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Title: Integrating Advanced Data Imputation Techniques and Machine Learning Models for 

Optimized Geopolymer Concrete Mix Design Prediction 

1. Introduction 

Geopolymer concrete (GPC) has emerged as a sustainable alternative to Portland cement (PC) 

concrete, driven by superior mechanical and durability properties [1]. Furthermore, it can 

reduce the carbon footprint by reducing CO2 emissions during PC manufacturing and also by 

providing an added value to fly ash, providing an alternative to disposal in in landfills, in which 

up to 50% of fly ash can be disposed [2]. Unlike PC concrete, which relies on calcium silicate 

hydrates as a binding agent, GPC utilizes aluminosilicate sources, primarily fly ash, activated 

by alkaline activators, to form a polymeric network that binds the aggregates together [3]. 

Traditional methods for designing geopolymer concrete (GPC) mixes depend on empirical 

formulas, trial-and-error procedures, and extensive laboratory testing. Although these methods 

have provided acceptable results, they tend to be labor-intensive, time-consuming, and 

resource-demanding [4]. These limitations arise because traditional mix design approaches 

often fail to capture the intricate relationships and synergies between the various GPC 

components, such as fly ash, alkali activators, aggregates, and additional admixtures which 

collectively influence the fresh and hardened properties of the concrete [5]. For example, fly 

ash, a key ingredient in GPC, varies significantly in its chemical composition depending on its 

source, and this variation can alter the setting time, workability, and compressive strength of 

the final product [6]. Similarly, the ratio of alkali activators, including sodium or potassium 

hydroxide and silicate, can dramatically impact the reactivity of the geopolymer binder and, 

consequently, the mechanical properties and durability properties of the concrete [7]. These 

complex interactions between the GPC constituents cannot easily modeled or predicted using 

traditional empirical methods, leading to suboptimal designs that may not perform as expected 
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under varying environmental conditions or due to material availability [8]. Moreover, the 

variability in material properties such as the particle size distribution, surface area, amorphous 

content of the fly ash, and concentration of alkalis can further complicate the mix design 

process [9, 10]. In response to these challenges, researchers have increasingly turned to 

machine learning techniques to develop more efficient and accurate methods for designing 

GPC mixes. These data-driven models can account for the complex, nonlinear relationships 

between the input variables and the resulting concrete properties, offering the potential for more 

precise and optimized mix designs [11]. 

Designing an effective GPC mix using machine learning models is a challenging task due to 

the sensitivity of the GPC to both the chemical and physical characteristics of the components. 

The content of key chemical components such as SiO₂, Al₂O₃, Fe₂O₃, and CaO influence the 

reactivity and strength development of the geopolymer matrix [12]. Similarly, physical 

attributes including Brunauer-Emmett-Teller (BET) surface area, amorphous content, and 

particle size distribution significantly impact the workability, setting time, and mechanical 

performance of GPC. Variations in these properties can lead to substantial changes in the 

overall behavior of the concrete, making the mix design process highly intricate. 

In addition, to this complexity, developing accurate predictive models for GPC mix design is 

also hindered by the lack of comprehensive datasets. While data on major oxides is generally 

available, more detailed physical properties data, such as BET surface area, particle size and 

amorphous content, are often missing. For instance, Junninen, et al. [13] emphasize that the 

absence of critical parameters can impede the creation of reliable predictive models, limiting 

the understanding of how these properties affect concrete performance. 

The absence of details in GPC datasets is a significant challenge, as machine learning models 

depend on complete data to effectively capture the non-linear and complex relationships 

between input variables and output properties like compressive strength and durability. Missing 



 

RMIT Classification: Trusted 

data can arise due to various factors such as measurement errors, the unavailability of testing 

equipment, or high testing costs. These missing data points can severely bias predictions and 

reduce the generalizability of the models, particularly in cases where the missing values affect 

critical nonlinear relationships between input and output variables [14]. 

One of the common approaches to deal with the missing values is to perform data imputation. 

However, the imputation procedure can be affected by the data missing mechanism. Missing 

data can typically be categorized into three mechanisms [15]. One of the mechanisms is missing 

completely at random (MCAR) where the data is missing independent of both observed and 

unobserved values. The probability of a value being missing is uniform across the dataset [16]. 

MCAR satisfy Eq. 1. In the equation, 𝑅𝑅 is the binary matrix indicating which values are 

missing, 𝑌𝑌 is the underlying complete data, and 𝜓𝜓 are the parameters of the missing data model. 

 Pr (𝑅𝑅 = 0|𝑌𝑌,𝜑𝜑)= Pr (𝑅𝑅 = 0|𝜑𝜑) Eq. 1 

The second mechanism is missing at random (MAR) where the absence of data is related to 

observed variables but not to the missing values themselves. In MAR the probability of missing 

data is constant only within specific observed groups (e.g., specific values of a feature). In other 

words, the missing values are related to some part of the underlying values. MAR obeys Eq. 2, 

where 𝑌𝑌𝑂𝑂𝑂𝑂𝑂𝑂 is the observed fraction of data.  

 Pr (𝑅𝑅 = 0|𝑌𝑌,𝜑𝜑)= Pr (𝑅𝑅 = 0|𝑌𝑌𝑂𝑂𝑂𝑂𝑂𝑂,𝜑𝜑) Eq. 2 

Finally, if neither the MCAR nor the MAR assumptions hold, the mechanism is in the missing 

not at random (MNAR) class. In other words, the etiology of missing data is unknown and, 

therefore, may depend on the unobserved data. MNAR can have two different settings: 

dependance on the missing values themselves or on other features that are outside of the dataset.  

Several studies have critically examined the performance of different imputation methods 

based on the missing data categories. Lyngdoh, et al. [17] employed MICE imputation in 

comparison to mean, median and KNN data imputation for missing data in ordinary Portland 
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cement concrete mix design and found that MICE preserved the dataset’s structure and 

variability. However, Pereira, et al. [18] demonstrated that KNN imputation outperformed 

simple imputation methods such as mean/median in datasets with complex interactions, but it 

struggled with computational efficiency in high-dimensional data. Furthermore, the study 

noted that KNN method, MICE method and Soft Imputation method can effectively handle 

missing data, even with MNAR and a missing rate up to 80% without compromising the quality 

of the data. ANN imputation, on the other hand, has gained popularity due to its ability to 

handle complex, nonlinear patterns, though its requirement for large datasets and the risk of 

overfitting in small or sparse datasets remains a challenge [19]. Each imputation method has 

its strengths and weaknesses, and the choice of an appropriate method depends on the category 

of the missing data, the complexity of the dataset, and the need for computational efficiency. 

K-Nearest Neighbors (KNN) Imputation technique fills in missing values by averaging the K 

nearest neighbors, based on a distance metric such as Euclidean distance. While KNN can 

handle complex relationships between variables, it can be computationally expensive and may 

struggle with large datasets [10]. Multiple Imputation by Chained Equations (MICE) method, 

the missing values ‘fills in’ (imputes) in the dataset were filled through an iterative series of 

predictive models. In each iteration, each specified variable in the dataset is imputed using the 

other variables in the dataset. These iterations should be run until it appears that convergence 

has been met (tolerance). The soft imputation (SoftImp) approach leverages the relationships 

between observed and missing data to generate estimates for missing values, thus preserving 

the overall structure of the dataset. The process begins with an initial estimation of missing 

values, often using simple methods like mean or median imputation. Subsequently, an iterative 

algorithm refines these estimates by applying low-rank matrix approximation, commonly 

through singular value decomposition (SVD). Artificial Neural Network (ANN) imputation 

models the relationships in the data and can capture complex, nonlinear interactions.  
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The aim of this study is to develop a predictive model for geopolymer concrete mix designs 

that can accurately estimate the optimal mix proportions based on the chemical and physical 

properties of fly ash. This is achieved by addressing the challenges of missing data by 

implementing and comparing multiple data imputation techniques. Additionally, it seeks to 

evaluate the performance of various machine learning algorithms in predicting the mix design. 

This research contributes to the field of geopolymer concrete by introducing a novel approach 

that integrates advanced data imputation techniques with machine learning models to predict 

mix designs by incorporating physical and chemical properties of fly ash. The study not only 

addresses the issue of missing data but also optimizes model performance through extensive 

hyperparameter tuning. 

2. Methodology 

The flowchart illustrates the methodology adopted in this study. The process begins with data 

collection, followed by data preprocessing and feature selection as depicted in Figure 1. Next, 

the selected input variables were examined for missing values, with data imputation applied to 

address these gaps. Each imputation technique was fine-tuned through hyperparameter 

adjustment and subjected to a statistical evaluation to ensure the quality of the imputed data. 

Furthermore, the parameter correlation will be analyzed before and after the data imputation to 

ensure the reliability of the imputed data. 
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Figure 1 Overview of the methodology 

The optimized dataset from each imputation method was then used to develop several machine 

learning models, with the resulting outputs were compared to assess the accuracy of the 

datasets. The imputation technique and machine learning model that performed best was 

adopted for use in the final mix design development with extensive hyper parameter 

optimization. 

2.1. Database development, data pre-processing, and feature selection. 

The data set used in the research was sourced from peer-reviewed literature articles published 

from 1990 to 2022 on low-calcium fly-based geopolymer concrete. Input variables affecting 

the compressive strength of geopolymer concrete were selected based on neighborhood 

component analysis and Pearson correlation coefficients. Duplicate data detection and removal, 

outlier detection and treatment, and data normalization were carried out as preprocessing steps 

to obtain a more stable and representative data set. Furthermore, a few additional steps were 
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taken to ensure the compressive strength data did not depend on the shape or size of the 

specimen.  Moreover, data with 7-day compressive strength were converted into 28-day 

compressive strength using a regression model. More details on database development, feature 

selection, and data preprocessing can be found in the paper xxxx. 

Table 1 delineates the input parameters and their summary statistics. Furthermore, Figure 2 

shows the relationship between parameters, offering a visual depiction of these input 

parameters. Accordingly, three input variables, representing physical and mineralogical 

properties of fly ash, have missing values.  

Table 1 Summary statistics of the input parameters 

Input parameters cou
nt mean std min 25% 50% 75% max missing 

Chemical 
Oxide of fly 
ash 

SiO2 226 226.0 36.3 177.7 196.3 210.1 238.7 340.4 0 
Al2O3 226 110.6 16.46 43.33 99.55 108.4 122.4 158.3 0 
Fe2O3 226 42.6 22.0 5.4 19.2 51.3 60.4 70.9 0 
CaO 226 10.7 6.2 0.8 7.1 9.7 10.9 30.9 0 

Physical and 
mineralogical 
properties of 
fly ash 

45 microns passing 
% 122 0.8 0.1 0.7 0.7 0.8 0.8 0.9 104 

BET surface area 62 1528 1085 310 773 1095 1876 5095 164 
Amorphous % 50 66.9 6.5 55.4 60.0 66.3 71.8 79.9 176 

Na2SiO3 
Solids 

SiO2 % 226 42.9 17.9 14.1 30.2 34.6 53.7 107.3 0 

 Na2O % 226 21.2 9.2 7.0 15.1 17.0 27.2 53.6 0 
Solid_(NaOH)_weight 226 22.0 7.8 10.1 16.5 19.4 25.1 48.4 0 
Total water  226 121.4 36.2 82.0 97.2 106.5 131.9 231.6 0 
Time  226 28.5 13.2 12.0 24.0 24.0 24.0 96.0 0 
Temp  226 69.9 11.7 60.0 60.0 61.5 80.0 105.0 0 
Strength  226 40.6 14.2 10.4 31.0 39.6 50.9 76.4 0 

 

Based on future selection and literature review, 13 input parameters were selected as the 

influential parameters for the compressive strength model prediction. 
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Figure 2 Initial data visualization. 

2.2. Missing data mechanisms, missing data identification, and imputation 

Missing data in the database were handled through data imputation. The steps shown in Figure 

3 were used to identify and impute the missing values in the data set. Accordingly, the database 

was evaluated for missing values and data missing mechanisms. All missing data mechanisms 

were considered, namely missing completely at random (MCAR), missing at random (MAR), 

and missing not at random (MNAR). Little’s MCAR test was used to rule out the MCAR with 
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MAR and MNAR cases. Based on the statistical significance (p-value), the acceptance or 

rejection of the null hypothesis was decided. If the significance is less than 0.05, the null 

hypothesis is rejected, and the data is not MCAR. To rule out the difference between MAR and 

MNAR, logistic regression was used. In this case a binary variable was developed for each of 

the missing variables (e.g., 1 for missing and 0 for non-missing) and used as a dependent 

variable. All other variables without missing data were considered as predicted. Logistic 

regression is used to identify the significance of each variable with missing data. If the 

significance is less than 0.05, then the data is not MAR and is MNAR.  

Several data imputation techniques, namely K-nearest neighbor (KNN), multiple imputation 

using chain equations (MICE), soft imputation (Soft Imp) using singular value decomposition, 

and artificial neural networks (ANN), were used to impute missing data, as shown in Figure 3.  

In the current study, KNN was used with a varying number of neighbors, between 1 and 20, to 

identify the optimum number of neighbors for the imputation. For the MICE imputation 

method, Bayesian-Ridge regression was used as the estimator, while the maximum iterations 

were selected as 50. A tolerance value of 0.001 was used with 10 selected as the number of 

nearest neighbors. For the current study, SVD was used with both mean and median 

replacement methods while the rank of the SVD method varies between 1 to 12 since the 

number of variables considered in the study was 13. The convergence threshold was maintained 

at 0.0001 while the maximum number of iterations was limited to 100. 
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Figure 3 Data Imputation 

As the final method of data imputation three, ANN models were used to generate missing 

values as shown in the Figure 4. Three ANN models were trained using complete data sets. For 

instance, first ANN model used complete data set with one missing input parameter “45 micron 

passing percentage” as output. Data sets without missing data were used as the training data 

and data set with missing values were used as test data.  

 

Figure 4 ANN model architecture for missing data imputation 
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For each of the parameters with missing values, an ANN model was developed and filled the 

missing values. Finally, full data sets were combined to get the final complete data set as shown 

in the Figure 4.  

Data imputation was carried out in two steps as shown in Figure 5. In step 1 only two 

parameters were imputed resulting in a final dataset with 122 data points whereas in step 2 

three parameters were imputed resulting in a final dataset with 226 data points. This enabled 

the identification of the performance of data imputation based on the percentage of missing 

data points. 

 

Figure 5 Database visualization with missing values 

Three methods were used to evaluate the accuracy of the imputed data. First, statistical 

parameters were compared between imputation methods and the original data set, and if they 

yielded similar results, the imputed values were more likely to represent the actual missing 

values. The second approach is to compare the parameter correlation of the original data set 

and the imputed data set by developing a difference matrix. To identify differences between 

two correlation coefficient matrices, the signs at their corresponding positions were compared. 

A match is represented by 1, and a mismatch is indicated by -1. The difference is shown in a 

Step 1 

Step 2 
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heatmap, where matching signs are highlighted in one color and differing signs in another. If 

the difference matrix has the same color, it suggests that the correlation relationships in the 

augmented dataset are consistent with those in the original dataset. The third approach is to 

develop several machine learning models by using the imputed data as the input parameters to 

predict the compressive strength of GPC and compare the performance among the models. 

Consistent model performance suggests that the imputed values are likely reasonable. 

2.3. Machine learning model development, hyperparameter tuning and validation 

Three machine learning (ML) models, namely Artificial Neural Network (ANN), Random 

Forest (RF), and Extreme Gradient Boost (XGB) were used with extensive hyperparameter 

tuning. Initial hyperparameter selection was carried out randomly to identify the feasible initial 

values. Then an extensive grid search was conducted around the optimum values gained from 

the random search for all the ML models using the range of hyperparameters shown in Table 

2. 

Table 2 Hyperparameters value ranges for ML models 

Model Hyperparmeter Range 

ANN Hidden neurons 2 to 50 

Learning rate 0.00000001 to 0.9 

RF Number of estimators 20 to 2000 

Maximum features “auto” and “sqrt” 

Maximum depth 10 to 110 

Minimum sample split 2,5,20 

Minimum samples for leaf 1,2,4 

Bootstrap “True” and “False” 

XGB Number of estimators 20 to 2000 

Maximum depth 1 to 100 

Learning Rate 0.01 to 0.2 

Colum sample by tree 0.4, 1.0 

Subsample 0.4, 1.0 

Gamma 0 to 1000 

Lambda 1 to 1000 

alpha 0 to 1000 



 

RMIT Classification: Trusted 

Model performance was assessed using statistical functions shown in Eq 3 to 6 where 𝑦𝑦𝑎𝑎 is the 

actual compressive strength, 𝑦𝑦𝑝𝑝 is the predicted compressive strength, n is number of samples 

in the data set and 𝑦𝑦𝑎𝑎��� is the mean value of the actual compressive strength values. 

 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 = �
1
𝑛𝑛
��𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑝𝑝�

2
𝑛𝑛

𝑖𝑖=1

 Eq. 3 

 𝑅𝑅 =
𝑛𝑛∑𝑦𝑦𝑎𝑎𝑦𝑦𝑝𝑝 − ∑𝑦𝑦𝑎𝑎 ∑𝑦𝑦𝑝𝑝

�[𝑛𝑛∑𝑦𝑦𝑎𝑎2 − (∑𝑦𝑦𝑎𝑎)2] �𝑛𝑛 ∑𝑦𝑦𝑝𝑝2 − �∑𝑦𝑦𝑝𝑝�
2
�
 Eq. 4 

 𝑅𝑅2 = 1 −
∑ �𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑝𝑝�

2𝑛𝑛
𝑖𝑖=1

∑ (𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑎𝑎���)2𝑛𝑛
𝑖𝑖=1

 Eq. 5 

 𝑅𝑅𝑀𝑀𝑅𝑅 =
1
𝑛𝑛
��𝑦𝑦𝑎𝑎 − 𝑦𝑦𝑝𝑝�
𝑛𝑛

𝑖𝑖=1

 Eq. 6 

 

For the model validation, two methods were used.  Stratified K-fold cross-validation was used 

with 5 fold to ensure the performance of the model does not depend on the data used. By using 

stratified K-fold cross-validation compared to K-fold cross-validation same sort of data 

distribution was provided to both the train and the test data splits. Furthermore, a SHAP 

analysis of the model was conducted to ensure the model behaves in a similar manner observed 

in the laboratory experiments in literature. 

3. Results and discussion 

3.1 Missing data mechanism 

Figure 6 shows the output results of Little’s MCAR test. Based on the value of statistical 

significance, which is less than 0.05, null hypothesis will be rejected. Thus, the data is not 

MCAR. 
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Figure 6 Results of Little's MCAR test 

According to Figure 7, the significance of CaO, amorphous content, NaOH solid weight, SiO2 

and Na2O in Na2SiO3, total water and curing time is less than 0.05, thus it was concluded that 

the data is MNAR.  

 

Figure 7 Independent sample test considering 45-micron passing as a target 
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3.2 Missing Data identification and Missing data imputation 

3.2.1 Evaluation of Imputation Methods for Step 1 Data imputation. 

In this section the accuracy of different imputation methods for missing data in geopolymer 

concrete datasets were assessed, focusing on BET surface area and amorphous content as 

shown in Figure 8. The analysis compares five imputation methods: ANN as an imputation 

method, KNN, MICE, and SDV using both mean and median. The imputation was performed 

on a dataset of 122 records. 

BET Surface Area 

The original BET surface area dataset showed a skewness of 1.90, a mean of 1528 m²/kg, and 

a standard deviation of 1085 m²/kg, with values ranging from 310 to 5095 m²/kg. 

• ANN Method: The imputed dataset exhibited a significant reduction in skewness (-

0.02), suggesting a nearly symmetric distribution, which deviates from the original 

positively skewed data. The mean was overestimated at 3075 m²/kg, with a larger 

standard deviation of 1511 m²/kg. The minimum (890 m²/kg) and maximum (5095 

m²/kg) were within acceptable ranges, but the method overestimates the mean and 

spreads the values over a wide range. 

• KNN Method: The skewness decreased to -0.22, moving away from the original 

distribution. The mean was 2541 m²/kg, which is significantly higher than the original 

1528 m²/kg, though the standard deviation decreased to 862 m²/kg. The minimum (890 

m²/kg) and maximum (5095 m²/kg) remained within the original range. 

• MICE Method: This method resulted in a slight positive skewness (0.08), with a mean 

of 2217 m²/kg and a large standard deviation of 1497 m²/kg. However, the minimum 

value (-2030 m²/kg) was negative, which is not physically possible, making this method 

unsuitable for BET surface area imputation. The maximum value (5930 m²/kg) was also 
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higher than the original maximum, adding to the inaccuracy of this method for this 

variable. 

• SDV (Mean): The skewness increased to 3.3, which closely resembled the original 

dataset's positive skew. The mean (1798 m²/kg) was a slight overestimation compared 

to the original, but the standard deviation decreased to 629 m²/kg. The minimum (890 

m²/kg) and maximum (5095 m²/kg) were accurate. 

• SDV (Median): This method resulted in the highest skewness (3.87), with a mean of 

1633 m²/kg, which was closest to the original mean of 1528 m²/kg. The standard 

deviation (641 m²/kg) was lower, and the minimum (890 m²/kg) and maximum (5095 

m²/kg) were within the original range. 

Among the imputation methods for BET surface area, ANN Imputation, KNN imputation, 

SDV (Median) and SDV (Mean) provided the more accurate results, maintaining the range of 

values closest to the original dataset compared to the MICE method. 

Amorphous Content 

The original dataset for amorphous content had a skewness of -0.04, a mean of 66.9%, and a 

standard deviation of 6.5%. The values ranged from 55.4% to 79.98%. 

• ANN Method: The imputed data exhibited a slight negative skew (-0.19) and a mean 

of 67.5%, which is slightly higher than the original mean. The standard deviation was 

reduced to 5.6%, and the minimum (53.7%) and maximum (81.6%) were within an 

acceptable range. 

• KNN Method: The skewness (-0.12) was closer to the original distribution, and the 

mean (66.88%) was almost identical to the original value of 66.9%. The standard 

deviation (4.44%) was lower, indicating a tighter clustering of the imputed values. The 

minimum (55.4%) and maximum (79.98%) perfectly matched the original range. 
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(a) KNN imputtaion (b) MiCE imputation 

  

    
(c) SVD Imputation (Mean) (d) SVD Imputation (Median) 

 
 

  

 

(e) ANN imputation 

Figure 8 Data histograms and summary statistics of step 1 data imputation 

• MICE Method: This method produced a skewness of -0.19, similar to ANN, but the 

mean (66.7%) was slightly lower than the original. The standard deviation (7.2%) was 



 

RMIT Classification: Trusted 

higher, reflecting greater variability in the imputed data. The minimum (46.26%) was 

outside the original range, making this method less reliable for amorphous content. 

• SDV (Mean): The skewness shifted to 0.50, indicating a positive skew, which deviated 

from the original distribution. The mean (63.9%) was an underestimation, and the 

standard deviation (6.31%) was close to the original. The minimum (55.4%) and 

maximum (79.98%) matched the original values. 

• SDV (Median): This method resulted in a skewness of 0.44, a mean of 65.03%, and a 

standard deviation of 6.81%. The minimum (55.4%) and maximum (79.98%) were 

within the original range. 

For amorphous content, all imputation methods provided a closes match to the original data, 

both in terms of skewness, mean, and range, making it the most accurate imputation method 

for this variable. 

Figure 9 shows the D matrices for each data imputation technique. The left column indicates 

correlation matrix of imputed data set and on the right column shows the difference matrix for 

each of the imputation methods considered in Step 1 Data Imputation. The difference matrix 

values, expressed as percentages of the total number of entries (105), revealed the following. 

A discrepancy of 4.8% was observed for the correlation of KNN imputed data, indicating the 

closest alignment with the original data correlations. MICE showed a 5.7% discrepancy, while 

discrepancies of 6.7% were recorded for both SVD Mean and ANN. The highest discrepancy 

of 10.5% was exhibited by the SVD Median method, suggesting the greatest deviation from 

the original correlations. 
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(a) KNN imputation method 

  
(b) MICE imputation method 

  
(c) SVD (Mean) imputation method 

  
(d) SVD (Median) imputation method 
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(e) ANN imputation method 

Figure 9 D-matrices for step 1 data imputation 

Table 3 and Figure 10 provide comprehensive comparison of three machine learning models 

ANN, Extreme Gradient Boosting (XGB), and Random Forest (RF) across four different 

imputation methods: KNN, SVD mean, SVD median, and ANN-based imputation for Step 1 

Data Imputation. The models were evaluated based on their performance on training and test 

datasets using three metrics: R², RMSE, and MAE.  

For the ANN model, the results show that imputation methods have a profound impact on the 

model performance. ANN-based imputation produced the highest R² value of 0.84 on the 

training set, demonstrating superior data imputation capability compared to KNN (R² = 0.64) 

and SVD methods (R² = 0.75 and 0.72 for SVD mean and SVD median, respectively). The 

corresponding RMSE and MAE values for ANN imputation (5.74 and 4.16) were also the 

lowest, indicating that this method yields more accurate predictions. Similarly, on the test set, 

the ANN model paired with ANN imputation outperformed all other methods with an R² of 

0.80, highlighting its generalization ability. However, the model's RMSE (7.35) and MAE 

(5.32) suggest that while it generalizes well, some prediction errors persist, which may be due 

to the complexity of the dataset. The SVD mean imputation method also performed reasonably 

well on the test set, but the ANN-based method consistently delivered the best results. 

The XGB model showed strong results overall, but like ANN model, it benefitted most from 

ANN-based imputation. On the training set, the XGB model with ANN imputation achieved 
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the highest R² (0.91) and the lowest RMSE (4.71) and MAE (3.23), outperforming other 

imputation methods. KNN also yielded decent results (R² = 0.89), but it fell short compared to 

ANN imputation. When evaluated on the test set, the XGB model again displayed the optimum 

performance with ANN imputation, achieving an R² of 0.66. However, there was a notable 

decrease in the R² value between the training and test sets, and the RMSE increased from 4.71 

to 7.68. The SVD methods provided moderate performance, but they were consistently 

outperformed by the ANN imputation method. These results suggest that while XGB is a 

powerful model, its performance, especially with large datasets and missing values, can be 

significantly improved through advanced imputation techniques like ANN. 

The RF model exhibited the strongest overall performance, particularly when paired with ANN 

imputation. In the training set, RF with ANN imputation produced an R² of 0.95, the highest 

among all models and methods, with an exceptionally low RMSE of 3.34 and MAE of 2.26. 

This demonstrates that RF, when provided with well-imputed data, is highly effective at 

capturing complex patterns. The performance in the test set remained robust, with an R² of 0.74 

and relatively low RMSE (6.71) and MAE (4.80). This indicates that the RF model with ANN 

imputation generalizes better than the other imputation methods. KNN and SVD imputation 

methods, on the other hand, consistently resulted in lower R² values and higher RMSE and 

MAE values, both in training and test sets, further underscoring the effectiveness of ANN 

imputation in enhancing the RF model’s performance. 

Across all three models, ANN-based imputation consistently outperforms traditional 

imputation methods such as KNN and SVD. The superior performance of the ANN imputation 

method is evident in both training and test sets, regardless of the machine learning model used. 

This result highlights the ability of machine learning-based imputation methods to handle 

missing data more effectively by capturing complex relationships in the dataset that simpler 

methods may overlook. KNN, which relies on proximity-based data reconstruction, and SVD, 
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which uses low-rank approximations, seem inadequate for this dataset compared to ANN-based 

imputation, which better preserves the integrity of the data and leads to improved model 

predictions. 

Table 3 Model performance of dataset with step 1 data imputation. 

ML model Data set   
Imputed method 

KNN SVD mean SVD median ANN 
ANN Train R2 0.64 0.75 0.72 0.84 

RMSE 9.14 7.50 8.30 5.74 
MAE 6.92 5.32 5.24 4.16 

Test R2 0.49 0.75 0.66 0.80 
RMSE 7.52 6.13 8.22 7.35 
MAE 6.12 4.56 5.26 5.32 

XGB Train R2 0.89 0.83 0.84 0.91 
RMSE 5.02 6.24 6.2 4.71 
MAE 3.65 4.85 4.85 3.23 

Test R2 0.54 0.58 0.58 0.66 
RMSE 9.28 8.92 8.93 7.68 
MAE 7.37 6.47 6.5 5.41 

RF Train R2 0.89 0.90 0.90 0.95 
RMSE 5.13 4.74 4.76 3.34 
MAE 3.84 3.51 3.51 2.26 

Test R2 0.61 0.57 0.52 0.74 
RMSE 8.62 9.04 9.55 6.71 
MAE 5.36 6.88 7.24 4.80 

 

 ANN XGB RF 

KNN 
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SVD 
(Mean) 
Imputed 
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Figure 10 ML model performance matrix for step 1 data imputation 

 

3.2.2 Evaluation of Imputation Methods for Step 2 Data Imputation 

For the step two Data Imputation the imputation was applied to a dataset containing 226 records 

for three key variables: 45-micron particle size, BET surface area, and amorphous content.   

45-Micron Particle Size 

The original dataset for the 45-micron particle size distribution had a skewness of 0.64, a mean 

of 0.80, and a standard deviation of 0.06. The minimum and maximum values ranged between 

0.70 and 0.93, respectively. After imputation, the following observations were made: 

• ANN Method: The imputed data showed reduced skewness (0.28) with a slightly lower 

mean of 0.79 and an increased standard deviation of 0.07. However, the minimum value 

(0.59) was significantly lower than the original minimum (0.70). 

• KNN Method: This method yielded the best results, with a skewness of 0.74, a mean 

of 0.80, and a standard deviation of 0.06. The minimum and maximum values (0.70 and 

0.93) were identical to the original dataset. 
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• MICE Method: While the mean (0.80) closely matched the original data, the skewness 

shifted to -0.006, indicating a significant alteration in the distribution. Moreover, the 

minimum (0.52) and maximum (1.05) were outside the original and practical ranges. 

• SDV (Mean): The skewness (0.69), mean (0.79), and standard deviation (0.07) were 

acceptable, though the minimum value (0.65) was lower than the original. The 

maximum value (0.96) was slightly higher than the original. 

• SDV (Median): Similar to the mean-based SDV method, the skewness (0.79) and mean 

(0.79) were acceptable, but the minimum (0.64) was lower than the original value. The 

maximum (1.01) was overestimated compared to the original range. 

 

BET Surface Area 

The BET surface area in the original dataset had a highly skewed distribution (skewness: 1.90), 

a mean of 1528 m²/kg, and a standard deviation of 1085 m²/kg. The minimum and maximum 

values ranged from 310 to 5095 m²/kg. 

• ANN Method: The skewness of the imputed data reduced drastically to -0.002, 

indicating a shift to a nearly symmetric distribution, which is not consistent with the 

original. The mean increased to 2385 m²/kg, and the standard deviation rose to 1182 

m²/kg, indicating an overestimation of the BET surface area. The minimum and 

maximum values remained consistent with the original data. 

• KNN Method: The skewness (-0.42) was similarly reduced, indicating a deviation 

from the original positive skewness. The mean (2363 m²/kg) was overestimated, but the 

standard deviation (1056 m²/kg), minimum (310 m²/kg), and maximum (5095 m²/kg) 

remained close to the original values. 

• MICE Method: This method performed reasonably well, maintaining a positive 

skewness (0.37) closer to the original. The mean (1710 m²/kg) was within an acceptable 
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range, though the standard deviation increased to 1385 m²/kg. However, the minimum 

value (-1499 m²/kg) was negative, which is physically impossible, making this method 

unsuitable for this variable. 

• SDV (Mean): This method provided the best match to the original data, with a 

skewness of 3.63, a mean of 1528 m²/kg, and a reduced standard deviation of 565 m²/kg. 

The minimum and maximum values matched the original data perfectly, but the 

reduction in variability suggests some smoothing in the imputation process. 

• SDV (Median): The skewness (4.52) was much higher than the original, and the mean 

(1213 m²/kg) was underestimated. The standard deviation (597 m²/kg) was also 

reduced, but the minimum and maximum values were consistent with the original data. 

 

Amorphous Content 

The original dataset for amorphous content showed a skewness of -0.04, a mean of 66.9%, and 

a standard deviation of 6.5%. The minimum and maximum values were 55.4% and 79.98%, 

respectively. 

• ANN Method: The skewness shifted to 0.37, with a mean of 61.94%, which is an 

underestimation compared to the original. The minimum value dropped to 43.53%, 

which is outside the original range, and the maximum (98.19%) was overestimated. 

• KNN Method: The skewness increased to 1.2, suggesting a positive skew. The mean 

was 63.2%, and the standard deviation reduced to 5.18%. The minimum and maximum 

values matched the original data. 

• MICE Method: The skewness (-0.10) was close to the original, and the mean (67.1%) 

was well within the acceptable range. However, the minimum value (44.8%) was too 

low, and the maximum (85.67%) was slightly overestimated. 
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• SDV (Mean): The skewness (0.65) increased, and the mean (64.68%) was slightly 

underestimated. The standard deviation (6.38%) and the maximum (80.22%) were 

acceptable, though the minimum (54.7%) was slightly lower than the original. 

• SDV (Median): The skewness (0.78) was higher than the original, and the mean 

(64.39%) was underestimated. The minimum (53.38%) was lower than the original, but 

the maximum (83.84%) was within an acceptable range. 

Each imputation method demonstrated varying degrees of accuracy across the three variables. 

The KNN method proved to be the most consistent across all variables, especially for the 45-

micron particle size and BET surface area. SDV (Mean) provided the best match for BET 

surface area, while MICE was the most accurate for amorphous content, though care should be 

taken with this method due to occasional outlier imputation. 

 

  

      
(a)       (b) MICE imputation 

  

      
(c) SVD Imputation (Mean) (d) SVD Imputation (Median) 
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(e) ANN imputation  

Figure 11 Data histograms and Summary statistics of step 2 data imputation 

 

Figure 12 shows the correlation matrix of imputed data set in the left column and difference 

matrix on the right column for each of the imputation methods considered in Step 2 Data 

Imputation. The difference matrix values, expressed as percentages of the total number of 

entries (105), revealed the following. A discrepancy of 2.68% was observed for the correlation 

of KNN imputed, SVD (mean)and MICE imputed data, indicating the closest alignment with 

the original data correlations. SVD (median) showed a 7.63% discrepancy, while the highest 

discrepancy of 9.52% was exhibited by the ANN imputation method, suggesting the greatest 

deviation from the original correlations.  

  
(a) KNN Imputation 
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(b) MICE Imputation 

  
(c) SVD (Mean) Imputation 

  
(d) SVD (Median) Imputation 

  
(e) ANN Imputation 

Figure 12 D-matrices for step 2 data imputation 
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The analysis of Table 4 and Figure 13 demonstrates the performance of ANN, XGB, and RF 

models across different imputation methods: KNN, SVD mean, SVD median, and ANN for 

Step 2 Data Imputation. The results are evaluated on the training and test datasets using R², 

RMSE, and MAE as metrics.  

For the ANN model the training set results indicate that SVD mean imputation is optimum with 

an R² of 0.72, followed closely by KNN and ANN imputation methods, both achieving an R² 

of 0.63. Interestingly, SVD median imputation performs significantly worse with an R² of only 

0.34, suggesting that it struggles to capture the relationships in the data effectively. This is 

further reflected in the RMSE and MAE values, where SVD median produces the highest 

RMSE (11.32) and relatively high MAE (6.27). With respect to the test data set, however, ANN 

imputation excels, yielding an R² of 0.76, which is the highest among all methods. The RMSE 

(7.93) and MAE (5.83) values also support its strong performance. SVD mean follows closely 

behind with an R² of 0.74 and RMSE of 7.31, but the slightly higher MAE of 5.82 suggests it 

is less accurate than ANN-based imputation. These results again highlight that ANN-based 

imputation is superior for both training and test sets in the ANN model, ensuring better 

generalization. 

For the XGB model ANN imputation clearly stands out as the best-performing method on the 

training set, achieving an almost perfect R² of 0.99. This result, combined with the 

exceptionally low RMSE of 1.32 and MAE of 0.54, indicates that the model is highly optimized 

when paired with ANN imputation. By contrast, other imputation methods such as KNN, SVD 

mean, and SVD median produce similar but lower R² values (around 0.85) and higher RMSE 

and MAE scores, indicating less effective handling of the missing data. However, on the test 

set, the performance of the XGB model declines for all imputation methods. ANN imputation 

still leads with an R² of 0.65 and the lowest RMSE of 8.17 and MAE of 5.58, though these 

values suggest some degree of overfitting on the training data. KNN and SVD methods hover 
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around an R² of 0.50 to 0.52, with higher RMSE values exceeding 10, indicating poorer 

generalization ability compared to ANN-based imputation. 

The RF model similarly benefits the most from ANN-based imputation. On the training set, the 

model achieves a high R² of 0.96 and the lowest RMSE (2.71) and MAE (1.99), outperforming 

other methods like KNN, SVD mean, and SVD median, which show R² values of around 0.85 

to 0.91. These alternative imputation methods lead to higher RMSE and MAE values, 

indicating less efficient imputation of missing data compared to the ANN-based approach. On 

the test set, RF with ANN imputation continues to demonstrate superior performance, with an 

R² of 0.62 and RMSE of 8.57, outperforming the KNN, SVD mean, and SVD median methods, 

which deliver R² values around 0.50 and higher RMSE values exceeding 10. The improvement 

in MAE with ANN imputation (6.11) compared to the other methods (around 7.27 to 7.55) 

further emphasizes the effectiveness of ANN imputation in preserving data structure for 

accurate predictions. 

In summary, ANN-based imputation provides the most consistent improvements in both 

training and test datasets, delivering better R² values and lower RMSE and MAE scores. KNN 

and SVD methods generally perform adequately but are less reliable than ANN-based 

imputation, particularly for test data, where they show lower R² values and higher prediction 

errors. These findings suggest that ANN imputation is a more robust method for handling 

missing data in this context, leading to improved model performance and better generalization 

to unseen data.  

Table 4 Model performance of dataset with step 2 data imputation. 

ML model Data set   
Imputed dataset 

KNN SVD mean SVD median ANN 
ANN Train R2 0.63 0.72 0.34 0.63 

RMSE 8.78 7.33 11.32 7.91 
MAE 6.2 5.63 6.27 5.71 

Test R2 0.38 0.74 0.66 0.76 
RMSE 9.19 7.31 8.73 7.93 
MAE 6.59 5.82 6.42 5.83 

XGB Train R2 0.86 0.85 0.85 0.99 
RMSE 5.22 5.39 5.36 1.32 
MAE 3.83 4.06 4.05 0.54 
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Test R2 0.51 0.52 0.49 0.65 
RMSE 10.17 10.01 10.40 8.17 
MAE 7.61 7.43 7.83 5.58 

RF Train R2 0.90 0.91 0.85 0.96 
RMSE 4.38 4.14 5.41 2.71 
MAE 3.28 3.07 4.13 1.99 

Test R2 0.52 0.50 0.49 0.62 
RMSE 10.04 10.31 10.4 8.57 
MAE 7.27 7.42 7.55 6.11 
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KNN 
Imputed 
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SVD 
(Mean) 
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SVD 
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Figure 13 ML model performance matrix for step 2 data imputation 
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The performance of different data imputation methods for Step 1 and Step 2 Data Imputation, 

including KNN, SVD mean, SVD median, and ANN, was evaluated utilizing three machine 

learning models: ANN, XGB, and RF shown in Figure 14.  

For the ANN model, Step 1 ANN imputation yielded the best performance, with an R² of 0.84 

in the training set and 0.80 in the test set. The RMSE and MAE values were also the lowest in 

Step 1, demonstrating strong predictive power. While Step 2 showed slight improvements in 

some metrics for the test set, the overall performance did not surpass the results from Step 1, 

suggesting that ANN imputation (Step 1) was the most reliable method. A similar trend was 

observed in the XGB model, where Step 1 ANN imputation achieved an R² of 0.91 in the 

training set and 0.66 in the test set, along with the lowest error metrics (RMSE and MAE). In 

Step 2, despite improvements in the training metrics, the test set performance showed signs of 

overfitting, confirming that Step 1 provided better generalization.  

 ANN XGB RF 

R2 

   

RMSE 
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MAE 

   
Figure 14 Model performance Step 1 and Step 2 data imputation 

In the RF model, Step 1 ANN imputation again showed superior results, with the highest R² 

(0.95 in the training set and 0.74 in the test set) and the lowest RMSE and MAE values. Step 

2, while improving training performance, exhibited a decline in test results, further indicating 

that ANN imputation from Step 1 was the optimal choice for the RF model as well. 

In summary, ANN imputation from Step 1 consistently demonstrated the best balance between 

training accuracy and generalization to the test set across all models and overall highest in the 

ANN model. 

The performance of the final ANN model is shown in Figure 15 (a) and the corresponding 

SHAP analysis is shown in Figure 15 (b). Based on performance the model predicts the 

compressive strength of GPC with an accuracy of 94%. In terms of actual compressive strength, 

the model with make predictions with an error less than 3.5 MPa.   

  
(a) (b) 

Figure 15 (a) Final ANN model performance (b) Model SHAP analysis 
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Based on the SHAP analysis, lower water content yields higher compressive strength, and vice 

versa. Furthermore, total water content had the greatest effect on the compressive strength of 

geopolymer concrete. These results align with the findings of Amran, et al. [20] and Hardjito, 

et al. [21]. This reduction in strength may be due to several factors. Firstly, an increase in water 

content can dilute the activator solution, directly influencing the dissolution rate of fly ash 

particles and the extent of the geopolymerization reaction. Lower concentrations of the 

activator result in slower reaction kinetics and lower final strength [22]. Additionally, excess 

water in the geopolymer mixture increases porosity as it evaporates during curing, leaving 

behind voids in the hardened concrete. This porosity significantly contributes to the reduction 

of compressive strength [23]. According to Provis and Bernal [24], excess water weakens the 

bond between fly ash particles and the geopolymer matrix. Without sufficient calcium, the 

water does not contribute to strength development and instead reduces the material's integrity.  

The CaO content in fly ash is the second most influential parameter; as the CaO content 

increases, the formation of C-S-H (calcium silicate hydrate) also increases, which significantly 

improves the compressive strength of geopolymer concrete [25]. Furthermore, CaO can raise 

the alkalinity of the geopolymer mixture, leading to improved dissolution of silica and alumina 

from the fly ash, enhancing polymerization and strength development [26]. Additionally, the 

presence of CaO contributes to a denser microstructure in the geopolymer matrix, reducing 

porosity and improving load-bearing capacity  [24].  The SHAP values for NaOH solid content 

indicate that up to a moderate NaOH concentration, compressive strength increases. However, 

higher NaOH solid contents have a negative effect on compressive strength. This could be 

because high concentrations of NaOH increase the alkalinity of the geopolymer mixture, which 

may result in excessive gel formation. This disrupts the balance between the gel and solid 

phases, weakening the structure [26]. Furthermore, at high NaOH concentrations, the reactivity 

of fly ash may cause agglomeration rather than a uniform distribution in the matrix, negatively 
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affecting load transfer between particles [27]. Regarding BET surface area, lower values up to 

a moderate range improve compressive strength. However, as the BET surface area increases, 

compressive strength decreases. A higher BET surface area indicates a greater number of fine 

particles, which can increase the water demand of the mixture. This higher water content can 

lead to increased porosity, thus reducing overall compressive strength. Additionally, effects 

such as increased porosity, reduced particle interaction, and accelerated reaction kinetics could 

contribute to the reduction of compressive strength in geopolymer concrete as the BET surface 

area increases [24, 27]  

 

Figure 16 K-fold cross validation results for final model. 

The results from the five-fold cross-validation provide a comprehensive overview of the 

performance of the predictive model across various training and testing subsets (Figure 16). In 
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terms of training performance, the R2 values for the training sets are consistently high, ranging 

from 0.93 to 0.96 across the folds, with an average R2 of 0.94. This indicates that the model 

deliniates approximately 94% of the variance in the training data, suggesting a strong fit. The 

RMSE values for the training sets vary between 3.06 and 4.14, with an average RMSE of 3.78. 

While these values are relatively low, indicating that the model predictions are close to the 

actual values, there is some variability across folds. Additionally, the MAE for the training sets 

range from 1.90 to 2.45, with an average of 2.21. This suggests that, on average, the model 

predictions have an inaccuracy of about 2.2 units, which is reasonably low and indicates 

effective predictive performance. 

When analyzing the testing performance, the R2 values for the test sets show more variability, 

ranging from 0.87 to 0.97, with an average of 0.94. The high average R2 indicates that the 

model generalizes well to unseen data, but the lower value in Fold 2 (0.87) suggests that there 

may be challenges in some specific subsets of data. The RMSE values for the test sets range 

from 1.94 to 5.87, with an average RMSE of 3.48. The presence of a higher RMSE in Fold 2 

indicates that there could be specific features or characteristics in the test data that the model 

struggled to predict accurately. Similarly, the MAE for the test sets ranges from 1.22 to 3.40, 

with an average of 2.20. This variability reflects differing prediction accuracy across the test 

folds, with some folds proving to be significantly more challenging for the model. In 

conclusion, the results indicate that the model generally performs, demonstrating a strong 

ability to predict compressive strength with acceptable error. 

Summary and conclusion 

1. The evaluation of imputation methods for geopolymer concrete datasets showed 

that ANN-based imputation outperformed other techniques for MNAR data. The ANN 

model achieved R² of 0.84 (train) and 0.80 (test), while RF performed best overall 

with R² of 0.95 (train) and 0.74 (test). XGB also benefitted from ANN imputation, 
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highlighting its superior capability for handling missing data compared to KNN and 

SVD methods. 

2. SHAP analysis reveals that water content significantly enhances the compressive 

strength (CS) of GPC. It also emphasizes that the sensitivity of total water content to 

CS is extremely high, acting as a critical factor in determining CS, similar to the water-

to-cement ratio in OPC concrete.  

3. SHAP analysis further demonstrates that the presence of CaO in fly ash plays a crucial 

role in improving strength and reducing porosity. While moderate solid NaOH content 

can enhance CS, excessive amounts may disrupt the gel structure, weakening the 

concrete. 

4. By incorporating the chemical and physical properties of fly ash, the compressive 

strength of geopolymer concrete can be predicted with 94% accuracy. Additionally, k-

fold cross-validation provides a more reliable estimate of model performance by using 

multiple splits of the dataset, ensuring that performance metrics (e.g., R², RMSE, MAE) 

are not biased by a single train-test split. 

4. References 

[1] B. Zhang, "Durability of sustainable geopolymer concrete: a critical review," 
Sustainable Materials and Technologies, p. e00882, 2024. 

[2] C. Luan, A. Zhou, Y. Li, D. Zou, P. Gao, and T. Liu, "CO2 avoidance cost of fly ash 
geopolymer concrete," Construction and Building Materials, vol. 416, p. 135193, 2024. 

[3] P. Duxson and J. L. Provis, "Designing precursors for geopolymer cements," Journal 
of the american ceramic society, vol. 91, no. 12, pp. 3864-3869, 2008. 

[4] D. Hardjito, S. E. Wallah, D. M. Sumajouw, and B. V. Rangan, "Factors influencing the 
compressive strength of fly ash-based geopolymer concrete," Civil engineering 
dimension, vol. 6, no. 2, pp. 88-93, 2004. 

[5] J. Davidovits, Geopolymer chemistry and applications. Geopolymer Institute, 2008. 
[6] X. Y. Zhuang et al., "Fly ash-based geopolymer: clean production, properties and 

applications," Journal of cleaner production, vol. 125, pp. 253-267, 2016. 
[7] M. T. Ghafoor, Q. S. Khan, A. U. Qazi, M. N. Sheikh, and M. Hadi, "Influence of 

alkaline activators on the mechanical properties of fly ash based geopolymer concrete 
cured at ambient temperature," Construction and Building Materials, vol. 273, p. 
121752, 2021. 



 

RMIT Classification: Trusted 

[8] Sindhunata, J. Van Deventer, G. Lukey, and H. Xu, "Effect of curing temperature and 
silicate concentration on fly-ash-based geopolymerization," Industrial & Engineering 
Chemistry Research, vol. 45, no. 10, pp. 3559-3568, 2006. 

[9] L. N. Assi, E. E. Deaver, and P. Ziehl, "Effect of source and particle size distribution on 
the mechanical and microstructural properties of fly Ash-Based geopolymer concrete," 
Construction and Building Materials, vol. 167, pp. 372-380, 2018. 

[10] C. Gunasekara. "Influence of properties of fly ash from different sources on the mix 
design and performance of geopolymer concrete " RMIT University. (accessed 2022-
08-08, 2022). 

[11] M. Rathnayaka, D. Karunasinghe, C. Gunasekara, K. Wijesundara, W. Lokuge, and D. 
W. Law, "Machine learning approaches to predict compressive strength of fly ash-based 
geopolymer concrete: A comprehensive review," Construction and Building Materials, 
vol. 419, p. 135519, 2024. 

[12] J. Temuujin, A. Van Riessen, and R. Williams, "Influence of calcium compounds on the 
mechanical properties of fly ash geopolymer pastes," Journal of hazardous materials, 
vol. 167, no. 1-3, pp. 82-88, 2009. 

[13] H. Junninen, H. Niska, K. Tuppurainen, J. Ruuskanen, and M. Kolehmainen, "Methods 
for imputation of missing values in air quality data sets," Atmospheric environment, vol. 
38, no. 18, pp. 2895-2907, 2004. 

[14] G. E. Batista and M. C. Monard, "An analysis of four missing data treatment methods 
for supervised learning," Applied artificial intelligence, vol. 17, no. 5-6, pp. 519-533, 
2003. 

[15] D. B. Rubin, "Inference and missing data," Biometrika, vol. 63, no. 3, pp. 581-592, 
1976. 

[16] S. Van Buuren and K. Groothuis-Oudshoorn, "mice: Multivariate imputation by 
chained equations in R," Journal of statistical software, vol. 45, pp. 1-67, 2011. 

[17] G. A. Lyngdoh, M. Zaki, N. A. Krishnan, and S. Das, "Prediction of concrete strengths 
enabled by missing data imputation and interpretable machine learning," Cement and 
Concrete Composites, vol. 128, p. 104414, 2022. 

[18] R. C. Pereira, P. H. Abreu, P. P. Rodrigues, and M. A. Figueiredo, "Imputation of data 
Missing Not at Random: Artificial generation and benchmark analysis," Expert Systems 
with Applications, vol. 249, p. 123654, 2024. 

[19] S. J. Choudhury and N. R. Pal, "Imputation of missing data with neural networks for 
classification," Knowledge-Based Systems, vol. 182, p. 104838, 2019. 

[20] Y. M. Amran, R. Alyousef, H. Alabduljabbar, and M. El-Zeadani, "Clean production 
and properties of geopolymer concrete; A review," Journal of Cleaner Production, vol. 
251, p. 119679, 2020. 

[21] D. Hardjito, S. E. Wallah, D. M. Sumajouw, and B. V. Rangan, "On the development of 
fly ash-based geopolymer concrete," Materials Journal, vol. 101, no. 6, pp. 467-472, 
2004. 

[22] H. Xu and J. Van Deventer, "The geopolymerisation of alumino-silicate minerals," 
International journal of mineral processing, vol. 59, no. 3, pp. 247-266, 2000. 

[23] P. Nath and P. K. Sarker, "Effect of GGBFS on setting, workability and early strength 
properties of fly ash geopolymer concrete cured in ambient condition," Construction 
and Building materials, vol. 66, pp. 163-171, 2014. 

[24] J. L. Provis and S. A. Bernal, "Geopolymers and related alkali-activated materials," 
Annual Review of Materials Research, vol. 44, no. 1, pp. 299-327, 2014. 

[25] M. S. Reddy, P. Dinakar, and B. H. Rao, "A review of the influence of source material’s 
oxide composition on the compressive strength of geopolymer concrete," Microporous 
and Mesoporous Materials, vol. 234, pp. 12-23, 2016. 



 

RMIT Classification: Trusted 

[26] P. Duxson, A. Fernández-Jiménez, J. L. Provis, G. C. Lukey, A. Palomo, and J. S. van 
Deventer, "Geopolymer technology: the current state of the art," Journal of materials 
science, vol. 42, pp. 2917-2933, 2007. 

[27] J. L. Provis and J. S. J. Van Deventer, Geopolymers: structures, processing, properties 
and industrial applications. Elsevier, 2009. 

 

Appendix 

KNN Pseudocode 
Class KNNImputer: 
    Method __init__(self, k): 
        Input:  
            k: Number of neighbors 
        Initialize: 
            self.k = k 
 
    Method fit_transform(self, data): 
        Input: 
            data: Dataset with missing values 
        Output: 
            imputed_data: Dataset with imputed values 
         
        Initialize: 
            imputed_data = copy of data 
         
        For each row in data: 
            For each missing value in row: 
                1. Identify rows without missing values in the same column. 
                2. Calculate the distance between the current row and each row without missing 
values. 
                3. Select the k rows with the smallest distances. 
                4. Estimate the missing value using the mean of the k nearest neighbors. 
                5. Replace the missing value in imputed_data with the estimated value. 
         
        Return imputed_data 
 

MICE Pseudocode 
Class MICEImputer: 
The MICEImputer class implements the MICE algorithm using linear regression to impute 
missing values. 
Method __init__(self, num_iter) 

Input: 
o num_iter: Number of iterations (chained equations). 

Initialization: 
o self.num_iter = num_iter: Stores the number of iterations. 

Method fit_transform(self, data) 
Input: 

o data: Dataset with missing values. 
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Output: 
o imputed_data: Dataset with imputed values. 

Steps: 
3. Initialization: 

 Create a copy of the input data and store it in imputed_data. 
 Identify columns with missing values (missing_columns). 

4. Multiple Iterations (chained equations): 
 For each iteration (from 1 to num_iter): 

 For each column with missing values (col in 
missing_columns): 

1. Split data into X (features) and y (target column col): 
 X consists of rows without missing values in 

col. 
 y consists of values in col for rows without 

missing values in col. 
2. Train a linear regression model: 

 Fit the model using X and y. 
3. Predict missing values: 

 For each row with missing value in col: 
 Use the trained model to predict the 

missing value based on other columns 
(X). 

4. Update imputed_data: 
 Replace missing values in col with predicted 

values. 
5. Return the imputed_data with all missing values imputed after num_iter 

iterations. 
 
SVD Pseudocode 
Class SVDimputer: 
The SVDimputer class implements the SVD imputation method. 
Method __init__(self, rank) 

• Input: 
o rank: Desired rank for the low-rank approximation. 

• Initialization: 
o self.rank = rank: Stores the rank parameter. 

Method fit_transform(self, data) 
• Input: 

o data: Dataset with missing values. 
• Output: 

o imputed_data: Dataset with imputed values. 
• Steps: 

1. Initialization: 
 Create a copy of the input data and store it in imputed_data. 
 Identify rows and columns with missing values (missing_rows, 

missing_cols). 
2. Perform SVD: 

 Compute the SVD of the data matrix: 
  

Python code 
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U, S, Vt = svd(imputed_data) 
 

3. Impute missing values: 
 For each missing entry (i, j): 

 Calculate the approximation using the low-rank components: 
 
Python code 
imputed_data[missing_rows[i], missing_cols[j]] = 
U[missing_rows[i],: self.rank] @ np.diag(S[:self.rank]) @ 
Vt[:self.rank, missing_cols[j]] 
 

4. Return the imputed_data with all missing values imputed using SVD. 
ANN Pseudocode 
Class ANNImputer: 
The ANNImputer class implements the ANN-based imputation method. 
Method __init__(self, hidden_units, epochs, batch_size) 

• Input: 
o hidden_units: List specifying the number of units in each hidden layer. 
o epochs: Number of training epochs. 
o batch_size: Batch size for training. 

• Initialization: 
o Initialize ANN architecture with specified hidden layers. 
o Store training parameters (epochs, batch_size). 

Method fit_transform(self, data) 
• Input: 

o data: Dataset with missing values. 
• Output: 

o imputed_data: Dataset with imputed values. 
• Steps: 

1. Preprocess data: 
 Handle missing values (e.g., impute initial values, scale data). 
 Split data into features (X) and target (y) where y corresponds to 

columns with missing values. 
2. Build ANN model: 

 Initialize an ANN model with input layer matching X.shape[1] and 
hidden layers specified by hidden_units. 

 Output layer matches the number of columns with missing values. 
3. Train the model: 

 Train the ANN model using X and y for epochs with batch_size. 
4. Predict missing values: 

 Use the trained ANN model to predict missing values in data. 
5. Return the imputed_data with all missing values imputed using the trained 

ANN model. 
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