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Abstract— Recently results have shown that a single
server queue Poisson Pareto Burst Process input has
a tail which is bounded by hyperbolic functions. We
show that the hyperbolic upper and lower bounds for
this system can be very misleading, that this hyperbolic
tail result is relevant only from a certain threshold on-
wards, and the magnitude of this threshold may be very
large. We also show that any hyperbolic upper and
lower bounds for a tail of the stationary waiting time
complementary distribution necessarily become further
apart as the rate of the process increases.

I. I NTRODUCTION

When we tackle difficult problems we often need to com-
promise in the accuracy of our answers or the rigor with
which they are derived. It is important that neither of these
is compromised excessively. A purportedly very accurate
answer which might be wrong because it is not rigorously
supported may not be useful, and neither is a very inaccu-
rate answer proved beyond doubt.

In practice there is always a degree of uncertainty and a
degree of inaccuracy. In this paper, we investigate a prob-
lem where an asymptotically accurate answer obtained rig-
orously appears to be insufficiently accurate for practical
use.

So, two approaches have been used. One of these ap-
proaches is rigorous, but merely demonstrates that in a cer-
tain asymptotic region of the parameter space, the hyper-
bolic approximations under consideration necessarily be-
come worse and worse. The second approach requires
more indulgence of the reader. We ask the reader to ac-
cept a new approximation [3] for the problem under study
in order to quantify the issue of accuracy and the region of
parameter space where accuracy of the hyperbolic bounds
becomes unacceptable.

Large Deviations Theory is a particularly powerful and
elegant approach to deriving asymptotically accurate ap-
proximations which has evolved rapidly over recent years
and been applied to many problems of analysis of commu-
nication systems. The large deviations approach provides
an asymptotic approximation. Furthermore, the type of ac-
curacy sought is usually somewhat more relaxed than the
obvious measure on account of being expressed in terms of
a logarithm of the function under study.

The concept of seeking asymptotic accuracy rather than
accuracy in its own right has led, in some cases, to the use
of the termexactfor approximations which vary from the

quantity of interest by a ratio which tends, in the limit, to
one. However, there are significant risks in accepting such
approximations. We need to have some assurance that the
operating region of real interest is not so far from the lim-
iting region where the approximation is valid. Otherwise,
the approximation will not be of any value.

In many cases, the large-deviations style of approxima-
tion seems to be well suited to the task in hand. By relaxing
the accuracy required in the sought after system characteri-
zation it becomes possible to see more easily, more clearly,
the truly important features of the system.

Recently, an example of considerable interest and impor-
tance in which the asymptotic shape of the tail appears to
be necessarilya poor approximation of the function as a
whole has arisen naturally. Use of the asymptotic shape of
the tail can produce results which can be misleading from a
practical point of view because the parameter region where
accuracy becomes satisfactory is very remote from realistic
values.

In the next section, the Poisson Pareto Burst Process
(PPBP) (also referred to as the M/G/∞ traffic process by
many authors) [9], [11], [12], [15], [17], [18] is introduced
and its analysis by two different approaches is presented:
the first approach uses asymptotic shape analysis whereas
the second, introduced in [3],where it was termedquasi-
stationary approximation, relies on a separation of time
scales.

In the third section two arguments are used to show that
the hyperbolic upper and lower bounds for the stationary
waiting time in a PPBP queue are misleading. First it is
shown that any hyperbolic upper and lower bounds for a tail
of the stationary waiting time complementary distribution
function (CDF) necessarily diverge from each other as the
rate of the PPBP input increases. Then it is shown that for
any value ofλ there is a buffer level,xg say, only beyond
which this hyperbolic tail can be expected to show itself.
An estimate ofxg as a function of the other parameters is
presented.

It should be noted that the problem of asymptotic slope
analysis methods providing misleading guidance has been
raised previously in [6], [7]. The present instance is some-
what more complicated because here we consider models
which exhibit long range dependence.

II. A QUEUE SUBJECTED TOPPBPTRAFFIC

The traffic in a PPBP is made up of bursts, the burst starts
forming a Poisson process, the burst lengths following a



Pareto distribution. Except in [11], [17] the rate at which
packets are generatedduringeach burst is constant.

We form adiscrete timePPBP by dividing time into fixed
length intervals, and for each such time interval, we con-
sider the total amount of work contributed during this pe-
riod of time by all the bursts. This discrete time PPBP is
the process studied in this paper.

Denoting a burst duration byd, the CDF of the Pareto
distribution takes the form:

Pr(d > x) =

{(
x
δ
)−γ

, x≥ δ,

1, otherwise,
(1)

δ > 0. For 1< γ < 2, we have that E(d) = δγ
(γ−1) and the

variance ofd is infinite.

A. Hyperbolic Bounds

Upper and lower hyperbolic bounds on the stationary
CDF for an SSQ with M/G/∞ input process were obtained
in [18]. Large Deviations Theory was used to obtain a con-
sistent result in [15]. Related results have been obtained in
[11], [13]. In [18] estimates of both finite buffer time con-
gestion probabilities and finite queue loss probabilities are
presented. Only the expressions for time congestion prob-
abilities are presented here.

The upper bound for the CDF of the workload,Q, of the
SSQ is given by

Pr(Q > x)≤

(
λγδγ(γ−1)−γ (C

r +2
)γ−1

rγ−1
)k

x(−γ+1)k

k!
(2)

and the lower bound by

Pr(Q > x)≥ γkδγkr(γ−1)kx(−γ+1)k

γ(γ−1)k
(
E(d)+(1−e−ρ/E(d))−1−1

)γ+k ,

(3)
where E(d) is the mean burst duration. For Pareto dis-
tributed burst lengths, as in the PPBP, E(d) = δγ

(γ−1) . and

the parameterk is given byk = 1+
⌊

C
r −λE(d)

⌋
. Finally,

the value ofρ depends uponλE(d). If λE(d) ≤ 1 then
ρ = λE(d), otherwise,ρ may be any value in the range

0≤ ρ <

{
1+δp−∆, if ∆≥ δp,

δp−∆, if ∆ < δp.
(4)

The two terms introduced in this definition forρ are given
by δp = λE(d)−bλE(d)c , and∆ = C

r −
⌊

C
r

⌋
.

The upper and lower bounds at (2) and (3) decay at the
same rate. We would therefore naturaly predict that for
large buffer sizes our PPBP should show queueing perfor-
mance in which the probability of loss decays asx(−γ+1)k.

The fact that the upper and lower bounds decay at the
same hyperbolic rate which gives us some confidence that
the true “asymptotic shape” of the CDF has been identi-
fied. A result which includes both shapeand weightfor the
asymptotic form of a stationary PPBP queue buffer CDF,
is given in [11]. That is to say, in that paper a function
is given explicitly whose ratio to the CDF tends to one as
the buffer level tends to infinity. This asymptotic form is

neither an upper nor a lower bound. However, even when
the asymptotic form of a CDF is known in this sense, there
are considerable risks that the result may provide a very
poor approximation to the CDF if the region where the ap-
proximation becomes accurate is very remote. Results in
the next section demonstrate that this problem appears with
full force in the PPBP queue.

B. The Decoupling Approach

A different approximation for the queueing performance
of the PPBP SSQ was introduced in [3]. This approach is
based on decoupling the bursts of the PPBP into long and
short bursts. If we consider the PPBP over a finite inter-
val of lengthW, i.e., the period[t, t +W], for arbitraryt,
then any of the initial bursts which last for the entire time
period, we label aslong bursts. All other bursts are called
short bursts. The short bursts include: (1) those bursts that
start at or beforet and end beforet +W, (2) those bursts
that start aftert and finish at or aftert +W and (3) those
bursts that start aftert and finish beforet +W. Considering
these long and short bursts, we divide the PPBP into two
independent processes: (1) thelong bursts processand (2)
the short bursts process. The long bursts process is a sta-
tionary but non-ergodic process containing only the long
bursts. The short bursts process contains all the remaining
bursts, and is stationary on the interval[0,W] [3].

Denote the service rate byC. For a givenW, suppos-
ing that there aren simultaneous long (lengthW) bursts,
we can use known techniques for SRD processes (e.g. the
technique given in [1]) to calculate the performance of the
short bursts process in a queue with service rateC−nr. We
then calculate an estimate of the performance of the PPBP
in a queue with service rateC by summing these estimates,
weighted by the probability that the long bursts process will
containn bursts.

There are many possible ways to separate long and short
bursts. We have chosen the above to guarantee stationar-
ity of the two processes. Clearly, we allow some ”short”
bursts to be longer than some ”long” bursts, but this does
not affect the consistency or usefulness of the model. No-
tice that SRD process we use to model the short bursts does
allow for very long bursts, although none of them attain this
length inside the interval of lengthW.

III. T HE MISLEADING TAIL IN THE PPBPQUEUE

The large deviations method and related asymptotic ap-
proximations, as applied in [13], [15], [17], [18], focus on
one particular method by means of which large buffer lev-
els can occur – the simultaneous occurrence of sufficiently
many long bursts for the server to be overloaded while all
these long bursts are active. However, there is another way
in which a large buffer level may develop [3]. It is possi-
ble that many simultaneouslong burstscould lead to levels
of server utilizationmoderately closeto capacity, although
not sufficient to cause overload all by themselves. At the
same time that these long bursts take the server moderately
close to capacity, a fluctuating load of short bursts could
add sufficient load to lead to steadily increasing buffer lev-
els.



The model of queue behaviour in which long bursts and
short bursts combine to produce the overflow includes as
a special case the situation where the long bursts produce
an overflow all by themselves, which is the dominant cause
for reaching very high buffer levels. As a consequence, the
tail behaviour of the CDF of stationary buffer levels of [3]
is consistent with that of [17], i.e. it is hyperbolic.

The next subsection reveals a problem with models
where only long bursts cause congestion and the joint effect
of long and short bursts is neglected, i.e. purely hyperbolic
approximations.

A. Unbounded separation of bounds for largeλ

From [2], we know that the stationary waiting time CDF
for a single server queue fed by a Poisson-Pareto Burst
process converges weakly, as the intensity of the Poisson
process,λ, increases, to the waiting time CDF of the cor-
responding Gaussian queueing system. The fact that the
Gaussian system has a Weibull tail appears to contradict
the hyperbolic tails of individual functions making up the
limit, however this is not necessarily a contradiction be-
cause asλ −→ ∞, the remoteness of the hyperbolic tails
may increase, as we shall see.

PropositionIII.1 confirms this explanation. In prepara-
tion we need several lemmas.

Lemma 1:Given arbitraryB, D1 > D2 > 0, β > 0, for
anyK > 0, x0 > 0, there existsxL > 0 such that

inf
λ,α>0

sup
x0≤x≤xL

max

(
αx−λ

Be−D2xβ ,
Be−D1xβ

αx−λ

)
> K.

Proof
Set f (x) = αx−λ andgi(x) = Be−Dixβ

, i = 1, 2. We want
to show that for anyK > 0, we can findxL such that the
best possible result obtainable by varyingα andλ will still
produce, for somex∈ [x0,xL], either f (x)

g2(x) > K or g1(x)
f (x) > K.

Set f ′(u) = log f (u1/β) = logα +
(
−λ

β

)
logu and

g′i(u) = loggi(u1/β) = logB−Diu. Thus, f ′(u)−g′i(u) =(
−λ

β

)
logu+Diu− (logB− logα), and

| f ′(u)−g′i(u)| ≤ θ⇐⇒ e−θ <
f (u1/β)
gi(u1/β)

≤ eθ.

The maximum of logu− a′u + b′, for u > 0, occurs
when u = 1/a′ and the value of this maximum is−1−
loga′ +b′. The minimum value, in the interval(u0,uL), is
min(logu0−a′u0 +b′, loguL−a′uL +b′) and occurs when
u = u0 or uL. The value ofb′ which minimises the max-
imum of | logu− a′u+ b′| on [u0,uL] is −1

2(1+ loga′ +
max(logu0−a′u0, loguL −a′uL)), which is also the value
of | logu− a′u+ b′| at this minimax choice ofb′, andu.
The minimum of this value over positivea′ occurs when
logu0−a′u0 = loguL−a′uL hencea′ = logu0−loguL

u0−uL
and so

the minimum over all positivea′ is

−1
2

(
1+ log

(
logu0− loguL

u0−uL

)
+

uL logu0−u0 loguL

uL−u0

)
.

Applying this result tof1(u)− g1(u), which is a mul-
tiple of logu− a′u+ b′, for suitablea′, b′, we find that

minu∈[u0,ul ] | f1(u)− g1(u)| is unbounded asuL = x
1
β
L in-

creases.

Lemma 2: If Q denotes the buffer level in a stationary
Gaussian queue with variance functionσ2

b and net mean

input−µ, and the limitg(c) = limt→∞
σ2

t
c2σ2

t/c
exists, forc >

0.

lim
b→∞

σ2
b

b2 logP(Q > b) =− inf
c>0

g(c)(c+µ)2/2.

Proof

See [8].

Lemma 3:Suppose now that a Gaussian process having
the same autocovariance as the PPBP process and net mean
−µ and this process supplies input to a stationary queue.
Then, if Q is the buffer contents in this system, for any
ε > 0 there existsx0 > 0 such that forx > x0,

Ce−(D+ε)xβ ≤ P(Q > x)≤Ce−(D−ε)xβ
, (5)

whereC is 1 (or any other number),β = γ− 1, andD =
4λr2δγ(3−γ)γ−1

(2−γ)(3−γ)3(γ−1)γ µ3−γ.

Proof

As presented in [3],

σ2
t =

 2r2λt2
(

δγ
2(γ−1) −

t
6

)
, 0≤ t ≤ δ,

2r2λ
{

δ3γ
6(3−γ) −

δ2tγ
2(2−γ) −

t3−γδγ

(1−γ)(2−γ)(3−γ)

}
, t > δ.

(6)
The term int3−γ is dominant even for relatively smallt. In
particular, settingH = 2λr2δγ

(γ−1)(2−γ)(3−γ) , for anyδ > 0 there
existt0 > 0 such that for allt > t0,

(H−δ) t3−γ < σ2
t < (H +δ) t3−γ. (7)

Clearly, in this instance, the limit definingg(c) exists and
g(c) = c1−γ, c > 0. It follows that infc>0g(c)(c+µ)2/2 =
2(γ−1)(3−γ)γ

(3−γ)3(γ−1)γ µ3−γ. So, applying the previous lemma,

lim
b→∞

σ2
b

b2 logP(Q > b) =−2(γ−1)(3− γ)γ

(3− γ)3(γ−1)γ µ3−γ.

That is to say, for anyδ′ > 0 we can findb0 > 0 such that
for b > b0,(

−2(γ−1)(3− γ)γ

(3− γ)3(γ−1)γ µ3−γ−δ′
)

b2

σ2
b

< logP(Q > b)

<

(
−2(γ−1)(3− γ)γ

(3− γ)3(γ−1)γ µ3−γ +δ′
)

b2

σ2
b

(8)

Using (7), we find, therefore, for anyε > 0, there is an
x0 > 0 such that forx > x0,(

−2(γ−1)(3− γ)γ

(3− γ)3(γ−1)γ µ3−γH− ε
)

bγ−1 < logP(Q > b)

<

(
−2(γ−1)(3− γ)γ

(3− γ)3(γ−1)γ µ3−γH + ε
)

bγ−1 (9)



which is as we set out to show.

Lemma 4:The CDF of a Gaussian queueing system is
continuous on(0,∞).

Proof
Let us denote the workload arriving up to timet (starting

at time zero) byXt . The queued workload in this Gaussian
queue at timet can be expressed as

Qt = sup
s≤t

Xt −Xs = Xt −XSt

whereSt denotes the time,s, previous tot whereXt −Xs

achieves its maximum value. The processSt is an in-
creasing process which alternates between periods when it
remains fixed, whileQt fluctuates with the same relative
movements asXt , and periods when it takes the valuet,
during whichQt takes the value 0. The periods whenSt

remains fixed are known asbusy periodsand the intervals
between the busy periods are known asidle periods. We
can confine out attention to the busy periods, sinceQt ≡ 0
in the idle periods.

We desire to prove thatP(Qt = x) = 0 for anyx other
than 0. During an individual busy period,XSt remains fixed.

For a moment let us confine our attention to the be-
haviour ofQt in one busy period. SupposeXt ranges froma
to b during this busy period, i.e. the smallest value taken by
Xt is a and the largest isb. It follows thatQt will range from
0 tob−a. For anyy∈ ([a,b], the Lesbesgue measure of the
set{t : Xt = y}, which we shall denote bym({t : Xt = y}),
is zero, with probability one, so it is also the case that if
x > 0, m({t : Qt = x}) must be zero with probability one.

It follows, since in any finite interval there can only be
a countable number of busy periods, that for anyT > 0,
x> 0,m({t : Qt = x, t ∈ [−T,T]}) = 0 with probability one.

By the ergodicity of the processQt ,

P(Qt ∈ (x,y]) = lim
T−→∞

1
2T

m({t : Qt ∈ (x,y], t ∈ [−T,T]})

with probability one, wherem(·) denotes Lesbesgue mea-
sure. In particular, if we setx = y, since

m({t : Qt = x, t ∈ [−T,T]})≡ 0

for all T > 0, P(Qt = x) = 0, as we set out to show.

Note that we can now deduce, by means of Theorem 11
from [10], the stronger result that the stationary CDF of
the Gaussian queue contents isabsolutely continuous. The
result in [10] is more general and has a conclusion which
is stronger, in this respect, but does not exclude the possi-
bility that the CDF has one discontinuity at a locationr0

other than 0, which is specifically excluded by the result
just proved. Absolute continuity of the CDF will not be
used in the sequel.

Lemma 5:The sequenceφλ(x) converges to the CDF of
the Gaussian queueing system with the same first and sec-
ond order statistics uniformly inx on any finite interval in
[0,∞).

Proof

Point-wise convergence follows from the CLT [2] and
Lemma 4. Choose a finite interval[a,b] ⊆ [0,∞). Let
φ(x) = limλ→∞ φλ(x), x > 0. This is a uniformly contin-
uous function on[a,b] (because[a,b] is compact). Choose
ε > 0. We seekΛ such that for allλ > Λ, for all x∈ [a,b],
|φλ(x)−φ(x)|< ε.

By uniform continuity ofφ(x) we can findδ > 0 such
that whenever|x−y|< δ, |φ(x)−φ(y)|< ε/2. Divide [a,b]
into M = d(b− a)/δe intervals of length at mostδ, with
endpointsa0, . . . , aM and midpointsx0, . . . , xM−1. Notice
that every point in[a,b] lies between two adjacent points in
the set{x0, . . . ,xM−1} and is no more thanδ distant from
each of these points.

ChooseΛ sufficiently large that|φλ(xi)− φ(xi)| < ε/2
for all i < M and for allλ > Λ.

Thus, using the fact that all theφλ(x) are non-increasing
functions, whenλ > Λ, supposing thatxi ≤ x < xi+1,

φλ(x) < φλ(xi) < φ(xi)+ ε/2

< φ(x)+ ε. (10)

A similar argument shows thatφλ(x) > φ(x)− ε.

The next proposition applies to the situation where the
traffic on a link grows steadily and the size of the link car-
rying this traffic also grows steadily in a manner which
asymptotically provides a consistent quality of service. For
convenience, we assume that the traffic is rescaled so that
the system converges weakly to a specific Gaussian limit,
as discussed in [2], [4].

Proposition III.1: Suppose, forλ = λ1, λ2,. . .→ ∞,
φλ(x) is the CDF of a stationary PPBD queueing system
Sλ, such that the service capacity,Cλ, and the rate,rλ,
of each system is chosen (in particular, by changing the
scale used for work) so that the first and second order
statistics of thenet input process (the input process minus
the service process) are the same for all systems. Thus,

rλ = r1

√
λ1
λ for all λ, and the service rate of systemSλ is

Cλ = m+ r1E(d)
√

λλ1 for all λ for a certainm> 0.
Then, for any numbers,Aλ, Bλ and increasing function,

f (λ), defined on[0,∞), such that

Aλx− f (λ) ≤ φλ(x)≤ Bλx− f (λ), (11)

for all x > x0, necessarily,Bλ
Aλ
→ ∞ asλ→ ∞.

Proof

Suppose, to the contrary, thatBλ
Aλ
≤ K for all λ > 0. By

the Central Limit theorem [2], φλ(x) converges to the com-
plementary waiting time distribution of a Gaussian queue-
ing system (ψ(x) say) with the same first and second order
statistics, which is continuous, by Lemma4.

By Lemma3, for anyε > 0, for somex1 > x0, (5) holds
for all x > x1. We could chooseε = D/4 for example. Let
D1 = D+ ε andD2 = D− ε, so, by (5), for all x > x1,

Ce−D1xβ ≤ ψ(x)≤Ce−D2xβ
. (12)



Now, by Lemma1, we can findxL > x1, such that over
the range ofx values, fromx1 to xL, the best we can do
in approximatingCe−D1xβ

, Ce−D2xβ
by αx−κ, by varyingκ

andα, produces a ratio of at leastK2 for somex∈ (x1,xL),

in the sense that eitherαx−κ

Ce−D2xβ > K2 or Ce−D1xβ

αx−κ > K2. Ap-

plying this withBλ for α, and f (λ) for κ, we see that over
the rangex1 to xL, the upper boundBλx− f (λ)

λ must, for some

value ofx, fail to approximate the functionsCe−D1xβ
and

Ce−D2xβ
by a ratio of at leastK2, i.e. for anyλ > 0, we can

find xλ ∈ (x1,xL) such that

Bλx− f (λ)
λ

Ce−D2xβ
λ

> K2 (13)

or
Ce−D1xβ

λ

Bλx− f (λ)
λ

> K2. (14)

By Lemma5, φλ(·) converges to its limitψ(·) asλ → ∞
uniformly on any finite interval ofx values. So we can
chooseλL sufficiently large that for allλ > λL the ratio
φλ(x)/ψ(x) is more than 1/

√
K and less than

√
K over

(x1,xL). It follows that for allλ > λL

φλ(x)/Ce−D1xβ
< K (15)

and
Ce−D2xβ

/φλ(x) < K (16)

over(x1,xL).
So, if (13) holds, combine it with (15) to give

Bλx− f (λ)
λ

φλ(xλ)
> K

or if (14) holds, combine it with (16) to give

Aλx− f (λ)
λ

φλ(xλ)
< K,

either of which contradict our assumption thatBλ
Aλ

< K.

This completes the proof.

The ratio between the upper and lower hyperbolic
bounds formulated in [18] is plotted as a function ofλ in
Figure1. The parameters in this example areγ = 1.4,δ = 1,
r = 6.32. The ratio increases extremely quickly as a func-
tion of λ, confirming PropositionIII.1.

B. The level where the tail becomes hyperbolic

In the last subsection, an inherent problem with upper
and lower bounds on a hyperbolic tail approximation for
stationary buffer distributions for a PPBP queueing system
was identified. What about asymptotic forms for the tail
which do not attempt to provide upper or lower bounds,
e.g. as provided in [11]?

From [11], for any PPBP queueing system,Sλ, in which
λ denotes the intensity of the Poisson arrival process of
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bursts, the stationary CDF of the buffer contents,φλL
(x),

satisfies the limit

φλL
(x)/x−κλ −→Cλ,

where κλ is the exponent corresponding to the minimal
configuration of bursts which leads to overload andCλ is a
certain constant. Hence, for each relative accuracy,ρ > 0,
there exists a buffer level,xρ, beyond which the approxi-
mationCλx−κλ for φλL

(x) achieves this relative accuracy.
Now consider the sequence of systemsSλ of Proposition
III.1 and letx{λ}

ρ denote the buffer level at which relative
accuracyρ is achieved for systemSλ. PropositionIII.1
implies that for anyρ > 0, asλ → ∞, x{λ}

ρ → ∞. For, if

{x{λ}
ρ : λ > 0} was bounded, we could choose any such

bound as the value ofx0 in PropositionIII.1, thereby con-
tradicting its conclusion.

Thus, asλ increases, the point where the hyperbolic tail
becomes accurate becomes more and more remote.

To estimate the point where the hyperbolic tailstarts, let
us denote, for a given buffer level,x, the number of simul-
taneous long bursts which is most likely to have occurred
in order to give rise the given level byκ(x). We expect this
number to approach the number,k(x) say, required to cause
system overload, for largex. But how large doesx have to
be in order thatκ(x) = k(x)?

To answer this question let us use the decoupling ap-
proach of [3], discussed in §II-B, using a Gaussian approx-
imation for the process of short bursts to estimate the prob-
ability that the levelx is exceeded, given a certain back-
ground of long bursts. Since the Poisson Pareto Burst Pro-
cess has autocovariance very similar to Fractional Brown-
ian Noise, it will be reasonable to use the well known [14]
formula for the probability of exceeding the levelx:

P{V∞ > x} ≈ e

(
− (C−m)2x2−2H

2(H)2H (1−H)2−2H σ2

)
. (17)

The probability that the levelx is exceededand this is
achieved by preciselyk =

⌊
C−m

r

⌋
long bursts is therefore

approximately(
E(d)λ(t∗/δ)1−γ

γ

)k
e
−E(d)λ(t∗/δ)1−γ

γ

k!
×e

(
− (C−m−kr)2x2−2H

2(H)2H (1−H)2−2H σ2

)



while the probability that levelx is exceeded and this is
achieved by preciselyk−1 simultaneous long bursts is ap-
proximately(

E(d)λ(t∗/δ)1−γ

γ

)k−1
e−

E(d)λ(t∗/δ)1−γ
γ

(k−1)!
×e

(
− (C−m−(k−1)r)2x2−2H

2(H)2H (1−H)2−2H σ2

)
,

in whichmdenotes the normal mean load generated by the
PPBP,H = 3−γ

2 , andt∗ is the estimated length of the long
bursts, which must be at least

t∗x =
Hx

(1−H)(C−m−kr)
, x≥ 0, (18)

because otherwise the FBM approximation could not be
used. In order to select the maximum probability for the
level x to be exceeded, we choose the minimum possible
length for the long bursts, hencet∗.

It follows that the buffer level at which the hyperbolic
behaviour of the tail first sets in, which we denoted byxg

earlier, is the solution (forx) of the following equation

E(d)λ(t∗/δ)1−γ

γk
= e

(
((C−m−kr)2−(C−m−(k−1)r)2)x2−2H

2(H)2H (1−H)2−2H σ2

)
. (19)

A plot of the solution of (19) as a function ofλ is shown
in Figure2. In this particular case (δ = 1,γ = 1.5, r = 0.05),
the relationship betweenλ and the hyperbolic threshhold,
xg, is almost exactlyxg = 33λ2. Althoughxg, as revealed in
this figure, is notimpossibly remotein all cases investigated
so far, it is sufficiently remote that the CDF takes negligable
values by the time buffer levels are this high.
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C. Asymptotic Forms of the PPBP CDF inbothSenses

The heuristic formula of the last subsection can also
be viewed in another way which provides a more rig-
orous foundation. This formula is consistent with the
known large buffer asymptotics of the PPBP queueing sys-
tem and is also consistent with the known many sources
asymptotics of this system. This might seem impossible,
since one interpretation of the previous results is that they
show the large buffer asymptotics to be inconsistent with
the many sources asymptotic form of the CDF. However,
asymptotic forms cannot be characterized by a single func-
tion. Both asymptotic forms should be properly thought

of as an equivalence class of functions, and no matter how
simple a function found in one of these classes might be,
it is still only a representative from the class. The class
of functions with the same large buffer asymptotics as the
stationary CDF of the PPBP queue and the class of func-
tions with the same many sources asymptotic form of this
CDF have a non-empty intersection (for the true CDF is in
both classes). Any simple function in both classes has a
much better chance of characterising the true behaviour of
the PPBP queueing system than a function which is only
in one class or the other. The approximation obtained in
SubsectionII-B is in both classes.

IV. CONCLUDING REMARKS

We have shown that the widely known hyperbolic form
queueing formulae for PPBP service systems, in many
cases, will not give us an acceptable answer for the practi-
cal problems we seek answers for. What approach should
we use instead? If the traffic is sufficiently multiplexed
such that it is approximately Gaussian, it will be acceptable
to use the results of [1] as the results there are appropriate
for Gaussian SRD as well as LRD SSQ. Otherwise we can
use the decoupling approach of [3], as discussed in Subsec-
tion II-B, where we classify the bursts into long and short
bursts (equivalent to the so-called ”mice and elepants” con-
cept [5], [16]) and use the existing result for FBN queues
for the SRD process. The accuracy of this approach ap-
pears to be good and it also appears to be quite straightfor-
ward to use it to calculate probabilities of interest.
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