will take time to 

properly design a solution.  It is tempting to 

jump to implementation, but often, without a 

reasonable design, a programmer can waste 

time correcting a poor implementation and 

take far longer than if they had spent a small 

amount of time on design first. 

From a problem statement a programmer will 

identify the goals that need to be achieved.  

These goals can usually be found through a 

careful reading of the problem statement. 

When the goals of the problem have 

been identified, a programmer can 

choose appropriate plans that satisfy 

goals.  A plan is a small, independent 

strategy that the programmer has 

applied in a past solution.  During this 

course we will be covering 

programming knowledge and also the 

strategies that you can use to apply 

this knowledge.  Look for the 

STRATEGY sidebar to differentiate parts of this book that cover strategies. 

Once plans have been identified they need to be combined together to form a solution.  Plans 

can be combined together in three possible ways. 

 Abutment 

Placing the plans one after another in the correct sequence that will solve the 

problem. 

 Merging 
Integrating plans so that common parts are performed together 

 Nesting 
Placing one plan inside another plan 

Depending on the scale of the solution a programmer will design a solution in their head, on 

paper or using some computerised tool.  The solution will show the programmer how to 

implement the program. 
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Problem 

Goal Goal Goal…

Plan Plan Plan…

Solution 

 

Figure 7.1. Introduction to strategies from the Study Book 

Programming knowledge is presented in a similar manner to the traditional 

curriculum presented with the first experiment (described in chapter 4). Strategies 

are interwoven through the course in an explicit manner. In the beginning of the 

course the distinction between knowledge and strategies is presented. Figure 7.1 

shows an initial description of plans as strategies within a description of the 

programming process. Strategies are a part of the curriculum and testing students‟ 

strategy skills forms part of the assessment. Students are informed of this. 

Written materials provided to students include notes for each module of the course 

and exercises for each week. Students are encouraged to read the written materials 

before attending or listening to lectures provided online (with audio for external 

students). The lectures complement the written materials and allow opportunities for 

questions and further explanations. Each week students are expected to undertake 

written and computer-based exercises, in tutorials and practicals, to reinforce the 

material for the week. 
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The following sections describe how programming strategies were explicitly 

incorporated into written materials, lectures and weekly exercises. Assessment of 

students‟ strategy skills in assignments and in the course examination is described in 

section 7.4. 

7.3.1 Strategy Guide 

The major component of written material provided to novices in the course is 

referred to as a „Study Book‟. The bulk of the Study Book is divided into modules, 

with one module being covered each week of the course. More detail about the Study 

Book modules is given in section 7.3.2 below. At the end of the study book two 

appendices are given: one is a syntax guide and the other collects together all the 

strategies that are covered in the course. This „Strategy Guide‟ is included in this 

dissertation as Appendix A. 

The Strategy Guide begins by defining how strategies can be integrated. Abutment, 

nesting and merging are discussed in this introduction. Each strategy is then 

described as a plan (some later strategies are basic algorithms). The programming 

knowledge required to apply each plan is stated at the beginning of each plan 

description. Examples and diagrams are provided for most strategies. This Strategy 

Guide forms a resource for novices studying in the course, and possibly after they 

have completed the course. All strategies assessed in assignments and the 

examination can be found in this guide; students are told this at the beginning of the 

course and before the examination. Strategies are addressed individually in the 

modules of the Study Book and lectures, often with a different context or example. 

The Strategy Guide contains 18 plans ranging in scale from very simple plans such 

as finding an average, through several sub-algorithmic plans such as a triangular 

swap (see Figure 7.2 below for this example), and on to some algorithmic plans such 

as sorting. The Strategy Guide has developed and been refined during its use and in 

future it should grow and be modified as the need arises. The 18 strategies currently 

in the Strategy Guide are listed below. 

1. Average plan 

2. Divisibility plan 

3. Cycle Position plan 

4. Number Decomposition plan 

5. Initialisation plan 

6. Triangular Swap plan 

7. Guarded Exception plans (including Guarded Division plan) 

8. Counter-Controlled Loop plan 

9. Primed Sentinel-Controlled Loop plan 

10. Sum and Count plans 

11. Validation plan 

12. Min/Max plans 

13. Tallying plan 

14. Search algorithm 
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15. Bubble Sort algorithm 

16. Command Line Arguments plan 

17. File Use plan 

18. Recursion plans (single- and multi-branching) 
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Plan 6. Triangular Swap Plan 

This plan requires an understanding of variables and the assignment operator. 

Consider how you swap two items. Imagine two pencils in front of you. To swap their positions you 

would pick up one with one hand, the second with your other hand and then place each in their new 

positions. 

 

A computer can only perform one action at a time. Now, imagine that you only have one hand; how 

would you swap the positions of the two pencils now? Keep in mind also that when a variable is 

assigned a new value, the old value is replaced and cannot be accessed later. Attempting to swap 

using the above method will result in two copies of the same value. 

 

To achieve a swap a temporary position is needed. One of the pencils could be moved to the 

temporary position; the second pencil could be moved to its new location; finally the first pencil could 

be moved from the temporary position to its new position. 

Here is an example in the context of a full program. 

#include <stdio.h> 

 

int main() { 

 int firstPosition  = 5; // First position containing value to swap 

 int secondPosition = 6; // Second position containing value to swap 

 int tempPosition;       // Temporary position for swap 

 

 // Output the numbers after the swap 

 printf("Before Swap...\n"); 

 printf("First: %i, Second: %i\n", firstPosition, secondPosition); 

 

 // Swap the two numbers in a triangular swap 

 // 1. Copy the value from the second position to temp 

 tempPosition = secondPosition; 

 

 // 2. Copy the value from the first position to the second 

 secondPosition = firstPosition; 

 

 // 3. Copy the value from the temp position to the first 

 firstPosition = tempPosition; 

 

 // Output the numbers after the swap 

 printf("After Swap...\n"); 

 printf("First: %i, Second: %i\n", firstPosition, secondPosition); 

} 

Here is the output of the above program. 

Before Swap... 

First: 5, Second: 6 

After Swap... 

First: 6, Second: 5 

The above results show the values are swapped and not duplicated. 

Position 1 Position 2

Temp Pos

Position 1 Position 2

1
Temp Pos

Position 1 Position 2

2

Temp Pos

Position 1 Position 2

3

 

Figure 7.2. An example of a plan from the Strategy Guide 
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7.3.2 Explicit Incorporation in Written Notes 

Within the 12 modules of the Study Book, programming strategies are introduced 

after presenting the programming knowledge applied in each strategy. In this context 

the strategies show immediately how the knowledge can be applied, which, in its 

purest sense, is the nature of a strategy. 

3.3.4 Triangular Swap Plan 

Consider how you swap two items. Imagine two pencils in front of you. To swap their 

positions you would pick up one with one hand, the second with your other hand and 

then place each in their new positions. 

Position 1 Position 2

 

A computer can only perform one action at a time. Now imagine that you only have 

one hand; how would you swap the positions of the two pencils now? Keep in mind 

also that when a variable is assigned a new value, the old value is replaced and cannot 

be accessed later. Attempting to swap using the above method will result in two 

copies of the same value. 

Temp Pos

Position 1 Position 2

1
Temp Pos

Position 1 Position 2

2

Temp Pos

Position 1 Position 2

3

 

To achieve a swap a temporary position is needed. One of the pencils could be moved 

to the temporary position; the second pencil could be moved to its new location; 

finally the first pencil could be moved from the temporary position to its new 

position. 
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Figure 7.3. An example of part of a strategy from the Study Book within a teaching module 

Figure 7.3 shows an extract from the Study Book including the same Triangular 

Swap plan shown previously. This is followed by a code example showing the plan 

applied. Note the bar down the left that distinguishes parts of the Study Book as 

covering a programming strategy; other parts of the Study Book, covering 

programming knowledge and other content, do not show this bar. 

The Triangular Swap plan is shown after students cover variables and assignment as 

programming knowledge components. This takes place in the third module, which is 

covered during the third week of the course. This plan is discussed in lectures, 

reinforced in tutorial and practical exercises and assessed in assignments and the 

examination. The Triangular Swap plan appears again when the Bubble Sort 

Algorithm is presented in a later module of the course. This demonstrates how 

identifying strategies and creating a vocabulary for strategies can allow instructors to 
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use this vocabulary, and in doing so, reinforce strategies when they appear later in 

the course. 

7.3.3 Explicit Incorporation in Lectures 

During lectures, strategies are presented and discussed after relevant programming 

knowledge content had been covered. Lectures are presented in person to a class of 

on-campus students. The lecture is also recorded and the slides and audio are 

presented together as a „Breeze‟ flash presentation and placed on the course website. 

 

Figure 7.4. Example of a lecture slide showing the Guarded Division plan (slide 1 of 2) 

The example shown in Figure 7.4 is one of two related slides. On the left of the slide 

the outline of the lecture is shown and the current topic, „Guarded Division‟, is 

highlighted. Observe that much of the previous content of the lecture has covered 

programming knowledge. Before a guarded division can be applied novices must be 

aware of the if statement and the division operator (covered in a previous module). 

In the following slide (shown in Figure 7.5 below) students are shown how to apply 

this plan
2
. This strategy is reinforced in the tutorial class held later that same week 

and is assessed in assignments and sometimes in the examination. 

                                                 
2
 The Guarded Division plan is covered early in the course (at week 3) so the implementation shown 

in Figure 7.5 when the divisor is zero is a naive one. The function returns the average if a non-zero 

count is given, but when the count is zero the function returns zero. Ideally an exception would be 

generated in response to this event. 
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Figure 7.5. Example of a lecture slide showing the Guarded Division plan (slide 2 of 2) 

7.3.4 Strategies in Tutorial and Practical Exercises 

Strategies are practiced in Tutorial and Practical classes. Exercises for these classes 

are listed in the Study Book. 

13. Fill in the blanks in the following code which swaps the values of two character variables 
and then outputs the variables new values. 

#include <stdio.h> 

 

int main() { 

 char letter1 = 'a'; // First letter 

 char letter2 = 'b'; // Second letter 

 char temp = '-';    // Temporary position 

 

 // Swap the two letters in a triangular swap 

         
 

         
 

         

 

 // Output the letters 

         

} 
 

Figure 7.6. Example exercise from Module 3 requiring Triangular Swap plan 

The example shown in Figure 7.6 above requires students to apply a Triangular Swap 

plan to swap two character values. The plan name is mentioned explicitly in the code 
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(in a comment) and three blanks imply the use of the triangular swap. Later in the 

course this strategy is used again in an exercise where students write a function that 

takes two pointers and orders the values to which they point. 

Computer Exercises

6. Copy the Guarding Division function example from page 15 that will calculate an 

average.  Add a main() function that will call the average()function.  It should still 

work when the value passed to count is zero.

6.1 Remove the guarding if-else stateme nt so all that remains in the function is the 

return statement.  Now test the function sending zero as the value of count . 

When the program is compiled and run, the operating system should shut the 

program down and display an error.

6.2 Restore the guard to the function and test that it works correctly again.

 

Figure 7.7. Example exercise from Module 5 testing the Division by Zero plan 

Figure 7.7 contains an example of an exercise that asks the students to experiment 

with the Guarded Division plan. This exercise encourages novices to experience the 

consequences (a program crash) resulting from dividing by zero. Through this, 

novices will hopefully come to appreciate the necessity of protecting the division 

with a guard. 

In a description from an earlier instance of the same course, prior to adding strategy 

content explicitly, the following exercise was given as an example. 

Write a program that will allow the user to enter words. Use the %s format 

sequence in a scanf() call to capture each word one at a time. Find the 

length of each word using strlen(). To end the user input, the user will 

enter the string “end”. At the end of the program, output the count of words 

and the average length of the words. 

This example was used in section 4.1.2 to demonstrate how novices were expected to 

learn programming strategies implicitly in order to solve problems. The problem 

statement describes what needs to be achieved, but does not suggest how a solution 

should be constructed. As a contrast, a new version is shown in Figure 7.8 below. In 

the new version students are given the same initial requirement with a few 

programming knowledge embellishments (such as the size of an array). Following 

this, in the third and fourth paragraphs of the problem statement, strategy instructions 

are given. Students are expected to use a Primed Sentinel-Controlled Loop to achieve 

repetition; this plan is named and its use is directed. The students are also reminded 

to guard the division when calculating the average. Note that students are expected to 

know what a sentinel-controlled loop and guarded division are at this stage. This 

problem relies on students possessing a vocabulary that includes the term „sentinel‟, 

which is used to define the value that, when encountered, will stop the repetition. 

Students are deliberately led to practise application of particular strategies for these 

problems in the same way that an instructor might encourage students to use a 

particular language construct, such as a for loop. In the examination, students are 

expected to apply required strategies without being led in this manner. 
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Computer Exercises 

8 Write a program that will allow the user to enter words.  Use the %s format sequence in 

a scanf() call to capture each word one at a time (this will skip whitespace between 

words).  You don't have to keep the user inputs in memory; you only need to deal with 

each word one at a time.  Create an array with 256 characters for the input word.  Set the 

maximum word size as a constant. 

Find the length of each word using strlen().  To end the user input, the user will 

enter the string "end" (you will have to use strcmp() to test for this).  You will need 

to include string.h to use these functions.  Set the sentinel word as a constant. 

At the end of the program, output the count of words, the total number of letters and the 

average length of the words.  Be sure to use a sentinel controlled loop and guard the 

calculation of the average word length.  Keep all numeric values as integers.  

Your program should work if several words are entered before the sentinel, or if the 

sentinel is entered as the first input.  Test your program by entering "end" as the first 

word.  Try entering more than one word per line of input. 
 

Figure 7.8. Example exercise from Module 8 requiring the Sentinel-Controlled Loop and 

Guarded Division plans. Highlighting (added for this figure only) shows strategy content 

7.4 Assessing Strategy Skill in Assignments and Examinations 

As well as being introduced explicitly into instructional materials, programming 

strategies also became explicitly assessed in the course. This section describes how 

programming strategies have been included in assignment instructions and marking 

criteria as well as how examinations have been designed and marked to include 

testing of strategy-related abilities. 

When teaching strategies explicitly, the challenge for instructors is to create 

problems that focus on particular programming strategies. Achieving this allows 

novices to demonstrate specific strategies in assignments and the examination. 

7.4.1 Assignment Instructions 

In assignment instructions students are given tasks that require them to apply specific 

programming strategies. Figure 7.9 below is an extract from an assignment‟s 

instructions where students are asked to use a Primed Sentinel-Controlled Loop to 

input characters entered by a user until the end-of-line is encountered. 
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  In your program, create the following functions. 

… 

void decryptEncryptLine(int shift);  

 This function will shift alphabetic characters by the amount of the shift. The 

function performs in the same manner for encryption and decryption. If the 

shift is a positive amount, this will shift characters forward (encrypt 

characters) and if negative it will shift them back (decrypt characters). 

 The function will input and process each character one at a time until a 

newline character is detected. Use a primed sentinel controlled loop. Do not 

try to store or process entire lines. 

 

Figure 7.9. An extract from the instructions for a programming assignment highlighting the 

requirement for a specific programming strategy 

7.4.2 Assignment Marking Criteria 

As well as requiring specific strategies to be applied in the creation of solutions, the 

marking schema used to evaluate solutions also explicitly includes references to 

specific strategies. 

In the course described here students participate in electronic peer-review as part of 

each assignment. Each marking scheme is constructed well in advance and released 

as part of the assignment instructions. Students are therefore aware of how their 

submission will be judged before they submit. They can see that they will receive 

marks for applying specific programming strategies. Being involved in peer-review, 

students are also expected to be able to judge if a peer-student has correctly applied a 

specific strategy where required by criteria. 

Criteria relating to programming strategies are mixed with other criteria in each 

marking scheme. Figure 7.10 below is an extract from the marking scheme for the 

same assignment that was used in the previous section. 

 

 

… 

Check that no variables are declared outside functions. This does not include 

global constants.  

 A Primed Sentinel Controlled Loop is used to process menu options in the 

main() function 

The function should contain a priming input before the loop and a subsequent 

input at the end of the loop. If the user enters the quit option in the first instance, 

the loop body should not be entered.  

 A Primed Sentinel Controlled Loop is used to gather characters for input 

until the end of a line in the decryptEncryptLine() function 

The function should contain a priming input before the loop and a subsequent 

input at the end of the loop. If the user enters a blank line, the loop body should 

not be entered.  

 Code is indented consistently and no line is longer than 80 characters 

… 

 

Figure 7.10. An extract from the marking scheme stating that a particular programming 

strategy is required in the solution for a programming assignment 
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7.4.3 Examination Questions 

The philosophy used to create questions for the examination is based on the aspects 

listed in section 2.3. Questions attempt to distinguish abilities in knowledge and 

strategies, and separately test comprehension and generation. As noted in section 

2.3.5, by combining these aspects, four types of question can be defined as shown in 

Figure 7.11 (a reproduction of Figure 2.1). 
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Figure 7.11. Four types of examination questions  

based on novice instruction aspects 

Targeting questions to one of these four areas is not always simple. Some questions 

may stray over the boundaries between areas. The focus of the question can be 

reinforced by criteria defining how the answer is awarded marks (see section 7.4.4). 

Knowledge-Comprehension Questions 

In order to test knowledge and comprehension an examination question must focus 

on language syntax but not ask the novice to generate any code. The question should 

test that the student understands an example shown to them, possibly by simulating 

how the code would be executed. An example of a knowledge-comprehension 

examination question is shown in Figure 7.12 below. 
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QUESTION 1 (10 marks, 12min) 

 

What will the following output? 

 
#include <stdio.h> 

 

int testFunc(int *ptr, int num); 

 

int main() { 

 int x=7, y=3, z=5; 

 printf("%i %i\n", x, y); 

 z = testFunc(&y, x); 

 printf("%i %i %i\n", x, y, z); 

} 

 

int testFunc(int *ptr, int num) { 

 int temp; 

 printf("%i %i\n", *ptr, num); 

 temp = num; 

 num = *ptr; 

 *ptr = temp; 

 printf("%i %i\n", *ptr, num); 

 return num + (*ptr); 

} 

 

  

Figure 7.12. Example of a Knowledge-Comprehension examination question 

Knowledge-Generation Questions 

Knowledge-generation questions should require novices to generate code but not 

solve a problem requiring any programming strategies. The question should prompt 

the novice to create code that demonstrates their understanding of specific language 

constructs. An example of such a question is given as Figure 7.13 below. 

QUESTION 4 (10 marks, 17min)

Write a main() function that input an integer from a user and then use a switch statement to respond to 

the user’s input with one of the following outputs:

Where 0 is entered, output hello

Where 1 is entered, output bye

Where any other value is entered, output invalid
 

Figure 7.13. Example of a Knowledge-Generation examination question 

Strategy-Comprehension Questions 

Strategy-comprehension questions are perhaps the most difficult to define. These 

questions must test the strategy potential of a novice without asking them to generate 

any code. Possible ways to achieve this include the following. 

 Asking novices to identify or describe strategies used in a given solution 

 Asking novices to relate common strategies applied across multiple solutions 

 Asking novices to identify how a strategy has been incorrectly applied in, or 

is absent from, a solution 
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QUESTION 5 (5 marks, 18min) 

 

The following function contains a logic error.  In a few words, describe what the error is 

and how you would remedy the error.  Do not re-write the whole function. 

 
int getAverage(int sum, int count) { 

 return sum/count; 

} 

 

 
 

 

Figure 7.14. Example of a Strategy-Comprehension examination question 

In Figure 7.14 we see an example of a strategy-comprehension question that asks the 

novice to identify the strategy-related error in the code and state how the error could 

be corrected. The error can occur when the argument count has a value of zero, 

which would cause a division by zero. There is no guard to protect against this. To 

remedy this problem the student should apply a guard against division by zero. The 

exact „Guarded Division‟ terminology is not critical if the novice can express this 

solution using other words. 
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QUESTION 6 (10 marks, 12min) 

 

There are commonalities and differences in the strategies used in the following three functions. Read the 

functions in the boxes below and answer the questions that follow. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

int func1(int array[ARRAY_SIZE], int var) { 

 int localVar = 0; 

 int i; 

  

 for(i=1; i<ARRAY_SIZE; i++) { 

  if(array[i] == var) { 

   localVar++; 

  } 

 } 

  

 return localVar; 

} 

bool func2(int array[ARRAY_SIZE], int var) { 

 int localVar = 0; 

 bool localVar2 = false; 

  

 while(!localVar2 && localVar<ARRAY_SIZE) { 

  localVar2 = array[localVar]==var; 

  localVar++; 

 } 

  

 return localVar2; 

} 

int func3(int array[ARRAY_SIZE]) { 

 int localVar = 0; 

 int i = 0; 

  

 while(i<ARRAY_SIZE) { 

  if(array[i] > localVar) { 

   localVar = array[i]; 

  } 

  i++; 

 } 

  

 return localVar; 

} 

a. 

b. 

 
a. What is the common strategy used in both func1() and func2()? (5 marks) 

 

b. What is the common strategy used in both func1() and func3()? (5 marks) 

 

Below is a list of some of the strategies covered in the course. 

 Average Plan 

 Divisibility Plan 

 Cycle Position Plan 

 Triangular Swap Plan 

 Counter Controlled Loop Plan 

 Primed Sentinel Controlled Loop Plan 

 Sum and Count Plans 

 Validation Plan 

 Min/Max Plans 

 Tallying Plan 

 Search Algorithm 

 Bubble Sort Algorithm 
 

Figure 7.15. An example of a Strategy-Comprehension examination question 

Figure 7.15 shows a second example of a strategy-comprehension question. Here 

novices are asked to identify the strategies used in the three given functions and pick 

the common strategies between the identified pairs. This is a challenging problem as 

it requires novices to identify strategies even when they may be applied using 

different syntax within the code. 

Strategy-Generation Questions 

Strategy-generation questions are probably what most instructors think of when they 

write a generation question in an examination. It is important, though, that problems 

allow novices to apply specific strategies they have learned in the course. 



Chapter 7 Teaching and Assessing Programming Strategies Explicitly in an Actual Setting 

 Page 99 

QUESTION 7 (20 marks, 24min) 

 

Write a function, using the following prototype, which will prompt the user and read in a 

valid positive integer. If the user enters invalid input, or a negative integer, the function 

will tell them their input was invalid and prompt them to enter another value. The function 

will repeat this until the user enters a valid input. 

 
int getValidPositiveInteger(); 

 

 

For your reference, the following lines of code will clear the standard input stream. 

 
scanf("%*[^\n]"); 

scanf("%*c"); 

 

QUESTION 8 (20 marks, 24min) 

 

Write a main() function that will read in integers and output their average. Input will be 

gathered using the getValidPositiveInteger() function as described above (do not re-

write that function). Stop reading when the value 99999 is entered (this is not to be used as 

an input). 

 
 

 

Figure 7.16. Another example of Strategy-Generation examination questions 

Figure 7.16 gives an example of two questions that formed a series from an 

examination. The first question asks the novice to demonstrate a Validation plan. The 

Validation plan involves a Sentinel-Controlled Loop plan where a valid input is the 

sentinel.  

The second question is essentially the same classic averaging problem defined by 

Soloway (1986) and used in the initial experiment shown in chapter 4. This question 

avoids the pitfalls found when this question was used in earlier experiments (chapters 

4, 5 and 6): inputs are validated by the function they have attempted to answer earlier 

(in question 7) and it is clear that the sentinel should not be used as an input. This 

question requires novices to apply the following plans, each of which is covered 

explicitly in the course. 

 Primed Sentinel-Controlled Loop plan 

 Sum plan 

 Count plan 

 Guarded Division plan 

 Average plan 

 Output plan 

7.4.4 Marking the use of Strategies in the Examination 

When assessing the use of strategies in an examination it is critical that the marking 

scheme does not fall back on syntactical measures. The marking criteria for strategy 

related questions should seek the application of specific strategies or comprehension 

of those strategies. Strategy-generation questions should target specific strategies 

and the marking scheme for these question should award marks where the required 

strategies have been applied, rather than for syntactical correctness. 
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Distinguishing how knowledge-related and strategy-related questions are marked 

forces a greater focus on particular areas from Figure 7.11 at the beginning of this 

section. 

7.5 Methodology 

The experimentation described in this chapter can be considered from three 

perspectives, which can be related back to the research questions stated earlier: 

 to test the possibility of explicitly incorporating and assessing programming 

strategies in an actual introductory programming course (RQ11 and RQ12); 

 to measure the impact of explicit programming strategy instruction and 

assessment on novices by comparing results produced under the new 

curriculum with benchmark measurements from the initial experiment 

(RQ13); and 

 to measure the validity of strategy-related questions used to assess strategy 

skill in students undertaking the new curriculum (RQ14). 

The method for achieving these three aims is described in the following sub-sections. 

7.5.1 Integration 

The first and second research questions (RQ11 and RQ12) raised in section 7.1.1 

consider the possibility of integrating strategy content into an actual introductory 

programming course. The success of this integration, drawing on examples presented 

earlier, is discussed in section 7.6.1. Observations are made on student response to 

the newly incorporated materials and assessment. 

7.5.2 Impact 

The third research question (RQ13) seeks to measure impact of the new curriculum 

relative to curriculum measured in the initial experiment (chapter 4). Students who 

participated in the initial experiment had studied using a curriculum that required 

them to learn strategies implicitly. In the initial experiment students were asked to 

create a solution to a classic averaging problem. Several strategy gaps were detected 

in student solutions indicating flawed understandings of the required strategies. Of 

particular interest was the lack of application of a Guarded Division plan.  

Comparison of performance under the new curriculum with the benchmark 

performance was achieved through two examination questions. One question was 

included in the examination that followed the first integration of explicit 

programming strategy instruction in the second half of 2005 and another from the 

most recent examination at the end of 2007. 

Guarded Division Problem (2005 Examination) 

One of the major flaws in novice strategy skill, detected in the initial experiment 

(described in chapter 4), was poor use of guarded division. A 2005 examination 

question shown as Figure 7.14 (section 7.4.3, page 97) is a strategy-comprehension 

question that targets the Guarded Division plan. This question yields either a correct 

or incorrect response. Student responses to this question were analysed and 

compared to application of Guarded Division in the initial experiment. 
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Averaging Problem (2007 Examination) 

A 2007 examination question shown as Question 8 in Figure 7.16 (section 7.4.3, 

page 99) was a strategy-generation question that repeated the averaging problem 

given to novices in the initial experiment (described in chapter 4). Solutions to this 

question were analysed using the same approach as used in the initial experiment. 

Eight features were analysed in student solutions: seven plans, and the correct 

merging of plans. The presence or absence of each of these features was checked in 

all attempts. The features measured were as follows. 

 Initialisation of a sum variable 

 Initialisation of a count variable 

 A Sum plan in a Primed Sentinel-Controlled Loop 

 A Count plan in a Primed Sentinel-Controlled Loop 

 A guard against division by zero 

 An Average plan 

 An Output plan 

 Merging of the Sum and Count plans inside the Primed Sentinel-Controlled 

Loop 

For more detail on how these features can be identified in a solution, see section 4.4. 

Results from this analysis are compared to results from the initial experiment to 

gauge the impact of introducing explicit strategy instruction and assessment. 

The circumstances surrounding the initial testing were slightly different to a final 

examination. The initial experiment was conducted under examination-like 

conditions (students were not permitted to talk to each other or draw on resource 

materials), but in tutorial classes during the course. Final examinations are held at the 

end of the course, giving students more time between exposure and testing of the 

necessary plans. These differences need to be kept in mind when comparing 

performance between these tests. 

Results of these two examination question comparisons are shown in section 7.6.2. 

Avoiding Bias 

Neither of these two specific questions had been used in the course prior to the 

examinations. The closest problem resembling the averaging problem was the 

average word length exercise given in tutorials and shown in Figure 7.8 (section 

7.3.4, page 93). The course materials covered each of the required strategies. 

Students had opportunities to practice each of the required strategies. These 

strategies were not emphasised more than any other strategies taught in the course. 

In the two examination questions, students are not led to use any specific strategies; 

they are expected to have learned which strategies to apply at this stage (during the 

exam).  

7.5.3 Consistency of Knowledge and Strategy Skill  

The final research question (RQ14) sought to validate testing of strategy skill by 

checking the consistency of students‟ performances in knowledge-related and 

strategy-related questions. Using a controlled examination structure that focuses on 
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knowledge and strategies independently (see section 7.4.3) allows for a comparison 

of skills between these two areas. 

Examination questions from the 2005 and 2007 examinations were used; both 

examinations were held following explicit instruction of strategies. Marks awarded 

for questions targeting knowledge and strategies were compared proportionally and 

correlations were noted. Using this information it was possible to compare the 

relative performance of students between knowledge-related and strategy-related 

questions. If the questions used to measure strategy skill are valid then student 

performance should generally be consistent between these two question types. 

Results of this comparison are shown in section 7.6.3. 

The distinction between performance in knowledge and strategy potential in novices 

is significant as previous research has dwelt upon this relationship (Lister et al., 

2004). A clearer picture of the relationship between these two aspects may help 

instructors and computing education researchers in future. 

7.6 Results 

Results are presented below, again divided by the three perspectives used earlier. 

First the success of integrating programming strategies in an actual introductory 

programming course is discussed. Specific strategy-related responses elicited under 

the traditional and new curriculum are then compared. Finally, the consistency of 

students‟ knowledge and strategy performance is analysed. 

7.6.1 Integration 

Integrating explicit strategy instruction and assessment into an actual introductory 

programming course was achieved. The examples of curricular materials shown in 

section 7.3 and the assessment items described in section 7.4 demonstrate how this 

was achieved. The Strategy Guide used is given as Appendix A. The assessment 

items shown in section 7.4 were added to assignments and examinations during the 

two-and-a-half-year period after the previous experiment. A full examination and 

marking scheme are provided as appendices F and G respectively. 

Perhaps the most arduous part of integrating strategies explicitly was in conceiving 

well focused assessment items. It is challenging to create problems that required 

students to apply specific plans, while maintaining interesting problems. Even so, a 

set of problems was developed to assess strategy skill in assignments and 

examinations. The validity of examination questions used to assess programming 

strategy skill is discussed in section 7.7.3. 

Students accepted the new instruction as part of the course; no student protested 

against the inclusion of strategies as legitimate content. As each new cohort 

undertook the new curriculum, they were not aware that it was different to the 

traditional curriculum that preceded it. Students did not protest against having their 

strategy skills assessed. As mentioned earlier (see section 7.4.2), assignments 

involved peer review, so students were being asked to evaluate the work of their 

peers. Students were asked to complete reviews that required them to judge the 

presence or absence of strategies in the work of their peers. 

Occasionally the author, as instructor, would quiz the class or individual students on 

strategy-related comprehension during the course. For instance, when shown a piece 

of code, such as a Bubble Sort, which contains plans covered earlier in the course, 
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the instructor would ask, “What type of loop is this?”, or “What is this plan for 

swapping a pair of variables called?” Students were able to use a vocabulary of 

strategies to respond. 

Tutorial and practical classes allowed for some observation of students working on 

strategies in a face-to-face setting. Tutorials allowed students to occasionally answer 

and discuss strategy-related questions and students showed no sign that strategy 

instruction was to be appreciated differently to knowledge instruction in the course. 

In practical classes it is possible to detect that a student has a flawed strategy 

understanding and to challenge that flaw based on the strategy content expressed in 

the course. For example, when a student fails to guard a division used to calculate an 

average of user inputs, asking the student to test their program by providing no inputs 

(providing a sentinel as the first input), then asking them why their program does not 

work, inevitably causes them to recall the necessary plan. 

7.6.2 Impact 

Two specific questions were used to compare strategy skill under the previous and 

new curricula. The questions were drawn from two examinations, one which took 

place at the end of 2005 after the first instance of the course to include explicit 

strategy instruction, and one in the most recent instance at the end of 2007. 

Guarded Division Problem (2005 Examination) 

During the initial experiment (from chapter 4) a particularly poorly applied plan was 

the Guarded Division plan, with only four students out of 42 applying this plan. In 

the second semester 2005 examination, under the new curriculum, the strategy-

comprehension question given as Figure 7.14 (section 7.4.3, page 97) was used to 

specifically target comprehension of the Guarded Division plan after explicit 

instruction. This question showed a function used to calculate an average; however, 

there was no guard around the division so it was susceptible to failure if the count of 

values was zero. Students were asked to identify the flaw and suggest a remedy. 

Table 7.1. Change in Guarded Division ability under new curriculum 

 Correct Proportion 

Application in generation experiment (chapter 4) before explicit strategy instruction 4 of 42 10% 

Comprehension in 2005 exam under new curriculum 25 of 36 69% 

Results from Table 7.1 show the poor application of the Guarded Division plan under 

implicit-only strategy instruction and the current potential of students to comprehend 

this plan after explicit instruction. After explicit strategy instruction, correct answers 

to the Guarded Division were provided by 25 of 36 students. This indicates that most 

students had learned and could comprehend the Guarded Division plan, knowing 

where it should be applied. 

Testing comprehension of a strategy (as in this problem) is not directly comparable 

to generation of that strategy (as with the initial experiment). However, knowing that 

69% of students comprehend the Guarded Division plan should be kept in mind 

when considering the results of a direct comparison using a generation task in the 

next subsection. This direct comparison is achieved with a question that required 

students to generate a solution that applies the Guarded Division plan within an 

averaging problem. 
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Averaging Problem (2007 Examination) 

During the examination from second semester 2007 the questions shown in Figure 

7.16 (section 7.4.3, page 99) were used. From this figure Question 8 repeats the 

averaging problem used in the initial experiment (chapter 4). 
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Figure 7.17. Comparison of plan use in averaging problem under curricula including implicit-

only and explicit strategy instruction 

Solutions to this problem were analysed under Goal/Plan Analysis, with the same list 

of plans sought (and merging of the sum and count plans in the SCL). Figure 7.17 

distinguishes results between the initial test, where novices learned programming 

strategies in an implicit-only manner, and the examination under the new curriculum, 

which included programming strategies explicitly. Student results show consistent 

improvement in all plans except one. The Guarded Division plan is still the most 

poorly applied plan, with only 38% of participants using this plan even after explicit 

instruction in this plan. However, according to a chi-squared test, this is a significant 

increase (χ
2
≈9.47, p≈0.002, k=1), almost fourfold from the initial experiment, and 

this level is higher than the level demonstrated by experts (as seen in Table 5.4 from 

chapter 5, page 56). There was also a significant chi-squared increase in use of the 

Sentinel-Controlled Count Loop plan (χ
2
≈4.98, p≈0.03, k=1). 
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Figure 7.18. Comparison of complete and near-complete 

correctness in averaging problem with and 

after without strategy instruction 

Figure 7.18 compares the completeness (use of all expected plans) from the initial 

experiment and results from the averaging question in an examination under a 

curriculum with explicit programming strategies. Under the new curriculum, the 

proportion of correct solutions increased from 2% (1 of 42) to 31% (14 of 45) which 

is a significant chi-squared increase (χ
2
≈12.56, p≈0.0004, k=1). If the most poorly 

applied plan, Guarded Division, is ignored the proportion of complete and near-

complete answers has increased from 20% (10/42) to 49% (22/45) which is also a 

significant chi-squared increase (χ
2
≈5.88, p≈0.02, k=1). 

Table 7.2. Testing for improvement between cohorts 

Exam 
Average Plan 
Application 

Implicit-only (2003) 4.0 of 7 plans (57%) 

Explicit (2007) 4.8 of 7 plans (69%) 

There is an improvement in the average proportion of application of the seven 

expected plans between the student cohorts. As shown in Table 7.2, prior to explicit 

instruction of programming strategies, students applied 57% of the expected plans 

on average. With explicit instruction of programming strategies, this increased to 

69% of the expected plans on average. Using a two-sample t-test (one-tailed) there is 

evidence of a statistically significant improvement between the two cohorts (df=85, 

t≈1.66, p≈0.02). 

7.6.3 Consistency of Knowledge and Strategy Skill  

By definition, a programming strategy is a way of applying programming knowledge 

(Davies, 1993). This infers  that strategy skill is dependent on knowledge skill. If this 

inference holds, students should perform equally or better in knowledge-related 

questions compared to strategy-related questions 
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Table 7.3. Testing dependency of strategies on knowledge 

Exam n 
Average 

Knowledge 
Performance 

Average 
Strategy 

Performance 

Pearson 
Correlation 

P Value 

Explicit 2005 36 72% 68% 0.74 0.000001 

Explicit 2007 45 64% 57% 0.81 0.000004 

The results in Table 7.3 were calculated by grouping examination questions as either 

knowledge questions or strategy questions according to the definitions given in 

section 7.4.3 and finding each student‟s proportional marks for the two groups of 

questions. The results are shown for two examinations. The first from2005 was the 

first time strategies were explicitly incorporated into the curriculum (following the 

experiment described in chapter 6). The second from 2007 is the most recent and the 

semester from which student results were taken for section 7.6.2. 

The results show that on average, students perform slightly better in knowledge 

questions than in strategy questions. Results also show that there is a significant 

correlation between novices‟ results on knowledge-related and strategy-related 

questions in the both examinations. By combining these results we can say that a 

novice will consistently perform slightly better in knowledge-related questions than 

strategy-related questions, but in general, a novice who performs poorly will 

generally perform poorly in both, and a student who performs well will perform well 

in both. This observation is certainly not without exception. Some students did 

perform better in strategy questions thank knowledge questions, but rarely so. 

7.7 Discussion 

In this section we use the experimental results from section 7.6 to answer the 

research questions posed in section 7.2. 

7.7.1 Integration 

RQ11. Can instruction of programming strategies be explicitly incorporated into 

instruction in an actual introductory programming course? 

While it did take some time and effort to transform the traditional curriculum, adding 

explicit strategy content, this was demonstrated to be possible. The amount of 

strategy content is not necessarily fixed; it needs to be further refined. Sharing these 

strategies with other instructors will allow this development. It is useful to reiterate 

that strategies can be used with most imperative and object-oriented languages so 

they would suit the majority of introductory programming courses, requiring little 

change for different languages. 

The author has been asked to reflect, from experience, how programming strategies 

can be integrated well rather than poorly. The author has no evidence to support one 

method over another, so the following are only suggestions. 

 Students should be informed of the approach to learning they should take 

when studying in a course. Students need to be told that they are expected to 

learn the strategies covered in the course. If this is to be assessed, students 

need to know this also. 
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 If our objective is to teach programming strategies, then our assessments 

should be constructively aligned (Biggs, 1999) with this expected learning 

outcome. Reward students for applying strategies. Assessment is an 

instructor‟s currency. Marks force surface learners (Biggs, 1987) to learn 

what an instructor sees as important. Marks show deep learners what an 

instructor sees as important. Pre-defined marking schemes, published with 

assignment instructions, are an excellent way of showing students how they 

will be assessed. Advanced students can be rewarded with bonus marks for 

extension activities. 

 Refer to programming strategies rather than underlying syntax where 

possible. For instance, one could say “use a for loop to achieve that” when a 

more strategic instruction would be “use a counter-controlled loop to achieve 

that”. 

 Like programming knowledge, strategies need to be practiced. Naming them 

is not enough. Students need to see examples and undertake practical 

exercises that focus on strategies. 

RQ12. Can programming strategy skill be measured as part of the assessment in 

an actual introductory programming course? 

It is possible to measure programming strategy ability in novices with tests that 

address both comprehension and generation. A number of different forms of 

assessment have been demonstrated for programming assignments and examinations. 

Most assessment methods used in the new curriculum resemble traditional 

curriculum assessment items, but with careful problem design and objective criteria 

for evaluation, assessment items can be used to focus testing of knowledge and 

strategies independently. 

7.7.2 Impact 

RQ13. What is the impact on novice programmers of incorporating programming 

strategy explicitly into instruction and assessment? 

The results show a significant improvement in students‟ use of strategies under a 

curriculum where strategies are covered explicitly. There is a strong improvement in 

overall completeness of solutions to the averaging problem tested between the initial 

experiment (chapter 4) and an examination under the new curriculum. There is a 

specific improvement in the use of the most poorly applied strategy, the Guarded 

Division plan, although its application is still relatively low. 

7.7.3 Consistency of Knowledge and Strategy Skill 

RQ14. Are novices’ results in assessment of programming strategies consistent 

with their results in assessment of programming knowledge? 

The tests show that results gained in strategy-related questions are consistent with 

results gained in questions covering programming knowledge. This may be seen as a 

measure of validity in the method of testing strategy skill. In overall performance, 

there was consistency found between knowledge-related and strategy-related 

responses. 



Teaching and Assessing Programming Strategies Explicitly in an Actual Setting Chapter 7 

 Page 108 

A novice who performs poorly in knowledge questions will generally perform poorly 

in strategy questions and a student who performs well in knowledge questions will 

perform well (but slightly worse) in strategy questions. This finding supports the 

assumption that programming knowledge is a prerequisite for programming 

strategies. 

7.8 Implications 

This experiment has shown that it is possible to instruct and assess programming 

strategies in an actual introductory programming course. Teaching programming 

strategies in this way creates a vocabulary that can be used in teaching and 

assessment. This vocabulary allows strategies to be reused and reinforced after they 

are presented. Students learn and apply programming strategies more consistently 

when they are presented in an explicit manner than when they are learned implicitly. 

This study has also shown that strategies can be a valid part of assessment and can 

therefore be a valued part of an introductory programming curriculum that aims to 

train novice programmers to apply programming strategies. The methods of strategy 

skill assessment used can be applied to both comprehension and generation exercises 

and conducted throughout a course. Strategy-related questions in examinations can 

elicit results consistent with questions that assess programming knowledge skill. 

Strategy skill testing can also be achieved in regular assignments. 

With a more precise vocabulary for defining a complete solution to a problem, 

instructors can now avoid vague terms such as „elegance‟ and ‟connoisseurship‟ 

when evaluating the work of a novice; instead, instructors can point out what 

strategies are absent or misapplied in novices‟ solutions. 
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programming 
strategies

Explicitly 
incorporate 

programming 
strategies

Test instruction 
and assessment 

in real intro 
programming 

setting

Measure novice 
strategies in implicit-

only setting

Measure novice 
strategies in implicit-

only setting

 

Figure 7.19. Overview of experiments in a process after the fourth experiment 

As can be seen in Figure 7.19, this experiment brings to an end the series of four 

experiments that form the core investigation of this dissertation. 
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8. Findings and Contribution of this Study 

This study set out to create new curricular elements that could help overcome 

barriers documented in literature and thus help to alleviate the poor outcomes for 

students that are caused by these barriers. Encouraging novices to become better 

programmers could ultimately benefit the programming profession and in turn 

benefit the community that depends on programmers. 
Programming Strategy Instruction

tacit

implicit

non-assessed

expressed

explicit

assessable
 

Figure 8.1. Including programming strategies in curricula 

Figure 8.1 (reproduced from Figure 1.1) depicts the aims of this study: to improve 

introductory programming curricula by plainly expressing programming strategies 

and instructing and assessing these strategies explicitly. 

Measure novice 
strategies in implicit-

only setting

Validate authentic 
expert 

programming 
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incorporate 

programming 
strategies

Test instruction 
and assessment 

in real intro 
programming 

setting  

Figure 8.2. Overview of experiments as a process 

The aims of this study were explored in a series of four experiments summarised in 

Figure 8.2 (reproduced from Figure 3.3), which contributed the core findings of the 

study. Section 8.1 consolidates the experimental work described in chapters 4 to 7. 

For each experiment research questions are revisited and results are described. In 

section 8.2, the contribution of the work in this study is identified in the context of 

computing education research. Finally, in section 8.3, suggestions are made for 

future extensions to the work done in this study. 

8.1 Findings of this Study 

The results of experimentation, described as answers to research questions, form the 

overall findings of this study. These can now be elaborated. 

8.1.1 Initial Experiment 

The initial experiment, described in chapter 4, set out to find a benchmark of 

programming strategy skill for students learning under a traditional curriculum with 

strategies taught implicitly. In this experiment the following research questions were 

asked. 

RQ1. What is the potential of students who have been exposed to an implicit-

only teaching of programming strategies to solve a sub-algorithmic 

problem that requires application of a number of programming strategies 

for a complete solution? 



Findings and Contribution of this Study Chapter 8 

 Page 110 

When asked to create a solution for a classic averaging problem, many students 

failed to demonstrate application of important strategies. Only a single student 

was able to achieve a fully complete solution to the problem. On average, students 

applied 57% of the expected plans. 

In particular, participating students were not consistently able to: 

 initialise sum and/or count variables, 

 use a correct looping strategy for the given problem, 

 guard against events such as division by zero, or 

 merge plans that should be applied together. 

RQ2. What are the deficiencies in the curriculum that are demonstrated by 

students' solutions to the given problem? 

The initial experiment showed that many novices had not learned the specific 

programming strategies covered in the experiment. The curriculum relied on 

implicit instruction of programming strategies and had not allowed most students 

to learn plans to a level where they could demonstrate the application of these 

plans. 

The initial experiment found common programming strategy flaws in solutions 

created by novices across an entire student cohort. The novices had studied a 

curriculum that required them to learn programming strategies implicitly. Biederman 

and Shiffrar (1987) found that explicit instruction can be far more effective than 

implicit-only instruction. When considered in the context of an introductory 

programming course, this suggested that if programming strategies could be 

expressed and incorporated explicitly into an introductory curriculum, this might 

improve the programming strategy potential of novices. 

8.1.2 Expert Strategies Experiment 

The findings of the initial experiment were used to justify instruction of strategies in 

an explicit manner. But before this instruction could be undertaken, an authentic 

representation of strategies, consistent with those found in solutions created by 

experts, was needed. 

The strategies used by experts were explored in the second experiment, described in 

chapter 5. Plans proposed by Soloway (1986) were proposed as a model of the sub-

algorithmic programming strategies used by experts. To test this proposal, experts 

were asked to solve three sub-algorithmic-level problems which were analysed to 

answer the following questions. 

RQ3. Do experts exhibit identifiable plans in their solutions to problems? 

Experts‟ solutions to the three problems included code that could be identified as 

applications of the expected plans. This finding indicated that plans are used by 

expert programmers. 

RQ4. Can an authentic set of strategies, used by experts, be represented in an 

explicit form, suitable for instruction? 
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By finding that plans are consistent with the solutions of experts, it is justifiable 

that plans be used as an expression of expert strategies. Plans are a simple form 

of strategies that can be incorporated explicitly into an introductory programming 

curriculum. 

RQ5. Does the potential to represent authentic programming strategies mandate 

explicit instruction of programming strategies to novices? 

Based on the advantages of using explicit instruction (Biederman and Shiffrar, 

1987, Baddeley, 1997, Berry and Dienes, 1993) and indications that novices can 

become more effective by focusing on programming strategies (Robins et al., 

2003, Soloway, 1986), it is justifiable to incorporate programming strategies 

explicitly into the introductory programming curriculum. Plans are an authentic 

representation of experts‟ programming strategies at a sub-algorithmic level, and 

can be used to explicitly represent strategies. 

8.1.3 Artificial Curriculum Experiment 

With justification and a validated set of strategies, an experiment was conducted to 

measure the potential to incorporate programming strategies in an introductory 

programming curriculum, initially in a limited manner. A third experiment, described 

in chapter 6, was conducted in an artificial setting to test a curriculum that included 

programming strategies explicitly in lectures, written course materials, exercises and 

assessment. The following questions were used to guide this investigation. 

RQ6. Can programming strategies be explicitly incorporated into an 

introductory programming curriculum? 

In the experiment, two groups (an experimental and control group) were trained 

over separate weekend periods. Both groups were exposed to a common base 

curriculum, which included programming knowledge content and exercises. The 

experimental group were also exposed to additional content which explicitly 

covered a limited set of programming strategies. By describing and using a 

curriculum that included strategies explicitly, it was shown that such integration 

can be achieved. 

RQ7. What is the significance of the time consumed by this additional 

instruction? 

Introducing additional material did increase the time consumed by lecture 

sessions. However, the same schedule was followed for the experimental and 

control weekend sessions, even with the additional explicit instruction in the 

experimental curriculum. All participating students were able to complete 

exercises before the end of each session, indicating a reduction in the time taken 

by experimental participants to complete exercises. This indicates that the 

additional time needed for explicit strategy instruction was not significant and did 

not cause undue burden on students or instructors. 
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RQ8. Can programming strategies, explicitly taught in an introductory 

programming course, be assessed? 

Goal/Plan Analysis was used to measure all participants‟ application of 

programming strategies in generation exercises at the end of the course. 

Goal/Plan Analysis was found to be limited as an assessment method as it requires 

students to generate code before strategy skill can be assessed, and is only useful 

towards the end of a course. 

RQ9. What impact does explicit strategy instruction have on students and their 

ability to apply strategies when compared to an implicit-only approach? 

This experiment found that when programming strategies are taught explicitly, 

students may be more likely to understand and apply these strategies than when 

students are expected to learn strategies implicitly. Novices taught programming 

strategies explicitly used strategies more often in their solutions, although not 

significantly so. 

RQ10. Are there any other observable effects or contrasts between students of a 

traditional curriculum and one with added explicit programming strategy 

instruction? 

Students shown programming strategies explicitly used strategy terms from the 

strategy-related vocabulary presented in the curriculum during interviews. In an 

actual introductory programming curriculum, such a vocabulary could be used 

between instructors and students to aid teaching and assessment. 

From interviews it was found that students who covered the curriculum containing 

explicit strategies showed confidence in the solutions they had created and their 

understanding of the strategies used to create them, while students not exposed to 

this curriculum doubted their abilities. 

These findings were justification for incorporating programming strategies in a full 

introductory programming curriculum. 

8.1.4 Explicit Programming Strategy Instruction in an Actual Course 

Following the successful integration of explicit programming strategy content in an 

artificial curriculum, and noting the effects of this integration, a full-scale integration 

was undertaken with an actual introductory programming course. This integration is 

described in chapter 7. The following questions were considered when measuring the 

potential for, and effectiveness of, integrating programming strategies explicitly. 

RQ11. Can instruction of programming strategies be explicitly incorporated into 

instruction in an actual introductory programming course? 

Programming strategies were successfully integrated as explicit content in an 

actual introductory programming course. This integration was achieved by 

inserting programming strategies at points following prerequisite programming 

knowledge. Programming strategies were described in written materials, discussed 

in lectures, and practised during tutorials and practicals. A Strategy Guide, 
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collating all of the strategies covered in the course, was also produced and given 

to students. 

RQ12. Can programming strategy skill be measured as part of the assessment in 

an actual introductory programming course? 

Programming strategy skill can be measured at different times during a course 

through assignments and examinations. With careful problem design and 

objective criteria for evaluation, assessment items can be used to focus on testing 

knowledge and strategies independently. 

RQ13. What is the impact on novice programmers of incorporating programming 

strategy explicitly into instruction and assessment? 

Student performance under the new curriculum was compared to the benchmark 

measured in the initial experiment from chapter 4. Results showed significant 

improvements in strategy-related performance under the new curriculum. There 

was an improvement in overall completeness of plans applied in novices‟ 

solutions to the averaging problem. 

RQ14. Are novices’ results in assessment of programming strategies consistent 

with their results in assessment of programming knowledge? 

Results from student responses to strategy-related questions are consistent with 

questions covering programming knowledge. A novice who performs poorly in 

knowledge questions will generally perform poorly in strategy questions. A 

student who performs well in knowledge questions will generally perform well 

(but slightly worse) in strategy questions. As well as adding credibility to testing 

of programming strategies, this finding also adds evidence to the assumption that 

programming knowledge is a prerequisite for programming strategies. 

The inclusion of explicitly described programming strategies positively impacted the 

programming strategy potential of novices who undertook this new curriculum. By 

separating testing of programming knowledge and strategies, the consistency of the 

method for assessing programming strategies was verified. Distinguishing 

programming knowledge skill from programming strategy skill added evidence to the 

fundamental tenet that programming knowledge is prerequisite to programming 

strategies. 

8.2 Contribution 

Studies have shown universally poor results by novices on standardised tests 

conducted at institutions across the world (McCracken et al., 2001). Novices produce 

poor results in standardised program generation tests, with many novices having a 

fragile knowledge (Lister et al., 2004) and most novices failing to demonstrate 

programming strategies (Lister et al., 2006). 

The work undertaken for this dissertation contributes to the field of computing 

education research by: 

 improving understanding of the distinction between programming knowledge 

and programming strategies (§2.3.2, §7.5.3); 
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 identifying a level of problems relevant to novices (§2.3.3); 

 discovering that novices develop a flawed set of programming strategies 

when learning strategies implicitly (RQ1, §4.6.1); 

 describing deficiencies in a traditional implicit-only curriculum with respect 

to instruction of programming strategies (RQ2, §4.6.2); 

 demonstrating that plans are programming strategies that appear in solutions 

created by experts (RQ3, §5.6.1); 

 representing strategies in a form that can be explicitly incorporated into a 

curriculum (RQ4, §5.6.2); 

 demonstrating that programming strategies can be explicitly incorporated 

into an introductory programming curriculum without undue time pressure 

through a controlled experiment that compared a traditional implicit-only 

strategy curriculum to a curriculum incorporating programming strategies 

implicitly (RQ6, §6.6.1, RQ7, §6.6.2); 

 experimentally testing the effects of instructing programming strategies 

explicitly to novices, which including difference in performance (RQ9, 

§6.6.4), increased confidence and use of a vocabulary of strategies (RQ10, 

§6.6.5); 

 describing how programming strategies can be explicitly incorporated into 

teaching materials (RQ11, §7.3) and assessment items used for an actual 

introductory programming course (RQ12, §7.4); 

 measuring improved outcomes produced by explicitly instructing 

programming strategies by comparing students‟ results with a baseline 

standard set under an implicit-only curriculum (RQ13, §7.7.2); and 

 adding evidence to the logical inference that programming knowledge must 

precede programming strategies (RQ14, §7.7.3). 

These contributions are intended to improve outcomes for novices by improving the 

curricula delivered to novice programmers. With a well defined and justified method 

for instructing novices in programming strategies, poor standards of performance, 

measured around the world, might be improved. 

Ultimately, assisting novice programmers to construct a more consistent and 

coherent body of programming strategies may aid them in later programming study, 

and guide their development as experts who can advance the art of programming. 

8.3 Future Work 

The experiment described in chapter 6, which was conducted in an artificial setting, 

provided justification to incorporate explicit programming strategy instruction in an 

actual introductory programming course. A number of flaws were identified in the 

experimental methodology. Conducting the experiment again would allow for 

reproduction of results, adding confidence to the findings of that experiment. If this 

were to be undertaken the following changes could be made. 

 Seek larger groups of participants 

 Conduct the experiment over a longer period to allow absorption of concepts 

 Use methods of assessment not limited to Goal/Plan Analysis throughout the 

course to measure programming strategy skill 
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The set of plans used in the curriculum, described in chapter 7 and given in full in 

Appendix A, might be useful to instructors. This set of plans could be further 

developed and improved by: 

 formalising the representation of plans, 

 extending the set of plans, and 

 developing a repository of assessment item examples that test programming 

strategy skill. 

To make programming strategies accessible, these ideas may be published in a 

programming textbook, to be used by instructors and novices. 

By explicitly teaching programming strategies and separating these strategies from 

programming knowledge, it may be possible to investigate the impact of such 

teaching on the learning styles and meta-cognition of novice programmers. The 

following research questions could be explored. 

 Can programming strategy performance be linked to a „deep approach‟ to 

learning (Biggs, 1987)? 

 Can students‟ potential to solve problems be explored without asking them to 

generate solutions? 

 Are students aware of which problems they can solve? 

 Can gaps in programming strategy ability be identified and repaired before 

summative assessment? 

 Is there a lag between instruction, comprehension and generation of 

programming knowledge and strategies, and if so, can this be measured? 

Sub-algorithmic programming strategies could conceivably become as much a part 

of future novice instruction as programming syntax. By turning away from failing 

traditional curricula and creating new curricula with well justified content and 

pedagogically sound delivery, programming instructors might begin to deliver more 

acceptable student outcomes. 
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Appendix A. Programming Problem Solving Strategies 
Reference 

Introduction 

This appendix contains a number of useful strategies relevant to an introductory 

programming course, but also necessary to solve problems of a more complex nature. The 

list is not complete, but contains strategies that are well defined and malleable enough be 

manipulated to suit particular problems. 

This appendix should be seen as a tool-kit for solving problems at a sub-algorithmic level. 

The plans at this scale usually do not constitute an entire algorithm (although some approach 

this level) but usually form part of a greater algorithm. 

This reference is not meant to be a complete curriculum; it is merely a short reference guide. 

Certain programming language knowledge (constructs and functions) are required before 

each plan can be applied. These dependencies are listed in italics at the beginning of each 

plan. 
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Plan Integration  

Before introducing the plans, it is important to discuss how plans can be integrated into a 

whole solution. There are three ways of combining plans. 

Abutment 

Abutment is placing plans or steps within plans one after the other. The sequence of these 

defines the necessary order that must be followed to be successful. For example, if we wish 

to perform calculations on user inputs, we must first get the inputs before we can perform the 

calculation. 

Merging 

Often two plans need to be achieved together. Step within the two plans may be intertwined 

in their order so that they can be achieved together. A processor can only achieve one 

instruction at a time so these steps cannot be achieved simultaneously, but the steps can be 

placed one after another in arbitrary order. For example, if we were wishing to calculate an 

average of a set of numbers we need to count the numbers and sum the numbers. Rather than 

inputting and processing the set of numbers twice, we can merge these two plans and achieve 

them together. 

Nesting 

Where one plan is contained within another, the inner plan is said to be nested inside the 

outer plan. For example, if we were summing numbers we may nest the summing plan 

within one of the specific looping plans. If we were to calculate an average, we may nest this 

within a Guarded Division plan to avoid division by zero in the average calculation. 

Plan 1. Average Plan 

This plan requires an understanding of the division operator. 

Finding the average of a series of numbers is a common task in programming.  To calculate 

the average we need the sum of the numbers and the count of the numbers.  Assuming we 

have these two values we calculate the average by dividing the sum by the count. 

average = sum / count 

Here is an example in the context of a full program. 

#include <stdio.h> 

 

int main() { 

 int sum = 15;   // Stores the some of some numbers 

 int count = 3;  // Stores the count of those numbers 

 int average;    // Will store the calculated average 

 

 // Calculate the average 

 average = sum / count; 

 

 // Output the average 

 printf("Average: %i\n", average); 

} 
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Here is the output of the above program. 

Average: 5 

Plan 2. Divisibility Plan 

This plan requires an understanding of the mod operator and selection statements. 

If we wish to see if one number is evenly divisible by another, we can use the mod operator.  

If this operator produces a result of zero we know that the first operand is divisible by the 

second.  The mod operator gives us the remainder after division.  If there is no remainder we 

know that the first operand is divisible by the second.  In a real world application, if we were 

to group objects, say apples, we may wish to know if we can form complete groups from the 

number of apples at hand.  If we have 12 apples we can divide this into 4 groups of 3 with no 

remainder. 

 

We can apply the same to numbers in code, for example… 

12 % 3   results in 0 so we can say 12 is divisible by 3 

We can also see when a number is not divisible by another.  If we group 12 apples in to 

groups of 5 we are left with 2 apples remaining. 

 

Again we can apply the same to numbers in code, for example… 

12 % 5   results in 2 so we can say 12 is not divisible by 5 
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Here is an example in the context of a full program. 

#include <stdio.h> 

 

int main() { 

 int numberToCheck = 12;  // A number to check for divisibility 

 int firstDivisor = 3;    // A sample divisor to use 

 int secondDivisor = 5;   // Another sample divisor to use 

 int result;              // Will store the result of mod operation 

 

 // Check the divisibility using first divisor 

 result = numberToCheck % firstDivisor; 

 printf("Result using %i: %i\n", firstDivisor, result); 

 

 // Check the divisibility using second divisor 

 result = numberToCheck % secondDivisor; 

 printf("Result using %i: %i\n", secondDivisor, result); 

} 

Here is the output of the above program. 

Result using 3: 0 

Result using 5: 2 

The above results show that 12 is divisible by 3 but 12 is not divisible by 5. 

Here is a program that tests if numbers are even. An even number is divisible by two. 

#include <stdio.h> 

 

int main() { 

 int firstNumberToCheck  = 4;   // Number to check divisibility by 2 

 int secondNumberToCheck = 5;   // Another " 

 

 // Check if first number is even 

 if(firstNumberToCheck%2 == 0) { 

  printf("%i is even\n", firstNumberToCheck); 

 } 

 else { 

  printf("%i is not even\n", firstNumberToCheck); 

 } 

 

 // Check if second number is even 

 if(secondNumberToCheck%2 == 0) { 

  printf("%i is even\n", secondNumberToCheck); 

 } 

 else { 

  printf("%i is not even\n", secondNumberToCheck); 

 } 

} 

Here is the output of the above program. 

4 is even 

5 is not even 
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Plan 3. Cycle Position Plan 

This plan requires an understanding of the mod operator. 

It is possible to form a series of numbers into a cycle.  Each 

number will then have a relative position within the cycle.  

For example we can to take a series of numbers beginning 

with zero and group them by fours.  Each number would 

then have a relative position within each cycle from zero to 

three.  In the figure above we see such a cycle.  The 

numbers are in four groups and each group has a relative. 

Numbers with position 0 are { 0, 4, 8, … }, numbers with 

position 1 are { 1, 5, 9, … } and so on. 

We can determine the position of a number in a cycle using 

the mod operator.  As a general rule numbers can be brought into a cycle of size n by 

applying mod n. 

x % n   gives the position of x in a cycle of size n 

For example if we want to create a size 3 we can apply mod 3 and we can then find positions 

of numbers in this cycle. 

... 

 9 % 3 gives 0 

10 % 3 gives 1 

11 % 3 gives 2 

12 % 3 gives 0  …and so on. 

One useful application of this idea is to bring random numbers into a range.  In the C/C++ 

language random numbers are generated in a range from 0 to the largest possible integer 

value (with 4 byte integers this is 2147483647).  If we want to generate a random number in 

a specified range, we can take the random number given by the standard library function 

rand() and find its position in a specified cycle. 

x % n   gives the a value in the range   0 to n-1 

If we wanted to have a random number between 0 and 4 we can apply mod 5. 

myRand = rand() % 5; 

If we want a random number between 1 and 5 we can shift the previous range by adding 1 to 

the result. 

myRand = rand() % 5 + 1; 

We can also shift such a range in a negative direction.  The diagram below shows a range 

and how it can be visualised when shifted. 

0 1 2 3 4

51 2 3 4

0 1 2-2 -1

0 to 4

1 to 5

-2 to 2

x % 5

x % 5 + 1

x % 5 - 2
 

We can create a function that generates a random number between 1 and 10 as follows. 

0

7
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int rand1to10() { 

 return rand()%10 + 1; 

} 

We can generalise this function to apply settable upper and lower limits. 

int myRand(int lowerLimit, int upperLimit) { 

 return rand()%(upperLimit-lowerLimit+1) + lowerLimit; 

} 

Plan 4. Number Decomposition Plan 

This plan requires an understanding of the mod and division operators. 

We can use the division and mod operators to tear numbers apart.  For example, if we want 

to find the last two digits of 12345 we can apply mod 100. For decimal digits the following 

rules apply. 

x % 10 gives the last digit 

x % 100 gives the last two digits 

x % 1000 gives the last three digits 

x % 10000 gives the last four digits  …and so on. 

Applying a similar idea we can discover the first digits of a number using the division 

operator.  Using a 5 digit number, the following rules apply. 

x / 10000 gives the first digit 

x / 1000 gives the first two digits 

x / 100 gives the first three digits 

x / 10 gives the first four digits. 

To find the third last digit of a decimal number we can apply the following operation. 

thirdLastDigit = x % 1000 / 100; 

Plan 5. Initialisation Plan 

This plan requires an understanding of variables and the assignment operator. 

Initialisation is commonly applied within other plans. 

Failing to initialise variables before they are used can lead to errors. 

It is recommended that you initialise all variables when you declare them. 

In the following example sum is initialised to 0 as this is an appropriate sum before 

summing commences. 

int sum = 0; 
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In some plans it may be necessary to initialise an array of items. For instance, here we are 

initialised an array used to tally letters in a message. 

#include <stdio.h> 

 

int main() { 

 int letterCount[26]; // Array to store count of letters 

 int i;               // Iterative counter 

 

 // Initialise array of counts 

 for(i=0; i<26; i++) { 

  letterCount[i] = 0; 

 } 

 

 ... 

} 

Plan 6. Triangular Swap Plan 

This plan requires an understanding of variables and the assignment operator. 

Consider how you swap two items. Imagine two pencils in front of you. To swap their 

positions you would pick up one with one hand, the second with your other hand and then 

place each in their new positions. 

Position 1 Position 2

 

A computer can only perform one action at a time. Now, imagine that you only have one 

hand; how would you swap the positions of the two pencils now? Keep in mind also that 

when a variable is assigned a new value, the old value is replaced and cannot be accessed 

later. Attempting to swap using the above method will result in two copies of the same value. 

Temp Pos

Position 1 Position 2

1
Temp Pos

Position 1 Position 2

2

Temp Pos

Position 1 Position 2

3

 

To achieve a swap a temporary position is needed. One of the pencils could be moved to the 

temporary position; the second pencil could be moved to its new location; finally the first 

pencil could be moved from the temporary position to its new position. 
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Here is an example in the context of a full program. 

#include <stdio.h> 

 

int main() { 

 int firstPosition  = 5; // First position containing value to swap 

 int secondPosition = 6; // Second position containing value to swap 

 int tempPosition;       // Temporary position for swap 

 

 // Output the numbers after the swap 

 printf("Before Swap...\n"); 

 printf("First: %i, Second: %i\n", firstPosition, secondPosition); 

 

 // Swap the two numbers in a triangular swap 

 // 1. Copy the value from the second position to temp 

 tempPosition = secondPosition; 

 

 // 2. Copy the value from the first position to the second 

 secondPosition = firstPosition; 

 

 // 3. Copy the value from the temp position to the first 

 firstPosition = tempPosition; 

 

 // Output the numbers after the swap 

 printf("After Swap...\n"); 

 printf("First: %i, Second: %i\n", firstPosition, secondPosition); 

} 

Here is the output of the above program. 

Before Swap... 

First: 5, Second: 6 

After Swap... 

First: 6, Second: 5 

The above results show the values are swapped and not duplicated. 

Plan 7. Guarded Exception Plans 
(including Guarded Division Plan)  

This plan requires an understanding of the if statement. 

When a program compiles and runs, there are still opportunities for things to go wrong.  

Usually such logic errors occur around or outside boundaries of the data being worked on.  

Such boundaries include: 

 Absence of data where some is expected, 

 Negatives or zero where positives are expected, 

 Too much data where a finite amount is expected, and 

 Values outside an acceptable range. 

To create reliable, "bullet proof" programs, these boundary conditions need to be considered. 

There are also time where a program may encounter data that, when used in operations, will 

cause the operating to stop the program. 

In mathematics, if a number is divided by zero the result is undefined.  If a program attempts 

to divide by zero, the operating system will close the program down.  Whenever we perform 

a division where the second operand could be zero, we must test the second operand before 

performing the division and prevent the division from taking place if it is zero. 

Here is an example in the context of a full program. 
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int main() { 

 int firstOperand;  // First operator for division 

 int secondOperand; // Second operator for division 

 

 // Gather inputs for division 

 printf("Enter two integers for division: "); 

 scanf("%i %i", &firstOperand, &secondOperand); 

 

 // Test second operand 

 if(secondOperand != 0) { 

  

  // Perform division 

  printf( 

   "%i divided by %i is %i", 

   firstOperand, 

   secondOperand, 

   firstOperand / secondOperand 

  ); 

 } 

} 

Here is the output of the above program when the value 5 is given as the second operand. 

Enter two integers for division: 10 5 

10 divided by 5 is 2 

When a zero value is given for the second operand, no output is produced and the program 

ends. 

Enter two integers for division: 10 0 

Here is another example that incorporates Guarded Division into a function which calculates 

an average from a given sum and count. 

int average(int sum, int count) { 

 

 // Test against dividing by zero 

 if(count == 0) { 

  return 0; 

 } 

 

 // Perform division as normal 

 else { 

  return sum / count; 

 } 

} 
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Plan 8. Counter Controlled Loop Plan 

This plan requires an understanding of looping constructs. 

A Counter Controlled uses a counter variable which is incremented until a set number of 

repetitions is achieved. The loop will continue regardless of any other event that may occur 

during repetition. 

The following example reads in 10 integers from a user and calculates the sum.  The 

program will continue regardless of what the user inputs.  We usually use for loops to 

achieve counter controlled loops. 

#include <stdio.h> 

 

const int NUMBER_OF_INPUTS = 10; 

 

int main() { 

 int i = 0;     // Loop iterator 

 int sum = 0;   // Sum of numbers input 

 int userInput; // Input from user 

 

 // Calculate the sum 

 for(i=0; i<NUMBER_OF_INPUTS; i++) { 

  printf("Enter a number: "); 

  scanf("%i", &userInput); 

  sum += userInput; 

 } 

 

 // Output the sum 

 printf("Sum: %i\n", sum); 

} 

Counter Controlled loops are often used with arrays. When this happens the loop iterator can 

serve the dual purpose of being an index into the array. For an example of this see the 

initialisation of an array in Plan 5. 
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Plan 9. Primed Sentinel Controlled Loop Plan 

This plan requires an understanding of looping constructs. 

A Primed Sentinel Controlled Loop allows repetition until an event takes place or some 

target value (the sentinel) is discovered. 

Here is an example including a primed sentinel-controlled loop. Not that the loop tests 
userInput to determine if it should continue looping. The variable is being compared to 
the sentinel value SENTINEL. The value of userInput is primed with an initial user input 
before the loop begins. Although this adds some redundancy (the input statement appears 
twice) there can be efficiency savings made when the user enters the sentinel value in the 
first instance (which is not uncommon). 

#include <stdio.h> 

 

const int SENTINEL = 9999; 

 

int main() { 

 int sum = 0;   // Sum of numbers input 

 int userInput; // Input from user 

 

 // Get the first user input 

 printf("Enter a number (%i to end): ", SENTINEL); 

 scanf("%i", &userInput); 

 

 // Calculate the sum 

 while(userInput != SENTINEL) { 

  sum += userInput; 

  printf("Enter a number (%i to end): ", SENTINEL); 

  scanf("%i", &userInput); 

 } 

 

 // Output the sum 

 printf("Sum: %i\n", sum); 

} 

If the user where to enter the sentinel value as their 
first input, the loop would never be entered.  The sum 
will also be correct as we are checking each user input 
before it is added to the sum. This avoids accidentally 
including the sentinel value in the sum. 

 

 

 

Success

Failure

Test

Input

Input

Body of Loop
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Plan 10. Sum and Count Plans 

This plan requires an understanding of looping 

constructs and initialization. 

Two frequently practiced programming activities are 

summing or counting values.  These simple processes 

are easily achieved, but also easily messed up.  Both 

plans are achieved by using a variable to accumulate 

the sum or count as values are encountered.  The key 

to both is assuring that the sum or count variable is 

initialised to zero.  Failing to initialise such a variable 

will not stop your program from compiling.  In many 

instances an uninitialised variable will have a value of 

zero so the program will work, but it will not work all 

the time.  Just remember: 

INITIALISE SUM AND COUNT VARIABLES 

Below is an example which inputs and sums 5 numbers from a user. Note a Counter 

Controlled loop is used to control repetitions as we know how many are desired before the 

looping begins. 

#include <stdio.h> 

 

const int NUMBER_OF_INPUTS = 5; 

 

int main() { 

 int userInput = 0; // Input from user 

 int sum = 0;       // Sum of inputs INITIALISED 

 int i;             // Iterative counter 

 

 // Counter Controlled loop to repeat inputs 

 for (i=0; i<NUMBER_OF_INPUTS; i++) { 

   

  // Prompt for input 

  printf("Please enter an integer: "); 

  scanf("%i", &userInput); 

   

  // Add input to sum 

  sum += userInput; 

 } 

  

 // Output the sum 

 printf("Sum of numbers entered: %i\n", sum); 

} 

The output of the above program will resemble the following. 

Initialise Sum or Count to zero

CCL or SCL

Get Value

Add/Increment Sum/Count

…
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Please enter an integer: 1 

Please enter an integer: 2 

Please enter an integer: 3 

Please enter an integer: 4 

Please enter an integer: 5 

Sum of numbers entered: 15 

The following is an example which counts numbers entered by a user unit the value 9999 is 

encountered as a sentinel. 

#include <stdio.h> 

 

const int SENTINEL = 9999; 

 

int main() { 

 int userInput = 0; // Input from user 

 int count = 0;     // Count of inputs INITIALISED 

 

 // Prompt for initial input 

 printf("Please enter an integer: "); 

 scanf("%i", &userInput); 

 

 // Test for sentinel 

 while( userInput != SENTINEL ) { 

 

  // Count input 

  count++; 

 

  // Subsequent input 

  printf("Please enter an integer: "); 

  scanf("%i", &userInput); 

 } 

 printf("You entered %i inputs\n", count); 

} 

The output of the above program will resemble the following. 

Please enter an integer: 1 

Please enter an integer: 2 

Please enter an integer: 3 

Please enter an integer: 9999 

You entered 3 inputs 

Plan 11. Validation Plan 

This plan requires an understanding of loops and the scanf() function (or 

equivalent). 

 When dealing with inputs from users one can never 

assume they will enter what is expected. It is therefore 

important, for critical systems, to validate that users have 

entered what they were expected to enter, and repeat 

inputs, with appropriate messages, in the case where users 

enter invalid inputs. 

The plan shows here prompts the user and accepts an initial 

input. The value is then tested as the condition of a Sentinel 

Controlled loop where the sentinel is a valid input. 

Initial Prompt

Test for Valid Input (SCL)

Clear Input Stream

Error Message Prompt

Initial Input

Subsequent Input

Clear Input Stream

Initial Prompt

Test for Valid Input (SCL)

Clear Input Stream

Error Message Prompt

Initial Input

Subsequent Input

Clear Input Stream
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Testing for validity can take two forms: 

 Testing if a valid input type has been entered, for instance, if an integer is expected, 

it is important to know that one has been entered. 

 Once the first test has been satisfied, and where a value within a specified range is 

expected, then the value of the input should be tested. 

The user will usually enter a valid input in the first instance, but if they do not, in the loop an 

error message is output and a subsequent input is gathered. This looping can continue 

indefinitely until the user enters a valid value. 

After each input (within the loop and after the loop) the input stream is cleared. If the user 

has entered additional, unwanted data, either accidentally or maliciously, then it will be 

removed before the next input is sought. 

Here is an example function that gathers a valid integer in a specified range. 

int getValidIntegerInRange(int lowestAllowed, int highestAllowed) { 

 int userInput = 0;      // Input from user 

 int inputsGathered = 0; // Number of inputs from scanf() 

 

 // Prompt for initial input 

 printf( 

  "Please enter an integer between %i and %i: ", 

  lowestAllowed, highestAllowed 

 ); 

 inputsGathered = scanf("%i", &userInput); 

 

 // Test for valid input 

 while( 

  inputsGathered !=1 || 

  userInput < lowestAllowed || 

  userInput > highestAllowed 

 ) { 

 

  // Clear standard input 

  scanf("%*[^\n]"); 

  scanf("%*c"); 

 

  // Error message prompt 

  printf( 

   "Invalid input. " 

   "Please enter an integer between %i and %i: ", 

   lowestAllowed, highestAllowed 

  ); 

  inputsGathered = scanf("%i", &userInput); 

 } 

  

 return userInput; 

} 

Note that where inputs are gathered from the user, the return value from scanf() is also 

captured. The function scanf() will attempt to input values according to the format string, 

storing the values at the addresses provided. The return value of scanf() is not an input 

value, but the number of values that have been successfully input and stored. Using this we 

can determine if an appropriate value has been entered by the user. See the description of 

scanf() in Appendix 1 for more detail. 
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Plan 12. Min/Max Plans 

This plan requires an understanding of looping constructs and the if statement. 

To find the minimum or maximum from a number of 

user inputs, it is not necessary to keep all candidates, 

just the current min/max at any stage. 

This process starts by selecting an initial value for the 

min/max variable. If searching for a maximum, 

initialise to the minimum possible value.  If searching 

for the minimum, initialise to the maximum possible 

value. In that way the first value encountered will 

become the new min/max. Alternately the first value 

encountered (if it can be guaranteed there will be a 

single value) can be used as the initial value for the 

min/max. 

As each candidate is presented within a loop (a counter controlled loop or sentinel controlled 

loop) it needs to be compared with the current-max/min.  If searching for a maximum and 

the candidate is greater than the current maximum, then the candidate will be assigned as the 

new current-maximum. 

The following example inputs 5 numbers between 0 and the largest integer value allowed. 

Inputs are gathered from a user using getValidIntegerInRange() as shown in Plan 

11 above. The maxNumber variable is used to store the current maximum and it is 

initialised to 0 which is the smallest input allowed. 

#include <stdio.h> 

#include <limits.h> 

 

const int NUMBERS_TO_READ = 5; 

 

int getValidIntegerInRange(int lowestAllowed, int highestAllowed); 

 

int main() { 

 int i;             // Iterative counter 

 int input;         // Validated Input from user 

 int maxNumber = 0; // Current maximum initialised to 

                    //   minimum possible value 

 

 // Get inputs from user 

 for(i = 0; i < NUMBERS_TO_READ; i++) { 

  input = getValidIntegerInRange(0,INT_MAX); 

 

  // Compare with current max and assign if greater 

  if(input>maxNumber) { 

   maxNumber = input; 

  } 

 } 

 

 // Output the max 

 printf("The maximum was: %i\n", maxNumber); 

} 

 

int getValidIntegerInRange(int lowestAllowed, int highestAllowed) { 

 ... 

Note that each input is compared with the current maximum. Where a candidate is found to 

be greater than the current maximum it replaces the current maximum and is used for future 

comparisons. 

Initialise Max/Min
to extreme opposite

CCL or SCL

Get Candidate

Test: Compare to Max/Min

…

Assign new Max/Min

Initialise Max/Min
to extreme opposite

CCL or SCL

Get Candidate

Test: Compare to Max/Min

…

Assign new Max/Min
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A
B
C
D
E

The cat sat on the mat

F
G
H
I
J
K
L
M

N
O
P
Q
R
S
T
U
V
W
X
Y
Z

Plan 13. Tallying Plan 

This plan requires an understanding of arrays 

and looping constructs. 

As well as being able to store individual values in 

an array we can also use arrays to represent counts 

of occurrences of a set of values. 

For instance if I asked you to count each letter in 

the sentence, "The cat sat on the mat", you could 

set up a sheet and tally each letter in the sentence. 

We start off with a blank sheet where the tally 

each letter is empty (zero). We process each letter 

in turn, crossing it off in the sentence as it is 

processed. When we encounter a letter, we place a 

tally mark in the box on our sheet that relates to 

that letter. We can continue this until all the letters 

are processed, at which stage the number of tally 

marks next to each letter is the number of occurrences of that letter. 

We can apply a similar strategy in code using an array. 

We will create an array with enough elements to 

represent the set of values we are counting. If we are 

counting the letters of the alphabet we need an array 

with 26 elements. Before we start counting we must 

first initialise the array to be sure the count of all 

values is zero. 

We can then process the values, matching them to the 

relevant element of our array and 'adding another tally 

mark' (incrementing the count) for that value. 

When we have processed all items of interest the 

values in the array will be the counts of the items 

encountered. If we wish we can output the counts of 

the letters encountered. 

CCL

Initialise Array Element to 0

CCL

Initialise Array Element to 0

…

…

CCL

Output Element

CCL

Output Element

CCL or SCL

Match Item to Array Element
and Increment Element

Input Item to Count

CCL or SCL

Match Item to Array Element
and Increment Element

Input Item to Count



Programming Problem Solving Strategies Reference Appendix A 

 Page 142 

The following code is an example of such a strategy. 

#include <stdio.h> 

#include <ctype.h> 

 

const int SENTINEL = 9999; 

 

int main() { 

 int letters[26];  // Array for tallying letters encountered 

 int i;            // Iterative counter 

 char inputLetter; // Letter from user 

  

 // Initialise all array elements to 0 

 for(i=0; i<26; i++) { 

  letters[i] = 0; 

 } 

  

 // Process the user input until end of line 

 printf("Please input a sentence...\n"); 

 scanf("%c", &inputLetter); 

 while(inputLetter != '\n') { 

  if(isalpha(inputLetter)) { 

   letters[tolower(inputLetter)-'a']++; 

  } 

  scanf("%c", &inputLetter); 

 } 

  

 // Output occurrences of letters which have occured once or more 

 for(i=0; i<26; i++) { 

  if(letters[i] > 0) { 

   printf("%c: %i\n", 'a'+i, letters[i]); 

  } 

 } 

} 

Notice first that the array is initialised, the values are counted and then the counts are output. 

See the language reference for descriptions of isalpha() and tolower(). 

The array used is an array of integers, which is appropriate as we are storing counts of letters 

and not the letters themselves. The array elements are referenced by index and the indices 

are integers, so this means we have to translate each character into a number to find the array 

element that relates to that letter. We can associate each alphabetic letter with a number in 

order starting from 'a' being 0, 'b' being 1 and so on. To achieve this we can convert each 

letter to lower case and deduct the value of 'a' as follows. 

'a' – 'a'  0 

'b' – 'a'  1 

'c' – 'a'  2 

... 

'z' – 'a'  25 

Once we have a letter's position in the alphabet we can use this as the index into the array to 

access the array element that relates to that letter of the alphabet. When we are counting a 

particular letter, we will translate it into a number, find the array element and increment its 

value. This is achieved in the statement from the above example shown below. 

   letters[tolower(inputLetter)-'a']++; 

Plan 14. Search Algorithm 

This plan requires an understanding of looping constructs and arrays. 
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This plan and the next are approaching the scale of a 

full algorithm and could exist independently as useful 

functions. 

The key to efficient searching is to search only the 

parts of the search space (say the elements of an 

array) necessary to discover the value sought. Of 

course, if the location of the target value is unknown 

then the amount of searching required cannot be 

predicted, but, if we are seeking the presence of a 

target value we should be able to stop searching after 

we discover the value. In the case that the target 

value is not present, searching will continue until the 

end of the search space is reached. 

One way to achieve this is through a combination of 

a sentinel controlled loop that searches for the target value as a sentinel and a counter 

controlled loop that stops when the end of the search space is reached. We can use a Boolean 

flag to control the test for the target value and the value of this flag after the search will tell 

us if the target value is present. Here is an example function that searches an array for a 

target value. 

bool search(int targetValue, int array[], int arrayLength) { 

 bool found = false; // Boolean search flag 

 int i = 0;          // Iterative counter 

  

 // Search until found or end of array 

 while(!found && i<arrayLength) { 

 

  // Match array element to target value 

  found = array[i]==targetValue; 

  i++; 

 } 

 return found; 

} 

Of course, this approach will only work if we are seeking the presence of a target value. If 

we wish to count the occurrences of a value we will need to search the entire search space, so 

no saving can be made. 

int countValues(int targetValue, int array[], int arrayLength) { 

 

 int i;       // Iterative counter 

 int count=0; // Times targetValue has been encountered 

 

 // Search entire array for occurrences of target value 

 for(i = 0; i < arrayLength; i++) { 

  if( array[i] == targetValue ) { 

   count++; 

  } 

 } 

 

 // Return the count of occurrences 

 return count; 

} 

Plan 15. Bubble Sort Algorithm 

This plan requires an understanding of looping constructs and arrays. 

Initialise found flag

Loop while found flag is false and
not at end of array

Get Candidate

Compare to target,
setting found flag

…

Use found flag
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There are a many different algorithms 

which can be used to put elements in 

order. The Bubble Sort is presented here as 

it is easy to comprehend and use. 

This algorithm works by looping through 

the array comparing each element with the 

following one, and swapping the values 

where necessary. Each pass through the 

array brings it closer to being sorted.  The 

looping and swapping process must occur 

as many times needed to ensure the array 

is completely sorted.  If we loop through 

the array n-1 times (where n is the length of the array), it is guaranteed to be sorted. 

The process can be summarized as follows. 

 Start at beginning of the array 

 Compare first and second elements 

 If out of order swap 

 Compare the second and third elements 

 If out of order swap 

 Continue comparing adjacent pairs in the array, from beginning to end; this 

constitutes a single pass. 

 Perform n-1 passes to completely sort the array. 

CCL (n -1 passes)

CCL (a single pass)

Test if adjacent elements
are out of order

Swap out of order elements 
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Consider the following array. 

7 8 4 5 2
 

Starting at the beginning we compare the first two values.  They are in order so we do not 

swap them.  The second and third values are out of order and must be swapped.  The 

outcome is shown below. 

7 4 8 5 2

 

We continue comparing and swapping adjacent values if needed until we get to the end of 

the array. 

7 4 5 8 2

7 4 5 2 8

 

The state of the array after one pass is shown above.  We will complete four passes through 

the array.  The state of the array after each pass is shown below. 

4 5 2 7 8

4 2 5 7 8

2 4 5 7 8

After second pass

After third pass

After fourth (final) pass
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The following program will perform a bubble sort on an array of integers to put them in 

ascending order. 

#include <stdio.h> 

 

const int MAX_LENGTH = 5; 

 

int main() { 

 int array[MAX_LENGTH] = {9,8,2,5,4}; // Unsorted array 

 int i, j;                            // Loop iterators 

 int temp;                            // For swapping 

  

 // Pass through the array MAX_LENGTH-1 times 

 for( i = 0; i < MAX_LENGTH-1; i++){ 

 

  // For each pair of consecutive numbers 

  for( j = 0; j < MAX_LENGTH-1; j++) { 

 

   // Test if the pair is out of order 

   if ( array[j] > array[j+1] ) { 

 

    // Swap using triangular swap 

    temp = array[j]; 

    array[j] = array[j+1]; 

    array[j+1] = temp; 

   } 

  } 

 } 

 

 // Output the array after sorting 

 for(i = 0; i < MAX_LENGTH; i++){ 

  printf("%i ",array[i]); 

 } 

 printf("\n"); 

} 

Notice the above code contains two for loops, one inside the other.  The outer loop ensures 
that n-1 passes are performed.  Each iteration of the outer loop, the inner nested loop 
compared each adjacent value in the array and swaps it if necessary. 

Bubble sort is not the most efficient sorting algorithm.  For large and unordered data faster 
sorting algorithms are available. The efficiency of the Bubble Sort algorithm can be 
improved by applying the following two modifications. 

 Reduce the number of comparisons by one for each pass. After the first pass the 

greatest value will be pushed to the rightmost element. After two passes, the final 

two elements will contain the two greatest values in sorted order and so on. To 

achieve this, the value of i can be deducted from the upper limit of the inner loop. 
j < MAX_LENGTH-1-i; 

 For an array that contains values that are nearly already sorted, it is possible to reach 

a sorted state before n-1 passes have been made. The array can be determined to be 

in a sorted state when a complete pass has been performed in which no swaps are 

made. A Boolean flag swapsMade can be used which is set to false at the 

beginning of each pass. If it is still false at the end of the pass, no swaps have been 

made and the array is in sorted order. This flag can be incorporated into the test of 

the outer loop. 
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Plan 16. Command Line Arguments Plan 

This plan requires an understanding of command line arguments and the if 

statement. 

If information provided to a program from the command line is crucial to the successful 
running of the program, then the number of arguments needs to be checked at the beginning 
of program execution. 

#include <stdio.h> 

 

int main(int argc, char *argv[]) { 

 

 // Check for the correct number of arguments 

 if ( argc < 2 ) { 

  printf("USAGE: %s secondArgument\n", argv[0]); 

  exit(1); 

 } 

 

 // Rest of program 

 ... 

} 

The arguments to the main() are argc (the number of command line arguments) and 
argv (an array of strings, each containing and argument). The code above shows a test for 
the minimum number of command line arguments needed.  In this case the program expects 
two arguments and any extras will be ignored.  If the user runs the program and does not 
supply a second argument, then an error message is output and the program exits.  Note that 
the name of the executable file will be stored in argv[0] and this is used in the error 
message; the name of the executable could change, but the error message will always be 
correct. 

Once the number of command line arguments has been checked, the validity of the values 

supplied may then also need to be checked. 

Plan 17. File Use Plan 

This plan requires an understanding of files and the if statement. 

When using input files, where data sourced from those files is critical to the running of a 

program, the following 5 Step Plan should be taken. This plan takes checks that the file is 

available for use. It closes the stream when it is no longer needed; this is important to avoid 

data loss. 

1 Create a stream (FILE) pointer 

FILE *inputStream; 

2 Open a file and attach the stream 

inputStream = fopen("myfile.txt","r"); 

3 Test the stream, this testing the file opening 

if (inputStream == NULL) { 

 printf("Error opening file"); 

 exit(1); 

} 

4 Use the stream for input or output (this will of course vary according to the needs of the 

input stream) 
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5 Close the stream 

fclose(inputStream); 

Plan 18. Recursion Plans (single- and multi-branching) 

This plan requires an understanding of the if statement and calling functions. 

A recursive function is one which calls itself, either directly or indirectly. Recursive 

functions are very simple, but can achieve quite complex solutions by solving a problem a 

small part at a time. Recursion is a way of achieving repetition in a program. 

Recursive functions have two parts: a stopping case and a recursive case. An if statement is 

used to determine which case should be used as shown in the skeleton below. 

int exampleRecursiveFunction( ...ARGUMENTS... ) { 

 

 // Stopping case 

 if( TEST TO SEE IF RECURSION SHOULD STOP ) { 

  ...; 

 } 

  

 // Recursive case 

 else { 

  ... 

  exampleRecursiveFunction( ... ); 

  ... 

 } 

} 

The recursive case contains a recursive function call. Each time the recursive function is 

called, the arguments passed should be slightly different to those used to call the current 

function. In that way progress is made towards the end of recursion. 

The stopping case is reached when some end has been achieved. It contains no further 

recursive function calls. 

The following function is a recursive function that counts down from any positive number to 

zero. 

void countDown(unsigned int number) { 

 

 // Stopping case 

 if(number == 0) { 

  printf("0\n"); 

 } 

  

 // Recursive case 

 else { 

  printf("%i\n", number); 

  countDown(number - 1); 

 } 

} 

The stopping case for this function occurs when the value of number is zero.  If we called 

this function once and passed it the value zero, it would use the stopping case immediately 

and end. If a greater number is passed the recursive case will be used and the recursive 

function call within that passes a number one less each time. In this way the stopping case 

will eventually be reached. 
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We could start the recursive process, starting at the number 3, by calling the countDown() 

function from the main() and passing the value 3. 

int main() { 

  

 // Start the count down at 3 

 countDown(3); 

} 

 

The output of this program would be as follows. 

% a.out 

3 

2 

1 

0 

% 

Below is an example of another recursive function that can be used to calculate factorials. 

The factorial of an integer is the integer multiplied by all the positive integers less than it to 

one.  We denote the factorial of a number using an exclamation (!) like as follows. 

5! = 5 x 4 x 3 x 2 x 1 

The factorial for 4! can be expressed as follows. 

4! = 4 x 3 x 2 x 1 

If we wanted to, we could now express 5! as follows. 

5! = 5 x 4! 

You can see the recursive nature of this equation already. We can make this a general 

equation as follows.  This is our recursive case. 

n! = n x (n-1)! 

We also need to express a stopping case for this, which is when n is 1. 

1! = 1 

This is a mathematical definition of a recursive process.  If we were to run it through for say 

4! it would look as follows. 

4! = 4 x 3! 

3! = 3 x 2! 

2! = 2 x 1! 

We know that 1! is equal to one.  We can now start working our way back up. 

2! = 2 x 1!  2 x 1  2 

3! = 3 x 2!  3 x 2  6 

4! = 4 x 3! 4 x 6  24 

So 4! is 24.  We can write a function that calculates factorials using the process we have 

described as follows. 
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int factorial(unsigned int number) { 

 

 // Stopping case 

 if (number <= 1) { 

  return 1; 

 } 

 

 // Recursive case 

 else { 

  return number * factorial(number – 1); 

 } 

} 

You will notice that with this function, as well as actions being achieved on the way to the 

stopping case, calculations are happening through the return values after the stopping case 

has been reached and while working back to the original function call.  In order to complete 

the expression in the recursive case… 

  return number * factorial(number – 1); 

…the factorial function needs to be called.  We must wait for this function to end and return 

a result before we can complete the expression. 

This function is an example of single branching recursion. The recursive case contains only a 

single function call, so the recursive process will continue until a single stopping case is 

reached, after which the calls will roll back to the original function call. 

A multi-branching recursive function contains more than one recursive function call in the 

recursive case. This is useful for problems where from a particular point there may be 

several following points that need to be probed and from each of those points further points 

need to be probed and so on. There may be multiple stopping points that can be reached in 

such cases also. Consider for example, a directed graph. A directed graph is described by its 

points and the vertices between points that run in one direction only.  The vertices are like 

one-way streets that join one place to another. 

The picture below describes a directed graph.  The starting point is 1 and the ending point is 

5.  We can represent this information textually as shown with each vertex having a starting 

and ending point and a series of directed vertices that make up the graph. 

 1 

5 

1 2 

1 3 

2 5 

3 5 

1 4 

1 5 

 

 

1
2

3

5

4
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Our task is to find how many paths lead from the starting point to the ending point assuming 

that there are no cycles in the graph. We can represent a graph as follows. 

struct directedGraph {               // Describes a directed graph 

 vertex vertices[MAX_VERTICES]; // The vertices that make up the graph 

 int numVertices;               // The number of vertices 

 int startPoint;                // The starting point 

 int endPoint;                  // The end/target point 

}; 

We can then create a recursive function that, when started at the start point, will discover 

how many paths lead to the end point. 

int countPaths(directedGraph graph, int currentPoint) { 

 int countPathsFromHere=0; // Paths in the graph starting here 

  

 // Stopping case 

 if(currentPoint == graph.endPoint) { 

   

  // A complete path has been found 

  return 1; 

 } 

 else { 

   

  // Probe all paths that start here 

  for(int i=0; i<graph.numVertices; i++) { 

   if(graph.vertices[i].from == currentPoint) { 

    countPathsFromHere += countPaths( 

     graph, 

     graph.vertices[i].to 

    ); 

   } 

  } 

   

  // Return the number of completed paths staring here 

  return countPathsFromHere; 

 } 

} 

Assuming we have read in a graph into a structure variable called graph we could start this 

recursive process as follows, printing out the number of paths returned. 

printf("%i\n", countPaths(graph,graph.startPoint)); 

Recursion is a less efficient way of achieving repetition than when using loops. However 

when a problem is being solved that is recursive by nature, writing recursive solutions can be 

far simpler than writing an iterative solution for the same functionality. Where the depth of 

recursion is on too deep, recursive solutions can be quite acceptable. 
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Appendix B. Solution Sheet for Initial Goal/Plan Analysis 
Experiment 

 

Write a program that will read in integers from a user and output their 

average.  Stop reading when the value 99999 is input. 
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Appendix C. Answer Sheets for Problem Solving Experiments 

 

Read in 10 positive integers from a user.  Assume the user will enter valid positive 

integers only.  Determine the maximum. 
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Read in any number of integers until the value 99999 is encountered.  Assume the user will 

enter valid integers only.  Output the average. 
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Input any number of integers between 0 and 9.  Assume the user will enter valid 

integers only.  Stop when a value outside this range is encountered.  After input is 

concluded, output the occurrence of each of the values 0 to 9. 
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Appendix D. Web Survey Demographics and Computing 
Confidence Questions 

To classify age, participants were asked “Which of the following ranges does your age fall 

into?” The following age ranges were presented. 

 Less than 25 

 26 to 35 

 36 to 45 

 46 to 55 

 56 or over 

To gauge each participant's general computing experience the following questions were 

asked. 

 What is your level of computer use? 

 How often would you use a web browser? 

To each of these questions, the possible responses were as follows. 

 No use 

 Irregular use 

 Weekly use 

 Use every few days 

 Daily use 

It was desired for participants to have no previous programming experience. To distinguish 

this, participants were asked “Have you programmed before (not including HTML)?” and 

were able to select from the following answers. 

 Never 

 Some self-taught 

 Formal training 

Computing confidence was thought to be a possible differentiating factor in this experiment.  

A series of statements were presented to participants to measure their confidence with 

computers. The confidence statements were from a computing confidence test created by 

Cretchley (2006) and were presented in an unmodified manner. Previous evaluation of this 

test by Cretchley had proven it to be a reliable predictor of computing confidence. The 

statements were presented as follows (with negatively phrased statements identified. 

 I have less trouble learning how to use a computer than I do learning other things. 

 When I have difficulties using a computer, I know I can handle them. 

 I am not what I would call a computer person. (phrased negatively) 

 I enjoy trying things on a computer. 

 It takes me longer to understand computers than the average person. (phrased 

negatively) 

 I have never felt myself able to learn how to use computers. (phrased negatively) 

 I find having to use computers frightening. (phrased negatively) 

 I find many aspects of using a computer interesting and challenging. 

 I don't understand how some people seem to enjoy so much time on a computer. 

(phrased negatively) 

 I have never been very excited about computers. (phrased negatively) 

 I find using computers confusing. (phrased negatively) 
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Possible responses to these confidence statements were as follows. 

 Strongly Disagree 

 Disagree 

 Neutral 

 Agree 

 Strongly Agree 

Each response has a value from 1 to 5. For positively phrased questions a response of 

“Strongly Disagree” is valued as 1, a “Neutral” response is 3 and a “Strongly Agree” 

response is valued at 5. For negatively phrased questions, this is reversed. The value of each 

response is summed to give a confidence measure that can be compared among participants. 

As well as acting as a filter for volunteers who had previously completed a programming 

course, one of the intentions of this initial data was to balance the representation of 

participants in the control and experimental groups. Ultimately, balancing was unnecessary 

as participants, who grouped themselves according to their preferred dates, showed an even 

level of confidence between groups (there was no significant difference in average 

confidence levels between the two groups). 
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Appendix E. Post Experiment Interview Questions 

Questions about the Maximum Problem 

1. What is this problem statement asking? 

2. What is meant by “positive integers”? 

3. What does it mean by the user entering “valid positive integers only”? 

4. What does it mean by “Determine the maximum”? 

Discussion about Participant's Solution to the Maximum Problem 

1. Lead me through your solution ... what does this part do? 

2. Does your solution solve the problem? 

3. Are there any improvements that could be made? 

Questions the Averaging Problem 

1. What is this problem statement asking? 

2. What is meant by “Read any number of integers”? 

3. What does it mean by “until the value 9999 is encountered”? 

4. What does it mean by “Output the average”? 

Discussion about Participant's Solution to the Averaging Problem 

1. Lead me through your solution ... what does this part do? 

2. Does your solution solve the problem? 

3. Are there any improvements that could be made? 

Questions about the Set Counting Problem 

1. What is this problem statement asking? 

2. What is meant by “Stop when a value outside this range is encountered”? 

3. What does it mean by “output the occurrence of each of the values 0 to 9”? 

Discussion about Participant's Solution to the Set Counting Problem 

1. Lead me through your solution ... what does this part do? 

2. Does your solution solve the problem? 

3. Are there any improvements that could be made? 



Exam Questions for Assessment Experiment Appendix F 

 Page 160 

Appendix F. Exam Questions for Assessment Experiment  

A cover page preceded this in the actual examination paper. 

NOTE 

There is a list of function specifications and other useful information on a page at the end of 

this exam paper. 

 

QUESTION 1 (10 marks, 12min) 

What will the following output? 

#include <stdio.h> 

 

int testFunc(int *ptr, int num); 

 

int main() { 

 int x=7, y=3, z=5; 

 printf("%i %i\n", x, y); 

 z = testFunc(&y, x); 

 printf("%i %i %i\n", x, y, z); 

} 

 

int testFunc(int *ptr, int num) { 

 int temp; 

 printf("%i %i\n", *ptr, num); 

 temp = num; 

 num = *ptr; 

 *ptr = temp; 

 printf("%i %i\n", *ptr, num); 

 return num + (*ptr); 

} 

 

 

QUESTION 2 (10 marks, 12min) 

There are errors on three lines of the code below. Identify the lines with errors by number 

and give a corrected version for each of those lines. 

01 #include <stdio.h> 

02  

03 const int NUM_ITEMS = 4; 

04  

05 int main() { 

06  int i=0; 

07  double items[NUM_ITEMS] = {1.2, 3.4, 5.6, 7.8} 

08  

09  for(i=0, i<=NUM_ITEMS, i++) { 

10   printf("%d\n", items[i]); 

11  } 

12 } 

13  

 

 

Question 3 is on the next page. 
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QUESTION 3 (10 marks, 12min) 

The following code is relevant to the instructions that follow. 

#include <stdio.h> 

 

const int ROWS = 3; 

const int COLS = 5; 

 

void print2DArray(const int array[ROWS][COLS]); 

 

int main() { 

 int arrayToPrint[ROWS][COLS] = { 

  {7,8,2,5,4}, 

  {5,9,2,5,4}, 

  {9,3,2,1,7} 

 }; 

 

 print2DArray(arrayToPrint); 

} 

 

// Your function would go here 

 

 

 

In the context of the code above, create the function print2DArray() with the 

following prototype so that it prints the content of the array it is passed with a space 

between each number and with each row on its own line. 

 
void print2DArray(const int array[ROWS][COLS]); 

 

 

Question 4 is on the next page. 
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QUESTION 4 (10 marks, 12min) 

The following code is relevant to the instructions that follow. 

#include <stdio.h> 

 

const int MAX_NAME_LENGTH = 256; 

const int NUM_EMPLOYEES = 4; 

 

enum EmployeeType {manager, underling}; 

 

struct Employee { 

 EmployeeType eType; 

 int employeeID; 

 char name[MAX_NAME_LENGTH+1]; 

 double payRate; 

}; 

 

void raise(Employee *empPtr, double amount); 

 

int main() { 

 int i=0; // Iterative counter 

 

 Employee employees[NUM_EMPLOYEES] = { 

  {underling, 324, "Phil In",   23.00}, 

  {manager,   327, "Boss Hog",  59.00}, 

  {underling, 329, "Joe Dirt",  22.00}, 

  {manager,   332, "Phil King", 78.50} 

 }; 

 

 for(i=0; i<NUM_EMPLOYEES; i++) { 

  raise(&employees[i], 1.50); 

  printf("%s %.2lf\n", employees[i].name, employees[i].payRate); 

 } 

} 

 

// Your function would go here 

 

 

In the context of the code above, create the function raise() with the following 

prototype so that it increases the payRate of a single employee by the given 

amount, but only if they are a manager. 

 
void raise(Employee *empPtr, double amount); 

 

 

 

Question 5 is on the next page. 
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QUESTION 5 (10 marks, 12min) 

Read the following code to answer the questions that follow. 

#include <stdio.h> 

 

int mysteryFunction(int num1, int num2); 

 

int main() { 

 printf("%i\n", mysteryFunction(3,4)); 

} 

 

int mysteryFunction(int num1, int num2) { 

 

 // Stopping case 

 if(num2 <= 0) { 

  return 0; 

 } 

 

 // Recursive case 

 else { 

  return num1 + mysteryFunction(num1, num2-1); 

 } 

} 

 

 

a. What will the code above output? (6 marks) 

b. What would be a better identifier for the function mysteryFunction()? (4 

marks) 

 

Question 6 is on the next page. 
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QUESTION 6 (10 marks, 12min) 

There are commonalities and differences in the strategies used in the following three 

functions. Read the functions in the boxes below and answer the questions that follow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

int func1(int array[ARRAY_SIZE], int var) { 

 int localVar = 0; 

 int i; 

  

 for(i=1; i<ARRAY_SIZE; i++) { 

  if(array[i] == var) { 

   localVar++; 

  } 

 } 

  

 return localVar; 

} 

bool func2(int array[ARRAY_SIZE], int var) { 

 int localVar = 0; 

 bool localVar2 = false; 

  

 while(!localVar2 && localVar<ARRAY_SIZE) { 

  localVar2 = array[localVar]==var; 

  localVar++; 

 } 

  

 return localVar2; 

} 

int func3(int array[ARRAY_SIZE]) { 

 int localVar = 0; 

 int i = 0; 

  

 while(i<ARRAY_SIZE) { 

  if(array[i] > localVar) { 

   localVar = array[i]; 

  } 

  i++; 

 } 

  

 return localVar; 

} 

a. 

b. 

 
a. What is the common strategy used in both func1() and func2()? (5 

marks) 

b. What is the common strategy used in both func1() and func3()? (5 

marks) 

 

Below is a list of some of the strategies covered in the course. 

 Average Plan 

 Divisibility Plan 

 Cycle Position Plan 

 Triangular Swap Plan 

 Counter Controlled Loop Plan 

 Primed Sentinel Controlled Loop Plan 

 Sum and Count Plans 

 Validation Plan 

 Min/Max Plans 

 Tallying Plan 

 Search Algorithm 

 Bubble Sort Algorithm 

Question 7 is on the next page. 
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QUESTION 7 (20 marks, 24min) 

 

Write a function, using the following prototype, which will prompt the user and read 

in a valid positive integer. If the user enters invalid input, or a negative integer, the 

function will tell them their input was invalid and prompt them to enter another 

value. The function will repeat this until the user enters a valid input. 

 
int getValidPositiveInteger(); 

 

 

For your reference, the following lines of code will clear the standard input stream. 

 
scanf("%*[^\n]"); 

scanf("%*c"); 

 

QUESTION 8 (20 marks, 24min) 

 

Write a main() function that will read in integers and output their average. Input 

will be gathered using the getValidPositiveInteger() function as described 

above (do not re-write that function). Stop reading when the value 99999 is entered 

(this is not to be used as an input). 

 

 

 

 

 

 

 

 

There is a list of function specifications and other information is on the next page. 
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Relevant functions from stdio.h 

int printf(char *format, ...); 

Produces output to standard output according to string format.  Returns the number of characters 

printed. 

 
int scanf(char *format, ...); 

Reads from standard input according to the string format, assigning data to the variables pointed to 

by the second and subsequent arguments.  Returns the number of input items assigned. 

 

Format Sequences 

%c char 

%i int 

%s string 

%u unsigned int 

%li long int 

%lu long unsigned int 

%hi short int 

%hu short unsigned int 

%f float 

%lf double 

%% percentage symbol 

 

Field Width 

For Integers 
Placing a number between the % and format specifier for a format sequence will cause the integer to 

be output right-justified in a field width with that number of spaces.  For example %3i will output 

numbers in a field width of 3 spaces.  If the integer being output is longer than the field width, the 

field width will be 'pushed out' to accommodate the integer. 

For Floating Point Numbers 
A field width can be created in the same way as with integers.  A precision (number of decimal places 

after the decimal point) can be specified by putting a point after the field width and a number of 

decimal places after that.  For example %5.2lf will output a double with a field width of 5 spaces 

and a precision of two digits.  It is possible to specify precision without a field with, for example 

%.2lf. 

 

Format Flags 

- left justify 

+ force printing sign 

0 (zero) pads field width with spaces 

 

Escape Sequences 

\n newline 

\t tab 

\" double quotes 

\\ backslash 

 

 

End of paper 
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Appendix G. Final Exam Answers for Assessment Experiment  

A1 (2 marks each for first 3 lines, 4 marks for final line) Total 10 

7 3 

3 7 

7 3 

7 7 10 

 

A2 (Lines 7, 9 and 10 contain errors, corrected versions below, 2 marks for missing ; at 

end of 7, 4 marks for using ; instead of , and using < instead <= at 9 (alt change 

NUM_ITEMS to NUM_ITEMS-1), 2 marks for %lf instead of %d) Total 10 

01 #include <stdio.h> 

02  

03 const int NUM_ITEMS = 4; 

04  

05 int main() { 

06  int i=0; 

07  //double items[NUM_ITEMS] = {1.2, 3.4, 5.6, 7.8} 

 double items[NUM_ITEMS] = {1.2, 3.4, 5.6, 7.8}; 

08  

09  //for(i=0, i<=NUM_ITEMS, i++) { 

 for(i=0; i<NUM_ITEMS; i++) { 

10   //printf("%d\n", items[i]); 

  printf("%lf\n", items[i]); 

11  } 

12 } 

 

A3 (2 marks for counter variables, 4 marks for nested loos, 2 marks for correct printf 

in inner loop, 2 marks for printf at end of line) Total 10 

void print2DArray(const int array[ROWS][COLS]) { 

 int i=0, j=0; 

 

 for (i=0; i<ROWS; i++) { 

  for(j=0; j<COLS; j++) { 

   printf("%i ", array[i][j]); 

  } 

  printf("\n"); 

 } 

} 

 

A4 (2 marks for if, 2 marks for correct use of enumerated type, 3 marks for 

empPtr->eType, 3 marks for increase in pay rate) Total 10 

void raise(Employee *empPtr, double amount) { 

 if(empPtr->eType == manager) { 

  empPtr->payRate += increase; 

 } 

} 



Final Exam Answers for Assessment Experiment Appendix G 

 Page 168 

A5 (6 for correct answer to a, 4 marks for correct answer to b) Total 10 

a. 12 
b. multiply() (or a name with an equivalent meaning) 

 

A6 (5 marks for each correct answer) Total 10 

a. SEARCH ALGORITHM 

Both functions are searching for a value. func1() returns count of occurrences, func2() 

returns its presence. 

b. PRIMED SENTINEL CONTROLLED LOOP 

Both functions use a counter-controlled loop 

A7 (5 marks for initial input, 4 marks for checking correct number of inputs, 2 marks 

for validating input is positive, 4 marks for clearing standard input after invalid input, 

5 marks for subsequent input) Total 20  

int getValidPositiveInteger() { 

 int input=0; 

 int valuesInput=0; 

  

 printf("Enter an integer: "); 

 valuesInput = scanf("%i",&input); 

 while(valuesInput==0 || input<0) { 

  scanf("%*[^\n]"); 

  scanf("%*c"); 

  printf("Invalid input. Enter an integer: "); 

  valuesInput = scanf("%i",&input); 

 } 

 scanf("%*[^\n]"); 

 scanf("%*c"); 

  

 return input; 

} 

 

A8 (2 marks for initalising sum, 2 marks for initialising count, 2 marks for initial input, 2 marks 

for checking input is not sentinel, 2 marks for sum plan, 2 marks for count plan, 2 marks for 

subsequent input, 4 marks for guard on division, 2 marks for average calculation) Total 20 

 

int main() { 

 int input; 

 int sum=0; 

 int count=0; 

  

 input = getValidPositiveInteger(); 

 while(input != SENTINEL) { 

  sum += input; 

  count++; 

  input = getValidPositiveInteger(); 

 } 

  

 if(count>0) { 

  printf("Average: %i\n", sum/count); 

 } 

 else { 

  printf("No numbers input\n"); 

 } 

} 
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Appendix H. Experimental Curriculum Written Materials  

The curriculum is presented over the following pages as it was presented to students during 

the experiment described in chapter 6. In the document, highlighting shows explicit strategy 

content elements that were removed to create the control curriculum. 
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1. First JavaScript Program 
The process of writing a program in JavaScript is as follows. 

1. Open a text editor (like Notepad) 

2. Enter the JavaScript program within an HTML document 

3. Save the document with a ".html" extension 

4. Open the HTML document in a web browser. 

When the browser opens the document it will run the JavaScript program or 

report errors in the code. 

Writing programs is usually accomplished iteratively in small chunks.  Start with 

a very basic program; save and open in a browser.  Make a small change to the 

program, save then refresh the browser. 

1.1. Hello World! 

A traditional program to start programmers in a new language is one which 

outputs the message "Hello World!" 

E
xe

rc
is

e 
1.

1 Copy the following code (Code Example 1.1) into your text editor taking 

care not to introduce changes.  The line numbers to the left of each line need 

not be entered; they are there so we can refer to a specific line in the code.  

Also, two symbols appear in the example which should be used as follows. 

 Where the » symbol appears, press the TAB key; and 

 Where the ¶ symbol appears, press the ENTER key. 

In future examples, these symbols will not be shown explicitly, but will be 

used will be used when you write such code. 

Save it as an HTML document with a filename like "hello.html"; open the 

document in your web browser. 

 

01 

02 

03 

04 

05 

06 

07 

<html>¶ 

» <head>¶ 

» » <script type="text/javascript">¶ 

» » » alert("Hello World!");¶ 

» » </script>¶ 

» </head>¶ 

</html>¶ 

Code Example 1.1: Hello World! 

1.2. JavaScript and HTML 

HTML stands for HyperText Markup Language.  Locating JavaScript code in an 

HTML document allows us to write and run simple programs easily. 

An HTML document starts with an opening <html> tag and ends with a closing 

</html> tag.  The document is divided into two parts. 

The second part is the body, enclosed in <body>...</body> tags.  The body 

contains text that will be shown in the browser window.  Learning how to format 

and organised text in the body is interesting, but will not be covered here.  In 
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later examples we will use the body to add a label describing what JavaScript 

code we are testing. 

The first part of an HTML document is the head, enclosed in <head>...</head> 

tags.  The head contains extra information not shown in the browser window.  It 

is here that we locate our JavaScript code.  Within the head we add 

<script>...</script> tags to identify the start and end of our code.  We also 

identify the scripting language used by adding the type="text/javascript" 

attribute to the starting <script> tag. 
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<html> 

 <head> 

  <script type="text/javascript"> 

 

 

 

  </script> 

 </head> 

 <body> 

 

 

 

 </body> 

</html> 

Code Example 1.2: JavaScript in an HTML document 
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1.

2 As we progress through this study, we will use the above format repeatedly.  

We will enter JavaScript code in the block identified by the label "JavaScript 

Code Here" and possibly add a simple label in the block identified by 

"HTML Here". 

Using the file you created in Exercise 1.1 (called "hello.html") remove the 

line containing alert(...); and replace it with a blank line.  This will be 

the section label "JavaScript Code Here" in Code Example 1.2. 

Below the </head> tag, add a new line, press TAB and type <body>.  Add 

a blank line and on another new line press TAB and then add a closing 

</body> tag.  The blank line will be the section labelled "HTML Here" 

above.  We will use this section to write a simple description of future 

programs. 

Choose "Save As..." from the File menu and name the file "template.html".  

When creating a new JavaScript program, open the template and save it 

under a new name, then start adding code. 

1.3. Statements 

A JavaScript program is made up of statements.  A statement usually starts at the 

beginning of a line and ends with a semi-colon (;).  In Code Example 1.1 there is 

a single statement at line 04.  Most programs have several statements. 

 

JavaScript Code Here 

HTML Here 
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2. Calling Functions 
Built into JavaScript are a number of functions which achieve common, basic 

tasks like: 

 Gathering input data from a user 

 Displaying output to a user 

 Discovering information about data 

 Converting data from one form to another 

To use a function, it is not necessary to know how it is constructed or how it 

achieves its task, you just need to know how to call the function.  To call a 

function you need to know: 

1. Its name (which very briefly describes the function's purpose) 

2. What arguments (inputs to the function) are needed 

3. What you might get back from the function 

2.1. alert() 

There are a number of functions a JavaScript program can use to get information 

to a user.  One such function is alert().This function takes a message and 

outputs it in a window that pops up within the user's browser.  An example of 

such a window is show in Figure 2.1. 

 
Figure 2.1: An output window produced by a call to alert() 

In Code Example 1.1 (the first code example in this document) the alert() 

function is used on line 04 to produce the window above. 

The alert() function has only one argument, the message to be output.  As we 

will see later, it is possible to combine values together to form a single message 

output by this function. 
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1 Open "template.html" and add a call to alert() in the JavaScript section.  

As an argument to the function, in between the parentheses () add your 

name surrounded by double quotes ("").  Be sure the statement (the line) 

ends with a semi-colon (;). 

In the HTML section (on the line after the opening <body> tag) Add text 

describing what the JavaScript program does.  Text in this section is not part 

of the JavaScript program; only text between the opening <script> and 

closing </script> tags is regarded as JavaScript code.  What text you add 

in the HTML section is up to you. 
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3. Values 
In any programming language it is useful to distinguish different types of values so 

they can be treated differently in different circumstances. 

3.1. Numbers 

Numbers include integers (whole numbers like 1) and floating point numbers 

(numbers with a fraction after a decimal point like 1.23). 

3.2. Strings 

A string is a series of characters.  A string can have many characters, a single 

character, or no characters at all (an empty string).  To create a string, we use 

quotes to show the start and end of a string.  Single or double quotes can be used 

as long as the same quotation mark is used at the start and end. 

3.3. Booleans 

There are only two Boolean values: true and false.  These values do not need 

to be surrounded by quotes. 

In Code Example 3.1 an example of each of the values above is output using 

alert().  On lines 04 and 05 strings are output using double and single quotes.  

On line 06 a number is output.  On line 07 a Boolean value is output. 
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<html> 

 <head> 

  <script type="text/javascript"> 

   alert("string content in double quotes"); 

   alert('string content in single quotes'); 

   alert(123); 

   alert(true); 

  </script> 

 </head> 

 <body> 

  Values example 

 </body> 

</html> 

Code Example 3.1: An example showing different values 
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3.

1 Using your template file, replicate Code Example 3.1.  Does it output the 

values you expected it to? 

Make the following changes. 

1. On line 06 change the number from 123 to 123.456.  What 

happens? 

2. On line 07 change the value of true to false.  What happens? 

3. Remove the quotes from around the string in the first call to 

alert() on line 04.  What happens?  Put the quotes back.  What 

happens now? 

4. Add another call to alert() with the argument abc (not in quotes).  

What happens? 
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4. Variables 

4.1. What are Variables 

A variable allows the storage of a value for later in the program.  A variable can 

store any of the values shown in section 3.  A variable is a piece of information 

named by an identifier.  Where the identifier of a variable is located in a program, 

the value of the variable will be looked-up and used in its place. 

4.2. Identifier Rules 

There are some rules which constrain the identifiers you use. 

1. Can contain: 

a. alphabetic characters A to Z and a to z 

b. numerals 0 to 9 

c. underscores _ 

2. Cannot contain spaces, punctuation, quotes, or any characters not shown 

in 1 above. 

3. Can start with: 

a. an alphabetic character A to Z and a to z 

b. an underscore _ 

4. Cannot start with a numeral or any character not shown in 3 above. 

It should also be noted that identifiers are case sensitive, so a variable with an 

identifier userName will be a completely separate variable to one with an 

identifier UserName.  Be careful; it is easy to accidentally misspell an identifier. 

It is a good programming practice to use meaningful identifiers for variables.  

While it may be easier to name a variable x or myVar, such identifiers carry no 

description of the value they contain.  It is better to identify a variable with a 

description of its contents.  Multiple words can be used with second and 

subsequent words in the identifier staring with an uppercase letter.  For example 

if one wished to store the name of the user, possible identifiers include 

nameOfUser or userName.  Programmers tend to develop their own style for 

such aspects of programming and use the same style consistently. 
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4.

1 Are the following identifiers legal or not?  If not, why not? 

1. example-number 

2. exampleNumber1 

3. 1exampleNumber 

4. example_number 

5. example number 
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4.3. Declaring Variables with var 

If you wish to declare a variable, the best place to do this is at the start of your 

program.  If you do this, the declaration will easy to find later. 

The following form can be used to declare variables. 

var variableIdentifer; 

or 

var variableIdentifier = value; 

In the examples above variableIdentifier would be replaced by the 

identifier of the variable and value would be replaced with an initial value.  

Initialising variables will be discussed further in section 5.  Examples of variable 

declarations are shown in Code Example 4.1.  
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<html> 

 <head> 

  <script type="text/javascript"> 

   var exampleString = "string content in quotes"; 

   var exampleNumber = 123; 

   var exampleBoolean = true; 

   var exampleVariable; 

    

   alert(exampleString); 

   alert(exampleVariable); 

  </script> 

 </head> 

 <body> 

  Variables example 

 </body> 

</html> 

Code Example 4.1: Declaring variables 

4.4. Undefined 

If a variable is declared and not given an initial value, it will not be given a 

default value.  If a variable is given no value and an attempt is made to get the 

value out of the variable, the value undefined will be given.  In Code Example 

4.1 a variable is declared without an initialisation at line 07.  In line 10 the value 

of the variable is accessed to be output.  As the variable has not yet been assigned 

a value, the value undefined will be output. 
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4.

2 Before you start writing any code, look at Code Example 4.1. On a piece of 

paper, write what you think the program will output. 

Using your template to replicate Code Example 4.1.  Does it output the 

values as you expected it to? 

Make the following changes. 

1. Add another call to alert() to output exampleNumber. 

2. Add another call to alert() to output exampleBoolean. 

3. Create a new variable which will contain your name.  Use an 

appropriately descriptive identifier which follows the rules shown in 

section 4.2.  Assign the new variable a string (use quotes or double 

quotes) containing your name.  Add another call to alert() to 

output the value of the variable. 
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5. Assigning Values 
It is possible to give a variable a value when it is declared, and also to change its 

value later in the program.  The form of an assignment is as follows. 

 

 

variableIdentifier = value; 

The value on the right is determined first.  This could be from a number of sources.  

This value is then assigned to the variable identified on the left. 

5.1. Dynamic Typing 

Not only can the value of a variable change during the course of a program, but 

also the type of value may change.  So a variable initialised with a string can later 

be assigned a number or a Boolean value.  An example of this is show in Code 

Example 5.1. 
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<html> 

 <head> 

  <script type="text/javascript"> 

   var exampleVariable; 

    

   exampleVariable = "string content in quotes"; 

   alert(exampleVariable); 

   exampleVariable = 123; 

   alert(exampleVariable); 

   exampleVariable = true; 

   alert(exampleVariable); 

  </script> 

 </head> 

 <body> 

  Dynamic typing example 

 </body> 

</html> 

Code Example 5.1: The value and type of a variable can change 

5.2. typeof 

It is possible to determine if a variable currently contains a number, a string, a 

Boolean value, or no value at all (an undefined value).  To do this, put the 

word typeof before the variable name (separated by a space).  Code Example 

5.2 is the same as the previous example, except instead of outputting the new 

values, the type of the variable is output at each stage. 
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<html> 

 <head> 

  <script type="text/javascript"> 

   var exampleVariable; 

    

   alert(typeof exampleVariable); 

   exampleVariable = "string content in quotes"; 

   alert(typeof exampleVariable); 

   exampleVariable = 123; 

   alert(typeof exampleVariable); 

   exampleVariable = true; 

   alert(typeof exampleVariable); 

  </script> 

 </head> 

 <body> 

  typeof() example 

 </body> 

</html> 

Code Example 5.2: Discovering the type of a variable 
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5.

1 On a piece of paper write down the identifier, value and type of the 

following variables. 

1. var exampleInteger = 5; 

2. var myName = "Michael"; 

3. var myLetter = 'M'; 

4. var emptyString = "" 

5. var exampleTruthValue = true; 

6. var exampleVariable; 

 

E
xe

rc
is

e 
5.

2 On a piece of paper create variable declarations based on the following 

descriptions. 

1. A number with identifier maxFound and value 0. 

2. A string called name with your name as the value. 

3. A Boolean variable called found with initial value false. 
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5.

3 Look at Code Example 5.2. On a piece of paper, write what you think the 

program will output. 

Using your template to replicate Code Example 5.2.  Does it output the 

values as you expected it to? 

Make the following changes. 

1. Change the double quotes on line 07 to single quotes.  What 

happens? 

2. Remove the contents of the string leaving only the quotes.  What 

happens? 

3. Change the number on line 09 to 123.456.  What happens? 

4. Change the Boolean value on line 11 from true to false.  What 

happens? 

5.3. Initialising Variables 

When a variable is created its value is undefined until it is assigned a value.  

Using a variable that contains an undefined value can cause errors.  Also, using 

value of one type (like a string) where another is expected (like a number) can 

have unexpected effects.  It is therefore good practice to always initialise 

variables when they are created. 

Not in implicit curriculum 
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6. Operations 
Operations are used to perform calculations and to combine values.  There are four 

types of operators: arithmetic, relational, logical and string operators. 

6.1. Arithmetic Operators 

The form of operations you are probably most familiar with are arithmetic 

operations; operations on numbers.  The following table describes the arithmetic 

operators available in JavaScript. 

Operator Name Purpose 
+ Plus To add two numbers 
- Minus To subtract one number from another 
* Multiply To multiply two numbers 
/ Divide To divide two numbers 
% Mod To find the remainder after integer division 

Table 6.1: Arithmetic Operators 

Each of the operators above can be used with two values (operands), one on each 

side.  We call these binary operators.  The Minus operator can also be used to 

negate the sign of a single variable from positive to negative and vice-versa.  In 

this case we refer to the Minus operator as a unary operator. 
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<html> 

 <head> 

  <script type="text/javascript"> 

   var number = 5; 

   

   alert(1.2 + 3.4); 

   alert(1.2 - 3.4); 

   alert(1.2 * 3.4); 

   alert(1.2 / 3.4); 

   alert(12 % 5); 

   alert(-number); 

  </script> 

 </head> 

 <body> 

  Operations example 

 </body> 

</html> 

Code Example 6.1: Examples of arithmetic operators 

The Mod (or Modulo) operator provides the remainder after a division.  For 

example, say we had 12 apples and we wanted to divide this into groups of 5; 

how many would we have left-over?  The 12 apples can give two full groups of 5 

with 2 apples left-over. 

Using the Mod operator we are able to bring large numbers to a 

position in a cycle. The Mod operator is sometimes called the 

clock operator.  Consider a clock which shows the time at 10 

o'clock.  If asked what time will it be in 80 minutes, we do not 

say 10:80, we say it will be 11:20.  We can use Mod to perform 

such a calculation as follows. 

endMinute = (startMinute + minutesSpent)%60; 

The Mod operator only works with whole numbers which we refer to as integers. 
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6.

1 On paper, write down what the following JavaScript statements will output. 

1. alert(1 + 2.5); 

2. alert(1 – 2.5); 

3. alert(2 * 3); 

4. alert(1 / 2); 

5. alert(5 % 3); 

6. alert(9 % 3); 

6.2. Division by Zero – infinity 

When a number is divided by zero, the mathematical result is irrational.  In 

JavaScript when a number is divided by zero, the special value infinity is 

given as the result.  Care must be taken to avoid using infinity later in another 

operation as this may crash your program. 
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<html> 

 <head> 

  <script type="text/javascript"> 

   alert(123 / 0); 

  </script> 

 </head> 

 <body> 

  Division by zero example 

 </body> 

</html> 

Code Example 6.2: Dividing by zero results in infinity 

6.3. Postfix Operators 

A common operation is increasing a variable's value by one (increment) or 

reducing its value by one (decrement).  One way to achieve an increment as 

follows. 

numberVariable = numberVariable +1; 

A simpler short form is provided using the unary ++ operator. 

numberVariable++; 

A similar operator (--) is provided for decrementing.  Both operators are 

demonstrated in Code Example 6.3. 
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<html> 

 <head> 

  <script type="text/javascript"> 

   var number = 0; 

 

   alert(number); 

   number++; 

   alert(number); 

   number--; 

   alert(number); 

  </script> 

 </head> 

 <body> 

  Postfix operations example 

 </body> 

</html> 

Code Example 6.3: Increment and decrement operators 

Not in implicit curriculum 
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6.

2 On paper, write down what the Code Example 6.3 will output. 

6.4. Relational Operators (incl. Equality) 

A relational operator takes two values (usually numbers) and compares them.  

The result of such an operation will be a Boolean value of true or false. 

Operator Name How it works 
> Greater than true if left value is greater than right 
>= Greater or equal true if left value is equal or greater than right 
< Less than true if left value is less than right 
<= Less or equal true if left value is equal or less than right 
== Equal true if left and right values are equal 
!= Not equal true if left and right values are not equal 

Table 6.2: Relational Operators 

Examples of relational operators are shown in Code Example 6.4. 
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<html> 

 <head> 

  <script type="text/javascript"> 

   var x = 1; 

   var y = 2; 

 

   alert(x > y); 

   alert(x >= y); 

   alert(x < y); 

   alert(x <= y); 

   alert(x == y); 

   alert(x != y); 

  </script> 

 </head> 

 <body> 

  Relational operations example 

 </body> 

</html> 

Code Example 6.4: Relational operators 
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3 On paper, write down what Code Example 6.4 will output. 

6.5. Logical Operators 

Logical operators combine two Boolean values.  The resulting value will be 

true or false. 

Operator Name How it works 
&& And true if both values are true 
|| Or true if one or both values are true 
! Negate true becomes false, false becomes true 

Table 6.3:Logical Operators 

Examples of relational operations are show in Code Example 6.5. 
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<html> 

 <head> 

  <script type="text/javascript"> 

   var x = 1; 

   var y = 2; 

   var testValue = false; 

 

   alert(x==1 && y==2); 

   alert(x==1 && y==1); 

   alert(x==1 || y==1); 

   alert(x==0 || y==0); 

    

   testValue = x>0; 

   alert(testValue); 

   alert(!testValue); 

  </script> 

 </head> 

 <body> 

  Logical operations example 

 </body> 

</html> 

Code Example 6.5: Logical operators 
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6.

4 On paper, write down what Code Example 6.5 will output. 

6.6. String Operators 

The + operator can be used to join two strings.  It can also be used to append 

other values (numbers or Booleans) to the end of a string. 
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<html> 

 <head> 

  <script type="text/javascript"> 

   var message = "Hello"; 

   var number = 5; 

 

   message = message + " World!"; 

   alert(message); 

   alert("Mambo No. " + number); 

  </script> 

 </head> 

 <body> 

  String operations example 

 </body> 

</html> 

Code Example 6.6: String operations 
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6.

5 On paper, write the following program (you only need the part that goes 

between the <script>...</script> tags.) 

1. Declare a variable called message and initialise it with the string 

"Hello". 

2. Add a space to the end of the string value using a + operation. 

3. In a call to alert() output the value of message and append your 

name as a string in quotes. 
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7. Abutment 
Most computers can only achieve one action at a time.  With modern operating 

systems, computers can run multiple programs at the same time, but actually these 

programs must take turns accessing the computer's processor to complete their next 

action.  Within programs, only a single statement can be processed at a time.  

Statements are processed in order from top to bottom.  It is therefore important to 

recognise that to achieve a certain goal or goals, the steps required to achieve this 

must be discovered and the order in which they are put into action must be 

understood. 

Take, for example, the simple goal of adding two numbers for a user.  We can plan 

the steps involved as follows. 

1. Declare two variables 

2. Input two numbers 

3. Perform calculation 

4. Output result 

To complete the required goal, the steps above cannot be ordered in any other way.  

In a program each of the steps will be performed in order and never out of sequence.  

Placing these steps adjacent to each other, one after the other, is referred to as 

abutment. 

If this goal were part of some larger goal, the simple plan shown above would need 

to be abutted with other plans. 
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7.

1 On paper, order the following steps to create the message "Hello XXX" for a 

user who's name will replace XXX. 

a. Append user's name to message variable. 

b. Declare a message variable initialised to "Hello " 

c. Get the user's name and assign to userName. 

d. Output message. 

e. Declare a variable with identifier userName. 

 

Not in implicit curriculum 
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8. Debugging 
An important skill in programming is to find problems on code that: 

1. Stop the program from running at all, or 

2. Don't stop the program running, but cause the program to perform 

incorrectly. 

When writing code, you will be initially concerned with the first of these two.   
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 <head> 

  <script type="text/javascript"> 

   var number = 1; 

   number = number + 1; 

   number = number 2; 

   number = number * 3; 

  </script> 

 </head> 

 <body> 

  Debugging example 

 </body> 

</html> 

Code Example 8.1: A program containing a bug (line 06) 

The code you write in JavaScript is interpreted by the Web Browser that is 

displaying the page.  Different Web Browsers will deal with bugs in JavaScript code 

in different ways.  The code in Code Example 8.1 contains an error on line 06; an 

operator is missing between the variable identifier number and the value 2.  After 

reaching this point in the program, the Web Browser would stop and the remaining 

program will not be executed.  Using Mozilla Firefox (v1.0) the JavaScript Console 

reports errors.  The JavaScript Console can be accessed from the Tools menu. 

 
Figure 8.1: The JavaScript Console from Mozilla Firefox v1.0 

Try to work on one error at a time.  Error messages are the Web Browsers best guess 

at the program author's intention.  Quite often they are incorrect and often confusing.  

What we can determine is: 

 What line the error appeared on, and 

 Roughly where in the line the error was located. 

Knowing where the error has occurred is a good start.  Return to the source code of 

the program and find the location.  Sometimes the error is obvious and relying on 

what you have learned so far, it should be possible to correct the error.  If the error 

does not jump out at you, and you find yourself staring indefinitely, ask for help. 
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When you have changed the source code, save the file, go to the JavaScript console 

and press the "Clear" button, then go to the Web Browser and click "Refresh".  On 

returning to the JavaScript Console, hopefully the error will be gone. 
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<html> 

 <head> 

  <script type="text/javascript"> 

   var exampleString = a string value; 

   var number 1; 

    

   alert(exampleString " and some more"); 

  </script> 

 </head> 

 <body> 

  Debugging example for exercise 

 </body> 

</html> 

Code Example 8.2: A program containing several bugs 
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8.

1 The code in Code Example 8.2 contains three errors.  Before you enter the 

code into your computer, attempt (on paper) to identify the line numbers 

containing errors, give a description of the error and say how you would fix 

it. 

Using your template, enter the code exactly as shown.  Open the file in your 

Web browser.  Open the JavaScript Console (Tools  JavaScript Console) 

and attempt to locate and fix the errors one at a time.  If you get stuck, ask for 

help. 

 

A strategy for discovering faults in a program that is running but produces incorrect 

results is referred to as "print-lining".  As a program runs, the variables in the 

program change.  If the end result is incorrect, the point at which the program 

deviated from your intended route needs to be discovered.  At points in your program 

it is possible to add calls to the alert() function to output the value of a variable 

(or variables) at that point.  Usually it is best to start near the beginning, moving the 

line containing the call to alert() to later points in the program until the place 

where things start to go wrong is identified. 
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<html> 

 <head> 

  <script type="text/javascript"> 

   var exampleVariable; 

    

   alert(3 + exampleVariable); 

  </script> 

 </head> 

</html> 

Code Example 8.3: Code contains an error, but where 

Not in implicit curriculum 
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8.

2 Code Example 8.3 contains an error.  Use your template to create this 

example. 

 What does this program produce as output? 

 Use a call to alert() to output the value of exampleVariable 

before line 06. 

 What is the error? 

 What can be done to remedy the error? 
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9. Functions that Return Values 
The alert() function produces output to the user, but does not gather or create any 

information that can be used in our program.  Many functions in JavaScript perform 

some action, then return a value that can be used in your program. 

9.1. prompt() 

The function prompt() is an example of a function which returns a value.  This 

function, as the name implies, prompts the user to enter some information.  That 

information is captured and can then be used in the program.  The function 

prompt() returns a string value.  To use this string we can either: 

 Store the value in a variable; 

 Use the value in an operation; or 

 Pass the value on to another function as an argument (input). 

 

01 

02 

03 

04 

05 

06 

07 

08 

09 

10 

11 

12 

<html> 

 <head> 

  <script type="text/javascript"> 

   var name = ""; 

 

   name = prompt("Enter your name"); 

   alert("Hello " + name); 

  </script> 

 </head> 

 <body> 

  Input example 

 </body> 

</html> 

Code Example 9.1: Example using the prompt() function 

In Code Example 9.1 the prompt() function is used at line 05.  The user is 

prompted to enter their name.  A text box is given to do this as shown in Figure 

2.1.  When complete the user presses the ENTER key or clicks the OK button. 

 
Figure 9.1: The effect of a call to prompt() 

Still on line 05 of Code Example 9.1 the string returned from prompt() (the 

string entered by the user) is stored in the variable name.  On the next line, the 

message "Hello" followed by the name the user entered is output. 
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1 Using your template, create a program that will ask the user their age using 

the prompt() function.  Store the age in a variable called age.  Output the 

message "You are XXX years old" where XXX is the age entered by the user. 
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9.2. parseInt() and parseFloat() 

The function prompt() returns a string.  This is good where a string is needed, 

but a string cannot be used in arithmetic operations.  Two functions are provided 

which can take a value (including a string) and turn it into a number.  The 

function parseFloat() will return a number with a fraction expressed in 

decimal places.  The function parseInt() will return a number without any 

decimal places.  It should be noted that it does not round a number, it truncates it 

(just chops off the decimal places).  So sending the value 1.9 to parseInt() 

would result in a value of 1. 
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<html> 

 <head> 

  <script type="text/javascript"> 

   var number = 0; 

 

   number = prompt("Enter a number"); 

   alert(typeof number + " " + number); 

   number = parseInt(prompt("Enter a number")); 

   alert(typeof number + " " + number); 

   number = parseFloat(prompt("Enter a number")); 

   alert(typeof number + " " + number); 

  </script> 

 </head> 

 <body> 

  parseInt() and parseFloat() example 

 </body> 

</html> 

Code Example 9.2: Using parseInt() and parseFloat() to get an numeric input 
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3 Using the code you wrote in Exercise 9.1 take the result returned by the 

prompt() function and pass it to parseInt() to convert the user's age 

from a string to a number in integer form and store this in age.  Increment 

the value of age.  Output the message to say "Soon you will be XXX years 

old" where XXX is the incremented age. 
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2 Answer to the following on paper first, then confirm your answer by creating 

and testing the program.  Assuming a user entered 4.56 for each input, what 

would the program in Code Example 9.2 output? 
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Test

Body

Success

Failure
Test

Body

Success

Failure

10. Selection 
In the programs we have seen so far, there has been only one path of execution 

through the program.  Sometimes we may wish to execute some statements only 

when certain conditions are met.  Sometimes we may wish to have two possible sets 

of statements of which only one will be executed according to certain conditions.  

Choosing whether or not to execute a body of statements is referred to as selection.  

A number of structures are provided for us to achieve selection. 

10.1. The if Statement 

The if statement can be used to execute a body of 

statements when certain conditions are met.  We use a test 

to determine if these conditions have been met.  The test 

will result in a true or false value.  Relational (>, <, 

==...) and logical (&&, ||, !) operators are often used in 

such a test to obtain a Boolean value. 

if(    TEST     ) { 

    BODY     

} 

In the syntax description above we see an if statement 

starting with the word if.  This is followed by the test which is always enclosed 

in parentheses ().  The body contains statements that will be executed if the test 

results in a true value.  The body is enclosed in curly braces { }.  If the test 

fails (results in a false value) the body will be skipped and the next statement 

after the body will be executed as shown diagrammatically in Figure 10.1. 

In Code Example 10.1 we see an example of an if statement starting on line 05 

and ending on line 07.  The test compares the string the user entered with the 

string "hi".  If they are the same, a true value results and the body will be 

executed. 
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<html> 

 <head> 

  <script type="text/javascript"> 

   var input = ""; 

 

   input = prompt("Enter a string"); 

   if(input == "hi") { 

    alert("Well hello to you too."); 

   } 

  </script> 

 </head> 

 <body> 

  if example 

 </body> 

</html> 

Code Example 10.1: Example using if 
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.1
 Using your template create a program that will prompt the user for a number.  

Convert the user's input to an integer using parseInt() and store in a 

variable.  Using an if statement test the input; if the value is greater or equal 

to zero, output the message "Number was positive". 

Figure 10.1: How if works 
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10.2. The if-else Statement 

The if-else statement is similar to if but provides a second body which is 

executed when the test fails. 

Only one body is executed as shown in Figure 10.2.  After the appropriate body 

of statements is executed, there is a jump to the next statement after the if-else 

statement. 
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<html> 

 <head> 

  <script type="text/javascript"> 

   var input = ""; 

 

   input = prompt("Enter a string"); 

   if(input == "hi") { 

    alert("Well hello to you too."); 

   } 

   else { 

    alert("You entered: "+input); 

   } 

  </script> 

 </head> 

 <body> 

  if-else example 

 </body> 

</html> 

Code Example 10.2: Example using if-else 

 

10.3. Indenting and Formatting 

In programming indenting is used to visually display structure in a program.  

Indenting is not required for the program to work and has no effect on how the 

program is executed.  However it is good programming practice to use indenting 

so code is easily readable by humans. 

The key to know where to use indenting usually lies in where curly braces { } 

are placed.  The content enclosed in braces should be indented one level further 

than the surrounding code. 

if(    TEST     ) { 

    BODY     

} 

else { 

    BODY     

} 
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.2
 Change the program you created for Exercise 10.1 so that if a user enters a 

negative number, the message "Number is negative" will be displayed. 

Test

Body

Success Failure

Body

Test

Body

Success Failure

Body

Figure 10.2: How if-else works 
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<html> 

 <head> 

  <script type="text/javascript"> 

   var input = ""; 

   var number = 0; 

 

   input = prompt("Enter a string"); 

   number = parseInt(prompt("Enter a number")); 

   if(input == "hi") { 

    if(number > 0) { 

     alert("You are a positive person"); 

    } 

    else { 

     alert("You entered: " + number); 

    } 

   } 

  </script> 

 </head> 

 <body> 

  Indenting example 

 </body> 

</html> 

Code Example 10.3: How indenting is used to show the structure of a program 

In Code Example 10.3 an if statement is used and inside this is another if 

statement.  The content of the outer (first) if is indented one level.  Within the 

inner (second) if-else statement the bodies of the if and else are indented 

again. 

10.4. "Dangling else" 

Code without indenting is harder to read.  In Code Example 10.4 two if 

statements are shown without curly braces or indenting.  This code achieves the 

same result as the previous example but is harder to read. 
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 <head> 

  <script type="text/javascript"> 

   var input = ""; 

   var number = 0; 

 

   input = prompt("Enter a string"); 

   number = parseInt(prompt("Enter a number")); 

   if(input == "hi") 

   if(number > 0) 

   alert("You are a positive person"); 

   else 

   alert("You entered: " + number); 

  </script> 

 </head> 

 <body> 

  Dangling else example 

 </body> 

</html> 

Code Example 10.4: Without indenting code is harder to read 
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.3
 Answer the following on paper.  What will happen when a user enters: 

a. A string other than "hi"? 

b. The string "hi" and a number greater than zero? 

c. The string "hi" and a number less than zero? 

d. The string "hi" and the number zero? 
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10.5. Guarding Division 

One application of an if statement is to prevent code which could result in 

unpredictable behaviour or cause the program to crash while being executed.  

Previously we saw how dividing by zero can produce an unusable result.  In 

some programming languages the effects can be even more severe.  It is 

recommended that you always test the divisor (the second, right-hand operand) 

before a division operation takes place.  If the divisor is zero, division should be 

avoided. 
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 <head> 

  <script type="text/javascript"> 

   var number = 0; 

 

   number = parseInt(prompt("Enter a number for division")); 

   if(number != 0) { 

    alert(100 / number); 

   } 

   else { 

    alert("Dividing by zero causes problems"); 

   } 

  </script> 

 </head> 

 <body> 

  Guarding division example 

 </body> 

</html> 

Code Example 10.5: The numerator of a division should always be tested before the division 
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.4
 Answer the following on paper. 

a. What if does the else belong to? 

b. What would happen if a statement was inserted after the second if 

and before the call to alert()? 
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.5

 Using your template, create a program that will prompt the user to enter a 

pre-calculated sum of numbers and pre-calculated count of numbers.  

Calculate the average (the sum divided by the count).  How should your 

program behave if the user enters zero for the count of numbers? 

Not in implicit curriculum 
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11. Repetition (Loops) 
Often it is desirable to repeat the execution of statements.  One way to achieve this is 

to have the same statements repeated in a program.  This can be undesirable because: 

 If a change is needed, each repeated statement will need to be changed.  This 

effort could result in errors. 

 It is not possible to achieve a number of repetitions which is determined as 

the program is running (indefinite repetitions). 

A number of structures are provided for achieving repetition. 

11.1. while Loop 

A while loop works like an if statement except the 

body of the loop is executed repeatedly while the test 

results in a true value (in other words, until it results in 

a false value).   

while(    TEST     ) { 

    BODY     

} 

When the loop starts, the test is performed; if a true value results, the body of 

the loop is executed, otherwise the body is skipped and the next statement after 

the loop is executed.  When the end of the body is reached, the test is run again 

and this process continues. 
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 <head> 

  <script type="text/javascript"> 

   var number = 5; 

 

   while(number > 0) { 

    alert("Countdown: "+number); 

    number--; 

   } 

   alert("BLASTOFF!"); 

  </script> 

 </head> 

 <body> 

  while loop example 

 </body> 

</html> 

Code Example 11.1: Example of a while loop 
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.1
 Using your template, create a program that determine if a number is divisible 

by 2 (number%2 == 0) and (using &&) divisible by 3 (number%3 == 0).  If 

this is the case, output the value and add the number to a sum variable.  

Repeat this testing within a loop.  Start testing at the number 1.  Stop looping 

when the sum is greater or equal to 50.  At the end, output the final sum 

value. 

Test

Body

Success

Failure
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11.2. Sentinel Controlled Loops 

One application of a while loop is to repeat code until a certain value referred to 

as a sentinel is discovered.  Code Example 11.2 shows a poor attempt at 

achieving a Sentinel Controlled Loop.  The program is attempting to count inputs 

entered by a user before the sentinel is reached. 
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 <head> 

  <script type="text/javascript"> 

   var input; 

   var countOfInputs = 0; 

   var message = "Enter a number (999 to end): "; 

    

   while(input != 999) { 

    input = parseInt(prompt(message)); 

    countOfInputs++; 

   } 

   alert("Counted "+countOfInputs+" numbers"); 

  </script> 

 </head> 

 <body> 

  Bad loop example 

 </body> 

</html> 

Code Example 11.2: Repeating until a sentinel is found – this example will produce an incorrect result 

This example is deficient because: 

 The value of input is not initialised or set before it is used in the test at 

line 08.  This could have unpredictable consequences. 

 The goal of the code is to count numbers before the sentinel is 

encountered.  In this example, when the sentinel is entered by the user it 

will be included in the count. 

A correct solution is shown in Code Example 11.3.  In this example, a value for 

input is gathered before the test is conducted.  If the first number entered is the 

sentinel, the body of the loop is never executed, which is efficient.  On successive 

inputs the value is always tested before the count is incremented.  This will 

produce the correct answer in the most efficient fashion. 
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 <head> 

  <script type="text/javascript"> 

   var input = 0; 

   var countOfInputs = 0; 

   var message = "Enter a number (999 to end): "; 

    

   input = parseInt(prompt(message)); 

   while(input != 999) { 

    countOfInputs++; 

    input = parseInt(prompt(message)); 

   } 

   alert("Counted "+countOfInputs+" numbers"); 

  </script> 

 </head> 

 <body> 

  Sentinel controlled loop example 

 </body> 

</html> 

Code Example 11.3: Repeating until a sentinel is found –allows for the sentinel in the first instance and correctly counts inputs 

Not in implicit curriculum 



Experimental Curriculum Written Materials Appendix H 

 Page 196 

11.3. for Loop 

A for loop is a loop construct with commonly used components conveniently 

'built-in'.  A for loop has a number of parts as show in the following syntax 

description.  Note: parts ,  and  are separated by semicolons (;). 

for(  INITIALISATION  ;  TEST  ;  STEP  ) { 

  BODY   

} 

The parts of a for loop are executed in the following order. 

  INITIALISATION  An opportunity to initialise a counter 

  TEST  Determines if loop should continue (while true) 

  BODY  Actions repeated each time the loop iterates 

  STEP  An opportunity to move the counter towards the loop end 

Note that: 

 The initialisation () is only performed once; 

 If the test () fails, parts  and  are skipped and the next statement 

after the loop body is executed; and 

 The step () is always followed by the test (). 

The following code repeats the previous while loop example using a for loop. 
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 <head> 

  <script type="text/javascript"> 

   var counter = 0; 

 

   for(counter = 5; counter > 0; counter--) { 

    alert("Countdown: "+counter); 

   } 

   alert("BLASTOFF!"); 

  </script> 

 </head> 

 <body> 

  for loop example 

 </body> 

</html> 

Code Example 11.4: Example of a for loop 
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.2
 First plan your solution to the following problem on paper, then implement 

the program using the template. 

Sum floating point numbers collected from a user until they enter 999. 

Consider: 

a. What variables will be needed? How will they be initialised? 

b. How will the loop work? How will the input be collected/converted? 

c. When will the output be performed? 
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11.4. Counter Controlled Loops 

One application for a for loop is to repeat a body of statements a pre-set number 

of times.  Rather than testing each time to see if the last repetition has been 

reached, a counter is used.  For each repetition, the counter is incremented.  

When the counter reaches a pre-set value, repetition stops.  This happens 

regardless of the content of the loop. 

For example, if five values need to be collected, a Counter Controlled Loop could 

be used to achieve this.  The number of repetitions and the termination of the 

repetition will be controlled by a counter and not by the values collected. 

11.5. Finding the Maximum/Minimum 

A common task is to find the maximum or minimum in a set of values.  The 

following plan can be used to achieve a search for a maximum. 

1. Initialisation 

A variable should be used to store the value of the maximum as the 

search progresses.  Only a single variable is needed..  The variable 

should be set so when the first value is encountered it will become the 

new maximum.  When searching for a maximum, the variable should be 

initialised to the minimum possible value.  For example, if we were 

searching for a maximum positive integer (numbers zero or greater), the 

variable should be initialised to zero. 

2. Repetition 

When searching a set of values of a know size, a Counter Controlled 

Loop is used.  When the set size is unknown, a Sentinel Controlled 

Loop is used where the sentinel is a special value at the end of the set, 

or possibly the absence of any more values. 

3. Comparison 

Each value of the set needs to be compared with the one stored in the 

variable.  If value from the set is the new maximum it should be 

assigned to the variable. 

11.6. Nesting and Merging 

When presented with a problem, a series of goals will emerge which need to be 

achieved in order to solve the problem. 
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.3
 Using your template, create a program that will use a sum and a counter.  Set 

the counter to 1 and loop until it reaches 100 (counter <= 100).  In each 

repetition add the value of counter to the sum.  At the end output the value of 

the sum. 
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.4
 Using your template, create a program to find the maximum of 5 numbers 

entered by a user. 

Not in implicit curriculum 

Not in implicit curriculum 
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Abutment 

Often the goals may need to be achieved in a certain order, in which case 

abutment is used as shown in Section 7.  As an example, when searching for a 

minimum or maximum, a variable used to store the current max/min must be 

initialised before the search can start and the search must be completed before 

output can take place; this is abutment. 

1. Initialise maximum variable 

2. Search for maximum variable 

3. Output maximum variable 

Nesting 

Sometimes sub-goals may need to be achieved to accomplish a greater goal.  

Sub-goals may be the body of a selection (if or if-else) statement or the body 

of a loop (while or for).  This sub-goal is nested within a greater goal.  In the 

example of finding a maximum or minimum, the comparison between each value 

in a set and the current max/min must happen within the repetition which gathers 

each value of the set.  The comparison is nested in the repetition. 

1. Initialise maximum variable 

2. Counter Controlled Loop (Search in set of known size) 

a. Input 

b. Test for maximum 

3. Output maximum variable 

 

Merging 

Often two goals can be achieved at the same time; we can merge the two goals. 

Say we were searching a set of a size unknown before the program began.  We 

may want to count how many values are in the set, as well as determining the 

minimum or maximum.  We could gather the same set of inputs twice, but a 

better solution would be to merge the counting of values with the comparison for 

a min/max. 

1. Initialise maximum variable 

2. Initialise counter 

3. Input (prime loop) 

4. Sentinel Controlled Loop (Search in set of unknown size) 

a. Test for maximum 

b. Increment counter 

c. Input 

5. Output maximum variable 

When two plans are merged, the order in which their commonly located parts are 

performed is usually not important.  For instance, when we merge the maximum-
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search and count plans above, the initialisation of the variables (steps 1 and 2) 

could be re-ordered without affecting the outcome.  Also the steps "Test for 

maximum" (a) and "Increment counter" (b) could be performed in the opposite 

order. 
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.5

 Using your template, create a program to allow a user to enter positive 

integers until the user enters the sentinel 999.  Determine the maximum value 

entered and the count of values (the value 999 will not be included). 
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12. Arrays 
Often it is necessary to store several similar values, for instance: 

 10 numbers entered by a user, or 

 The counts of occurrences of each alphabet letter in some text, 

... 

We could create variables to store each of these values, but a better solution is to 

store them together in array. 

12.1. Declaring Arrays 

Arrays are declared in a slightly different way to a normal variable. 

var arrayIdentifier = new Array(); 

...where arrayIdentifier would be replaced with the identifier for the array, 

for example... 

var exampleArray = new Array(); 

...would create an array as follows... 

00 11 22 33 44

exampleArray  

12.2. Accessing Array Elements 

Arrays are a collection of individual elements.  Once we have created the array 

we can access each of the elements in an array by using an index.  Indices are 

positive integers starting at 0.  The identifier of the array is followed by the index 

in square brackets [], for example... 

exampleArray[0] 

...would allow us to access the first element of exampleArray.  We can assign a 

value there as follows... 

exampleArray[0] = 5; 

...or read a value from that element... 

alert(exampleArray[0]); 

In JavaScript arrays are quite flexible. 

 Arrays grow as you add to them. 

 You can have more than one type of value in the same array. 

12.3. Initialising Arrays 

It is possible to initialise an array when it is declared.  This is done by placing the 

initial values in the parentheses, with commas in-between each value.  The 

following initialises an array of numbers. 
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var monthArray = new Array(31,28,31,30,31,30,31,31,30,31,30,31); 

The following initialises an array of strings. 

var labelArray = new Array("Apples","Oranges","Banannas"); 

You can later change the values in the array or add more. 

 

12.4. Arrays for Values 

One of the advantages of using arrays is we can perform actions on elements 

using a loop.  Consider the goal of inputting then outputting three numbers.  We 

could create three variables, input values into the three variables, then output the 

value of each.  Alternately we can create an array, we can ask for input in a loop 

which is repeated three times, then use a loop to output the values of the array 

(see Code Example 12.1).  Now consider what would be required if our goal 

were extended to 100 numbers.  Using variables, this would become quite 

cumbersome and prone to error.  With an array and loops, we merely have to 

increase the number of repetitions (changing the value of numbersToStore on 

line 05 of Code Example 12.1 would achieve this.) 
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 <head> 

  <script type="text/javascript"> 

   var inputArray = new Array(); 

   var numbersToStore = 3; 

   var counter; 

   var message = "Please enter a number"; 

    

   for(counter=0; counter<numbersToStore; counter++) { 

    inputArray[counter] = parseInt(prompt(message)); 

   } 

    

   for(counter=0; counter<numbersToStore; counter++) { 

    alert("Input "+(counter+1)+": "+inputArray[counter]); 

   } 

  </script> 

 </head> 

 <body> 

  Array for values example 

 </body> 

</html> 

Code Example 12.1: Storing values in individual array elements 
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.1
 Using your template, declare an array initialised with the names of the days 

of the week stored as strings.  Ask the user to enter a number between 1 and 7 

(be sure to convert the input to an integer).  Deduct 1 from the input value to 

get a value between 0 and 6.  Use the decremented input as the index to the 

array and output the day name corresponding to the user's input. 
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.2
 Using your template, create a program will allow the user to enter 5 floating 

point numbers (use parseFloat()).  Store each value in an array and add it 

to a sum at the same time.  When input is complete, calculate the average by 

dividing the sum by 5.  For each value in the array output the difference 

between the average and that value (average–numberArray[counter]).  

Some values may be negative and some positive. 
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12.5. Arrays for Categories 

Another use for arrays is to count occurrences of items in a set.  For instance, we 

could count "Apples","Oranges" and "Banannas" and store the count of each in 

an element of an array.  The way we could do this is to refer to each item of the 

set using a number from 0 to 2, say 0 for Apples, 1 for Oranges and 2 for 

Banannas.  We can then use this number as an index to an element in an array. 
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<html> 

 <head> 

  <script type="text/javascript"> 

   var labelArray = new Array("Apples","Oranges","Banannas"); 

   var numFruits = 3; 

   var message = "Please enter:\n"; 

   var fruitCountArray = new Array(); 

   var counter = 0; 

   var input = 0; 

    

   for(counter=0; counter<numFruits; counter++) { 

    message = message+counter+" for "+labelArray[counter]+", "; 

   } 

   message = message + "9 to Quit"; 

    

   for(counter=0; counter<numFruits; counter++) { 

    fruitCountArray[counter] = 0; 

   } 

    

   input = parseInt(prompt(message)); 

   while(input != 9) { 

    fruitCountArray[input]++; 

    input = parseInt(prompt(message)); 

   } 

    

   for(counter=0; counter<numFruits; counter++) { 

    alert(labelArray[counter]+": "+fruitCountArray[counter]); 

   } 

  </script> 

 </head> 

 <body> 

  Array for categories example 

 </body> 

</html> 

Code Example 12.2: Using an array to count occurrences of a set of elements 

In Code Example 12.2 we count occurrences of fruit.  The list of fruit is given in 

the array labelArray declared on line 04.  We use an array here for the labels 

reasons: 

1. We can declare the labels in one place and refer to them later, and 

2. Declaring them in an array gives them order from 0 to 2. 

On line 07 we declare the array which we will use to keep a count of the 

occurrences of each fruit. 

On lines 11 to 14 we create a message which we can use later to prompt a user to 

enter the code number for a particular fruit.  We could use the simpler prompt, 

"Enter the fruit code", but here we are giving the code numbers as well. 

On lines 16 to 18, we initialise the count of fruit by setting each array element to 

zero. 

Between lines 20 to 24 is where the action is.  The loop will continue until the 

user enters a 9.  On line 22 we see how we are using the code number specified 

by the user as the index to the array.  If the user enters a zero they are referring to 

Apples so we go to the array element containing the count of Apples 

(fruitCountArray[0]) and increment (add one to) the value there.  If the user 
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entered 1 or 2, the appropriate fruitCountArray element would be 

incremented. 

Finally on lines 26 to 28 we output the count of each fruit. 

 

12.6. Counting Values in a Set 

Code Example 12.2 contains the biggest JavaScript program we have seen so far.  

Let's look at this solution in terms of the plans used. 

1. Initialisation 

Before we can start counting set members we need to initialise the count of 

each element to zero. 

2. Counter Controlled Loop 

We know how many elements there are in fruitCountArray.  We will 

therefore use a counter controlled loop (as opposed to a sentinel controlled 

loop) to initialise each array element. 

3. Input (twice) 

We need to input fruit code numbers from a user.  We do this once to prime 

the sentinel controlled loop and again at the end of the loop. 

4. Sentinel Controlled Loop 

There is no limit to the number of times a user could enter a fruit code 

number.  They could enter several code numbers, they could enter 1, or they 

could enter none by entering the sentinel (menu option 9) in the first 

instance.  A sentinel controlled loop is therefore used to achieve this 

repetition. 

5. Set Counting 

We are not entering the value entered by the user directly into our array.  

Instead we are using a code number that relates to an element in a set (the 

set of fruit).  We are keeping a count of each fruit set member in an element 

of an array.  For convenience we have made use of fruit code numbers (0 to 

2) that are equivalent to the indices of the relevant array elements.  We can 

therefore access the appropriate array element by using the value entered by 

the user.  We can then increment the count in that array element using the 

statement (from line 22)... 

fruitCountArray[input]++; 
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.3
 Using your template, create a program will input five integers between 0 and 

9.  For each input increment the corresponding array element.  At the end, 

output the occurrences of values which were input 1 or more times.  For 

instance, if input was... 

6, 2, 4, 2, 2 

...output would be... 

2: 3 

4: 1 

6: 1 

Not in implicit curriculum 
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6. Output 

We need to output the counts stored in the fruitCountArray. 

7. Counter Controlled Loop 

As we know how many elements there are in the fruitCountArray a 

counter controlled loop can be used to repeat the output. 

Plan Integration 

Abutment and nesting can be used to 

integrate the plans above in a way that 

will solve the problem. 

 Initialisation (1) is nested in the 

first Counter Controlled Loop 

(2). 

 Set Counting (3) and Input (5) 

are nested in a Sentinel 

Controlled Loop (4). 

 Output (6) is nested in a 

Counter Controlled Loop (7). 

These plans are abutted in the order (1 

to 7) as they appear above. 

 

Counter Controlled Loop

Sentinel Controlled Input Sequence

Counter Controlled Loop

Initialisation

Input

Count Set

Input

Output


