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ABSTRACT Atmospheric visibility and cloud ceiling forecasts are essential for the safety and efficiency of
flight operations and the aviation industry. Routine hourly aviation meteorological observations are recorded
at every airport. However, forecasts of these two meteorological parameters using artificial intelligence
techniques are limited. This research utilizes data from two study sites in Fiji, Nadi, andNausori International
Airport, and proposes a hybrid Iterative Input Selection – Long Short-Term Memory (IIS-LSTM) integrated
model to forecast the consecutive hour’s visibility and ceiling parameters. The IIS algorithm acts as a
feature selector from the global predictor matrix of predictor variables with its significant lagged inputs
and the significant lagged inputs of the target variable, while the LSTM algorithm acts as the learning
model and makes forecasts. The performance of the proposed hybrid IIS-LSTM model is evaluated using
seven statistical score metrics and compared with four competing benchmark models. The evaluated results
illustrate the superiority of the proposed hybrid IIS-LSTM integrated model and its advanced capability to
generate accurate atmospheric visibility and cloud ceiling forecasts for the next consecutive hour compared
to the benchmark models. The most important features selected were the second lagged input of visibility
and first lagged input of rainfall to improve visibility forecasts while the first and the fifth lagged inputs of
the total low cloud cover were paramount for accurate cloud ceiling forecasts. Considering the geography
of the study sites, the overall efficacy of the IIS method is strongly advocated to screen most suitable model
predictors and the subsequent integration of this input selection method with the LSTM predictive algorithm
to attain enhanced performance of the hybrid IIS-LSTM forecast model. This objective model is therefore
proposed to be an efficient and cost-effective predictive tool for atmospheric visibility and cloud ceiling
forecasts, especially its applications in the aviation industry for aeronautical purposes.

INDEX TERMS Visibility forecast, ceiling forecast, deep learning, machine learning, iterative input
selection, long short-term memory.

The associate editor coordinating the review of this manuscript and

approving it for publication was Rosario Pecora .

I. INTRODUCTION
The aviation industry heavily relies on meteorological
parameters for the overall safety and efficiency of flight
operations in terms of the planning, decision-making and
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contingency procedures.While all meteorological parameters
have their relative importance to the overall aviation oper-
ations, of immediate interest are the atmospheric visibility
and the low cloud ceiling parameters used at the respective
airports for the monitoring of flight safety.

According to the International Civil Aviation Associa-
tion [1], visibility, used as the first objective variable in
this research study, is the distance in the lower atmosphere
a black object can be seen and identified against a bright
background at the ground level, or the distance at which light
of 1000 candela in luminescence can be seen and recog-
nized against an unlit background, whichever is greater. The
description of ceiling, used as the second objective variable
in this research study, is the vertical distance of the base
of the lowest layer of cloud below 6000m from the surface
of the earth or water and which covers more than fifty per
cent of the sky [2]. These two variables play a crucial role
in the operation of flights, especially in the critical phase
of landing and taking-off, since most meteorological-related
aircraft incidents occur during periods of poor visibility and
low cloud ceiling [3]. Prior studies showed that low clouds
and obscuration contributed to about 70% of fatal accidents
in general aviation flights [4]. This emphasizes that a timely,
reliable, and precise observation of these two meteorological
parameters is essential for planning and assisting aircraft in
maneuvering through hazardous situations, which is crucial
for safe aviation operations.

There are currently products that are operationally imple-
mented providing forecasts of weather elements, including
visibility and ceiling, using meteorological reports. For
example, in the United States of America, the Gridded Local-
ized Aviation Model Output Statistics Program (GLMP)
is implemented which has a 2.5 km horizontal resolution
and produces an analysis every 15 minutes. This algorithm
extends the Localized Aviation Model Output Statistics
Program (LAMP), which is station-based ceiling and vis-
ibility analysis produced by the integration of METAR
(aerodrome routine meteorological report) and buoy reports
(NOAA, 2019). Other products include the National Ceiling
and Visibility Analysis (NCVA), the Real-Time Mesoscale
Analysis (RTMA) and the Real-Time Mesoscale Analysis
Rapid Updates (RTMA-RU). Various types of data are used
as inputs into these products including surface observa-
tions from a combination of human and automated systems
(METAR), fully automated surface observation stations
(ASOS), regional networks of automated meteorological
observing systems (Mesonets), and satellite data fromGOES-
16. Despite these products developed for visibility and ceiling
analysis, accurate predictive models utilizing meteorological
datasets currently remain relatively limited.

The inherent abrupt and stochastic nature of the mete-
orological system makes mathematical modelling highly
complex and resource-intensive [6]. To develop in-situ mod-
els with higher frequency and accuracy to make reliable
meteorological forecasts of variables such as visibility and

ceiling, Artificial intelligence (AI) models and big data
approaches are necessary especially in the current era of
increasing volume of datasets regarding atmospheric prop-
erties recorded at various airports. Scholars have modelled
visibility as a classification problem, grading the classes as
high, medium, and low or fog versus no fog instances [7], [8],
[9]. For instance, a study done at Spain’s Valladolid airport
used hybrid prediction models such as Proportional Odds
Model and Support Vector Machines (SVM) for ordinal clas-
sification of visibility events in three categories (FOG, MIST,
CLEAR) [10]. Another research tried to forecast hourly
short-term low visibility events at the same airport using
a combination of Machine Learning (ML) techniques [11].
Similarly, an exploratory study conducted in Florida, USA
used various ML algorithms to classify visibility as low,
moderate, and good using local weather station data [12].

However, visibility and ceiling forecasts as a regression
problem have been least explored and have recently gained
some popularity. In a study conducted at Santos Dumont
Airport Brazil, four machine learning models were used for
both classification and regression forecasting of visibility,
and regression forecasting for ceiling base height [13]. Simi-
larly, a low visibility event forecasting study was carried out
as both a classification and regression problem in Galicia,
Spain using a large number of ML approaches [14]. The
authors found the Artificial Neural Network (ANN) model
with a simple standardization method to be the most effi-
cient formulation after evaluating the performance of the
models under a common framework. Additionally, single-
step visibility forecasts using five different deep learning
models were studied by [15] for weather stations in Florida.
The authors recommended deep learning models for further
research in visibility forecasting as a regression problem
considering its importance to safety in transportation sys-
tems and a lack of similar studies. Furthermore, a study by
Pelaez-Rodriguez et. al [16] concluded that a deep learning
ensemble methodology gave very satisfactory results in fore-
casting visibility at two locations in Spain due to the ensemble
containing information from all individual learners of the
different deep learning architectures.

An essential aspect of model development is model parsi-
mony, i.e., a reduction of overall model input variables whilst
achieving the same level of accuracy. This is achieved by
discarding irrelevant or redundant variables while selecting
only the most applicable variables. The implication is that
necessary information is still retained in the dataset, while
variables that do not contribute to output information are
excluded. The benefits of reducing the dimensionality of the
data include a decrease in computational cost, improvement
in generalization capability, and reduction in the probability
of missing data and outliers being included in the data [17].
These input selection or dimensionality reduction methods
can be classified broadly into feature extraction or feature
selection techniques. Feature extractionmethods transform or
combine original inputs to create new features, while feature
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selection methods use the original input features and select
the best subset of features from these.

Feature selection methods are further classified as filters,
wrappers, embedded or hybrid [17], [18]. Some filter meth-
ods applied in the literature include correlation analysis [19],
[20], [21], information-theoretic subset selection (ITTS) [22],
minimum Redundancy Maximum Relevancy [23], [24], and
the Lipschitz quotient [25] which is a backward elimination
filter method. The least absolute shrinkage and selection
operator – multilayer perceptron (LASSO-MLP) is an exam-
ple of an embedded method [26] while studies by [26]
and [27] are examples of hybrid methods of feature selection
used in literature.

An alternative feature selection method called Iterative
Input Selection (IIS) was proposed by [28], which can deter-
mine the optimum predictor variables from a global pool
using a tree-based algorithm. The accuracy of this algorithm
was demonstrated in the study for streamflow forecasting in
Ticino River, Switzerland. A further study in [29] revealed
that the IIS algorithm performed better than partial mutual
information, partial correlation andGenetic Algorithm-ANN.
Additionally, the IIS-optimized models have been found to
perform better than standalonemodels in forecastingmonthly
streamflow in Australia’s Murray-Darling Basin and were
recommended as a suitable tool for feature selection [31].
Nonetheless, the application of the IIS algorithm in visibility
and ceiling forecasting using aviation meteorological obser-
vational data is yet to be explored.

Therefore, this study aims to extend the investigative
approach of utilizing deep learning architecture AI models
for visibility and ceiling forecasting using hourly routine
aviation meteorological observation data. The site locations
chosen are two international airports in Fiji. To the best of the
authors’ knowledge, no such research has been undertaken
to explore the capabilities of AI models for forecasting the
weather elements’ visibility and cloud ceiling for these two
study sites, let alone deep learning models. Additionally,
current literature shows a lack of research being conducted
in forecasting visibility and ceiling as regression problems
using aviation meteorological observational data.

This study aims to address these gaps in research by
advancing the applications of deep learning AI models for
visibility and ceiling forecasts, with the following objectives:

1. Use the Iterative Input Selection (IIS) feature selection
technique to find the optimum features for the model from all
meteorological variables and significant lagged series.

2. Design and implement the proposed hybrid IIS-LSTM
integrated model for a 1-hour forecast horizon and compare
the outcomes with alternative AI models LSTM, TabNet, ANN
and Random Forest.

3. Evaluate the performance of the objective model (pro-
posed hybrid IIS-LSTM) with the alternative models using
performance evaluation metrics and graphical analysis of the
observed dataset with the forecasted dataset.

4.Briefly elaborate on the suitability of the objective model
for practical visibility and ceiling forecasts, discuss any

FIGURE 1. Map of Fiji showing the present study locations for which the
proposed IIS-LSTM model was developed and implemented.

limitations and comment on any recommendation for future
research.

II. THEORETICAL OVERVIEW
A. ITERATIVE INPUT SELECTION (IIS) ALGORITHM
The study of [28] has proposed the IIS as a robust input
selection tool that utilizes highly randomized trees (Extra
trees). The IIS is not computationally intensive; thus, faster,
andmore efficient [32]. The IIS algorithm is executed in three
phases. The first phase is the Input Ranking (IR), whereby the
most significant predictors are selected in a forward selection
method process. The variables are ranked in order or signifi-
cance, but the contribution of each input information towards
the output may be hidden due to the possibly redundant
variable(s).

Therefore, the second phase groups the most significant
p-ranked variables and assesses their significance using a
Single Input Single Output (SISO) approach. The Extra-Trees
model with the SISO approach is trained and compared to
the observed outputs and assessed based on accuracy evalua-
tion metrics. Based on this assessment, the best-performing
inputs are added to the set p′. The third phase is the
Multiple Input Single Output (MISO) phase whereby the
prescribed screening model aims to rate the effectiveness
of each input matrix in forecasting the output. This is done
to minimize overfitting, and the procedure is repeated with
the residuals from the previous iteration as the new output
variable in the previous 2 phases. The operation is iterated
until either the best IR variable is found in the selected
p′ variables, or the performance of the model does not
show significant improvement based on the coefficient of
determination (R2) [33].

To further improve the feature selection process, the IIS
algorithm performs K-fold cross-validation, which has the
advantage of using all the data in both training and validation,
which reduces the possibility of overfitting the model.
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B. LONG SHORT-TERM MEMORY (LSTM)
The proposed model is a hybrid, integrating the IIS algorithm
with the Long Short-TermMemory (LSTM) architecture. The
deep learning LSTM Network model is a special type of
Recurrent Neural Network (RNN) which can learn long-term
dependencies and therefore can perform well in time-series
data predictions [34]. It has memory capabilities because
its gate structure is different from the RNN structure and
is therefore able to retain historical information for a long
time [35], [36]. The technical details of the objective model
LSTM architecture are well studied and found in literature
elsewhere [37], [38], [39], [40].

III. MATERIALS AND METHOD
A. STUDY AREA
This study focuses on two study sites located in Fiji, an island
archipelago which sits in the Southwestern Pacific Ocean.
It lies approximately between 15◦ to 20◦ South latitudes and
between 175◦ and 182◦ East longitude.
The main islands are Viti Levu and Vanua Levu while the

remaining islands are smaller, low-lying, and widely spread
across the ocean [41]. Fiji experiences a mostly tropical
climate with two major seasons observed annually – a warm
and wet season from November to April, and a cool and dry
season from May to October. The most significant influence
on the rainy season is the South Pacific Convergence Zone
causing the formation of tropical low-pressure systems and
cyclones as well [42]. Additionally, there are localized and
regional effects which impact the weather across the islands.
One cause of this is the geography of the islands, particularly
the two main islands of Viti Levu and Vanua Levu, which are
of volcanic origins and generally have mountainous interior
terrain with flatter coastal plains [43]. Another factor which
affects localizedweather on themajor islands is the prevailing
Southeast Trade Winds which cause greater cloud formation
and precipitation on the eastern parts of the main islands.

TABLE 1. The geographic description of the present study sites.

The two sites are Nadi International Airport and Nausori
International Airport, which are located on the main island
of Viti Levu (Table 1). Nadi International Airport (Nadi) is
the main international airport of the country and is located
on the western side of the island, while Nausori International
Airport (Nausori) is the secondary international airport and
is located on the eastern part of the island. As the tourism
industry is one of the largest revenue earners for the country,
the airport and aviation efficiency and safety are imperative.
These two airports are the locations where the meteorological
observations are recorded on-site. These observations are
routine aviation meteorological observations and are made

following the international standards for aviation weather
observations [44].

Since these two airports operate 24 hours a day, they are
required by the International Civil Aviation Organization
(ICAO) standards to provide these routine weather observa-
tions at the airport every hour for use by aviation stakeholders
such as airlines and air traffic service providers. These reports
are called METAR and contain meteorological parameters
which have been specified by the World Meteorological
Organization (WMO) to be observed and made available at
airports. Although all meteorological parameters play a role
in overall flight operations, the two target variables to be
forecasted, i.e. visibility and ceiling are vital for safe and
efficient flight operations during the crucial phases of landing
and taking off.

B. DATASET
Historical meteorological data spanning over 10 years was
used for the development of the proposed forecasting model.
Table 2 (a) describes the variables in the dataset that were
obtained for the development of the proposed forecasting
model. The data was recorded from January 1st, 2012,
0000 local time to December 31st, 2021, 2300 local time. This
equated to 87672 data instances with 12 variables which were
recorded in numerical values.

The visibility variable was measured in kilometers, while
the Total Low Cloud variable from the dataset was used as
the ceiling. Total Low Cloud is measured in oktas and is the
amount of low cloud covering the sky in eight parts. Even
though instrument measurements are possible, current obser-
vations for these two variables are done manually following
the standards set out by the WMO [44].

While preprocessing the data, the following data impu-
tation methods were applied to fill in the missing values.
Where there was a single missing value, a simple aver-
age of the preceding and succeeding values was taken.
For instances of consecutive missing values, a combina-
tion of calendar-averaged values and simple averages was
applied [45]. Additionally, flawed values (falling out of the
range of correct values) were replaced with the median value
for better model learning [46]. In terms of the missing values
for visibility (Tabel 2 (b)), there were none for Nadi but
around 13.5% of missing data was recorded for Nausori. Sim-
ilarly, for total low cloud cover, Nadi has significantly fewer
missing data (∼3.6%) compared to Nausori with 23.26%.
In respect to missing data, it was noticed that significant
portions of the data were missing at Nausori. This could have
been due to the station being unmanned for periods of time
and no observations taken as the instances of missing data
coincided with the lockdown during the Covid-19 pandemic.
Thus, after analyzing data by year, the years with greater
than 10%missing values were excluded frommodel building,
which left 6 consecutive years of data for study site Nausori
International Airport with total data of 52632 data points.

Table 2 (b) further gives statistical aggregates of the two
predictor variables - visibility and total low cloud cover - for
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TABLE 2. The characteristics of the predictor and objective variables used to develop the proposed hybrid IIS-LSTM integrated model for 1-hourly visibility
and total low cloud cover forecasting; and (b) the descriptive statistics of Visibility (km) and Total Low Cloud cover (oktas) with details of missing data.

the 2 study sites. The visibility magnitudes ranged from a
maximum value of 50 km for both study sites to a minimum
of 0.1 km at Nadi and 0.05 km at Nausori. The mean visibility
was 46.19 km at Nadi, higher than the value at Nausori, which
was 41.14 km.

The median visibility value was also higher at Nadi
at 50 km compared to Nausori at 40 km. Furthermore,
the visibility data at Nadi showed high negative skewness
(−3.10) and leptokurtic (10.54) tendency compared to Nau-
sori, which exhibited a similar tendency although to a lesser
degree (Skewness=−1.70, Kurtosis=2.31). This indicated
that much of the data distribution is greater than the mean
values with a higher probability of it being on the tail end of
the data distribution [47].
Considering the statistical aggregates for total low cloud

cover, it was noticed that the range was from a maximum
value of 8 to a minimum value of 0 oktas for both study sites.
Themean andmedian scores are significantly different for the
2 study sites, with Nadi having 3.45 and 3 oktas, respectively,
and Nausori having 5.28 and 6 oktas, respectively. This was
consistent with the physical attributes at these two study sites,
where Nausori is situated in a more cloudy and rainy part of
the main island compared to Nadi. The skewness and kurtosis
values of total low cloud cover at both study sites indicated
an almost normal distribution.

C. PROPOSED MODEL DESIGN
1) DATA PRE-PROCESSING
After pre-processing the data, extraction of significant lagged
inputs was carried out using cross-correlation (CCF) and par-
tial auto-correlation function (PACF) statistical assessments.
This assessment was also used to determinewhether the target
variables visibility and total low cloud cover have correlations
both in time-space, as well as between other meteorological

FIGURE 2. Flowchart detailing the proposed methodology for the
proposed hybrid IIS-LSTM model in the model development stage
implemented forecast 1-hourly atmospheric visibility and total
low cloud cover ceiling.

variables. PACF and CCF were undertaken for both visibility
and total low cloud cover target variables for the two study
sites. Figure 3 shows the result of the CCF statistical assess-
ments, which indicated the correlation of the target variable
visibility or total low cloud cover with the predictor variables.

Meteorological variables in the dataset are stochastic and
impacts are short-lived in nature, so only up to 24 antecedent
lags are considered as longer lags would be unreliable in
capturing useful information for predicting the target [48].
Similarly, Figure 4 shows the results of the PACF statistical
assessment, which indicates the best preceding lagged values
correlating to the target variable’s value in that instance. Only
lags up to 12 hours were considered due to the reason men-
tioned earlier. For both CCF and PACF, lags were considered
significant if they exceeded the 95% confidence band. This
generated a global pool of 151 features each for visibility
and total low cloud cover at study site Nadi, and 154 features
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FIGURE 3. Cross-correlations coefficients (rcross) showing the amount of
co-variance between visibility vs. its predictor variables for the case of
(i) Nadi and (ii) Nausori; and the co-variance between total low cloud vs.
its predictor variables for the case of (iii) Nadi and (iv) Nausori.

each for study site Nausori. All predictor variables and their
significant lags formed a matrix of global predictors.

2) THE IIS PROCEDURE
The global predictors were analyzed with the IIS algorithm
of the proposed hybrid integrated model to extract the most

FIGURE 4. Partial Auto-Correlation Function (PACF) coefficient of the
target variables for (i) Nadi and (ii) Nausori. The lag circled in blue
indicates the most significant lagged inputs used in the development of
the forecasting model.

useful features from this global list of features. Figure 5 illus-
trates the results for the two target variables at the two study
sites from the IIS process. The cumulative performance of
the Extra-Tree model within the IIS algorithm is R2 denoted
as the line graph in the plot while the contribution of each
screened variable is 1R2, denoted by the bars on the plot.
For Nadi’s visibility target, the performance increased up to
the second variable with the second hourly-lagged input of
visibility being the most significant one. For target total low
cloud cover, the performance of the model again increased
up to the second variable with the first hourly lagged input of
total low cloud being the most significant feature.

In contrast, for Nausori’s target variable visibility, the
performance increased up to the fourth variable; however,
only 3 features were significant with the first lagged input
of hourly rainfall being the most significant. For total low
cloud cover, the performance of the model decreased after the
second feature, with the first and fifth hourly lagged inputs
of total low cloud cover being almost equally significant.
It is noteworthy that the algorithm determined the optimum
number of variables up to the point where additional variables
decreased performance (as was the case in Figure 5(a) targets
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FIGURE 5. Cross-correlations coefficients (rcross) showing the amount of
co-variance between visibility vs. its predictor variables for the case of
(i) Nadi and (ii) Nausori; and the co-variance between total low cloud vs.
its predictor variables for the case of (iii) Nadi and (iv) Nausori.

visibility and total low cloud cover, and Figure 5(b) target
total low cloud cover), or when an algorithm tolerance value,
ε, of performance increase was not surpassed (as was the case
in Figure 5(b) target visibility). Further insights into these
results will be discussed in a later section.

3) THE PROPOSED IIS-LSTM MODELLING APPROACH
The IIS algorithm supplied the optimum dataset to be used
in the chosen deep-learning LSTM forecasting model. This
dataset was divided into a training and testing set with 20% of
the training set used in validation to fine-tune the model [49].
Researchers have used different ratios of training set, such
as 70% [31], [50] or 80% [51] as there are no set rules for
dividing data [42]. Thus, in this study, the dataset had training
(75%) and testing (25%) subsets.

The LSTM architecture was designed with one LSTM
cell layer with 80 neurons, the sigmoid activation function,
and a dense layer with a single output. This architecture
was used to learn from the training subset data and make
forecasts from the testing subset data after the data was
reshaped into a format that could be acceptably processed by
the model. The model was trained on different combinations
of hyperparameters manually to achieve the optimum set of
hyperparameters [51]. These were:

• optimizer = ‘‘adam’’
• batch size = 15
• maximum epochs = 500
• Validation loss criteria = mae (Mean Absolute Error)
Furthermore, to prevent the model from overfitting or

underfitting the data, early stopping [52] and ReduceLROn-
Plateau [53] were utilized respectively. The early stopping
method was employed in 10 epochs (patience=10) when
therewas no further decrease in the validation loss criteria and
the lowest value was saved. ReduceLROnPlateau callback
method reduced the learning rate when no improvement was
detected with patience of 5 [49]. The simple design of the

architecture was sufficient to achieve optimal model config-
uration as the number of features had been greatly reduced
by the preceding IIS algorithm. This negated the need for an
unnecessarily large architecture which reduced the training
time of the model, and the generalization of data for improved
predictions [54].

4) MODEL EVALUATION PROCEDURE
The superiority of the proposed hybrid IIS-LSTM integrated
model was tested by forecasting using the predictor variable
from the testing subset and evaluating it with the observed
data.

The performance evaluation metrics included Pearson’s
Correlation Coefficient (r), Willmott’s Index (WI), Nash-
Sutcliffe Efficiency Index (ENS ), Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), Legate-McCabe Effi-
ciency Index (LM) and Kling-Gupta Efficiency Index (KGE)
[55], [56], [57], [58], [59]. These evaluation metrics are
widely used in research and their mathematical equations are
as follows:

Pearson’s Correlation Coefficient (r)

r =
n
(
6yŷ

)
− (6y)

(
6ŷ
)√[

n6y2 − (6y)2
] [
n6ŷ2 −

(
6ŷ
)2] (−1 ≤ r ≤ 1)

(1)

Willmott’s Index (WI)

WI = 1 −
6N
i=1

[
y− ŷ

]2
6N
i=1

[∣∣ŷ− ȳ
∣∣+ |y− ȳ|

]2 (0 ≤ WI ≤ 1) (2)

Nash Sutcliffe’s Coefficient (ENS )

ENS = 1 −

[
6N
i=1

(
y− ŷ

)2
6N
i=1 (y− ȳ)2

]
(−∞ ≤ ENS ≤ 1) (3)

Root Mean Squared Error (RMSE)

RMSE
(
y, ŷ
)

=

√
1
n

∑n−1

0

(
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)2 (4)

Mean Absolute Error (MAE)

MAE
(
y, ŷ
)

=
1
n

∑n−1

0

∣∣yi − ŷi
∣∣ (5)

Legate and McCabe’s Index (LM)

LM = 1 −

[
6N
i=1

∣∣y− ŷ
∣∣

6N
i=1 |y− ȳ|

]
(−∞ ≤ LM ≤ 1) (6)

Kling-Gupta Efficiency (KGE)

KGE = 1 −

√√√√
(r − 1)2 +

(
ŷ
y

− 1
)2

+

(
CV̂
CV

)2

(−∞ ≤ KGE ≤ 1) (7)

In the equations above, the observed value for the target
variable’s visibility and total low cloud cover is represented
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as y, while the predicted value from the model is denoted ŷ
from the model. The metrics for our objective model were
then compared with metrics output by the benchmarkmodels.

The benchmark models included standalone Artificial
Neural Networks (ANN) [60], Random Forest [61], the deep
learning LSTM [62], and TabNet [63] models. These models
were selected due to their optimal forecasting performance
using atmospheric and meteorological data as shown in pre-
vious work [31], [37], [64], [65].

IV. RESULTS
This section presents the outcomes of the performance eval-
uation of the proposed hybrid IIS-LSTM integrated model
with competition models for forecasting hourly visibility and
hourly total low cloud cover using meteorological data as
model inputs. The competing models included standalone
TabNet, LSTM, ANN, and RF. The predictive performance
of the proposed hybrid IIS-LSTM integrated model was
tested against these benchmark models for the two study sites
at a 1-hour forecasting horizon. The performances are sum-
marized using the evaluation metrics as in (1) – (7) and
assessed via graphical means.

Table 3 shows the outcomes of all the performance metrics
for each model design for the two sites. From the results,
the proposed hybrid IIS-LSTM integrated model produced
the best outputs based on the performance evaluation metrics
used.

For Nadi, the IIS-LSTM model has the highest agreement
indices (r≈ 0.73,WI≈ 0.83, ENS ≈ 0.52) and the lowest error
metrics (RMSE ≈ 4.81 km, MAE ≈ 1.9 km) for visibility
forecasts. It also registered the highest agreement indices
(r ≈ 0.84, WI ≈ 0.91, ENS ≈ 0.71) and least values of error
(RMSE ≈ 0.92 oktas, MAE ≈ 0.67 oktas) for total low cloud
forecasts.

Likewise, for Nausori, the IIS-LSTM model produced the
highest agreement indices (r ≈ 0.72, WI ≈ 0.82, ENS ≈

0.52) and least error (RMSE ≈ 8.08 km, MAE ≈ 5.1 km)
for visibility forecast. Similarly, it has the highest agreement
indices (r ≈ 0.78, WI ≈ 0.87, ENS ≈ 0.60) and lowest error
values error (RMSE≈ 1.23 oktas,MAE≈ 0.93 oktas) for total
low cloud forecasts (Table 3).
A widely used evaluation metric to measure agreement

between predicted and observed values is the Nash-Sutcliffe
Index (ENS ). This is a dimensionless value and is a scaled
version of the mean squared error. However, a limitation of
this index is that it can exaggerate the impact of extreme out-
liers. To address this, Willmott’s Index (WI) is used because
it considers the ratio of the mean squared error instead of the
differences [66]. This testing performance is considered one
of the most robust parameters to evaluate the superiority of a
model against its competitors [50].
Figure 6 shows a 3D bar graph portraying the WI for each

model. In Figure 6(i), for the case of visibility forecasting,
the improvement in the model’s performance can be seen
with the proposed hybrid IIS-LSTM integrated model com-
pared to the benchmark models. The IIS-LSTM model had

TABLE 3. The testing performance of the proposed hybrid IIS-LSTM
integrated model compared with the standalone models using all
variables. (a) Objective variable 1: Visibility for (i) Nadi International
Airport and (ii) Nausori International Airport, and (b) Objective variable 2:
Total Low Cloud for (i) Nadi International Airport and (ii) Nausori
International Airport. Note: r = Pearson’s Correlation coefficient, WI =

Willmott’s Index, ENS = Nash Sutcliffe Efficiency coefficient, RMSE = root
mean square error, and MAE = mean absolute error. The most accurate
model is boldfaced, presented in orange.

FIGURE 6. Testing performance of IIS-LSTM vs. the 4 competing models
evaluated using the Willmott index of agreement (WI) for (i) visibility and
(ii) total low cloud.

approximately 0.83 score for Nadi and 0.82 score for Nausori,
which was an increase of almost 160% from the second-best
performingmodel for Nadi and an increase of 7% forNausori.

Similarly, Figure 6(ii) depicts theWI performance for total
low cloud cover forecasts. Again, the IIS-LSTMmodels have
the best score at site Nadi with approximately 0.91 and
Nausori with 0.87 which is an approximate increase of
2.5% and 4 % respectively. The proposed hybrid IIS-LSTM
integrated model produces the best agreement between the
observed and predicted outputs compared to the benchmark
models in our dataset.

Comparatively, Figure 7 shows the error metrics used to
evaluate the model performances, where Root Mean Squared
Error (RMSE) is used. For visibility forecasts (Figure 7(i))
the proposed hybrid IIS-LSTM integrated model produces
the lowest error for Nadi with 4.81 km and 8.08 km for Nau-
sori. When comparing the error for total low cloud forecasts
(Figure 7(ii)) the IIS-LSTMmodel again has the lowest value
of RMSE at approximately 0.92 oktas for Nadi and 1.23 oktas
for Nausori. Based on these results, the proposed hybrid
IIS-LSTM integrated model has been shown to minimize the
RMSE for the forecast at both study sites with this dataset.
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FIGURE 7. 3D Bar graph of root mean square error in the testing phase of
the IIS-LSTM vs. the 4 competing models for (i) visibility (RMSE, km) and
for (ii) total low cloud (RMSE, oktas).

TABLE 4. Evaluating the Testing performance of the proposed hybrid
IIS-LSTM integrated model for one-hourly forecasts for (a) Objective
variable 1: Visibility for (i) Nadi International Airport and (ii) Nausori
International Airport, and (b) Objective variable 2: Total Low Cloud for (i)
Nadi International Airport and (ii) Nausori International Airport; using
LM = Legate’s and McCabe’s Index, and KGE = Kling-Gupta efficiency. The
best model is boldfaced and presented in orange.

The Legates and McCabe’s Index (LM) is an improved
measure from the WI which further eliminates the amplifi-
cation from outliers by removing the squaring effect [56].

Compatibly, the KGE avoids the limitations of the ENS by
computing the Euclidian distance of the correlation, bias, and
variability measure instead of it being scaled by the standard
deviation of the observed values [67]. Table 4 shows these
alternative metrics used to evaluate the model’s performance,
LM and KGE. For visibility forecasts, the proposed hybrid
IIS-LSTM integrated model has the highest value of LMwith
0.397 and 0.405 for Nadi and Nausori respectively.

Likewise, for total low cloud cover forecasts, the
IIS-LSTM model scores were 0.538 and 0.440 for Nadi and
Nausori respectively. Negative values for some benchmark
models can be attributed to the lower bound of this coefficient
being negative infinity, indicating poor performance of these
models [68].

When theKGEmetrics are considered, the proposed hybrid
IIS-LSTM integrated model performed the best according

to this criterion as well. When considering visibility fore-
casts, the Nadi and Nausori international airport site scores
of 0.645 and 0.595 were registered by the IIS-LSTM model
respectively. Similarly, for total low cloud cover forecasts,
the IIS-LSTM model had the highest scores of 0.762 and
0.683 for Nadi and Nausori airports, respectively.

V. DISCUSSION
In this section, the results of this study are expounded on
in terms of its highlights as well as its limitations of the
present study. The proposed hybrid IIS-LSTM integrated
model has shown its superiority in performance compared
to the benchmark models in forecasting visibility and total
low cloud cover at two study sites. This was shown from the
results of various performance evaluation metrics depicted in
the previous section.

The results emphasized the suitability of the IIS algorithm
in selecting useful features for the model. This is consistent
with the outcomes of similar studies, such as [30], where the
results from the performance metrics (WI, ENS , RMSE and
MAE) determined the suitability of the IIS-optimized model
compared to the standalone models. As previously deduced
by [28], IIS was a useful tool for selecting non-redundant
inputs in different test conditions (e.g., different sites, differ-
ent target variables, presence of several redundant features).
Removal of redundant features was shown to be an important
aspect affecting the forecasting accuracy of data-driven mod-
els. Fewer input variables imply low dimensionality of the
sources of uncertainty and lower propagation of error from
input variables [33].
Additionally, the LSTM model’s efficiency in ‘learning’

and making predictions from this time-series data is also
pivotal in this study. Reference [13] concluded from their
results thatMLmethods can improve the visibility and ceiling
forecasts up to an hour ahead forecast horizon when accurate
observations are used for analysis.

Similarly, [15] recommended the development of deep
learning models, particularly LSTMmodels, from their study
due to LSTM’s ability to extract time-dependent features
from the raw data auto automatically and its increase in
efficiency when the size of the training set increases.

Referring to the results of the features selected by the IIS
algorithm as shown in Figure 5, some assumptions can be
made regarding the correlation between the objective vari-
able and the optimal feature selected variables. For visibility
forecasting, the most significant feature at Nadi International
Airport was the second lagged value of visibility, while for
Nausori international airport it was the first lagged value of
the Rainfall variable. The difference in the selected feature
can be explained by the geography of the sites, as Nausori
International Airport is located in the region which receives
significantly more rainfall, while Nadi International Airport
is located in the drier region of the country.

The study of [64] reported that for December 2023, Nadi
airport received 57.7 mm of rainfall while Nausori airport
received 181 mm of rainfall. The total days of rainfall were
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FIGURE 8. 3D Comparison of observed (actual) and forecasted
(predicted) values for the IIS-LSTM model in the testing phase for
(i) Visibility – Nausori, and (ii) Total Low Cloud – Nadi.

11 for Nadi airport and 21 for Nausori airport, which is 28%
and 68%of themonth respectively and represents a difference
of 40% rain days a month between the two sites. Rainfall
is naturally known to be a significant physical factor in the
reduction of visibility [70], [71].

Consequently, variation in rainfall data was the most
important factor in determining the variation in visibility at
Nausori International Airport than it was for Nadi Interna-
tional Airport. On the other hand, when the optimal variable
for total low cloud cover is considered at both study sites, the
most significant feature variable is the 1st hourly lagged data
series of total low cloud cover, with Nausori also having the
5th hourly lagged data series as equally significant.

Clouds have been difficult to forecast due to their 3D
nature, various physical properties such as coverage, thick-
ness, top height and base height, and the different types
of clouds. Additionally, mechanisms driving cloud forma-
tion vary from region to region and current models offer
mesoscale resolution in cloud forecasts and extrapolation for
higher resolution forecasts [72], [73]. Therefore, it is reason-
able that the IIS algorithm identified the lagged values of only
total low cloud cover as the optimal and reliable features for
future total low cloud cover predictions.

Generalization of the model was an important factor
for consideration with the design of the proposed hybrid
IIS-LSTM integrated model, ensuring that the model’s appli-
cability is not limited to the study locations used for this
research. This was achieved firstly by training the model on a
large dataset which accounted for variations caused by daily
and seasonal changes. Secondly, the IIS component ensured
that the model learned patterns of data from only the relevant
features affecting the predictand. It also reduced dimension-
ality and complexity of the model, preventing overfitting

on the data used for this study. Additionally, early stopping
technique and an overall simple architecture of the LSTM
algorithm contributed to the prevention of overfitting.

Figure 8 takes a closer look at the comparison between the
observed data and the forecasted output. When Figure 8(i)
is examined visually, the visibility graph of the forecasted
output follows the pattern of the graph of the observed outputs
for Nadi. However, the values at the lower extremities are
not fairly forecasted. A possible reason for this could be a
limitation in the dataset.

As noted in Table 2 (b) earlier, the visibility data for Nadi
has a mean of 46.19 km, a median of 50 km, and notably,
a high kurtosis of −3.10. This indicated that many of the data
points in the higher extremity and the lower values are not
proportionately represented in the dataset. This would have
been a factor when the model was trained as the extreme
magnitudes might not have been properly captured.

Added to this fact is the consistency and accuracy of the
observational data. For instance, visibility data is collected
through manual observations according to international avia-
tion meteorological observation standards at both study sites.
The data intervals vary, ranging from 50m intervals when
visibility is less than 800m; 100m intervals until 5 km; 1 km
intervals until 10 km; and 10 km intervals until 50 km [44].
Thus, manual observations could readily be affected by irreg-
ularities from different observers and would not have been as
consistent as instrument measurements adding another layer
of complexity.

VI. CONCLUSION
In this study, a hybrid deep learning IIS-LSTM integrated
model is proposed for forecasting visibility and total low
cloud cover for two study sites in Fiji, Nadi International Air-
port and Nausori International Airport. The proposed model
was tested against four benchmarkmodels using performance
evaluation metrics for a 1-hourly forecast horizon.

The following are the main contributions and key findings
of this research:

1. The analysis focusing on hourly aviation meteorological
observation data for Nadi International Airport and Nausori
International Airport found key statistical metrics of target
variables visibility and total low cloud cover to develop
models.

2. A hybrid IIS-LSTM integrated model was presented
which combined the effectiveness of the IIS algorithm to
select the optimum features from the range of predictor vari-
ables and their significant lags, with the deep learning LSTM
model with the superior capability for time-series forecasting.

3. The robustness of the proposed hybrid IIS-LSTM inte-
grated model to forecast visibility and total low cloud cover
was illustrated when the performance of the IIS-LSTM
model was evaluated against the benchmark models (TabNet,
LSTM, ANN, RF). The objective model had the highest
agreement metrics (r, WI, ENS) while also having the least
error (RMSE, MAE) compared to the benchmark models.
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4. This research study makes a significant contribution to
knowledge in the scope of visibility forecasts as a regression
problem using deep learning models, and a first of any kind
of AI-based forecasting study of visibility and total low cloud
cover predictions for the chosen study sites.

5. The development of this objective model using only
hourly aviation meteorological observation data indicates the
capacity of this method to be extended to any station with
similar data for further investigative research into practical
usage in the aviation industry.

The approach undertaken for this study can be enhanced
with the scope of further research. Firstly, model hyperparam-
eters for this study were optimized with an inexhaustive grid
search method. This can be improved with state-of-the-art
techniques such as Hyperband [74] and Bayesian Optimiza-
tion [75], [76], which can further assist in fine-tuning the
model to attain the optimum architecture of the model and
its forecast. Additionally, the potential for data inconsistency
which could have arisen from manual measurements of the
visibility and low cloud cover variables in the data can be
mitigated through the use of instrument measures. Moreover,
recording and using shorter and near-real-time data would
be beneficial bearing in mind the highly dynamic nature of
visibility and cloud base, since current industry and ICAO
standards have meteorological data being collected at hourly
intervals.

Further independent study can be undertaken to evaluate
forecasts at higher timesteps, such as 3-hour, 6-hour, 12-hour
or 24-hour horizons as necessary for practical operational use.
The approach undertaken in this study can be extended to
other aviation meteorological data collection sites in Fiji and
elsewhere. This will verify the applicability of this approach
beyond the study sites, as well as the possibilities of connect-
ing multiple sites in a network for higher resolution forecasts
for a region.

The main factor in implementing the proposed forecasting
model effectively is data availability and data quality. In order
to have high quality data for aviation purposes, the main
prerequisite is that the data needs to be recorded under the
ICAO standards. The recording station needs to be certified
by both the International Civil Aviation Organization (ICAO)
and the World Meteorological Organization (WMO). The
data for this study was obtained from the Fiji Meteorologi-
cal Service which abide by WMO and ICAO standards for
aviation meteorological reports. The observations are made
according to international requirements, which ensures that
data is consistent, accurate, reliable, and reported in standard-
ized units. Such weather reports, which are readily available
for specific locations, would be reliable for use in the pro-
posed model. Additional factors would need to be addressed
to have the proposed model’s practical implementation for
operational use. Firstly, the model would need to be modified
accordingly to accept real-time data and produce real-time
analysis. Secondly, comparisons to assess the accuracy and
reliability of this proposed hybrid model with existing fore-
casting tools in a live environment will have to be undertaken.

Thirdly, the appropriate computational resources will need to
be allocated based on whether a cloud based, or in-situ model
is implemented. For example, an online cloud-based system
would not be suitable for remote and maritime locations
with poor or no internet connectivity. Hence, in-situ models
would need to be parsimonious (as shown by the removal of
the redundant features using IIS) and lightweight requiring
least computational resources. Other considerations include
assessing the practicality of use for the proposed model as
a forecasting tool at a particular location considering the
availability of other such tools.

Looking further towards the adoption and acceptance of
the proposed model as a predictive tool used within the
aviation industry, important considerations must be taken into
account. The aviation industry is a highly regulated industry,
especially for aviation stakeholders operating under the Inter-
national Civil Aviation Organization body, and any change
to standard operating procedures are assessed subject to very
standards before being adopted for widespread use. However,
such predictive tools still have a niche such as in general
aviation, private or recreational flights. It could be used by
pilots flying to destinations with a limited flight information
service provision but having weather reports available at or
in the vicinity of the airport. Additionally, it could be a
cost-effective but efficient tool for flight information service
providers at airports where there is a lack of infrastructure
for accurate on-site forecasts, such as at remote or private
airports. Therefore, this study paves the path for further appli-
cations of AI in aviation industry, particularly forecasting of
important parameters such as visibility and cloud base.
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