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Abstract
Examining peripheral blood smears is valuable in clinical settings, yet manual identifica-
tion of blood cells proves time-consuming. To address this, an automated blood cell image 
classification system is crucial. Our objective is to develop a precise automated model for 
detecting various blood cell types, leveraging a novel deep learning architecture.
We harnessed a publicly available dataset of 17,092 blood cell images categorized into 
eight classes. Our innovation lies in ConcatNeXt, a new convolutional neural network. In 
the spirit of Geoffrey Hinton’s approach, we adapted ConvNeXt by substituting the Gauss-
ian error linear unit with a rectified linear unit and layer normalization with batch nor-
malization. We introduced depth concatenation blocks to fuse information effectively and 
incorporated a patchify layer.
Integrating ConcatNeXt with nested patch-based deep feature engineering, featuring down-
stream iterative neighborhood component analysis and support vector machine-based func-
tions, establishes a comprehensive approach. ConcatNeXt achieved notable validation 
and test accuracies of 97.43% and 97.77%, respectively. The ConcatNeXt-based feature 
engineering model further elevated accuracy to 98.73%. Gradient-weighted class activa-
tion maps were employed to provide interpretability, offering valuable insights into model 
decision-making.
Our proposed ConcatNeXt and nested patch-based deep feature engineering models excel 
in blood cell image classification, showcasing remarkable classification performances. 
These innovations mark significant strides in computer vision-based blood cell analysis.

Keywords ConcatNeXt. Deep feature engineering · Nested patch division · Blood cell 
image classification · Computer vision

1 Introduction

Despite the widespread use of automated hematology analyzers, manual preparation of 
peripheral blood smears on glass slides for expert cytological interpretation remains rel-
evant and useful for morphological confirmation of blood cell types [1] or identifying 
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specimens for further detailed characterization using advanced techniques [2]. A signifi-
cant proportion of hematological diseases can be preliminarily diagnosed through periph-
eral blood smear examination of cell morphology [3]. For the accurate diagnosis of hema-
tological malignancies, analysis of atypical cell morphology, in conjunction with molecular 
assessment, is obligatory. Peripheral blood smear examination has found applications in 
hematological diseases and beyond [4], often serving as a robust initial examination that 
may lead to further investigations [5].

The interpretation of peripheral blood smears is traditionally performed manually by 
trained laboratory professionals [6], which is labor-intensive and time-consuming. Digi-
tal microscopy and computer image analysis offer promising solutions for automated and 
objective morphological evaluation of blood cell images that can transform qualitative 
cytological assessments into reproducible quantitative readouts [7].

1.1  Literature review

We performed a nonsystematic review of the literature on works related to automated 
peripheral blood smear blood cell image classification. Patil et  al. [8] employed canoni-
cal correlation analysis, recurrent neural networks, and convolutional neural networks 
(CNNs) to classify white blood cell images. On a balanced 4-class dataset comprising 
623, 623, 620, and 624 images of eosinophils, lymphocytes, monocytes, and neutrophils, 
respectively, their model attained overall accuracy of 95.89%. Parab and Mehendale [9] 
used a CNN to classify red blood cell types using a 5000-image dataset divided into ten 
classes: normal, elliptocytes, spherocytes, microcytes, macrocytes, stomatocytes, tear-
drop cells, sickle cells, Howell-Jolly cells, and codocytes. Their model attained excellent 
98.50% accuracy. Liang et al. [10] classified blood cell images using a CNN-recursive net-
work. Training their model on an augmented balanced dataset of 2483, 2497, 2499, and 
2478 lymphocyte, eosinophil, neutrophil and monocyte images, respectively, they achieved 
4-class classification accuracy of 90.79%. Nilufar et al. [11] deployed a joint histogram and 
Bhattacharya kernel in their blood cell classification model, which attained 92.04% overall 
accuracy. Su et al. [12] employed a hyperrectangular composite neural networks model for 
white blood cell classification. On a 450-image dataset, they attained an impressive 99.11% 
accuracy. Habibzadeh et  al. [13] introduced a transfer learning approach for classifying 
white blood cells. On an imbalanced dataset of 88, 33, 21, and 207 eosinophil, lymphocyte, 
monocyte, and neutrophil images, respectively, they reported perfect 100.0% 4-class classi-
fication accuracy with ResNetV150. Almezhghwi et al. [14] developed a model for classi-
fying five white blood cell types that used image transformation and generative adversarial 
networks for data augmentation, and various deep networks for classification. Their best 
DenseNet-169-based model attained 98.8% validation accuracy. Gu and Sun [15] proposed 
an advanced deep learning model incorporating an attention mechanism into the YOLOv5 
architecture, designated as AYOLOv5, aimed at improving the detection of blood cells. 
Their quantitative results from their study revealed that the AYOLOv5 model achieved a 
mean Average Precision (mAP) of 93.30%, marking a notable enhancement in performance 
when compared to the standard YOLOv5 model. Their study’s reliance on the BCCD data-
base for training and evaluation further validates the effectiveness of the AYOLOv5 model, 
offering a promising tool for the microscopic examination of blood samples with enhanced 
accuracy and reliability. Firat [16] presented a novel multibranch lightweight CNN-based 
method for the classification of microscopic peripheral blood cell images. Their approach 
incorporated the Inception module, Depthwise Squeeze-and-Excitation Block (DSEB), and 
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Pyramid Pooling Module (PPM) to efficiently and accurately classify blood cells. Their 
model was evaluated using three different datasets: BCCD, Raabin WBC, and PBC, achiev-
ing classification accuracies of 99.96% for BCCD, 99.22% for Raabin WBC, and 99.72% 
for PBC. Park et al. [17] developed a CNN-support vector machine algorithm for classify-
ing circulating tumor cell (CTC) clusters based on morphological characteristics, without 
relying on immunofluorescence staining. The dataset was prepared using Wright–Giemsa 
staining, highlighting the morphological features of cells. This method demonstrated high 
sensitivity and specificity, achieving over 90% in classifying various configurations of CTC 
clusters. Murmu and Kumar [18] introduced a hybrid Deep CNN with Random Forest 
model for accurate malaria parasite detection in thin blood cell smear images. It utilized 
datasets from the National Library of Medicine (NLM), Kaggle, and the National Insti-
tutes of Health (NIH) comprising 27,558 cell images. Basophil, Eosinophil, and Eryth-
roblast also exhibited high metrics, with Basophil reaching 99.94% accuracy, Eosinophil 
and Erythroblast both above 99.88% in accuracy, and IG with 99.3% accuracy. Chen et al. 
[19] developed Morphogo, a deep learning-based system for detecting circulating plasma 
cells (CPCs) in peripheral blood, aimed at improving diagnosis and monitoring of multiple 
myeloma (MM). Utilizing a comprehensive dataset comprising bone marrow and periph-
eral blood smears from patients, the system demonstrated high accuracy, sensitivity, and 
specificity in CPC detection. Morphogo achieved a 99.64% accuracy, 89.03% sensitiv-
ity, and 99.68% specificity, significantly outperforming manual microscopy. Dwivedi and 
Dutta [20] presented a novel CNN-based architecture named Microcell-Net, designed to 
enhance the classification of microscopic blood cell images across eight distinct classes. 
Their model aimed to address challenges such as inter-class and intra-class diversity, vary-
ing magnification levels, and image noise, which complicate the classification task. Utiliz-
ing a dataset from a public repository provided through Mendeley, consisting of 17,092 
images, the Microcell-Net demonstrated exceptional performance, achieving a validation 
accuracy of 98.76% and a test accuracy of 97.65%. Bhuiyan and Islam [21] developed an 
ensemble learning-based deep neural network for the accurate classification of malaria par-
asites in red blood cell images. Utilizing a dataset from the National Institutes of Health, 
which comprised 27,558 cell images equally divided between parasitized and uninfected 
cells, their study demonstrated the effectiveness of combining adaptive weighted average 
and max voting ensemble techniques. Their study achieved an accuracy of 97.92%, out-
performing other models and methods. Elhassan et al. [22] developed a two-stage hybrid 
model leveraging a deep convolutional autoencoder and deep CNN for classifying atypical 
white blood cells in Acute Myeloid Leukemia (AML). Utilizing the AML Cytomorphology 
LMU dataset, which includes 18,365 single-cell images from AML patients and controls, 
the model demonstrated impressive performance, achieving an average accuracy of 97%, 
sensitivity of 97%, and precision of 98%. Leng et al. [23] presented an enhanced Detection 
Transformer (DETR) model for leukocyte detection in microscopic blood images, named 
Improved-DETR. The study focused on leveraging the Pyramid Vision Transformer (PVT) 
and a Deformable Attention Module (DAM) to enhance detection accuracy and speed. Uti-
lizing the Raabin dataset, which contains high-resolution images of real medical scenarios, 
the model achieved a mean average precision (mAP) of 96.10, outperforming traditional 
DETR and CNN. Barrera et al. [24] developed a method for creating synthetic images of 
white blood cells. Using generative adversarial networks (GANs), it produced images that 
closely mimic real cell morphology. Their approach aimed to enhance automatic recog-
nition model training by generating a diverse range of high-quality, artificial leukocyte 
images, including those characteristic of leukemic conditions. Their study achieved an 
accuracy of 100.0%.
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1.2  Literature gaps

From the literature review, we observed that prior publications were based on blood cell 
image datasets with relatively small sample sizes, with limited number of classes. Notably, 
modern CNN architectures, specifically ConvNeXt, ConvNeXt V2, or their variants, have 
not been studied. Moreover, while the researchers have reported classification performance 
on the blood cell image datasets, there was little focus on explainability, which is an impor-
tant consideration for clinical adoption by users.

1.3  Motivation and our model

We aimed to develop an accurate automated computer vision-based model for detecting a 
broad range of blood cell types using a novel deep learning architecture. Among CNNs, 
residual networks (ResNet) stand out for their efficient classification performance, which 
encompassed skipped connections that overcame the problem of vanishing gradients [25]. 
We were inspired by the novel ConvNeXt architecture [26], which has been built on the 
ResNet architecture, to develop a new model with reduced operators and parameters with-
out compromising classification accuracy. Moreover, we aspired to surpass machine learn-
ing models that have been trained on datasets with limited number of classes [27–29] by 
taking on the challenge of studying a much larger blood cell image dataset with expanded 
number of classes [30].

In this work, we introduced a new ConvNeXt- and swin transformer-inspired deep 
CNN, ConcatNeXt. We replaced ConvNeXt’s Gaussian error linear unit (GELU) and layer 
normalization functions with rectified linear unit (ReLU) and batch normalization, respec-
tively; applied depth concatenation blocks to the outputs of the layers for effective informa-
tion fusion; and incorporated a patchify layer, akin to swin transformer [31]. We combined 
the proposed ConcatNeXt with a nested patch-based deep feature engineering, which ena-
bled more efficient patch-based extraction of local features with reduced complexity com-
pared with fixed-size. We employed effective downstream iterative neighborhood compo-
nent analysis (INCA) [32] -based and SVM [33]-based feature selection and classification 
functions, respectively.

1.4  Innovation and contributions

Innovations We have proposed a novel lightweight deep CNN, ConcatNeXt, which could 
perform classification tasks independently or in combination with downstream nested 
patch-based deep feature engineering. These innovations are:

– We introduce ConcatNeXt, a pioneering lightweight deep CNN meticulously crafted 
for versatile classification tasks. The model reveals the inherent capability to operate 
independently and synergistically with downstream nested patch-based deep feature 
engineering.

– We have presented a nested patch-based deep feature engineering model, comple-
mented by a compelling demonstration highlighting the transfer learning proficiency 
inherently embedded within ConcatNeXt.

Contributions Main contributions of this work are developing two innovative mod-
els, ConcatNeXt and ConcatNeXt-based deep model, leveraging pretrained ConcatNeXt, 
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nested patch division, INCA, and SVM. These models undergo comprehensive assessment 
on an extensive and diverse blood cell image dataset, yielding noteworthy results:

– Our developed system involves the introduction of ConcatNeXt, characterized by a sim-
ple architecture with exceptional performance.

– We have showcased that ConcatNeXt and ConcatNeXt-based deep models exhibit 
exemplary test and validation accuracies, both surpassing the remarkable threshold of 
97%. This underscores the robust performance and reliability of these innovative mod-
els.

2  Materials and methods

2.1  Study dataset

We downloaded an open-access image dataset comprising 17092 RGB images of blood 
cells divided into eight categories: basophils (1218), eosinophils (3117), erythroblasts 
(1551), immature granulocytes (2895), lymphocytes (1214), monocytes (1420), neutro-
phils (3329), and platelets (2348) [3, 30]. The images depicting each blood cell type on a 
background of normal erythrocytes were resized to 360 × 363 and partitioned into training 
and testing sets (Table 1).

2.2  ConcatNeXt network

In this study, our primary goal is to introduce a novel deep learning algorithm, thereby 
making a valuable contribution to the field of CNN research methodology. Additionally, 
it is to put forth an innovative, lightweight CNN model. Our contributions extend beyond 
proposing a deep learning model; we have also introduced a deep feature engineering 
model leveraging the suggested CNN architecture. This section provides comprehensive 
details about the proposed ConcatNeXt.

We developed a novel CNN architecture called ConcatNeXt by replacing the layer nor-
malization and GELU activation functions of the ConvNeXt block with batch normaliza-
tion and ReLU activation functions, respectively. We incorporated a depth concatenation 
operation alongside maximum pooling to increase the number of channels during down-
sampling. Before the flatten (global average pooling) layer, we applied a patchify operator, 

Table 1  Distribution of the 
dataset used

Class Training Testing Total

Basophils 914 304 1218
Eosinophils 2340 777 3117
Erythroblasts 1164 387 1551
Immature granulocytes 2172 723 2895
Lymphocytes 912 302 1214
Monocytes 1068 352 1420
Neutrophils 2497 832 3329
Platelets 1764 584 2348
Total 12,831 (75.07%) 4261 (24.93%) 17,092
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inspired by the convolution-based downsampling in the swin transformer, and a patchify 
stem, utilizing a non-overlapping convolution with a 4 × 4 sized filter.The configuration of 
our proposed ConcatNeXt is as follows: C = (96,192,384,768) , B = (2,2, 2,2) . Here, C : is 
the number of filters, and cap B is the mber of repetitions. The model schema and specifi-
cations are depicted in Fig. 1 and Table 2, respectively. The global average pooling layer 
(GAP) extracted 2112 features (768 + 768 + 384 + 192) from each input. The model com-
prises 6.4 million trainable parameters and 74 operations, also called blocks in the MAT-
LAB deep learning designer.

According to Table 2, the algorithm has been explained below.

Stem: Commencing the network is the Stem layer, which handles an input size of 
224 × 224. Employing a 4 × 4 operation featuring 96 channels and a stride of 4, this layer 
produces an output size of 56 × 56. In this layer, we implemented a patchify operator 
reminiscent of the approaches seen in swin transformer and ConvNeXt.

Fig. 1  Schema of the proposed ConcatNeXt. **BN: batch normalization; D: Depthwise convolution
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Layers 1–5: We introduce the primary building block and the downsampling process 
within these layers. The main block encompasses three convolutions with filter sizes 
of 7 × 7, 1 × 1, and 1 × 1, akin to ConvNeXt. For downsampling, a 3 × 3 maximum 
pooling operation is employed. These layers undergo repetition twice, constituting 
the fundamental feature map generation layers.
Output: The ultimate layer concludes with the production of classification outcomes. 
Various patchify layers (8 × 8, 4 × 4, and 2 × 2 sized patchify convolutions were 
employed for downsampling) were used to concatenate all layers before the GAP 
layer, and the primary innovation in our proposal lies in this operator. The operations 
involved encompass GAP, a fully connected layer, and Softmax operators.

2.3  ConcatNeXt combined with nested patch‑based deep feature engineering

We combined the proposed ConcatNeXt with nested patch-based deep feature engineer-
ing; the latter encompassed iterative neighborhood component analysis (INCA)-based 
feature selection and support vector machine (SVM)-based classification (Fig. 2). Com-
prehensive explanation of the model is provided in the following subsections.

Table 2  ConcatNeXt architecture specification

Layer Input size Operation Output size

Stem 224 × 224 4 × 4, 96, stride: 4 56 × 56
Layer 1 56 × 56 ⎡

⎢
⎢
⎣

D7 × 7, 96

1 × 1, 384

1 × 1, 96

⎤
⎥
⎥
⎦
× 2

3 × 3 maximum pooling, stride: 2
Depth concatenation

28 × 28

Layer 2 28 × 28 ⎡
⎢
⎢
⎣

D7 × 7, 192

1 × 1, 768

1 × 1, 192

⎤
⎥
⎥
⎦
× 2

3 × 3 maximum pooling, stride: 2
Depth concatenation

14 × 14

Layer 3 14 × 14 ⎡
⎢
⎢
⎣

D7 × 7, 384

1 × 1, 1536

1 × 1, 384

⎤
⎥
⎥
⎦
× 2

3 × 3 maximum pooling, stride: 2
Depth concatenation

7 × 7

Layer 4 7 × 7 ⎡
⎢
⎢
⎣

D7 × 7, 768

1 × 1, 3072

1 × 1, 768

⎤
⎥
⎥
⎦
× 2

7 × 7

Layer 5 7 × 7 Layer 1 + 8 × 8, 192, stride: 8
Layer 2 + 4 × 4, 384, stride: 4
Layer 3 + 2 × 2, 768, stride: 2
Layer 4 + ReLU, 768

7 × 7

Output size 7 × 7 Global average pooling, fully connected 
layer, softmax

Number of classes
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2.3.1  Feature extraction

The steps of nested patch-based deep feature extraction are:

Step 1: Read each test image from the test dataset and resize each image to 224 × 224.
Step 2: Apply nested patch division to each image. In Eq.  (1), we have defined the 
used nested patch division.

Fig. 2  Block diagram of the presented deep feature engineering model. From the input image, four patches 
(P) were created, each of which was input to the pretrained ConcatNeXt for deep feature extraction. The 
GAP of ConcatNeXt generated four feature vectors (f), each of length 2112, which were concatenated to 
form the final feature vector of length 8448 (= 2112 × 4). INCA function selected the optimal length of the 
most informative features, which were in turn fed to SVM function for classification using robust tenfold 
cross-validation
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where I represents blood cell image; and P , patch. The sizes of the generated patches were 
56 × 56, 112 × 112, 168 × 168, and 224 × 224. In this aspect, the fourth patch is the original 
image.

Step 3: Extract deep features from each patch using the GAP layer of the pretrained 
ConcatNeXt. In Eq. (2), we have depicted the feature extraction process.where f  repre-
sent the feature vector.

Step 4: Create the final feature vector by merging the generated feature vectors. The 
mathematical formulation for the feature merging process is given in Eq.  (3).where F 
represents the final feature vector of length of 8448.

2.3.2  Feature selection

For this step, we deployed INCA [32], an enhancement of neighborhood component analy-
sis, that uses an iterative classification accuracy calculator to select the optimal number of 
the most discriminative features in the final feature vector. The steps are:

Step 5: Compute the qualified/sorted indexes of the generated features using neighbor-
hood component analysis. In Eqs. (3) and (4), we have defined min–max normalization 
and the qualified index creation.

where index represents qualified/sorted indexes of the features; y , actual/real outputs; and 
fscnca(., .) , neighborhood component analysis function. Min–max normalization was 
applied prior.

Step 6: Choose features iteratively based on the generated indexes. The iterative selec-
tion process is defined in Eq.  (6).where fsel represents selected feature vectors; NI , 
number of images; stval , implied start value of the loop; and finval , finite value of the 
loop. Here, the loop range was set from 100 to 1000,

Step 7: Compute classification accuracies of the selected feature vectors. The math-
ematical expression of this step is given in Eq.  (7).where ac represents classification 

(1)
P
k
= I(c − counter × k + 1 ∶ c + counter × k),

k ∈ {1,2, 3,4}, counter =
224

8
, c =

224

2

(2)f
k
= ConcatNeXt(P

k
,GAP)

(3)F(g + 2112 × (k − 1)) = fk(g), g ∈ {1,2,… , 2112}

(4)F =
F −min(F)

max(F) −min(F)

(5)index = fscnca(F, y)

(6)
fsel

t−stval+1(d, h) = F(d, index(h)),

d ∈ {1,2,… ,NI}, h ∈ {1,2,… , t},

d ∈ {1,2,… ,NI}, h ∈ {1,2,… , t},
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accuracy; and �(., .) , classification accuracy calculation function. Here, the cubic SVM 
classifier was used as the classification accuracy calculation function.

Step 8: Generate the selected feature vector with the optimal length of the most dis-
criminative features according to classification accuracy. The selection of the best fea-
ture vector is defined in Eqs. (8) and (9).where idx represents the index of the selected 
feature vector twithmaximum accuracy; and feat , the selected feature vector..

2.3.3  Classification

The selected feature vector was input into the SVM classifier with the following configura-
tion: one-vs-all coding, third-degree polynomial kernel function, and a box constraint level 
of 1. A tenfold cross-validation (CV) strategy was adopted. The final step of this deep fea-
ture engineering model is the classification, as outlined below.

Step 9: Classify the selected feature vector using the SVM classifier with a tenfold CV. 
In Eq. (10), we have defined the classification process.

The above 10 steps define our proposed ConcatNeXt-based deep feature engineering 
model.

3  Performance analysis

3.1  Experimental setup

The model was designed in MATLAB (2023a) deep network designer using m files and 
implemented on a personal computer with the following specifications: Intel @i9 9th 
generation central processing unit; GeForce RTX 2070 graphics processing unit; 64 GB 
RAM; 512  GB HDD; and Windows 11 operating system. The pretrained ConcatNeXt 
model was saved as a mat file and then applied to the nested patches of images in the 
training set. Training parameters settings were initial learning rate, 0.01; minimum batch 
size, 32; maximum epoch, 20; and solver, stochastic gradient descent with momentum. 
We adopted a split ratio of 70:30 for the training and validation sets; accordingly, the dis-
tribution of our training, validation, and test sets was approximately 52.5%, 22.5%, and 
25%, respectively. The ConcatNeXt extracted 2112 features from each of the four nested 
patches, concatenated into a final feature vector of length 8448. Setting a loop range of 100 
to 1000, INCA generated a selected feature vector that contained 412 of the most inform-
ative among the 8448 extracted features, which was then input to downstream SVM for 
classification using a tenfold CV. The parameters of the used SVM are given as follows. 

(7)ac(t − stval + 1) = �(fselt−stval+1, y)

(8)idx = max(ac)

(9)feat = fsel
idx+stval−1

(10)result = SVM(feat, y)
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Kernel: Cubic polynomial order, box constraint level: 1, coding: one-vs-all, validation: ten-
fold cross-validation.

3.2  Results

ConcatNeXt attained 100% and 97.43% accuracies during training and validation, respec-
tively, with a validation loss of 0.0942 (Fig. 3). On the testing set, ConcatNeXt attained 
excellent 8-class classification performance using standard metrics: 97.83% unweighted 
average recall, 97.76% unweighted average precision, 97.79% overall F1 score, and 97.77% 
overall accuracy (Table  3). Moreover, the ConcatNeXt-based deep feature engineering 
model also attained excellent 98.81% unweighted average recall, 98.85% unweighted aver-
age precision, 98.83% overall F1-score, and 98.73% overall classification accuracy on the 

(a) Loss (b) Accuracy

Fig. 3  Loss and accuracy curves of the ConcatNeXt

Table 3  Performance evaluation

**Acc: accuracy; F1: F1 score; Pre: precision; Rec: recall

ConcatNeXt ConcatNeXt plus nested patch-based 
deep feature engineering

Class Rec (%) Pre
(%)

F1
(%)

Acc (%) Rec (%) Pre
(%)

F1
(%)

Acc (%)

Basophil 98.03 97.39 97.70 - 98.36 99.34 98.84 -
Eosinophil 99.74 100.00 99.87 - 100.00 99.87 99.94 -
Erythroblast 97.93 97.43 97.68 - 98.45 99.22 98.83 -
Immature granulocyte 96.82 93.21 94.98 - 97.23 96.70 96.97 -
Lymphocyte 98.68 98.35 98.51 - 100 99.67 99.83 -
Monocyte 96.02 97.13 96.57 - 98.58 98.02 98.30 -
Neutrophil 95.55 98.73 97.13 - 97.84 98.19 98.01 -
Platelet 99.83 99.83 99.83 - 100.00 99.83 99.91 -
Overall 97.83 97.76 97.79 97.77 98.81 98.85 98.83 98.73
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testing set (Table 3). For both ConcatNeXt and ConcatNeXt-based deep feature engineer-
ing model, there were low rates of misclassification (Fig. 4).

In Fig.  4, 1, 2, 3, 4, 5, 6, 7, and 8 denote “Basophil”, “Eosinophil”, “Erythroblast”, 
“Immature granulocyte”, “Lymphocyte”, “Monocyte”, “Neutrophil”, and “Platelet” 
classes, respectively. For both experiments, the largest number of misclassifications were 
images in the “Neutrophil” class misclassified as the “Immature granulocyte” class, both of 
which are closely related (a neutrophil is a mature granulocyte).

4  Discussion

In our proposed model, ConcatNeXt is a novel, lightweight convolutional neural network 
(CNN) that exceled in the classification of blood cell images. The ConcatNeXt is simple 
and obtained exceptional performance, showcasing a strategic balance between the two. 
The model comprises two key components: the introduced ConcatNeXt and a deep feature 
engineering model based on ConcatNeXt.

Within ConcatNeXt, a new block has been introduced, creating a streamlined and 
straightforward CNN with a mere 74 operations. This renders ConcatNeXt a straightfor-
ward yet effective deep learning model, featuring approximately 6.4 million learnable 
parameters.

The proposed ConcatNeXt is the foundation for a nested patch deep feature engineering 
model, highlighting the model’s robust transfer learning capabilities. This research inte-
grates deep learning and feature engineering seamlessly, strategically weaving connectivity 
between architecture and functionality.

ConcatNeXt achieved outstanding accuracies of 100% in training, 97.43% in valida-
tion, and 97.77% in testing on a substantial blood cell image dataset. Building upon this 
network’s GAP, additional components such as nested patch division, INCA, and SVM 
were introduced to create an advanced deep feature engineering model. This new model 
achieved an impressive overall 8-class classification accuracy of 98.73%. The final choice 
of SVM was based on a comprehensive comparison with seven other standard classifiers, 
including linear discriminant analysis, k-nearest neighbors, decision tree, artificial neural 

(a) ConcatNeXt (b) ConcatNeXt-based deep feature engineering 

model

Fig. 4  Confusion matrixes
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network, random forest, efficient logistic regression, and naïve Bayes, conducted using the 
MATLAB Classification Learner Toolbox. The SVM classifier outperformed these classi-
fiers, achieved an overall accuracy of 98.73% (see Fig. 5).

Fig. 5  Comparison of accuracies of various classifiers using the ConcatNeXt + INCA features. ** DT: 
Decision Tree, LD: Linear Discriminant, Eff. LR: Efficient Logistic Regression, SVM: Support Vector 
Machine, kNN: k Nearest Neighbor, NB: Naïve Bayes, ANN: Artificial Neural Network, RF: Random For-
est

Fig. 6  Original blood cell images (top row) and their corresponding heat maps generated by applying Grad-
CAM to ConcatNeXt-based deep feature engineering model (bottom row). **Columns 1 to 8 depict images 
corresponding to “Basophils”, “Eosinophils”, “Erythroblasts”, “Immature granulocytes”, “Lymphocytes”, 
“Monocytes”, “Neutrophils”, and “Platelets”, respectively
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4.1  Comparative results

In order to show superior classification performance of the proposed ConcatNeXt for the 
used blood image cell dataset, we performed another series of experiments to compare 
the classification accuracy of our proposed ConcatNeXt network with other benchmark 
CNNs: ResNet18 [34], ResNet50 [34], ResNet101 [34], MobileNetV2 [35], DarkNet53 
[36], Xception [37], ShuffleNet [38], DenseNet201 [39], and InceptionV3 [40]. Applying 
these models to the same blood cell image dataset, we obtained results that were inferior to 
our proposed ConcatNeXt network and ConcatNeXt-based deep feature engineering model 
(Table 4).

Among the benchmark models, DenseNet201 achieved the highest classification accu-
racy, reaching 96.13%. However, it’s crucial to highlight the substantial computational 
difference between DenseNet201 and our proposed ConcatNeXt. While DenseNet201 uti-
lized 708 operations and featured a total of 20 million trainable parameters, ConcatNeXt 
employed only 74 operations and had 6.4 million trainable parameters. Despite this signifi-
cant contrast in computational complexity, ConcatNeXt not only demonstrated efficiency 
but also achieved superior classification performance compared to the other benchmark 
models.

Among published literature, our work bears the most resemblance to Acevedo et al. [3], 
who developed a two-stage models that combined VGG16 or Inceptionv3 networks with 
SVM or Softmax classifiers. The model underperformed our proposed ConcatNeXt net-
work and ConcatNeXt-based deep feature engineering (Table 5).

Table  5 demonstrates a detailed comparison between our proposed ConcatNeXt net-
work and ConcatNeXt-based deep feature engineering model and the approach presented 
by [3, 20, 41]. The comparison includes various models implemented by Acevedo et al., 
each combining different CNN architectures with either SVM or Softmax classifiers using 
fivefold cross-validation. Our proposed methods, ConcatNeXt and ConcatNeXt combined 
with nested patch-based deep feature engineering with tenfold cross-validation, achieved 
superior classification accuracies of 97.77% and 98.73%, respectively. Notably, our mod-
els outperformed Acevedo et al.’s best-performing model, which employed VGG16 with 

Table 4  Comparison of image classification performance of established convolutional neural networks and 
our proposed ConcatNeXt network and ConcatNeXt-based model

Convolutional neural network Overall accu-
racy (%)

Unweighted aver-
age recall (%)

Unweighted average 
precision (%)

Overall
F1 score (%)

ResNet18 87.15 86.26 87.46 86.75
ResNet50 94.25 93.53 94.34 93.90
ResNet101 94.10 93.28 94.16 93.66
MobileNetv2 93.97 93.13 94.00 93.52
DarkNet53 95.01 94.30 94.89 94.56
Xception 92.89 91.90 92.81 92.33
ShuffleNet 90.06 89.12 89.68 89.31
DenseNet201 96.13 95.72 96.20 95.94
Inceptionv3 93.36 92.57 93.06 92.78
ConcatNeXt 97.77 97.83 97.76 97.79
ConcatNeXt, INCA, SVM 98.73 98.81 98.85 98.83
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Softmax and achieved an accuracy of 96.2%. This emphasizes the effectiveness of our pro-
posed ConcatNeXt-based models in blood cell image classification.

4.2  Explainable results

To enhance the explainability of our proposed ConcatNeXt-based deep feature engineer-
ing model, we applied gradient-weighted class activation map (Grad-CAM) [42–44] a 
commonly employed technique for visualizing interpretable results, to selected blood cell 
images from each class. On the generated heat maps (Fig. 6), red-colored areas depicting 
regions of the images that contributed the most to the classification results are seen to cor-
respond visually to the locations of the distinct blood cells. These heat maps provide valu-
able insights into ConcatNeXt’s decision-making process, and indirect support for its valid-
ity and efficacy in automatically identifying relevant features for accurate classification. Of 
note, the ROIs are centered, further affirming the effectiveness of the nested patch division-
based deep feature engineering model in achieving enhanced classification performances.

Based on the Grad-CAM results depicted in Fig. 6, our proposed ConcatNeXt exhib-
its a notable focus on the region of interest (ROI) corresponding to each cell category. 
These results serve as validation for the high classification performance achieved by the 
presented ConcatNeXt. Notably, the ROIs are centered, further affirming the effectiveness 
of the nested patch division-based deep feature engineering model in achieving enhanced 
classification performances.

4.3  Advantages and limitations

The ConcatNeXt attained 97.77% test accuracy on the dataset; the ConcatNeXt-based deep 
feature engineering model, 98.73%. The latter attained perfect 100% recall for the Eosino-
phil, Lymphocyte, and Platelet classes.

Advantages Both models attained high classification performance (Table  3). Moreo-
ver, we have provided explainable results using Grad-CAM, which would provide valu-
able insights into model decision-making. The proposed ConcatNeXt is a computationally 
lightweight CNN, featuring relatively low numbers of 6.4 million trainable parameters and 
74 operations.

Table 5  Comparison of our proposed ConcatNeXt network and ConcatNeXt-based deep feature engineer-
ing model with Acevedo et al. [3]

Method Model Accuracy (%)

Acevedo et al. [3] VGG16 + SVM + fivefold CV 87.40
Inceptionv3 + SVM + fivefold CV 90.50
VGG16 + Softmax + fivefold CV 96.20
Inceptionv3 + Softmax + fivefold CV 94.90

Dwivedi and Dutta [20] Microcell-Net + 88:12 split ratio 97.65
Tseng and Huang [41] CNN 90.10
Our proposed method ConcatNeXt + Softmax + 70:30 97.77

ConcatNeXt + INCA + SVM + tenfold CV 98.73
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Limitation The study dataset comprised mainly white blood cell classes. In the future, we 
plan to expand our dataset to include a more diverse range of abnormal red blood cells as 
well.

5  Conclusions

We have introduced a novel CNN architecture, ConcatNeXt, drawing inspiration from 
ConvNeXt and the swin transformer. Also, we proposed a nested patch-based deep fea-
ture engineering model, contributing significantly to enhanced classification performance. 
A key highlight of our work lies in the simplicity and efficiency of ConcatNeXt. Boasting 
only 74 operations and 6.4 million trainable parameters, our model as a lightweight and 
efficient CNN architecture delivering remarkable performance. Furthermore, the presented 
ConcatNeXt is a straightforward CNN.

Using a big 8-class blood cell image dataset, ConcatNeXt and the ConcatNeXt-based 
deep feature engineering model achieved outstanding multi-class classification accuracies 
of 97.77% and 98.73%, respectively, surpassing state-of-the-art models (Table  4). Addi-
tionally, by incorporating Grad-CAM explanation results, our models revealed valuable 
insights into the decision-making process, of further validating the model’s capability to 
focus on critical regions of the images.

The proposed ConcatNeXt and nested patch-based deep feature engineering models 
have showcased high classification performances, making substantial contributions to the 
field of blood cell classification. We plan to use these models for the classification of vari-
ous organs/cells using different imaging modalities.
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