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Abstract— Recently results have shown that a single quantity of interest by a ratio which tends, in the limit, to
server queue Poisson Pareto Burst Process input has one. However, there are significant risks in accepting such
a tail which is bounded by hyperbolic functions. We approximations. We need to have some assurance that the
show that the hyperbolic upper and lower bounds for operating region of real interest is not so far from the lim-
this system can be very misleading, that this hyperbolic iting region where the approximation is valid. Otherwise,
tail result is relevant only from a certain threshold on-  the approximation will not be of any value.
wards, and the magnitude of this threshold may be very In many cases, the large-deviations style of approxima-
large. We also show that any hyperbolic upper and tion seems to be well suited to the task in hand. By relaxing
lower bounds for a tail of the stationary waiting time  the accuracy required in the sought after system characteri-
complementary distribution necessarily become further  zation it becomes possible to see more easily, more clearly,

apart as the rate of the process increases. the truly important features of the system.
Recently, an example of considerable interest and impor-
|. INTRODUCTION tance in which the asymptotic shape of the tail appears to

. be necessarilya poor approximation of the function as a
When we tackle difficult problems we often need to comyh|e has arisen naturally. Use of the asymptotic shape of
promise in the accuracy of our answers or the rigor withe (5j can produce results which can be misleading from a
which they are derived. It is important that neither of thesg 4 ctical point of view because the parameter region where
is compromised excessively. A purportedly very accuratgecyracy becomes satisfactory is very remote from realistic
answer which might be wrong because it is not rigorously,,es.
supported may not be useful, and neither is a very inaccu—m the next section, the Poisson Pareto Burst Process

rate answer proved.beyond doubt. i (PPBP) (also referred to as the M#estraffic process by

In pracu_ce there is alway_s a degree 01_‘ unce_rtalnty andrﬁany authors)d, [14], [12], [15], [17], [18] is introduced
degree of inaccuracy. In this paper, we investigate a proliy, 5 analysis by two different approaches is presented:
lem where an asymptotically accurate answer obtained ke first approach uses asymptotic shape analysis whereas

orously appears to be insufficiently accurate for practicqhe second, introduced igjwhere it was termedjuasi-

use. stationary approximationrelies on a separation of time
So, two approaches have been used. One of these @py|es.

pr_oaches s rigorou_s, but merely demonstrates that in a €™ In the third section two arguments are used to show that

ta"? asymptquc region of the paramete_r space, the _hype[h—e hyperbolic upper and lower bounds for the stationary

bolic approximations under consideration necessarily bgv

d Th d h _Waiting time in a PPBP queue are misleading. First it is
come Worse and worse. € second approach requitgs, v that any hyperbolic upper and lower bounds for a tail

more indulgence O.f thg rrgafder.h We abslk the r((jaader Ejo a5f the stationary waiting time complementary distribution
cept a new approximatio®] for the problem under study function (CDF) necessarily diverge from each other as the

in order to quantify the issue of accuracy and the r_egion Fhte of the PPBP input increases. Then it is shown that for
parameter space where accuracy of the hyperbolic boun ﬁy value of there is a buffer levely, say, only beyond

becomes unacceptable. which this hyperbolic tail can be expected to show itself.

Large Deviations Theory is a particularly powerful anda, egtimate o, as a function of the other parameters is
elegant approach to deriving asymptotically accurate arB

oo . X resented.
proximations which has evolved rapidly over recent years It should be noted that the problem of asymptotic slope

and been applied to many problems of analysis of Commlé'nalysis methods providing misleading guidance has been

nication systems. The large deviations approach provid?gised previously ind, [7]. The present instance is some-

an asymptotic gpproxmatlon. Furthermore, the type of ahat more complicated because here we consider models
curacy sought is usually somewhat more relaxed than th

obvious measure on account of being expressed in termsvgrfmh exhibit long range dependence.
a logarithm of the function under study.

The concept of seeking asymptotic accuracy rather than
accuracy in its own right has led, in some cases, to the useThe trafficin a PPBP is made up of bursts, the burst starts

of the termexactfor approximations which vary from the forming a Poisson process, the burst lengths following a

Il. A QUEUE SUBJECTED TOPPBPTRAFFIC



Pareto distribution. Except irL]l], [17] the rate at which neither an upper nor a lower bound. However, even when
packets are generatedring each burst is constant. the asymptotic form of a CDF is known in this sense, there
We form adiscrete timd®PBP by dividing time into fixed are considerable risks that the result may provide a very
length intervals, and for each such time interval, we corpoor approximation to the CDF if the region where the ap-
sider the total amount of work contributed during this peproximation becomes accurate is very remote. Results in
riod of time by all the bursts. This discrete time PPBP ishe next section demonstrate that this problem appears with

the process studied in this paper. full force in the PPBP queue.
Denoting a burst duration bg, the CDF of the Pareto )
distribution takes the form: B. The Decoupling Approach
(5)7\, K>3 A different approxima_tion for the queue_ing performqnce
Pr(d > x) = o/ = (1) of the PPBP SSQ was introduced B}.[ This approach is
{17 otherwise based on decoupling the bursts of the PPBP into long and

& short bursts. If we consider the PPBP over a finite inter-
5> 0. For 1<y <2, we have that &) = *;; and the val of lengthW, i.e., the periodt,t +W], for arbitraryt,
variance ofd is infinite. then any of the initial bursts which last for the entire time
period, we label akng bursts All other bursts are called
short bursts The short bursts include: (1) those bursts that

Upper and lower hyperbolic bounds on the stationargtart at or beforé and end beforé+W, (2) those bursts
CDF for an SSQ with M/G# input process were obtained that start aftet and finish at or aftet +W and (3) those
in [18]. Large Deviations Theory was used to obtain a conbursts that start aftérand finish beforé+W. Considering
sistent result in15). Related results have been obtained irnthese long and short bursts, we divide the PPBP into two
[11], [13]. In [18] estimates of both finite buffer time con- independent processes: (1) thag bursts procesand (2)
gestion probabilities and finite queue loss probabilities ar#e short bursts processThe long bursts process is a sta-
presented. Only the expressions for time congestion protienary but non-ergodic process containing only the long

A. Hyperbolic Bounds

abilities are presented here. bursts. The short bursts process contains all the remaining
The upper bound for the CDF of the worklod#gl,of the  bursts, and is stationary on the inter{@Ww] [3].
SSQ is given by Denote the service rate liy. For a givenW, suppos-

K ing that there are simultaneous long (lengtV) bursts,
(}\yéy(y— )7V (& +2)y_1rV—1) x(-¥+Dk e can use known techniques for SRD processes (e.g. the
K technique given in]]) to calculate the performance of the
' (2) shortbursts process in a queue with serviceG@atenr. We
and the lower bound by then calculate an estimate of the performance of the PPBP
in a queue with service ra@by summing these estimates,
YOk DRy K weighted by the probability that the long bursts process will
Yy — DX (E(d) + (1— e P/E@) -1 — 1)V+k’ containn bursts.

(©) There are many possible ways to separate long and short
where Ed) is the mean burst duration. For Pareto disbursts. We have chosen the above to guarantee stationar-
tributed burst lengths, as in the PPBRdE= %. and ity of the two processes. Cleaf,ly, w;a allow some “_short"
the parametek is given byk = 1+ [% f)\E(d)J . Finally, bursts to be longer than some "long” bursts, but this does

the value ofp depends upoE(d). If AE(d) < 1 then Ot affect the consistency or usefulness of the model. No-
p = AE(d), otherwisep may be any value in the_range tice that SRD process we use to model the short bursts does
allow for very long bursts, although none of them attain this

{1+ Sp—A, if A>3y, length inside the interval of lengilv.
0<p< -

Pr(Q > x) <

Pr(Q > x) >

. 4)

O — A4, if A < Bp. Ill. THE MISLEADING TAIL IN THE PPBPQUEUE
The two terms introduced in this definition fprare given The large deviations method and related asymptotic ap-
by 8p = AE(d) — [AE(d)], andA = & — | € ]. proximations, as applied irLf], [15], [17], [18], focus on

The upper and lower bounds &) @nd @) decay at the one particular method by means of which large buffer lev-
same rate. We would therefore naturaly predict that fagls can occur — the simultaneous occurrence of sufficiently
large buffer sizes our PPBP should show queueing perfamany long bursts for the server to be overloaded while all
mance in which the probability of loss decays&as k. these long bursts are active. However, there is another way

The fact that the upper and lower bounds decay at the which a large buffer level may develof][ It is possi-
same hyperbolic rate which gives us some confidence thiale that many simultaneolsng burstscould lead to levels
the true “asymptotic shape” of the CDF has been identdf server utilizatiormoderately closéo capacity, although
fied. A result which includes both shaped weighfor the not sufficient to cause overload all by themselves. At the
asymptotic form of a stationary PPBP queue buffer CDFSame time that these long bursts take the server moderately
is given in [L1]. That is to say, in that paper a functionclose to capacity, a fluctuating load of short bursts could
is given explicitly whose ratio to the CDF tends to one asdd sufficient load to lead to steadily increasing buffer lev-
the buffer level tends to infinity. This asymptotic form isels.



=

The model of queue behaviour in which Iong_bursts anﬂﬂnue[u o1/ f1(U) — g (u)] is unbounded asy = X’ in-
short bursts combine to produce the overflow includes L 0

. oo eases.
a special case the situation where the long bursts produce
an overflow all by themselves, which is the dominant cause
for reaching very high buffer levels. As a consequence, the Lemma 2:1f Q denotes the buffer level in a stationary
tail behaviour of the CDF of stationary buffer levels 8f [ Gaussian queue with variance fUﬂCtigﬁl and net mean
is consistent with that ofl[7], i.e. it is hyperbolic. input —, and the limitg(c) = lim; .. 2 exists, forc >

The next subsection reveals a problem with model “Ot/e

where only long bursts cause congestion and the joint effeCt
of long and short bursts is neglected, i.e. purely hyperbolic . Gﬁ . 2
approximations. Ml, b2 logP (Q>b) = — gQEg(CX” We/2

Proof

From [2], we know that the stationary waiting time CDF See Bl =
for a single server queue fed by a Poisson-Pareto Burst
process converges weakly, as the intensity of the PoissonLemma 3: Suppose now that a Gaussian process having
process), increases, to the waiting time CDF of the cor-the same autocovariance as the PPBP process and net mean
responding Gaussian queueing system. The fact that thgt and this process supplies input to a stationary queue.
Gaussian system has a Weibull tail appears to contradithen, if Q is the buffer contents in this system, for any
the hyperbolic tails of individual functions making up the€ > 0 there existgo > 0 such that fox > Xo,
limit, however this is not necessarily a contradiction be- (Diepd Doy
cause a3 — o, the remoteness of the hyperbolic tails Ce <P(Q>x)<Ce ; 5)
May Increase, as we shall see. . whereC is 1 (or any other number =y—1, andD =
Propositionlll.1 confirms this explanation. In prepara- " 25/3_yy-t 3y
tion we need several lemmas. 2=y (B=y)3(y—1)¥ '
Lemma 1:Given arbitraryB, D1 > D> >0, 3> 0, for  prgof
anyK > 0, xg > 0, there existg, > 0 such that

A. Unbounded separation of bounds for lakge

As presented inJ],

—A —DyxP
. ox Be -1
inf  sup max —a o | K 2r2\t2 (2(5X1> - %) , 0<t<y,
A0>0xp<x<x. Be P2>¢  ax ot = 2 53:// &ty £33
Proof 2r°A { §Ey) 2z TG } t> 5'6
Setf(x) = ax* andg;(x) = Be 0¥ i =1, 2. We want (6)

The term int>~Y is dominant even for relatively small In
particular, settindd = W_%"(s_w for anyd > 0 there
existtg > 0 such that for alt > fg,

to show that for anK > 0, we can findx_ such that the
best possible result obtainable by varymandA will still
produce, for some € [xo, x ], either-% > K or 4% > K.

92(X) f(x)

Set f/(u) = logf(u/f) = loga + (—%) logu and (H-9t*V<of <(H+t> . (@)
g (u) = loggi(u'/?) = logB — Diu. Thus, ¥'(u) ~gi(u) =  Clearly, in this instance, the limit defining(c) exists and
(?%) logu+ Dju— (logB —loga), and g(c)lzscl‘yy, ¢ > 0. It follows that inf-og(c)(c+p)2/2 =

e %p&% So, applying the previous lemma,
[f'(U)—g(u)| <B=e®< L <é

Gi(uP) _2AV-1E-YY 5y

The maximum of logi— au+ b/, for u > 0, occurs (3—y)3(y—1)Y

— / I i I _
whe? u " 1/a an'd. the value Of. this maximum 51 — Thatis to say, for any’ > 0 we can findog > 0 such that
loga +b'. The minimum value, in the intervalp, u, ), is for b > by

min(logup — &'up + b',logu. —a'u_ +b') and occurs when

0-2
gmb—glogP(Q> b) =

U= Ug or u_. The value oftY which minimises the max- 2y-1)B-Vy)Y 5, & b?

imum of [logu—a&'u+b/| on [ug,u ] is —3(1+ loga + T (3—y)B(y—1)Y -9 o2 <logP(Q>b)

max(logup — &up, logu. — &u,)), which is also the value 2(y—1)(3—y)Y b2

of |logu— @u+ Y| at this minimax choice ofY, andu. (— 3V+6/) — (8)
(B-y3(y—1)Y o

The minimum of this value over posilti\,mé qccurs when
/ _ / / __ logup—logu. . . .
logup — a'up = logu. —&'u. hencea’ = === andso  ysing (7), we find, therefore, for ang > 0, there is an

the minimum over all positive' is Xo > 0 such that fox > xo,
1 logup — logu, u logup — uglogu, 2(y—1)(3-y)Y 5 a
2<1+I09< Uo— UL >+ T : (—(Sy)g(yl)yu?’ VH—e) b+ <logP(Q > b)

Applying this result tof;(u) — g1 (u), which is a mul- (_ 2(y—-1)(3-y)Y 5

-y v—1
tiple of logu— au+ b/, for suitablea’, b/, we find that (3—y)3(y— 1)v“ H +‘°‘) b ©)



which is as we set out to show. O Proof

Point-wise convergence follows from the CLP][and
Lemma 4: The CDF of a Gaussian queueing system itemmad4. Choose a finite intervala,b] C [0,00). Let
continuous or{0, »). @(x) = limy_, @ (X), x> 0. This is a uniformly contin-
Proof uous function orja, b] (becauséa, b] is compact). Choose
o ) ) € > 0. We seel\ such that for all > A, for all x € [a, b,
Let us denote the workload arriving up to tirhéstarting o (X) — @(X)| < €.

attime zero) byX. The queued workload in this Gaussian gy yniform continuity of@(x) we can findd > 0 such

queue attime can be expressed as that whenevejx—y| < &, |@(X) — @(y)| < €/2. Divide[a, b]
Qr = supX — Xs = X — X into M = [(b—a)/d] intervals of length at mosi, with
s<t ° St endpointsag, ..., ay and midpoints«, ...,Xyv_1. Notice

that every pointirfa, bl lies between two adjacent points in
the set{Xg,...,Xm—1} and is no more thad distant from
ﬁﬂCh of these points.

ChooseA sufficiently large thatg, (x) — @(x)| < €/2
foralli < M and for allA > A.

Thus, using the fact that all thg (x) are non-increasing
functions, wherh > A, supposing that; < X < X1,

whereS; denotes the times, previous tot whereX; — Xg
achieves its maximum value. The procegsis an in-
creasing process which alternates between periods whe
remains fixed, whileQ; fluctuates with the same relative
movements a3, and periods when it takes the valtie
during whichQ; takes the value 0. The periods whén
remains fixed are known dsisy periodsand the intervals
between the busy periods are knownidle periods We _ _
can confine out attention to the busy periods, siQces 0 G < @) < @x) +e/2
in the idle periods. < QX +e (10)
We desire to prove tha@®(Q; = x) = 0 for anyx other
than 0. During an individual busy perio¥s, remains fixed.
For a moment let us confine our attention to the be-

haviour ofQ; in one busy period. SuppoXgranges frona The next proposition applies to the situation where the
to b during this busy period, i.e. the smallest value taken bitaffic on a link grows steadily and the size of the link car-
X isaand the largest . It follows thatQ will range from  rying this traffic also grows steadily in a manner which
Otob—a. Foranyy € ([a,b], the Lesbesgue measure of thegsymptotically provides a consistent quality of service. For
set{t : X =y}, which we shall denote by({t : X =Vy}),  convenience, we assume that the traffic is rescaled so that
is zero, with probability one, so it is also the case that ithe system converges weakly to a specific Gaussian limit,
x>0, m({t : Q = x}) must be zero with probability one.  as discussed ir2], [4].

It follows, since in any finite interval there can only be  proposition I11.1: Suppose, forA = A1, A,...— o,
a countable number of busy periods, that for &y 0, ¢, (x) is the CDF of a stationary PPBD queueing system
x>0,m({t: Q =xt€[-T,T]}) =0 with probability one. s, such that the service capacitg,, and the rater,,

By the ergodicity of the procesg, of each system is chosen (in particular, by changing the

. 1 scale used for work) so that the first and second order

P(Q e (xy)=_lim —=m({t:Qe (xy,te[-T.Tl})  statistics of thenetinput process (the input process minus
the service process) are the same for all systems. Thus,
ry = rl\/x;l for all A, and the service rate of syste® is

C\ = m+r1E(d)+/AA; for all A for a certairm > 0.
m{t:Q=xte[-T,T]})=0 Then, for any numberg,, B, and increasing function,
f(A), defined or[0, ), such that

A similar argument shows tha (x) > @(x) — . O

with probability one, wheren(-) denotes Lesbesgue mea-
sure. In particular, if we set=y, since

forall T >0, P(Q; =x) =0, as we set out to show.

O AN < (x) < Byx T, (11)

Note that we can now deduce, by means of Theorem Xar all x > Xg, necessarily%i — 00 aSA — 0,
from [10], the stronger result that the stationary CDF of
the Gaussian queue contentsiissolutely continuousThe Proof
result in [LO] is more general and has a conclusion whichSuppose, to the contrary, th%( <K forall A >0. By
is stronger, in this respect, but does not exclude the postie Central Limit theoren?], @, (x) converges to the com-
bility that the CDF has one discontinuity at a locatign plementary waiting time distribution of a Gaussian queue-
other than 0, which is specifically excluded by the resuling system @(x) say) with the same first and second order
just proved. Absolute continuity of the CDF will not be statistics, which is continuous, by Lemma
used in the sequel. By Lemmas3, for anye > 0, for somex; > xo, (5) holds

Lemma 5: The sequence, (x) converges to the CDF of for all x > x;. We could choose = D/4 for example. Let
the Gaussian queueing system with the same first and s& = D + € andD, = D —¢, so, by 6), for all X > xi,
ond order statistics uniformly ir on any finite interval in
[0, 0). Ce P < y(x) < Ce D2, (12)



Now, by Lemmal, we can findx_ > x;, such that over
the range ofx values, fromx; to x,, the best we can do
in approximatingCe P>®, CeP2® by ax X, by varyingk
anda, produces a ratio of at leal? for somex € (x1,x.),

—K _DxB

in the sense that eith%% > K2 or Cﬁ% > K2, Ap-

e -2
plying this with B, for a, and f (A) for Kk, we see that over
the range; tox,, the upper bounBAx;f()‘> must, for some
value ofx, fail to approximate the functiore ®»¢ and
Ce D2 by a ratio of at leask?, i.e. for anyA > 0, we can
find %, € (x1,%_) such that

—f()

By x
2R K? (13)
Ce P2

or 5
C —D1X
= KR (14)
B)\X)\

By Lemmab, @, (-) converges to its limitp(-) asA — o
uniformly on any finite interval ok values. So we can
choosel sufficiently large that for alh > A_ the ratio
O\ (X)/W(x) is more than 1/K and less than/K over
(x1,%). It follows that for allA > A_

o (x)/Ce Pr¥ <K (15)
and ;
Ce P2 /g (x) <K (16)
over (Xg, X, ).
So, if (13) holds, combine it with15) to give
—f(A)
B\x
L > K
o)
or if (14) holds, combine it with16) to give
—f(d)
AyX
L < K7
o)
either of which contradict our assumption ﬂi?t< K.
This completes the proof. O
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Fig. 1
THE RATIO BETWEEN UPPER AND LOWER BOUNDS OBTAINED BY
TSYBAKOV AND GEORGANAS

bursts, the stationary CDF of the buffer contengg,(x),
satisfies the limit

(D\L (X)/X_K)\ — C)n

wherek, is the exponent corresponding to the minimal
configuration of bursts which leads to overload &jds a
certain constant. Hence, for each relative accuracy,0,
there exists a buffer leveky, beyond which the approxi-
mationC\x~** for @ (x) achieves this relative accuracy.
Now consider the sequence of systefsof Proposition
.1 and Ietx,{f} denote the buffer level at which relative
accuracyp is achieved for systens,. Propositionlil.1
implies that for anyp > 0, asA — oo, xf{,)‘} — oo, For, if
{xg‘} : A > 0} was bounded, we could choose any such
bound as the value 0% in Propositionlll.1, thereby con-
tradicting its conclusion.

Thus, as\ increases, the point where the hyperbolic tail
becomes accurate becomes more and more remote.

To estimate the point where the hyperbolic sdrts let
us denote, for a given buffer leved, the number of simul-
taneous long bursts which is most likely to have occurred
in order to give rise the given level ly(x). We expect this
number to approach the numblefx) say, required to cause
system overload, for large But how large doeg have to
be in order thak (x) = k(x)?

To answer this question let us use the decoupling ap-
proach of B], discussed in B-B, using a Gaussian approx-
imation for the process of short bursts to estimate the prob-

The ratio between the upper and lower hyperboligpjity that the levelx is exceeded, given a certain back-

bounds formulated in1g] is plotted as a function ok in
Figurel. The parameters in this example gre 1.4,6=1,

ground of long bursts. Since the Poisson Pareto Burst Pro-
cess has autocovariance very similar to Fractional Brown-

r = 6.32. The ratio increases extremely quickly as a funcay Noise, it will be reasonable to use the well know#][

tion of A, confirming Propositionil.1.

B. The level where the tail becomes hyperbolic

In the last subsection, an inherent problem with upper

and lower bounds on a hyperbolic tail approximation fo

stationary buffer distributions for a PPBP queueing system

was identified. What about asymptotic forms for the tai
which do not attempt to provide upper or lower bound
e.g. as provided in1[1]?

From [11], for any PPBP queueing systef, in which

A denotes the intensity of the Poisson arrival process of

S!

formula for the probability of exceeding the level

)

The probability that the levet is exceededind this is
pchieved by preciselit = | & long bursts is therefore
approximately

(Cfm)ZXZ—ZH
22 (12 52

P{Ve > X} & e<_2< (17)

r

E(d))\(t;/ Ly (C-mkn22-2H

2 (1-n)2 22

kK —E@Att /5y
) e Y (,
xe\ A

)

k!



while the probability that levek is exceeded and this is of as an equivalence class of functions, and no matter how
achieved by precisely— 1 simultaneous long bursts is ap-simple a function found in one of these classes might be,
proximately it is still only a representative from the class. The class
Lokel  E@AE RV of functions with the same large buffer asymptotics as the
(M) e v (Com(k-1)r)2x22H stationary CDF of the PPBP queue and the class of func-
Y x e\ 2Ha-HZHe tions with the same many sources asymptotic form of this
k—1)! : : .

( ‘ CDF have a non-empty intersection (for the true CDF is in
in which m denotes the normal mean load generated by tH®th classes). Any simple function in both classes has a
PPBPH = 3%’ andt* is the estimated length of the long much better chance of characterising the true behaviour of

bursts, which must be at least the PPBP queueing system than a function which is only
Hx in one class or the other. The approximation obtained in

tr = x>0 18 ionll-B is i .

*= A—A)C—m—kn)’ >0, (18)  Subsectiodl-B is in both classes

because otherwise the FBM approximation could not be IV. CONCLUDING REMARKS

used. In order to select the maximum probability for the . .
level x to be exceeded, we choose the minimum possible We have shown that the widely known hyperbolic form

length for the long bursts, hente queueing formulae for PPBP service systems, in many
It follows that the buffér level at which the hyperbolic cases, will not give us an acceptable answer for the practi-
behaviour of the tail first sets in, which we denotedxgy cal problems we seek answers for. What approach should

earlier, is the solution (fox) of the following equation we use m_s.tead. If.the traffic is s.ufflc_len.tly multiplexed
such that it is approximately Gaussian, it will be acceptable

L ((C-mkr)2—(C-m-(k-1)r)?)x~2H to use the results ofl] as the results there are appropriate
E(dA/0)"Y e( 2 (1 H)Z HoZ > . (19) for Gaussian SRD as well as LRD SSQ. Otherwise we can
YK use the decoupling approach 8f,[as discussed in Subsec-
tion 11-B, where we classify the bursts into long and short
bursts (equivalent to the so-called "mice and elepants” con-
Id, cept B, [16]) and use the existing result for FBN queues
Xg, is almost exactly(g:33>\2. Althoughxg, as revealed in for the SRD process. The accuracy of this gpproa_ch ap-
this figure, is notmpossibly remota all cases investigated pears to be good and it also appears to be quite straightfor-

so far, itis sufficiently remote that the CDF takes negligabl/ard to use it to calculate probabilities of interest.
values by the time buffer levels are this high.

A plot of the solution of {9) as a function oh is shown
in Figure2. In this particular cased=1,y=1.5,r =0.05),
the relationship betweek and the hyperbolic threshho
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