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Cerebral small vessel disease (CSVD) represents a spectrum of pathological processes of

various etiologies affecting the brain microcirculation that can trigger neuroinflammation

and the subsequent neurodegenerative cascade. Prevalent with aging, CSVD is

a recognized risk factor for stroke, vascular dementia, Alzheimer disease, and

Parkinson disease. Despite being the most common neurodegenerative condition with

cerebrocardiovascular axis, understanding about it remains poor. Interestingly, modifiable

risk factors such as unhealthy diet including high intake of processed food, high-fat foods,

and animal by-products are known to influence the non-neural peripheral events, such

as in the gastrointestinal tract and cardiovascular stress through cellular inflammation

and oxidation. One key outcome from such events, among others, includes the

cellular activations that lead to elevated levels of endogenous cellular-derived circulating

microparticles (MPs). MPs can be produced from various cellular origins including

leukocytes, platelets, endothelial cells, microbiota, and microglia. MPs could act as

microthrombogenic procoagulant that served as a plausible culprit for the vulnerable

end-artery microcirculation in the brain as the end-organ leading to CSVDmanifestations.

However, little attention has been paid on the potential role of MPs in the onset and

progression of CSVD spectrum. Corroboratively, the formation of MPs is known to

be influenced by diet-induced cellular stress. Thus, this review aims to appraise the
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body of evidence on the dietary-related impacts on circulating MPs from non-neural

peripheral origins that could serve as a plausible microthrombosis in CSVD manifestation

as a precursor of neurodegeneration. Here, we elaborate on the pathomechanical

features of MPs in health and disease states; relevance of dietary patterns on MP

release; preclinical studies pertaining to diet-based MPs contribution to disease; MP

level as putative surrogates for early disease biomarkers; and lastly, the potential of MPs

manipulation with diet-based approach as a novel preventive measure for CSVD in an

aging society worldwide.

Keywords: cerebral small vessel disease, diet, microparticles, neurodegeneration, microthrombosis

INTRODUCTION

An acute cerebrovascular event due to an occlusion (or ischemia)
of small blood vessels deep within the brain is a known
manifestation of small vessel disease (SVD) involving the brain
small end arteries, capillaries, venules, and arterioles (1–3). Of
all ischemic stroke events, ∼30% are represented by cerebral
SVD (CSVD) (1, 4). CSVD is a spectrum of complex and
overlapping pathophysiological mechanism of various etiologies
affecting the brain small vessel microcirculation that can trigger
neuronal inflammation and the subsequent neurodegenerative
cascade. However, it is generally viewed that CSVD represents
pathological consequences of SVD on the brain parenchyma
rather than the underlying diseases of the vessels (5). Prevalent
with aging, CSVD is recognized as risk factor for stroke,
vascular dementia, Alzheimer disease (AD), and Parkinson
disease (PD) (6, 7). Despite being arguably the most common
neurodegenerative disease (NDD) with predilection of the
cardiocerebrovascular axis, there is only limited knowledge about
CSVD underlying mechanisms.

Among the known modifiable risk factors for stroke,
dietary patterns are recognized to modulate the non-neural
peripheral events such as in the gastrointestinal tract (GIT)
(i.e., GIT dysbiosis) and cardiovascular stress through cellular
inflammations and oxidation. Moreover, diet plays a crucial
role in maintaining the physiological systems responsible for
homeostasis and hemostasis, whereby healthy dietary pattern
has been classified as diet with lower concentration of plasma
proinflammatory markers (8). Hence, certain dietary patterns
could potentially lead to undesirable alterations in such systems
as shown in the case of less or non-nutritious/unbalanced
diets (9, 10). Moreover, unhealthy dietary habits have been
reported to contribute to higher risk of developing metabolic
disease, coronary heart disease, and stroke (11) and likely to
modulate systemic peripheral events that can influence the
development and progression of NDD such as CSVD. One
key outcome from such events, among others, includes the
cellular activations that lead to elevated levels of endogenous
cellular-derived circulating microparticles (MPs). MPs can be
produced from various cellular origins including leukocytes,
platelets, endothelial cells (ECs), microbiota, and microglia.
MPs could act as microthrombogenic procoagulant that could
be detrimental to the vulnerable microcirculation, particularly

the penetrating, poorly collateralized end-arteries in the brain
parenchyma, leading to CSVD manifestations. However, little
attention has been paid on the potential role of MPs in the
onset and progression of CSVD spectrum. Corroboratively, the
formation of MPs is known to be influenced by diet-induced
cellular stress.

Thus, this review aims to appraise the body of evidence
on the dietary-related impacts on circulating MPs from non-
neural peripheral origins that could serve as a plausible
microthrombogenic role in CSVD manifestation and hence a
precursor of NDD. Here, we elaborate on the pathomechanical
features of MPs in health and disease states; relevance of
dietary patterns on MP release; preclinical studies pertaining to
diet-based MPs contribution to disease; MP level as putative
surrogates for early disease biomarkers; and lastly, the potential
of MPs manipulation with diet-based approach as a novel
preventive measure for CSVD.

MICROCIRCULATION NETWORK AND
SMALL VESSEL DISEASE

The term microcirculation used to represent the terminal
vascular branches or network of the systemic circulation that
consist mainly of (small) microvessel (diameters of <20µm)
(12). These microvessels comprised capillaries (including their
subcellular components), arterioles, and postcapillary venules
(13) (Figure 1). For example, in coronary blood supply (i.e.,
from right coronary artery, right coronary artery, and left main
coronary artery), small muscular arteries are found throughout
the myocardium that further branch into an extensive capillary
bed (intramural arteries) that embraces the cardiac myocytes
(14). In GIT, the small perforating arteries mainly originated
from celiac trunk (arteries) that supply the foregut (i.e.,
esophagus, stomach, liver, gallbladder, superior pancreas, first
and second part of duodenum), superiormesenteric artery supply
the midgut (i.e., third part of duodenum, jejunum, appendix,
cecum, ascending colon), and inferior mesenteric arteries that
supply the hindgut (i.e., descending colon, rectum, upper part
of anal canal) (15, 16). While renal microvasculature are smaller
branches that form the afferent arterioles leading to the formation
of glomerular capillaries, the distal glomerular capillaries form
the efferent arterioles, followed by the peritubular capillaries that
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supply the renal tubules (17). In the brain, ∼72% of cerebral
blood flow (cBF) is contributed by anterior circulation that
arises from the internal carotid artery (ICA) (18). cBF can be
defined as the volume of blood that flows per unit mass per
unit time in brain tissue [mLblood/(100 gtissue min)], or flow
per unit volume of brain tissue [mLblood/(100 mLtissue min)]
(19). From among the vast ICA branching network, the most
significant pathophysiologically are the anterior cerebral arteries,
middle cerebral arteries (MCAs), and anterior choroidal arteries.
The branches of these arteries mainly supply the forebrain (i.e.,
frontal, temporal, and parietal lobes), as well as subcortical region
of diencephalon and internal capsule. In addition, ∼30% of cBF
is contributed by posterior cerebral circulation that is derived
from tributaries of the vertebral and basilar arteries (13). These
branches mainly supply posterior portion of brain, i.e., occipital
lobes and posterior brainstems (see Figure 1 for the illustration
of blood supply to these major organs).

Pertaining the connection of vascular supply and drainage
between these major organs, most of these organs receive their
blood supplies locally or from the abdominal aorta (Figure 1).
For example, some parts of the large intestine receive blood
supply from the SMA (branching of the abdominal aorta) (16).
The heart, on the other hand, consists of its own coronary
vascular supply for oxygenated blood and coronary sinus
for its venous drainage (14). All in all, most organs return
deoxygenated blood either through superior or inferior vena
cava for gaseous exchange through the pulmonary circulations.
A direct connection between organs, for example, GIT–heart–
brain axis, may be observed through the venous drainage but
not through the arterial blood supply, whereby most of the
GIT (visceral organs) circulation will return to inferior vena
cava of the heart via the hepatic portal circulation (16). As
for the cerebral circulation, the venous drainage will eventually
reach the superior vena cava of the heart and, subsequently,
the pulmonary circulation for gaseous exchange. For the brain,
oxygen and nutrients from peripheral circulation are delivered
through MCAs and their fenestrated capillaries that supply deep
subcortical region (20). Hence, any initial peripheral event (from
systemic and cellular insult or activation) may affect a specific
organ through their local circulation or may even propagate via
the abdominal aorta to other specific organ locations. Similarly,
vascular drainage that eventually returns the deoxygenated
blood from other organs of the body to the superior and
inferior vena cava of the heart may also act as a “hitchhike”
passageway for the systemic or cellular insults or activation by-
products and lodged to other organs or blood vessels, including
microcirculation network.

Consequently, microcirculation network is the most crucial
compartment and terminal destination of the vascular systems,
whereby it is the pinnacle site where the red blood cells
(RBCs) in the capillaries directly transfer the oxygen to
the surrounding parenchymal cells that require oxygen for
energy metabolism (12). Apart from that, microcirculation
helps to regulate intravascular-tissular space solute exchange,
transporting all the nutrients and blood-borne hormones to
the cells and tissues and moderating the functional activities
of hemostasis and immune system (12). The vasculature

of microcirculation consists primarily of lining of the ECs.
The morphology and density of these endothelial structures
varied between organs and vessels. However, endothelial lining
generally consists of pores and fenestration that are held
together by various adherent molecules such as cadherins and
gap junctions (to carry current), hence allowing upstream
electrical communication (12). Furthermore, ECs are symbiont
with smooth muscle cells (SMCs) regulating the microvascular
blood flow through the regulation of arteriolar vasotone with
three different mechanisms, i.e., metabolic, myogenic, and
neurohumoral control. The lumen of endothelium consists of
gel-like structure (0.2–0.5µm) synthesized by ECs, known as
glycocalyx (e.g., proteoglycans, glycosaminoglycans, and plasma
protein), which help in mediating endothelium functions,
i.e., their microcirculatory functions (21, 22). Apart from
glycocalyx, various subcellular substances are also present in
the lumen of endothelium such as superoxide dismutase and
antithrombin (23).

Therefore, the integrity of microvessel endothelium and
its component is the main determinant for vascular barrier.
Endothelial dysfunction is one of the ultimate cellular events
that are responsible for hemodynamic changes seen in various
pathological conditions (22). Microcirculation network is crucial
for normal functioning of GIT, heart, and the nervous system,
with the majority (up to 80%) of oxygen supplies to these
organs is utilized for adenosine triphosphate production to aid
sodium and potassium pumps maintaining the homeostasis.
Thus, oxidative stress, hypoxia, nitro stress, and inflammatory
mediators could potentiate the sequelae that lead to various
SVD of these organs (24). Preclinical studies (including animal
models) had shown that microcirculation and endothelial
inflammation may serve as therapeutic targets to arrest
microvascular-based organ or parenchymal injury (25, 26).

Small Vessel Disease—An Overview
SVD is a term used to represent the pathological process that
damages the small end arteries, capillaries, venules, and arterioles
(2). The condition may lead to alteration of microcirculation
(i.e., blood flow or perfusion) of the affected organ. SVD is
generally observed in major organs such as the brain, retinal,
heart, and urinary system (i.e., kidney), due to fact that these
organs primarily required a desirable amount of cardiac output
for their functionality (27). However, the GIT arteries are
rarely affected to vascular disease either SVD or large vessel
disease (i.e., atherosclerosis) (28). In rare instances, especially
following myocardial infarction or atrial fibrillation, thrombus
may accumulate and cause occlusion in the artery resulted in
ischemic colitis (with an acute onset of abdominal pain and
blood in the stools) (28, 29). Moreover, the thrombus or arterial
occlusions may cause the reduction of blood flow (chronically)
in the colon that can trigger inflammation before turning
gangrenous (tissue death due to lack of blood supply) (29).

The integrity of microvascular endothelium and its
component plays a major role as a vascular barrier (i.e.,
between circulating blood and vessel wall). Therefore, SVD is
frequently associated with the endothelium dysfunction that
results in arteriolosclerosis and lipohyalinosis. In general, ECs
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FIGURE 1 | Vascular blood (arterial) supplies to the brain, heart, GIT, and kidney and differential structure between large and small vessel. Most of these organs

receives their blood supply locally or from the abdominal aorta. ACA, anterior cerebral arteries; AChA, anterior choroidal arteries; CXA, circumflex artery; ICA, internal

carotid artery; IMA, inferior mesenteric arteries; LADA, left anterior descending artery; LCCA, left common carotid artery; LGA, left gastric artery; LGOA, left

gastro-omental artery; LMCA, left main coronary artery; LPA; lenticulostriate perforating arteries; LSCA, left subclavian artery; MCA, middle cerebral artery; RCA, right

coronary artery; RRA, right renal artery; SEpA, subependymal arteries; SMA, superior mesenteric artery; TPA, thalamic perforating arteries.
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help maintain vascular barrier or health and blood flow (through
capillaries and arterioles) in several ways including limiting
the platelet or leukocyte aggregation, controlling the vascular
permeability from plasma components, and regulating the
vascular tone (30). Equally crucial for the ECs to function at their
optimum is their interaction or crosstalk with the surrounding
cells such as mural cells (i.e., pericytes and vascular SMCs), glial
cells (i.e., astrocytes), and immune cells (31).

Risk Factors and Clinical Relevance of SVD
Previous report had confirmed that hypertension (i.e., systolic
blood pressure ≥135mm Hg), sex (i.e., male), type 2 diabetes
mellitus (T2DM), smoking status, and aging (i.e., ≥70 years old)
were the main risk factors that can lead to SVD (i.e., in the
brain, retina, and heart) (32–34). Another contributing risk factor
is the metabolic syndrome including obesity (as of dietary and
lifestyle) due to accumulated fat in the abdominal location, hence
abdominal obesity. The accumulated fat mediates the synthesis of
inflammatory cytokines and causes further inflammation of GIT
vasculature (35, 36). Moreover, microvascular complication such
as increase of proinflammatory cytokines, vascular endothelial
adhesion molecules (VCAMs), and intracellular cell adhesion
molecules (ICAMs) has been associated with T2DM (37), hence
increasing the risk toward multi-organ SVD.

Apart from that, endothelial dysfunction (in specific, related
to cerebral microcirculation) has been associated with the
impact of immune system related GIT microbiota, whereby
the dietary pattern (i.e., high salt intake) potentially leads to
neurovascular dysfunction through GIT initiated T helper cell
17—the cells responsible for tissue inflammation induction
and destruction (38). Interestingly, recent evidence suggested
that higher SVD incidence is associated with an increased
systemic inflammation due to poor sleep quality (39), as well
as societal-based depression and loneliness (40–42). Besides,
individual(s) with SVD is suggested to suffer from “systemic”
condition (27). This is so as SVD is commonly associated with
nervous system disturbances such as stroke, cognitive decline,
vascular dementia, and gait dysfunction (43–46). However, SVD
possesses multiorgan and multidirectional predilection, whereby
any organs with similar vascular risks may have the effects. For
example, retinal SVD with neurodegeneration-related cognitive
decline, retinal microvascular abnormalities associated renal
failure, cardiac insufficiency, blindness, lungs, and GIT vascular-
based disorders (47–54).

CEREBRAL SMALL VESSEL DISEASE

CSVD is a spectrum of complex and overlapping
pathophysiological mechanism of various etiologies affecting the
brain microcirculation that can trigger neuronal inflammation
and the subsequent neurodegenerative cascade. However,
it is generally viewed that CSVD represents pathological
consequences of SVD on the brain parenchyma rather than
the underlying diseases of the vessels (5). Therefore, the term
cerebral small vessel disease is generally viewed as the state of
brain parenchyma injury (often progressive) that is associated
with distal leptomeningeal and intracerebral vessel pathology

that resides in poorly collateralized subcortical gray and deep
white matter. Moreover, it is mainly due to several focal or
diffuse microvasculopathological processes that affect and
cause occlusion to the small perforating cerebral capillaries (of
sizes 50–400mm), small arteries (mostly branches of MCAs),
arterioles (diameter <0.1mm), and venules that penetrate and
supply the brain cortical and subcortical region (55, 56).

There are several etiopathogenic classifications of CSVD.
However, the most well-recognized forms of CSVD are
the amyloidal CSVD [e.g., sporadic and hereditary cerebral
amyloid angiopathy (CAA)] and non-amyloidal CSVD
including age-related and vascular risk-factor–related SVD
(i.e., arteriolosclerosis and age) (56). Other less common forms
of CSVD include inherited or genetic (monogenic) CSVD that is
recognizably different from CAA [i.e., Fabry disease and cerebral
autosomal dominant arteriopathy with subcortical ischemic
strokes and leukoencephalopathy (CADASIL)], inflammatory
and immunologically mediated CSVD, venous collagenosis,
and other CSVD (i.e., non-amyloid microvessel degeneration
in AD and postradiation angiopathy) (57). Clinical diagnosis
of CSVD typically takes the form of acute lacunar infarct
and, less commonly, as intraparenchymal hemorrhage, with
neuroimaging findings such as white matter hyperintensities
(WMHs) of presumed vascular origin, cerebral microbleeds
(CMBs), cortical microinfarcts, lacunar infarcts, and recent
subcortical brain infarcts (RSBIs) and enlarged perivascular
spaces (PVS), or pathological phenomena with multifaceted
etiologies (55, 58, 59). However, the lack of standardization
and consistency in neuroimaging techniques leads to the
development of STandards for Reporting Vascular changes
on nEuroimaging (STRIVE), aiding in the imaging-based
visual identification and classification of CSVD spectrum (60)
(see Figure 2 for neuroimaging correlates of different CSVD
manifestation based on STRIVE method).

Risk Factors of CSVD Manifestation and
Their Clinical Relevance
There are several and complex known risk factors toward
development and progression of CSVD manifestation. For
example, increased imaging loads of WMHs, lacunar infarcts,
and RSBI were associated with lifetime exposure toward
cardiocerebro(micro)vascular risks such as metabolic syndrome
(i.e., hypertension, obesity, hyperlipidemia, dyslipidemia),
lifestyle (i.e., smoking, alcohol abuse), and T2DM that posed a
higher odd for acute ischemic (lacunar) strokes (62). However,
age has served as one of the most significant determinants of the
onset, proportion, and progression of all CSVD manifestations
[for instance, being prevalent with healthy aging (∼6%) in
the case of CMBs] (63). Higher risk of CMBs has been found
in individuals with symptomatic cerebrovascular disease such
as ischemic stroke and intraparenchymal hemorrhage (63).
Meanwhile, genetic factors such as NOTCH3 gene (chromosome
19) mutation as seen in CADASIL; mitochondria DNA mutation
as seen in mitochondrial encephalomyopathy, lactic acidosis,
and stroke-like syndrome (MELAS); Fabry disease; and familial
CAA increase the burden and prevalence of CSVD (64, 65).
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FIGURE 2 | Neuroimaging correlates of CSVD based on STRIVE method. (A) Recent small subcortical infarct (RSBI) on diffusion-weighted imaging (DWI) (red arrow).

Usual diameter is around 3–15mm, with hyperintense rim surrounding ovoid cavity. RSBI seen as increased T2-weighted, fluid-attenuated inverse recovery (FLAIR),

and DWI signal intensities decreased T1-weighted signal and isointense in T2*-weighted gradient recoiled echo (GRE) signal and susceptibility-weighted imaging

(SWI). RSBI is best identified through DWI with usual infarct diameter of ≤20mm. (B) Lacunar infracts on FLAIR (red arrow). Lacunar infarcts appeared as increased

hyperintensity in T2-weighted signal, decrease T1-weighted, and FLAIR signal and isointense in DWI. Usual diameter is around 3–15mm, with hyperintense rim

surrounding ovoid cavity. (C) White matter hyperintensities (WMHs) of presumed vascular origin on FLAIR (arrow). WMHS seen as increase intensity or hyperintensity

on T2-weighted imaging, T2*-weighted GRE and FLAIR (best identified), isointense on DWI, and hypointense (decrease intensity) on T1-weighted imaging. (D)

Enlarged perivascular spaces (PVS) on T1-weighted imaging (red arrow) with usual diameter of ≤2mm. PVS is seen as decrease FLAIR and T1-weighted signal

intensity, with increase T2-weighted signal. Meanwhile T2*-weighted GRE and DWI appeared isointense, and they also appeared in similar signal intensity with

cerebrospinal fluid (CSF). (E) Cerebral microbleeds (CMBs) on T2*-GRE (red arrow). CMBs are small, rounded areas of signal void with blooming, whereby they were

visualized as isointense T1- and T2-weighted signal, FLAIR, and DWI. They are best identified under T2*-weighted GRE or SWI as reduced signal intensities. Usual

diameter is around ≤10mm (mostly 2–5mm). (F) 3-T MRI representation of cortical microinfarcts (red arrow) on T1-weighted (hypointense) [images A–E, reproduced

with permission from Mustapha et al. (57), image F is adapted from Takasugi et al. (61)].

Hence, optimizing (micro)vascular risk factors for secondary
stroke prevention is undoubtedly warranted.

In addition, most of CSVD manifestation has been
demonstrated to increase the risk of vascular cognitive
impairment and dementia. For example, previous report
had shown that elderly person with hypertension who presented
with confluent periventricular and hypoperfusion-based deep
WMHs, respectively, had impaired executive function, short-
term memory loss, and reduced processing speed, although
other neurological and medical tests are normal (66). Moreover,
elevatedWMHs and CMBs were associated with gait disturbance,
i.e., reduction in gait velocity, and stride strength (67, 68), higher
urinary syndrome, or disturbance including urinary urgency,
nocturia, and incontinence (67, 69). A significantly increased risk
toward all subtypes of ischemic stroke (70) and neuropsychiatric
syndromes (e.g., depression, anxiety, parkinsonism, mood

disturbances, reduced processing speed, and sleep disturbance)
also had been linked with the presence of WMHs, CMBs, and
enlarged PVS (6, 66, 71, 72). Lacunar stroke had been reported
as the outcome of small vessel occlusion-mediated lacunar
infarcts (73). Moreover, many individuals with CSVD have
been reported to have the occurrence of silent brain infarcts, a
consequence of a lacunar stroke in a non-vulnerable brain region
with unapparent clinical symptoms. Moreover, acute RSBI may
cause secondary effects such as remote cortical thinning due
to progressive degeneration of connecting white matter tracts
(73). Alarmingly, CSVD manifestation can often be occult in
nature and produce no clinical symptom (asymptomatic), hence
referred to as “silent” brain infarcts.

Taken together, several cardiocerebrovascular risk factors
such as T2DM, metabolic syndrome (i.e., hypertension, obesity),
aging, and lifestyle (i.e., smoking and unhealthy diet) have
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been correlated with and increased the risk toward onset and
progression of CSVD. Hence, tackling these risk factors may
be beneficial in the therapeutic and preventive measures to
regulate the onset and progression of CSVD, ideally from early
or young age.

CSVD as a Spectrum of Dynamic
Microvascular Pathomechanism
Relatively small vessels/microvessels served an essential role
as part of the neurovascular unit or the blood–brain barrier
(BBB) in the central nervous system (CNS). To date, various
and intensive investigations have been carried out to study the
mechanism of interaction between cerebral parenchyma and its
surrounding microvasculature (74). However, it is well-accepted
that neurovascular unit or BBB owns the prior role in brain
health and plasticity (capacity to recover) from insults that
may initiate the pathologic cascade toward NDD. Two classical
clinicopathologic representations of CSVD have been suggested:
arteriolosclerosis or lipohyalinosis (thickening and/or damage
the wall of arterioles), and occlusion of cerebral penetrating
arteries (75). However, it is now recognized that most of the
macrostructural manifestations in CSVD are reflections of the
probable underlying of mesostructural responses such as cerebral
microcirculation flow obstruction (intrinsic or extrinsic). For
instance, the arteriolar occlusion or narrowing resulted in
ischemia as seen in small lacunar infarct in the classical CSVD
clinical spectrum.

Various physiopathologic changes (i.e., the mesostructural
responses) of CSVD not only give rise to cerebral parenchyma
damage (i.e., axonal injury, neuronal apoptosis, demyelination,
and oligodendrocyte damage), but also to neurological
symptoms, clinical signs, and multifaceted neuroimaging
findings (76). Nonetheless, the underlying pathomechanism of
CSVD remains contentious despite the growing insights from
histopathological, epidemiological, physiological, and imaging
studies. Insights on the current pathomechanism CSVD can
be viewed from molecular and cellular consequences of several
systemic dysregulations, which include coagulopathy, elevated
microthrombosis, genetic mutation, increased cellular activation,
inflammation, and oxidative stress, all of which contribute
toward the corresponding cerebral microstructural changes such
as endothelial dysfunction, altered cBF, and breakdown of BBB.
Figure 3 summarizes the current pathomechanism of CSVD
through coagulation, cell activation, endothelial dysfunction,
and inflammation. Figure 3 also emphasizes on the proposed
overlapping and multifaceted risk factors that may contribute to
the detrimental macrostructural CSVD manifestations, with a
specific highlight on the dietary patterns and MP formation as
further elaborated in this review.

Coagulation and Microthrombogenesis
In general, the coagulation process or pathway serves to maintain
hemostasis or to control bleeding, promote healing, and prevent
spontaneous bleed (77). The coagulation pathway is controlled by
certain naturally occurring inhibitory elements or anticoagulants
such as protein S, protein C, antithrombin, and tissue factor
pathway inhibitor (TFPI) that control and limit the formation

of clot to prevent propagation of thrombus/microthrombus or
further thrombosis/microthrombosis (77). Altered procoagulant
properties of such coagulation factors would stir imbalance in
the pathway, either with increased or decreased activities of
a given factor (78). Generally, the thrombogenic elements of
coagulation factors are produced from two sites: the vessel wall
[i.e., tissue factor (TF), exposed endothelium, and collagen] and
the circulating elements [i.e., platelets, platelet activating factor,
prothrombin (factor II), fibrinogen (factor I), von Willebrand
factor (vWF), and numerous clotting factors]. Certain events
such as physiological disturbance, blood abnormalities, infection,
elevated proinflammatory cytokines activities, and disturbance
in the primary hemostasis (i.e., platelet plug formation at the
insulted site of exposed ECs of the vessel wall) would result
in the imbalance of the coagulation system, hence termed as
coagulopathy (79, 80).

In microcirculation, whereby the arteriosclerosis and/or
arteriolosclerosis is the major culprit in CSVD, the platelets may
circulate in resting state. However, upon stimulation (i.e., by
ruptured arteriosclerotic plaque or embolism from larger vessel)
or activation (even at early stage of disease process), platelets
can aggregate by intraplaque components such as TF, collagen,
and vWF, or by soluble platelet agonists or vasoactive substances
[i.e., thrombin, adenosine diphosphate (ADP), serotonin, or
thromboxane A2 or B2] that promote microthrombogenesis
(81). Moreover, platelet activation and aggregation lead to
further release of thrombin, hence elevating the activation of
coagulation cascade and subsequent synthesis of stable cross-
linked fibrin clot or mesh. The formation of fibrin has been
shown to increase the coagulation activity whereby the elevated
level of alternative marker for thrombin generation such as
fibrinopeptide-A has been associated with cerebral infarction
(82). Systemic microcirculation coagulation cascade can be
activated at early disease process, and platelet activation is the
main player in microthrombi formation and its plausible effect
on pathogenesis of CSVD.

Small transmembrane glycoprotein or TF facilitates the
microthrombosis in microcirculation. In coagulation systems,
the extrinsic pathway or the TF pathway is activated once
ECs released the TF following damage to the vessel. The
TF hence activates thrombogenic element factor VII into
factor VIIa that will activate factor X into Xa, resulting in
fibrin synthesis. TFPI can interfere and inhibit this pathway.
Moreover, TFs are secluded in arteriosclerotic particulates, hence
allowing the exposure of TF in microcirculation, leading to
formation of microthrombus. Alongside TF, the exposed collagen
also facilitates the microthrombosis through glycoprotein (GP-
Ia/IIa)–mediated platelets–ECs adhesion, hence activating factor
X into Xa leading to microthrombosis and fibrinogenesis
(83). Thereby, the balance between prothrombotic factors and
endogenous fibrinolysis determines whether the microthrombus
progresses into larger thrombus, propagates, or dissolutes (84).
Another important component that activates and enhances
the contact and prothrombotic pathway, respectively, is the
cell-free DNA and histone neutrophil extracellular traps with
exposed TFs that present and propagate as part of the
intravascular thrombi, hence triggering the generation of
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FIGURE 3 | Summary of the proposed overlapping pathomechanisms of cerebral small vessel disease (CSVD) through coagulation, cell activation, endothelial

dysfunction, and inflammation. cBF, cerebral blood flow; CMBs, cerebral microbleeds; ECs, endothelial cells; eNOS, uncoupled endothelial nitric oxide; iNOS, inducible

nitric oxide synthase; MPs, microparticles; NETs, neutrophil extracellular traps; NF-κβ, nuclear factor κβ; NO, nitric oxide; Nox, nitric oxide synthase oxidase; ROS,

reactive oxygen species; RNS, reactive nitrogen species; RSBI, recent subcortical brain infarcts; PVS, periventricular spaces; WMHs, white matter hyperintensities.
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thrombin (85, 86). Collectively, platelets and/or neutrophils
activation and aggregation could give rise to generation of intra-
arterial thrombus or microthrombus and form the basis for
arteriomicrothrombotic disease such as CSVD.

In the case of CSVD, activated platelets and microthrombi
formation initiate the narrowing of the arterial wall, as well
as upregulating the proliferative arterial wall changes (87).
Meanwhile platelet aggregation possibly releases the vasoactive
substance, resulting in SMC constrictions, hence narrowing
the arterial wall (88). Moreover, microthrombi consist of
white thrombi of aggregated fibrin, and platelets have been
observed to strengthen its association with intraparenchymal
small vessel microclot or microthrombosis seen in cerebral
ischemia or infarcts (89, 90). Microthrombosis-mediated cerebral
microcirculatory dysfunction has been suggested as an outcome
of intraparenchymal small vessel dilation to compensate the
reduction in perfusion from peripheral pressure of larger arteries.
This happened as small vessels trying to optimize the dilation
process to maintain the cBF following the arterial lumen
narrowing (82).

Moreover, increasing evidences have shown that reduced
ability of small vessel to self-regulate cBF (due to aging and
the presence of chronic hypertension) is subjected to various
systemic blood pressure levels and increased arterial stiffness that
would cause an increased speed and flow pulsatility in cerebral
arteries and arterioles (91). In addition, the regulation of cBF is
also mediated by nitric oxide (NO) signaling, whereby reduced
NO is a marker for endothelial dysfunction and altered cBF (92).
Thus, these hemodynamic changes may lead to microstructural
and mesostructural changes and response, respectively, such as
endothelial damage in the BBB and alter its permeability through
an increase of the shear stress (93), which will be discussed in
the foregoing section. Hence, the BBB breakdown is thought
to be another pathogenesis feature of CSVD (93, 94), as hinted
in Figure 3.

Circulating Cell Activation and Endothelial

Dysfunction
As discussed, the cardiocerebrovascular and cardiometabolic
risk factors such as T2DM and metabolic syndrome {i.e.,
dietary patterns, hypertension, abdominal obesity, dyslipidemia
[elevated low-density lipoprotein (LDL) and triglycerides and
reduced high-density lipoprotein]} had major global impact on
development of arteriosclerosis and/or arteriolosclerosis disease,
resulting in coronary heart disease and cerebral ischemia (95).
Thereby, cellular activation and endothelial dysfunction have
been described as the major implication of these risk factors.

It is known for larger vessel circulation that LDL can dissociate
into smaller particulates or particles, hence embolizing to smaller
vessel microcirculation, which is termed LDL modification (81).
Therefore, the infiltration of these smaller particles causes
the endothelial dysfunction in large or small vessel. This
endothelial dysfunction is followed by EC activations that
elevate the subsequent release of proinflammatory cytokines
to potentiate host of leukocytes recruitment (i.e., monocyte, T
lymphocytes, and macrophages) on the endothelium that further
promotes the formation and stability of microthrombus (96).

Moreover, monocyte can differentiate into macrophages, which
aided in the mechanism of lipid uptake from the circulation.
As the endothelial dysfunction ensued, the proinflammatory
cytokines may further activate the ECs, hence increasing the
expression of adhesionmolecules such as VCAM-1, ICAM-1, and
even EC-derived MPs (EDMPs) subpopulation such as cluster
differentiation 62 (CD62E) or E-selectin. The adhesion process
eventually acts on and weakens the ECs and its barriers that line
themicrovessels lumen. These activated cells distort the functions
of EC barriers through the alteration of junctional protein of ECs
cytoskeleton or along the width of intercellular junction (81).

Apart from leukocytes, platelet activation also largely
contributes to the formation of microthrombus in
arteriosclerosis and/or arteriolosclerosis. In response to
inflammatory signal, damaged endothelium released the vWF,
hence increasing the capacity of platelet activation and binding
to vWF. Ensuing platelet activation is the releasing of platelet-
derived MPs (PDMPs) CD40, and CD62P (or P-selectin) that
bring surface adhesion molecules provoking the platelets and
activated platelets by-product aggregation with leukocytes,
hence adherence to endothelium promoting microthrombosis
and arteriosclerosis (97). Moreover, activated platelets also
elevate the synthesis of soluble vasospastic substance such as
thromboxane A2 or B2 and ADP; the synthesis is possible after
platelet binding with plasma fibrinogen. These substances elicit
the platelets and platelets–monocytes aggregations from inside
of arterioles vessel and have been used as markers for onset and
progression of arteriosclerosis and/or arteriolosclerosis (82, 98).
In addition, the ruptured arteriosclerotic plaques from larger
vessel also may embolize and contribute to the instability of the
aggregates and microthrombus and upregulate the small vessel
systemic inflammation mediated by leukocytes and platelets
(99). Aside from cellular activation, endothelial dysfunction
can be initiated through the disturbance in the function of
microvessel itself as a result of systemic or mechanical stress,
leading to microthrombosis. For example, increase in P-selectin
and NO in arteriolar endothelium has been associated with
microthrombosis (100). Preclinical study had shown that the
constriction of arteriolar lumen is due to microthrombosis
whereby the intensity of the microthrombosis determined the
level of constriction (100). Moreover, the damage in the function
of arterioles can lead to local microthrombus formation.

Therefore, circulating cell activation and endothelial
dysfunction have long been thought to be the main factors
that contribute to the pathogenesis of CSVD. Several studies
have shown elevated biomarkers of endothelial dysfunction
related to CSVD such as reduced production of NO, resulting in
arteriolar constriction (101, 102). Other knownmanifestations of
endothelial dysfunction are hypoperfusion or reduced cBF (103)
and increase BBB breakdown or permeability (104) (Figure 3).

Oxidative Stress and Inflammation
The risk factors and causes of oxidative stress and arteriosclerosis
and/or arteriolosclerosis in the pathomechanism of CSVD
are topics with active investigations. In addition, certain
health conditions, diet, and lifestyles may contribute to
the development and progression of arteriosclerotic and/or
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arteriolosclerotic CSVD such as dyslipidemia, T2DM, aging,
and unhealthy lifestyle (i.e., unhealthy diet, smoking, and
sedentary living). Moreover, several studies had shown the
association of detrimental effects of oxidative stress [i.e., through
nicotinamide adenine dinucleotide phosphate (NADPH) on the
endothelium-dependent NO signaling] toward pathogenesis of
CSVD (105, 106).

As discussed, the inflammation and oxidative stress may result
from increased inflammatory response from the endothelium
(i.e., endothelial dysfunction) and cellular activation. Hence,
oxidative stress has been associated with the pathogenesis
of CSVD as in arteriosclerosis (107). Microthrombus and/or
LDL particle aggregates on the small vessel endothelium
are susceptible to oxidative and enzymatic modifications
by reactive oxygen species (ROS) [i.e., superoxide (O2·

−),
hydrogen peroxide (H2O2), and hydroxyl radical (·OH)] and
proinflammatory cells (95). ROS also induced the imbalance
between antioxidants (i.e., EC-derived glutathione peroxidase,
catalase, and superoxide dismutase) and pro-oxidants in age-
related NDD, whereby the oxidative stress occurs due to
NADPH oxidases (Nox)-mediated pro-oxidants overproduction
and altered activity of antioxidants enzymes (108). Apart
from ROS, the reactive nitrogen species (RNS) also contribute
to cerebral vascular oxidative stress, as both ROS and
RNS are mainly synthesized by mitochondria activity and
certain pathways including NO synthase (NOS) and oxidase
enzyme [i.e., NOS oxidase (Nox), uncoupled endothelial NOS
(eNOS), cyclooxygenase (COX), lipoxygenase, xanthine oxidase,
myeloperoxidase]. However, eNOS is essential in production
of endothelium NO, hence also contributing to beneficial or
protective role in the regulation of vascular tone, unlike eNOS
dysfunction that results in the release of superoxide from
ECs (107).

Furthermore, ROS elevate the inflammatory response that
influences the progression of clots or thrombus, increase
proinflammatory cytokines [i.e., interleukins (IL-6 and IL-8),
tumor necrosis factor α (TNF-α), and monocyte chemoattractant
protein 1 (MCP-1)] and endothelial function, and increase
expression of vascular adhesion molecules (i.e., ICAM-1 and
VCAM-1) (109). Subsequently, elevated level of RNS and ROS
has been associated with oxidative stress–mediated cell migration
and proliferation, DNA damage, necrosis and apoptosis, cellular
autophagy, endothelial dysfunction, elevated level of oxidized
LDL, and endoplasmic reticulum stress (110). Following
overproduction of proinflammatory cytokines and inducible
NOS (iNOS) is the activation of transcription factors [i.e.,
nuclear factor κβ (NF-κβ) and/or nuclear factor (erythroid-
derived 2)-like 2 (Nrf2)] and signal transduction cascades
(111) that further stimulate the release of cytokines and
chemokines, hence increasing inflammation (112). However,
NO is able to inhibit the expression of NF-κβ and adhesion
molecules; hence, NO serves as crucial anti-inflammatory,
antithrombotic, antihypertensive, and antiplatelet aggregation
and important for vascular vasolidation (95). Apart from that,
NO serves as a modulatory agent for the function of EC
barriers whereby, NO modulates the activity of Rho-kinase
in cerebral microvasculature and is associated with increase

inhibition of NOS (113). Under pathological condition, reduced
NO initiates the vicious cycle of reduced NOS to increase the
Rho-kinase activation and vice versa (114). Hence, maintaining
the adequate level of NO is crucial to reduce NO by eNOS to
prevent endothelial dysfunction (i.e., elevate the EC monolayers
permeability as a response following disruptions of adherent
junction and stress fiber formation), whereas overproduction of
NO by iNOS leads to an increased expression of proinflammatory
factors (115).

Additionally, ROSmay act on the ECs inducing the disruption
of interendothelial junction, gap formation, actomyosin
contraction, and altered phosphorylation or expression of
junctional adhesion molecules (115, 116). Furthermore, released
cytokines induce inflammation of ECs through extracellular
matrix degradation followed by BBB breakdown (104). In
addition to the endothelium, there exists cross-talk among
cellular components of the BBB, such as pericytes, astrocytes,
and oligodendrocyte precursor cells (OPCs) that are implicated
in the microvascular damage as precursors for the onset and
progression of CSVD (117, 118). In relation to this, reduced
white matter integrity due to changes in oligodendrocytes has
been shown in CSVD, whereby the ECs–OPCs signaling became
compromised and altered the ECs’ ability to secrete the releasing
factor crucial for the growth and survival of OPCs that eventually
caused oligodendrocytes prone to damage (119). An increased
BBB damage and permeability further induced the degradation
of basement membrane of ECs and accumulation of extracellular
matrix components leading to stiffening of vessel wall (120).
Moreover, BBB breakdown will intensify with the accompanying
increased in the deposition of blood component such as platelets,
MPs, and fibrin. Several studies showed that changes in walls
of small vessels in the brain due to BBB breakdown lead to
ischemic events, classified as WMH, lacunar infarcts, and CMB
manifestation of CSVD (7, 93, 94) (Figure 3).

Therefore, the interactions of multiple BBB components are
likely to play a crucial role in the discovery and development of
new prevention steps and therapies for CSVD. Thus, endothelial
dysfunction, BBB breakdown, altered cBF, and impaired cerebral
autoregulation due to disturb coagulation system, cellular
activation, oxidative stress, inflammation, and microthrombosis
are thought to be the major players to the development and
progression of CSVD, although another or other potential
player(s) is still being sought. One such player is cellular-derived
circulating MPs.

MICROPARTICLES—FROM PERIPHERAL
TO CENTRAL

There has been growing recent interest in the identification and
quantification of cellular debris such as MPs as biomarkers for
their potential to inform the natural history of development and
progression of several diseases including cardiocerebrovascular
disease, GIT disease, cancer, metabolic disease, and sepsis. Flow
cytometry (FC) is the most widely method to measure MPs and
has major advantages over the other techniques in that each
MP (and its subpopulations) is quantified individually based on
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their antigen expressions (121). However, to date, there remains
lack of consensus on such standardization between centers, in
measuringMPs using FC due to complex andmultifaceted nature
of MPs. The development of standardized MPs technologies
would permit a direct comparison of results between studies
and would lead to a greater understanding of MPs in health
and diseases.

Besides FC, other MPs assays include single-particle assays
and bulk assays (Table 1). Single-particle assays include atomic
force microscopy (122) and high sensitivity microscopy (123).
These two procedures can be used for an accurate determination
of MP size and shape but cannot be used for routine
analysis of clinical samples as it can be rather costly to
run and maintain (122). In contrast, bulk assays include
immunoassays, functional assays, and hybrid assays that detect
antigens expressed onMPs (124), PS/TF dependent procoagulant
activity (125), and prothrombinase activity (126), respectively.
However, bulk assays do not provide size information or single-
particle counts (121). Other available MP analysis techniques,
although much less popular, include dynamic light scattering
(127), high-performance liquid chromatography (128), capillary
electrophoresis (129), and mass spectrometry (130). Overall, FC
has major advantages over the other techniques in that each MP
is interrogated individually and allows for the identifications and
quantification ofMP subpopulation based on antigen expressions
(as summarized in Table 1).

MPs—Definition, Formation, and
Compositions
MPs represent one of the types and classifications of
microvesicles—with an anucleated phospholipid bilayer.
Apart from MPs, other classes of microvesicles include exosome
and ectosome, which can be distinguished based on their size,
composition, and origin. For instance, exosome is considered
as the smallest microvesicles with the size ranging from 30 to
100 nm, whereas apoptotic bodies or large membrane blebs
range from more than ≤5µm in diameter (131, 132). However,
this review focuses on MPs or ectosomes that are anucleate,
small, and membrane-enclosed extracellular particles (133–136).
Ranging from 0.1 to 1µm in diameter, MPs are derived from
direct deformation of cell plasma membrane and cell membrane
phospholipid exocytic blebs that are released from the cell
surface by proteolytic breakdown of the cytoskeleton, triggered
by various mechanisms such as cellular activation, oxidative
stress, inflammation, injury, or apoptosis. In this context, factors
such as different agonists, thrombin, serine proteases, collagen,
proinflammatory cytokines, and physiological shear stress, which
are known to contribute to cellular activation, would further
promote the secretion and aggregation of MPs (135, 137–139). In
contrast, during apoptosis, the apoptosis-induced MP release is
stimulated by the caspase-mediated Rho effector protein and the
Rho-associated coiled-coil containing protein kinase 1 (ROCK
1), as well as by thrombin and TNF-α (140). Figure 4 illustrates
the general mechanism of MP formation and its mode of action,
while it also introduces the proposed possible impacts of diets
on MPs that could be linked with CSVD (as previously hinted in

Figure 3). A converging proposed plausible link between diets,
circulating MPs and CSVDmanifestation is further delineated in
Diets and Circulating MPs—Proposing the Link With CSVD.

MPs are heterogeneous and can be produced from multiple
sources (or parental cells) within blood circulation, i.e., from
platelets, erythrocytes (or RBCs), leukocytes (white blood cells),
monocytes, ECs, and SMCs (141). Also, MPs can be present in
various body fluids such as saliva, urine, bile, cerebrospinal fluid,
and synovial fluid (142). MPs are identified by the presence of
cell surface marker phosphatidylserine positive (PS+), although
PS negative (PS−) is recently recognized (143). Moreover, in
the blood circulation of healthy individuals, MPs are present in
low level, with 70–90% of MPs represented by PDMPs (144).
MPs are composed mainly of cytosol and enclosed by globose
phospholipids bilayer, whereby their cytosol may include RNAs
[i.e., non-coding small interfering ribonucleic acid, messenger
RNA (mRNA), and micro-RNA (miRNAs)] (145, 146), enzymes,
and cytoskeletal proteins of their parental cells, but are anucleate
and lack synthetic capacity. However, to date, there is no evidence
of DNA presence in MPs luminal space, although a trace of DNA
had been found in exosomes and apoptotic bodies (147).

Given that MPs carry their own parental membrane proteins
or markers, these are used to identify their cell of origin or
subpopulations. For examples, cluster differentiation 41 (CD41)
is to identify PDMPs, CD235/CD235a for RBCsderived MPs
(RDMPs), CD31/CD146 for EDMPs, and CD45 for leukocyte-
derived MPs (LDMPs) (148). Interestingly, PDMPs bring more
than 40 membrane integral protein or glycoprotein characteristic
of platelets, such as integrin β1 (CD29), αIIbβ3 (CD41), and P-
selectin (CD62P). PDMPs and EDMPs also bring proinvasive
or proinflammatory matrix metalloproteinase proteins (MMPs-
2/9). Most of these proteins serve as adhesion molecules
that stimulate the EVs internalization by these cells (144).
Meanwhile, RDMPs are the smallest (∼0.15µm) compared to
other cell-derived MPs, whereby their surface consists of residual
hemoglobin (20% from parent RBCs) (149, 150) (see Table 2

for details).
In addition, previous studies reported that MPs consisted

of identical lipid composition as plasma membrane. However,
MPs may have augmented cholesterol or specific enrichment,
sphingomyelin, or ceramide, which implies that MPs can be
produced or shed from certain region of cellular plasma
membrane, cell of origin, and/or pathophysiological properties
(149). As aforementioned, majority (if not all) of MPs expose
PS+ at their outer membrane surface; hence, PS has been used
as standard marker of MPs identification (149).

Notable Roles of MPs in Health
Recent evidence has shown that MPs extend some protective
effects in health as part of maintaining the hemostasis. Hence,
several subpopulations of MPs could also potentially play a role
in mitigating the inflammatory effects. For example, EDMPs
contain anticoagulant properties at their surface, which is
important to bring balance in hemostasis by counterbalance the
thrombosis driven by procoagulant MPs (151). Besides, an in
vitro study has shown that EDMPs are crucial for maintaining
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TABLE 1 | Profiles of multiple techniques for detection and characterization of MPs.

Technique Quantification (bulk

quantification)

Enumeration

(single-particle counting)

Origin Specificity Sizing Cost/complexity

of instrumentation

Practicability

FC ++ +++ +++ ++ + – ++

Immunoassays +++ – + + – + +++

Functional assays +++ – + + – + +++

EM – + + +++ ++ – –

DLS ++ – – – ++ + +

RICM – + + + ++ – –

AFM – ++ + ++ +++ – –

Number of “+” represents the strength of the techniques, whereas “–” represents the weakness of the techniques. AFM, atomic force microscopy; DLS, dynamic light scattering; EM,

electron microscopy; FC, flow cytometry; RICM, reflection interference contrast microscopy.

the integrity of vascular wall through the activation of vascular
repair (134).

Moreover, in coagulation system (i.e., in common pathway),
the activated protein C is able to induce the synthesis
and release of EC–protein C receptor–derived MPs, whereby
these MPs bring functional and actively bound protein C
aiding in the inhibition of factor Va/VIIIa in the common
pathway of coagulation cascade (152). Apart from that,
certain subpopulations of MPs also possess anti-inflammatory
properties; for example, monocyte-derived MPs (MDMPs) are
known to influence the activity of macrophages and monocytes
by enhancing the expression of peroxisome proliferator-activated
receptor γ (PPAR-γ) protein (153). Furthermore, LDMPs also
have been shown to possess an anti-inflammatory property,
whereby they potentially aided in the downregulation of
proinflammatory mechanism in coagulation cascade at an early
stage of inflammation (154). Besides, LDMPs are also able
to inhibit macrophages activation through the activation of
anti-inflammatory macrophage response, i.e., the inhibition of
cytokines (such as IL-8), inhibition of TNF-α, and releasing
transforming growth factor β1 (154). Interestingly, low level
of EDMPs was also found to correlate with thrombin and
anticoagulant markers in healthy individuals, raising EDMPs’
role in the inhibition of thrombosis (155).

MP Roles in Coagulation and
Microthrombosis-Linking CSVD Correlates
Much of the MPs procoagulant and prothrombotic properties
are due to their ability to bind to sub-endothelial matrix (and its
components), adhesion with soluble and non-mobile fibrinogen,
and coaggregation with platelet aided by a complex and
dependent process involving GP-IIb/IIIa (156). As mentioned,
PS presence on MPs surface acts as coagulation factors for
assembly and binding agent or proteins in coagulation cascade
that may lead to a prothrombotic state (137). PS binds
to hematopoietic-derived clotting factors through electrostatic
interactions between phosphate groups in phospholipids and
Ca2+ in γ-carboxyglutamic (GLA) domain of clotting factors
(157). Factors VII, IX, X, and prothrombin are the clotting
factors that contain GLA domain. Therefore, the recruitment of
PS bearing MPs and clotting factors aided the aggregation of

platelet and synthesis of fibrin and hence for the formation of
microthrombus (158). Furthermore, in vitro study had shown
that combined PDMPs and EDMPs at low levels can also induce
the generation of microthrombus (159). Of note, compared to
activated platelets (parent cells), PDMP surfaces possessed up
to 100 times higher procoagulant properties and higher affinity
binding sites for activated coagulation cascade (160, 161). Hence,
PDMPs would serve as a precursor for microthrombus formation
by providing catalytic surface for the prothrombinase enzyme
complex (i.e., involving factors IXa, Va, VIII, and Xa) (158).

Moreover, MPs also bring surface TF, where, for example,
MDMPs have been reported to bring active TFs that potentially
elevated the extrinsic pathway involving factors VII, VIIa, IX,
and X in coagulation cascade (162, 163). In addition, LDMPs
expressed P-selectin glycoprotein ligand 1 and platelet P-selectin
on their surfaces that lead to the aggregation of TF-bearing
leukocytes at the site of vascular or microvascular injury (164).
In addition, the formation of EDMPs has also been associated
with elevated level of endothelial dysfunction marker such as
plasminogen activator inhibitor 1 (PAI-1) and elevated the
procoagulant activity and prothrombotic state. This is so because
EDMPs contain the expression of ULvWF multimer that enabled
EDMPs to induce strong platelet aggregations (165). Therefore,
it is plausible to deduce that TF-bearing MPs play an important
part in macrothrombus and microthrombus formation. In fact,
a study had shown that tumor cell–derived MPs bearing both
PS+ and TF can be utilized as a biomarker for risk of venous
thrombosis in cancer patients (139) (Figure 4).

Thus, in relation to CSVD clinical manifestations, numerous
reports linking MP subpopulations as CSVD correlates may
well reflect the fact that PS-bearing MPs and clotting factors
aided the aggregation of platelet and synthesis of fibrin, which
lead to the plausible microthrombus involvement in CSVD
pathomechanism (see Table 3 for MPs and CSVD correlates).

MPs and Inflammation
The release of MPs into the circulation that ensued tissue
or cell inflammation can further aggravate the inflammatory
activity (181). MPs can affect microcirculation by potentiating
the production and expression of proinflammatory cytokines,
chemokines, and ICAM-1 (182) (Figure 4). In vitro study had
shown that ECs and monocytes’ interaction with PDMPs able
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FIGURE 4 | The general mechanism of MP formation, its mode of action, and the proposed possible impacts of diets on MPs that could be linked with CSVD. (A)

Active translocase transporting phosphatidylserine (PS) from outside to inside layer through adenosine triphosphate (ATP)–dependent manner. (B) Modifiable

cardiocerebrovascular risk factors (with emphasis on dietary patterns in this review) are known to induce cellular activation or other cellular stressors (e.g., increased

cytokines and from peripheral and GIT dysbiosis). (C) The activation causes an increase in intracellular cytosolic calcium release by stressed rough endoplasmic

reticulum (RER) and acquired from extracellular space. Hence, activates enzymes calpain and gelsolin that cleave cell membrane cytoskeleton. (D) The cleaved

cytoskeleton causes inactivation of translocase and hence induces phospholipid “flip-flopping.” (E) Externalization of PS produces MPs that bring their parent surface

(Continued)
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FIGURE 4 | molecules and protein antigens. (F) MP productions can trigger series of microthrombotic cascades that could be linked to the mechanism postulates on

CVSD risk predisposition/prevention that could be modulated by dietary pattern. For example, leukocyte-derived MPs (LDMPs) expressed P-selectin glycoprotein

ligand-1 (PSGL-1) and platelet P-selectin on their surfaces and hence aided the aggregation of TF-bearing leukocytes at the site of vascular or microvascular injury.

Besides, LDMPs were also able to inhibit macrophages activation and releasing transforming growth factor β1 (TGF-β1). Monocyte-derived MPs (MDMPs) are known

to influence the activity of macrophages and monocytes by enhancing the expression of peroxisome proliferator-activated receptor γ (PPAR-γ) protein. However,

MDMPs also upregulated superoxide anion production on endothelial cells (ECs) and activation of nuclear factor κβ (NF-κβ) in monocytes that enhance

microthrombosis. Most of the MPs, especially platelet-derived MPs (PDMPs) serve as precursor for microthrombus formation by providing catalytic surface for the

prothrombinase enzyme complex (i.e., involving factors IXa/Va/VIII/Xa). PDMPs elicit the de novo expression and production of inflammatory molecule or agent such

as cyclooxygenase (COX-2) and prostacyclin (PG12) that enable the monocytes-MPs-ECs aggregations through intracellular adhesion molecules (ICAM-1) to further

elevate the basement membrane (BM) degradation and formation of microclot. Once PDMPs had a close contact with neutrophil, it can bind and increase neutrophil

aggregations and elevate neutrophil phagocytic activity. This is followed by an activation of ECs or GIT dysbiosis, as they released endothelial-derived MPs (EDMPs)

and bacterial or microbiota-derived MPs that express proteases proteins such as MMP-9 and MMP-2 to enable the invasion toward vasculature through disruption of

BM. Disrupted BM enables cellular or molecules transmigration or infiltration; for example, MPs bridging through BBB, may undergo reuptake by microglia from

cerebral parenchyma. Alongside proinvasive MMP-9, EDMPs bring ultralarge von Willebrand factor (ULvWF) monomers that upregulate the platelet aggregations to

ECs and hence activate the ECs and endothelium dysfunction. Moreover, activated protein C induced the synthesis and release of ECs–protein C receptor

(EPCR)–derived MPs that bring functional and actively bound protein C to aid the inhibition of factor Va and factor VIIIa in the common pathway of coagulation

cascade leading to thrombogenesis.

TABLE 2 | Microparticles (MPs) subpopulation and their surface markers.

Parental cells MPs Surface markers/cluster differentiation (CD)

Platelets Platelet-derived microparticles (PDMPs) • CD62P or P-selectins (maker for platelet activation)

• CD154 04 CD40L (maker for platelet activation)

• CD42b (glycoprotein Ib)

• CD42a (glycoprotein IX)

• CD41/CD41a and CD63

• CD29 (integrin β1)

Endothelial cells (ECs) Endothelial-derived microparticles (EDMPs) • CD31/CD146/CD144/CD105 (maker for apoptotic-derived EDMPs)

• CD54/CD106 (markers for EC activation)

• CD62E or E-selectins and CD106 (marker for cellular inflammation)

• EDMPs markers also expressed on other cell types, such as CD146

(expressed on pericytes and tumor cells), CD54 (expressed on leukocytes),

CD105 (expressed on activated monocytes), and CD31 (expressed on

activated platelets)

Leukocytes Leukocytes-derived microparticles (LDMPs) • CD45 (mostly all LDMPs)

• CD14 (monocytes derived, MDMPs)

• CD4 (lymphocytes)

• CD15 (granulocytes)

Erythrocytes [red blood cell (RBC)] Red blood cell–derived microparticles (RDMPs) • CD47

• CD235/CD235a

CD, cluster differentiation; ECs, endothelial cells; MPs, microparticles.

to elicit the de novo expression and production of inflammatory
molecule or agent such as COX-2 and prostacyclin (PG12),
respectively (183). Another in vitro study had shown that EDMPs
upregulated E-selectin, ICAM-1, and VCAM-1 and induced the
expression and release of proinflammatory cytokines (i.e., IL-6
and IL-8) (184).

Furthermore, within the CNS, microglia are the innate
immune cells with diverse roles and functions at their quiescent
surveillance, as well as activated states (185–187). However,
the traditional classification of M1-proinflammatory/M2–anti-
inflammatory microglial phenotypes has been challenged with
the emerging evidence, indicating a wide spectrum of microglial
activation (188, 189). Microglial function and dysfunction have
been indicated in aging and NDD such as AD (188, 190), PD
(191), and stroke (192). Three types of microglia and CNS
macrophages located around cerebral small vessels have been

identified: (i) parenchymal microglia (distal to small vessels);
(ii) vessel-associated microglia, which are parenchymal microglia
proximal to cerebral vessels; and (iii) perivascular macrophages,
which are located in perivascular spaces (193). Microglial
activation was found to be associated with BBB leakages and
cognitive impairment in angiotensin II–induced hypertensive
mouse model (194), and subsequent study showed that
inhibition of microglial activation reversed short-term memory
impairment in mice (195). Distinct populations of extracellular
vesicles have been identified in activated BV2 microglial cells
in response to lipopolysaccharide challenge (196). Activated
microglia release MPs carrying IL-1β, and these microglia-
derived MPs enhanced inflammatory response by transferring
inflammatory stimuli to other microglia (197–199). A study
by Schindler et al. (200) using cultured human mononuclear
phagocytes demonstrated that microglia-derived MPs induced

Frontiers in Cardiovascular Medicine | www.frontiersin.org 14 February 2021 | Volume 8 | Article 632131

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Nassir et al. CSVD, Microparticles and Diet

TABLE 3 | Microparticles (MPs) subpopulation, their surface markers and CSVD correlates.

Microparticles (MPs) Changes in MP level CSVD correlates

Platelet-derived

microparticles (PDMPs)

• Increase CD42+, CD61+, CD62P+, and

CD42a

• 110 patients (mean age, 71.1 ± 7.9 years) with acute-phase cerebral infarction, 34 with

small vessel occlusion (166)

Increase CD41+ and CD41+/A+ • Cerebral infarction attributable to vasospasm in 20 elderly subjects (mean age, 52.2

years), suggesting the consequences of microthrombosis (167)

• 40 middle-age subjects (mean age, 44.4 ± 12.2 years) with metabolic syndromes (168)

• Increase level of CD40L and soluble P-selectin • Silent brain infarct in subcortical white matter in 15 male healthy obese subjects and 50

male obstructive sleep apnea subjects (more prevalent) (169)

• Increase CD41+ • Middle cerebral artery occlusion in a rat model with cerebral infarction (170)

• Increase total PDMPs • In individuals with micro-embolic cerebral ischemia and associated with recent

cerebrovascular events as seen in DWI (171)

Leukocytes-derived

microparticles (LDMPs)

• Increase CD14 • Related to higher WMHs and the progression of brain atrophy in individuals (n = 534, 4

years’ follow-up) with vascular disease manifestation (172)

• Increase CD45+ and CD45+/A+ • An increased risk of arteriothrombotic stroke with individuals with obstructive sleep apnea

(173, 174)

• Cerebral infarction attributable to vasospasm in 20 elderly subjects (mean age, 52.2

years), suggesting the consequences of microthrombosis (167).

• Increase CD4+/TF+ • In individuals with cardiometabolic risk factors such as T2DM and dyslipidemia (175)

• Increase CD45+, CD14+, CD4+ and CD15+ • 76 elderly individuals with ischemic cerebrovascular diseases (176)

Endothelial-derived

microparticles (EDMPs)

• Increase CD105+/PS+, CD54+, and CD144+ • 41 elderly individuals with mild, moderate to severe ischemic stroke (177)

• Increase level of CD144+, CD31+ and CD62E • 129 elderly individuals [68 with acute ischemic stroke (mean age, 63.59 ± 13.33)] (178)

• Elevated CD31+/A+ and lower CD62E+ • 101 middle-age individuals with metabolic syndrome (with and without chronic heart

failure), suggesting the relevance to neurohumoral and inflammatory activation (133)

• Increase EDMP bearing VCAM-1 and soluble

P-selectin

• 18 individuals with subcortical and periventricular subcortical lesion (179)

Red Blood Cells-derived

microparticles (RDMPs)

• Increase CD235+ and CD235+/A+ • Cerebral infarction attributable to vasospasm in 20 elderly subjects (mean age, 52.2

years), suggesting the consequences of microthrombosis (167)

• Increase CD47*

* Least data on its association with CSVD,

compared to other MP subpopulations above

• Induced cerebral neuronal cell death in vitro (180)

CD, cluster differentiation; CSVD, cerebral small vessel disease; DWI, diffusion-weighted imaging; ECs, endothelial cells; MPs, microparticles; T2DM, type 2 diabetes mellitus; WMHs,

white matter hyperintensities.

NF-κB activation, leading to the release of proinflammatory
cytokines (200). The role of microglia-derived MPs was
further substantiated in a study investigating neuroinflammation
following brain traumatic injury whereby the MPs (identified
through P2Y12/CD45+) derived from neuroinflammation that
developed in the brain were released into the circulation and
initiated neuroinflammation in naive control animals (201).
Collectively, these findings highlighted the role of MPs and
microglia-mediated neuroinflammation in the CNS.

MPs and Cell Signaling
Alongside with procoagulant and proinflammatory abilities of
MPs, they can also serve as mediators for cell-to-cell interactions
and signal delivery between cells. As MPs bring along specific
parental membrane receptors, cytosolic proteins, and RNAs, they
can stimulate certain target cells to transform and communicate
with microcirculation in a way programmed by these contents
of MPs (202). For example, PDMPs can stimulate B cells to
synthesize specific antibodies such as immunoglobulin G (IgG)

by delivering CD154 IgG (203). In addition, PDMPs assisted
in monocytes to EC interaction through ICAM-1 that could
elevate chemotaxis of monocytoid cells (204). Furthermore, a
previous study showed that once PDMPs had a close contact with
neutrophil, they can bind and increase neutrophil aggregations
and promote neutrophil phagocytic activity (205). Likewise,
MPs can be phagocytosed by certain cancer cells (i.e., in lung
cancer), hence stimulating the cell to further proliferate, inducing
the expression of mRNA for the proinvasive MMP-9, and
upregulating the adhesion to ECs, which activated the EC and
endothelium dysfunction (206). Following the activation of ECs,
they released EDMPs that express proteases proteins such as
MMP-9 and MMP-2, leading to vessel invasion through the
disruption of basement membrane (207) (Figure 4).

The Roles of MPs in GIT–Brain Axis
As discussed, although most of the organs are anatomically
distinct, they shared a common systemic circulation and blood

Frontiers in Cardiovascular Medicine | www.frontiersin.org 15 February 2021 | Volume 8 | Article 632131

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Nassir et al. CSVD, Microparticles and Diet

supply mainly from abdominal aorta, which relates to the brain–
heart–GIT axis. This is particularly the case given the emerging
debates on the contribution of MPs through GIT-microbiota–
derived MPs for GIT immune system and the connection with
the heart and the brain.

Certain insult in GIT microbiota (i.e., through substance
abuse or infection) has been associated with disturbed immune
response and eventually GIT dysbiosis that preceded with
metabolic and inflammatory disease (208, 209). Several studies
suggest the involvement of systemic GIT-microbiota–derived
MPs for these changes. For instance, Shen and colleagues
had shown the association of Bacteroides fragilis–derived
MPs with GIT disease (210), whereas Kang and colleagues
linked saccharibacteria or TM7 (i.e., Akkermansia muciniphila)
bacteria-derivedMPs with progression of colitis (211). Therefore,
it is plausible to deduce that microbiota-derived MPs may serve
as the link to connect between these major organs, i.e., the brain–
heart–GIT axis. Similarly, it is plausible that MPs derived from
peripheral circulation would assume similar systemic circulation
route to reach microcirculation network and hence contribute to
the pathogenesis of SVD and NDD including CSVD.

The association or crosstalk between the system in peripheral
organ, i.e., GIT microbiota and the brain, is of active
research interests (212). Several studies had also described
that circulating cells and/or microbiota-derived MPs generated
from the peripheral system that enter the systemic circulation
and assisted in crosstalk between the cerebral BBB and
inflammatory pathways as a trigger for CNS insults (201, 213–
215). However, despite the recognized role of peripheral MPs in
pathomechanism of CNS disease, the detailed mechanism ofMPs
breaching the BBB remains elusive, with some insights involving
proinvasive or proinflammatory MMP release, reorganization
of extracellular matrix, recruitment of inflammatory cells, and
regulation of epithelial barrier (216).

In addition, the interaction between the brain and the
periphery is a bidirectional communication. This is supported
by the evidence from the detection and enumeration of
brain-derived MPs in the blood that are likely to have
reached cerebral microcirculation and breached into cerebral
parenchyma following uptakes by microglial cells (217, 218).
For example, GIT or microbiota-derived MPs may bring
proinflammatory and degradative enzymes such as MMPs,
whereby this molecule enables MPs to be transmigrated into
epithelial layer, be circulated in systemic circulation, and reach
multiple organs including the brain. Moreover, the disrupted
BBB and GIT epithelial layer enhance the inflammatory cargo
deposition and cell signaling by MPs (Figure 4). This evidence
lends support on the role of MP-mediated transport or breach
through BBB as a putative insight on MP-mediated GIT-directed
NDD such as CVSD.

MPs and Related Clinical Syndrome
It is well-accepted that the elevated level of MPs in blood
circulation is reflective of their multifaceted roles; for example,
higher level of MPs was found in hypertensive patients (219),
abdominal obesity (220), myocardial infarction (221), tumor
progression and metastasis (222), atherosclerosis (223), and

cardiopulmonary bypass patients (160). Previous in vitro study
had shown that elevated T lymphocytes–derived MPs induced
arterial endothelial dysfunction (i.e., reduce expression of NOS)
in immunocompromised states (224, 225). Moreover, another
studies had shown that MPs can contribute to acute lung
injury (226) and inflammatory airway disease (227); in this case,
elevated level of MDMPs was enumerated to associate with
upregulated proinflammatory IL-8, ICAM-1, MCP-1, superoxide
anion production, and activation of NF-κβ in monocytes (153,
227). Interestingly, elevated EDMPs also had been correlated
with the severity of endothelial dysfunctions in heart disease, i.e.,
coronary artery disease and acute coronary syndromes with worst
clinical outcomes (133, 228, 229).

In the case of brain disease, MPs have been shown to
contribute to both proinflammatory and anti-inflammatory
responses in inflammation-mediated NDD including PD, AD,
amyotrophic lateral sclerosis, and dementia (230), whereby
CNS-derived MPs have been shown to circulate in peripheral
circulation and hence may play a role in cerebral immune
status by transferring peripheral proinflammatory molecules to
CNS (218, 231, 232). Recent evidence also suggested that MP-
mediated release of proinflammatory cytokines, miRNAs, and
microbial by-products is associated with the onset, progression,
and resolution of inflammation-based cerebral injury and NDD
(233–235). Therefore, these associations make circulating MPs
as pertinent and potential biomarkers of numerous disease
onset and/or progression with CNS diseases (228, 236), in
particular with microcirculation involvement as observed in
CSVD manifestations.

DIET AS RISK FACTORS FOR
MICROTHROMBOSIS AND SVD

It is well-acknowledged that healthy diet is crucial, and for it
to be appealing, such a diet must be nutritious, pleasing, and
indulging. As all foods contain variable degree of nutrients or
additives, these food elements may be beneficial or detrimental
(i.e., increase risk toward chronic disease) to our health. For
the past decades, research had focused on a single nutrient
consumption by the individual, i.e., protein, fat, carbohydrates,
fiber, and sugar. However, as humans, we do not consume a single
nutrient as such, but take food as whole. Moreover, nutrients
also are associated with one another; hence, focusing on the
effect of a single nutrient in food is rather incomplete. Thus,
to date, growing research is now focusing on multinutrient
interplay in foods and their effects on health, termed as
dietary patterns. Dietary pattern has been described as the
overall diet, type/groups of food and the nutrients therein, the
combination/variety, and the quantity/frequency with which the
food are habitually consumed (237, 238).

In addition, diet plays an important role in maintaining the
homeostasis and hemostasis systems, whereby healthy dietary
pattern has been classified as diet with lower concentrations
of plasma proinflammatory markers (8). Certain modifications
in the dietary pattern could potentially lead to alterations
in these systems, notably in individuals who consume less
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or non-nutritious or unbalanced diets, often linked to the
typical Western-type diet, i.e., meat-based with elevated level
of proinflammatory markers (9, 10). Modern lifestyles (with
physical inactivity and smoking) and unhealthy dietary patterns
are recognized modifiable risk factors for metabolic disease,
coronary heart disease, and stroke (11) and likely to trigger
systemic peripheral events that can influence the development
(from early age) to progression (in middle age and elderly) of
NDD such as CSVD. A recent systematic review has also linked
unhealthy diets with neuropsychiatric disorder such as mental
illness (239).

In the current globalization era, metabolic syndrome
(syndrome X) (i.e., abdominal obesity, hypertension, insulin
resistance, dyslipidemia, and hyperlipidemia) has become a
major global health burden as a new non-communicable disease
and a risk factor for cardiocerebrovascular disease. This scenario
continues to coexist with the social standard of living and
influences dietary pattern as a consequence from this social
pressure (240). Hence, the foregoing paragraphs will discuss on
the range of dietary patterns to date, with their likely effects on
the onset and progression of non-communicable diseases such
as CSVD.

Western Pattern Diet
The Western pattern diet (WPD) or modern dietary pattern
is classified as a high intake of processed food [i.e., processed
meat, red meats, prepackaged foods, and sugary desserts (candy
and sweets), refined grains or carbohydrates, fried foods],
conventionally raised animal products, eggs, corn (i.e., high-
fructose corn syrup), potatoes, high-fat dairy products, and high-
sugar drinks. All in all, these consumptions are classified as
high intake of saturated and omega-6 fatty acids (SFAs) (241).
Moreover, WPD is accompanied by no or low intake of omega-3
FA such as vegetables, fruits, whole grains, nut, grass-fed animal
products, fish, and seeds (242). Components in WPD diet tend
to be proinflammatory in nature, causing GIT dysbiosis (i.e.,
alteration in the diversity of GIT microbiota and reduced total
bacterial load) and disrupting epithelial barrier structure and
function in the GIT system (243).

Additionally, WPD has been widely associated with metabolic
syndrome, arteriosclerosis and/or arteriolosclerosis, and
T2DM (81, 244). Gross and colleagues reported that refined
carbohydrate (i.e., in corn syrup) is associated with T2DM
(245). Recent meta-analysis also concluded that higher intakes
of food with refined or high-glycemic carbohydrates (seen as
high-glycemic index, GI) increased the harmful effects toward
T2DM (246). The risk of myocardial infarction also increases
with high GI and high SFA by 33% (247). Moreover, highly
refined carbohydrate with reduced fiber content found in corn
starch, white rice, and white wheat flour has been associated
with 55% higher prevalence of T2DM in East Asian population
(248, 249). A higher incidence of hypertension and metabolic
syndrome has been reported among Asian Indians with higher
intakes of refined grain and increased waist circumference (250).

Furthermore, a higher intake of SFA has been associated
with an increased endogenous thrombin related to metabolic
syndrome (251). Alongside thrombin is the increment of vitamin

K–dependent factors (i.e., factors II, VII, IX, and X) and
extrinsic TF pathway in coagulation cascade with reduced TFPI,
which facilitated microthrombosis formation. Apart from that,
high intakes of red meat that is rich with heme iron also
increased oxidative stress, epithelial proliferation, and iron-
induced hypoxia signaling. Heme iron is known to increase
the formation of harmful endogenous N-nitroso compound and
heterocyclic amine content in GIT (252). Therefore, high intake
of processed or unprocessed red meat is associated with higher
incidence of vascular microthromboembolism, hence a higher
burden of T2DM, risk of metabolic syndrome, colorectal cancer,
and stroke (with an increased risk of ischemic stroke by 24%)
(253, 254).

High-Fat Diets/Low-Carbohydrate Diets
High-fat (HFD) or low-carbohydrate diet (LCD) or ketogenic
diet is a diet that is rich in fat contents such as SFA (i.e., myristic
and palmitic acids) found in animal or tropical oils. HFD also
included the low polyunsaturated FA (PUFA) such as linoleic
acids (LAs) and α-linoleic acids (ALAs) and monounsaturated
FA (MUFA) such as oleic acids (255). Dietary ALA and LA
synthesized arachidonic acids (AAs) and docosahexaenoic acids
(DHA) in the liver and brain (<1%) (256). The association
between the high SFA intake and development and progression
of vascular disease is complex because of modulatory effects
of fat in both prevention and progression of vascular disease
(81). However, habitual HFD individuals had been found to
have increased WMH load (i.e., CSVD manifestation) (257).
Furthermore, SFA triggers microglial activation to release
proinflammatory stimuli by interacting with toll-like receptor
4 (TLR-4) (258). Activated microglia release MPs (197–199),
and these microglia-derived MPs have been implicated to exert
negative impact in cognition and synaptic plasticity in HFD
mice (259).

In contrast, multiple studies had shown the beneficial effects
of diets enriched with PUFA and/or MUFA (260, 261). In
unesterified forms, AA and DHA cross the BBB through passive
transports, and upon entering the brain, they regulate the
neuroreceptor-coupled signaling and transcription that serve in
modulating the cerebral immunity as they are the mediators for
bioactive lipid (262, 263). Sun and colleagues had reported that
DHA is beneficial in stroke protection, therapy, and prevention
(264). This is due to fact that DHA aided in reducing the neuronal
and white matter loss, reducing proinflammatory cytokines,
MMP expression, and BBB damage, and regulating the activation
of microglial (264). Moreover, DHA reduced platelet aggregation
and lag time in healthy individuals (265), hence reducing the risk
of microthrombosis. High-MUFA (i.e., oleic acids) diets helped
to reduce thrombogenic factor (i.e., factor VIIa and factor VIIc)
(266), whereas increased HFD (i.e., higher SFA intake) has been
associated with an elevated level of proteobacteria species such as
Bilophila wadsworthia (GIT dysbiosis), unlike high MUFA that
reduced total bacteria in fecal content (267, 268).

Therefore, the interactions between dietary lipid (fats) with
microbiota are crucial in the regulation of metabolic changes and
systemic and peripheral inflammation. Previous studies proved
that the inflammatory pathway from GIT to the brain occurred
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following the changes in the GIT microbiota (269). This is
made possible because SFA (i.e., palmitic acids) can activate the
inflammatory response after desensitization of the GIT vagus
nerve as seen in microglia-activated TLR4 in hypothalamus
(270). In addition, in vivo and in vitro studies have shown
that elevated expression of apoptotic genes and proinflammatory
markers (i.e., TNF-α and ILs) with a reduction in brain-derived
neurotrophic factor are associated with HFD (i.e., high SFA)
(271, 272). Furthermore, Takechi and colleagues reported that
BBB damage following high-SFA diets is attributable to elevated
neuroinflammation after cerebral microvasculature leakage of
peripheral proteins (273).

As mentioned, HFD implies low carbohydrate intakes and
that LCD with high protein diets in mice model decreased the
amount and function of circulating endothelial progenitor cells
(EPCs) (274). However, if LCD (i.e., high unsaturated FA, low in
fiber, vitamins, minerals, and polyphenols) is implemented with
high PUFA andMUFA, this combination may turn out beneficial
and cardioprotective instead. A previous study reported the
reduced level of EDMPs (E-selectin), thrombomodulin, C-
reactive protein (CRP), and PDMP (P-selectin) in individuals
who practiced LCD (275), i.e., likely to reduce the risk
toward T2DM and metabolic syndrome, two major risk factors
for CSVD.

Mediterranean Diet
Mediterranean diet (MeDiet) is the type of diet that is
characterized by the intake of high portion of vegetables, fruits,
nuts, legumes (i.e., peas, lentils, beans, chickpeas, peanuts, and
soybeans), olive oils, whole grains, and aromatic spices and
moderate to high intake of marine origins (i.e., fish) and low
intake of meat and sweetened products (276). MeDiet has been
suggested as one of the healthiest and closest model diets toward
a healthy diet (11, 277). It is associated with better control
of cardiocerebrovascular risk factors such as hypertension
(improve blood pressure), glucose metabolism, arrhythmic risk,
metabolic syndrome (i.e., dyslipidemia), and GIT microbiota
(278). The protective effects of MeDiet are attributable to
its high level of PUFAs (from marine origins and plants),
MUFAs, minerals, polyphenols [a dietary antioxidants from
plants origins and beverages (i.e., green and black tea, coffee,
and red wine)], and fiber, while low in SFA and sugar. All these
components in MeDiet are associated with anti-inflammatory
effects and reduced prevalence of vascular diseases (279), with
underlying effects on modulating proatherogenic or arteriogenic
and proinflammatory gene expression such as COX-2, MCP-1,
and LDL receptor-related protein (LRP1) (280); lowering plasma
level of prothrombotic coagulation and inflammation molecules
such as ILs (i.e., IL-10, IL13, IL-18) andMMPs (i.e., MMP-9); and
decreasing the NF-κβ activation in leukocytes (281, 282).

Marine origins such as fish in MeDiet is the major source
of protein, vitamins (D, B), and long-chain omega-3 FA DHA
and eicosapentaenoic acid (EPA). Individuals who consumed
fish regularly had reduced risk of ischemic heart disease by
13% (283). In animal models, mice administered with fish oil
diet showed reduction in platelet aggregation (284), whereas
laboratory porcine fed with fish oil with PUFA showed inhibition

of the synthesis of platelets thromboxane B2, aiding in the
prevention of microthrombosis (285). Vitamins such as folic
acid, B12 and B6 had been associated with a reduced risk of
cerebrovascular disease such cerebral ischemia (286), whereas
lower vitamin B12 intake had been associated with increased
proportion of periventricular WMHs (287). Fish long-chain
omega-3 PUFA helped to protect against vascular risk factors
such as inflammation, endothelial dysfunction (with reduced
circulating markers such as VCAM-1, E-selectin, and ICAM-
1), and vascular resistance (i.e., improve flow-mediated arterial
dilation) (288). DHA and EPA consumption had been reported
to elevate PAI-1 in healthy individuals (289) and reduced the
risk of RSBI and WMHs in older adults (290), while long-
chain omega-3 PUFA supplementation in arteriothrombotic
patients reduced the activation of prothrombin and increased
TFPI (291, 292). Moreover, EPA and polyphenols helped to
reduce the endogenous thrombin alongside TFPI and vitamin
K–dependent factors (i.e., factors II, VII, IX, and X) and
platelet aggregation, hence reducing thrombogenesis (251, 265).
In addition, polyphenols helped to reduce leukocyte activation
molecules such as NF-κβ and inflammatory adhesion molecules
(293), ADP or collagen-mediated platelet aggregation and
platelets–monocytes aggregation; reduce expression of P-selectin
on platelets; and increase the release of platelet-derivedNO (294).

Moreover, nuts had been reported to protect against the risk
of hypertension (236) and T2DM (295), lowering cardiovascular
risk, but surprisingly not against stroke (236, 260, 296). Nuts
elevated the expression of TFPI in monocytes (280) and reduced
TF-bearing PDMPs (297). A recent animal study revealed that
mice with HFD supplemented with nuts (with high PUFA)
showed a reduced plasma prothrombin level and expression
of CD36 on atherosclerotic plaques in aortic region (298).
Furthermore, legume (highly soluble fiber) consumptions also
reported to reduce the risk of developing vascular disease,
i.e., improve cholesterol level, lower GI, blood pressure,
CRP, E-selectin, IL-6, TNF-α, VCAM-1, ICAM-1, and waist
circumference and prevented T2DM (299–301). Previous study
had reported that legumes possessed anti-inflammatory bioactive
components such as inulin and oligofructose and modulated
metabolic endotoxemia (302), whereas in vivo study showed
that their secondary metabolites interacted with GIT microbiota
to aid in modulating platelets hyperreactivity and potential
thrombosis through the synthesis of trymethilamine N-oxide
(303). A recent PREDIMED study had strengthened the fact
that MeDiet possessed anti-inflammatory effects with reduced
expressions of leukocyte adhesion molecules, VCAM-1, ICAM-
1, reduced plasma levels of P- and E-selectin, proinflammatory
cytokines (i.e., IL-1, IL-6, IL-8, CRP, TNF-α), MMPs, and
chemokines (i.e., MCP-1, MIP-1) (304).

Dietary Approaches to Stop Hypertension
Diet
Dietary Approaches to Stop Hypertension (DASH) diet is a
dietary pattern that encourages reduction of sodium intake
(2,300mg or 1 teaspoon per day), SFA, red and processed meat,
and sweet beverages and hence characterized as diet with high
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intake of vegetables, legumes, fruits whole grains, nuts, low-fat
dairy, fish, lean meats, and poultry (305). An increased sodium
(i.e., table salts, salt additives) intake beyond the physiological
requirement (high sodium-to-potassium ratio) has been shown
to elevate blood pressure (306), raising the risk toward vascular
disease and mortality (307). Moreover, recent systematic review
had reported that an increased intake of dietary salts may
increase the risk towardWMHs and ischemic stroke, i.e., lacunar
stroke, and CMBs (308, 309). Previous studies had shown that
DASH diet lowered the risk of developing and progression
of metabolic syndrome up to 81% (310, 311), coronary heart
disease by 20%, stroke by 29% (312), and the overall mortality
(313). Moreover, DASH diet has been associated with improved
endothelial function (314), body weight (315), inflammation
grade (305), and GIT microbiota (316).

Multiple studies had also reported that DASH diet has
high anti-inflammatory properties. In cross-sectional study
of elderly individuals (aged 50–69 years) by Phillips and
colleagues, DASH diet improved the measurement of adiposity
(i.e., reduced BMI and reduced waist circumference) and
lipoprotein and reduced proinflammatory, prothrombotic, and
proatherogenic markers (i.e., IL-6, CRP, TNF-α, PAI-1, and
leukocytes) (317). Another study showed improvements of
obesogenic inflammatory markers such as reduced CRP, IL-6,
and soluble ICAM-1 following DASH diet (318). A recent review
also supported DASH diet beneficial effects in reducing the
risk toward cancer such as breast and colorectal cancer (319).
Collectively, many of these beneficial effects of DASH diet are
attributable to its high-vegetable and high-fruit content, with
a desirable risk reduction toward systemic and cardiovascular
disease, including CSVD.

Gluten-Free Diet
Gluten (or glue in Latin) refers to a group of proteins
mainly found in grains such as barley, wheat, spelt, and rye.
Gluten added the sticky textures and consistency to the flour
once mixed with water. Glutenin and gliadin are the major
examples of gluten protein reported to cause a series of ill-
health effects especially in individuals with celiac disease (CD)
and gluten allergy or intolerance (320, 321). The consumption
of gluten-containing diet has been linked with GIT dysbiosis
and leakage and gluten-induced inflammation that can lead to
pathogenesis of neurodegeneration (230, 322). Moreover, high-
gluten diet also elevated the proinflammatory markers in young
healthy individuals (323), and there was an increased rate of
superoxide and nitrotyrosine synthesis in aortic root lesion of
mice model (324). A high-gluten diet also has been linked
with reduced expressions of anti-inflammatory and antidysbiotic
genes such as PPAR-γ (in intestine, peripheral inflammation,
and neuroinflammation) especially in individuals with CD.
This is supported by preclinical study using macaques that
shown the downregulation of PPAR-γ –mediated inflammation
in intestines, followed by GIT dysbiosis (325).

Thus, gluten-free diet (GFD) has been suggested to restore the
expression PPAR-γ gene in CD individuals. Moreover, in vitro
study has reported that GFD, i.e., the consumption of foods with
phytocannabinoids (low dose and naturally available), such as

delta-9-tetrahydrocannabinol, aided in direct activation of PPAR-
γ gene expression, hence inhibiting intestinal inflammation in
CD (326). A recent review reported that GFD is associated
with a reduced risk of endothelial dysfunction and oxidative
stress especially in CD individuals (327). Furthermore, an
animal study also revealed that mice with GFD had reduced
proinflammatory cytokines (Il-6 and TNF-α) (328). Hence,
GFD is a promising approach to prevent GIT inflammation
and dysbiosis and restores the integrity of epithelial barrier,
thus indirectly influencing the prevention strategy in reducing
risk toward other potential cardiocerebrovascular disease such
as CSVD.

Vegetarian Diets
Vegetarian diet is generally based on vegetables and fruits, and
it is classified into four different styles, such as lactovegetarian
(vegetarians with intake of dairy products but no eggs),
ovovegetarians (intake of eggs but no dairy), ovolactovegetarians
(no meat and fish, but consume both eggs and diary), and, lastly,
vegan diet (absolute absence of all kind of animal-based food
including seafood). Overall, vegetarian diet has been reported to
reduce the risk of coronary heart disease and stroke andmodulate
GIT microbiota (329, 330). Meta-analysis of previous studies had
shown the reduced risk factors that are linked to stroke, T2DM,
and cardiovascular mortality with vegetarian diets (331–333).
Moreover, a recent EPIC-Oxford study shows that vegetarian
diets reduced the risk of ischemic heart disease by 22% compared
to meat eaters, but with an elevated risk of hemorrhagic and total
stroke (283).

Among the different types of vegetarian’s diet, vegan diet has
been proven to be beneficial for cardiocerebrovascular health
(i.e., lower LDL cholesterol, triglycerides, and E-selectin) as it is
rich with vitamins (except B12), polyphenols, MUFA, and fiber.
However, a limited supply of vitamin B12 (followed by elevated
level of plasma homocysteine) in vegan diets is associated with
arterial endothelial dysfunction and elevated thickness of carotid
intima media (334). Moreover, a higher level of polyphenol such
as flavanols improved cardiovascular function (i.e., endothelial
function) and endogenous repair mechanism (i.e., increase flow-
mediated dilation, and reduced systolic blood pressure) (335),
which helped to reduce proinflammatory, leukocyte adhesion
molecules and NF-κβ, platelet aggregation, and an increase in the
release of platelet-derived NO (293, 294, 336). The level of CRP
also has been shown to decrease following vegetarian diets (i.e.,
unrefined plant foods) (337, 338) with an elevated circulating
EPCs (339).

The consumption of onion and garlic in vegetarian
diets has been reported to have antiplatelet, anticoagulant,
and antithrombotic properties as they possess sulfur-rich
element (especially in garlic) that is known to reduce platelet
function and aggregation through inhibition of COX and
lipo-oxygenase, followed by the suppression of thromboxane B2
production (340). In addition, an animal study had shown that
administration of sesame seed whole grains in mice lowered the
arterial thrombosis (341). Moreover, in vitro studies also showed
that green beans extract, tomatoes extract, strawberry extract
(dose-dependent: 0.1–1 mg/mL), garlic bolt, raw spinach, and

Frontiers in Cardiovascular Medicine | www.frontiersin.org 19 February 2021 | Volume 8 | Article 632131

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


Nassir et al. CSVD, Microparticles and Diet

blanched garlic inhibited the AA and ADP-mediated platelet
aggregation; the synthesis of platelets thromboxane B2 reduced
P-selectin and IL-1β levels (342–344) and thereby prevented
thrombogenesis. These effects are believed mainly due to the
presence of phenolic compounds (i.e., chlorogenic acid, ferulic
acid, caffeic acid, and P-coumaric acid) in such vegetables (345).
Of note, Framingham Heart Study Offspring Study reported that
nutrients such as choline (precursor for acetylcholine, PS, and
sphingomyelin) found in fruits (i.e., orange) and vegetables (i.e.,
broccoli) were associated with a lower WMHs load in relation to
CSVD manifestation (257, 346).

DIETS AND CIRCULATING
MPS—PROPOSING THE LINK WITH CSVD

For the past decades, research interests had grown on the
relationship between dietary patterns and potential vascular
disease including SVD pathomechanism such as cell activation
and prothrombotic molecules release. Hence, treatment and
management of cerebrocardiovascular disease risks such as
modulating lifestyle habits and dietary pattern have been
suggested as an important primary measure. Despite the
advancement of understanding on the effects of diets on
the release of endogenous circulating MPs toward major
cardiovascular disease (i.e., atherosclerosis, coronary heart
disease, and stroke), their relationships with the vascular integrity
of microcirculation network and, in specific, and its roles in the
pathogenesis of SVD (i.e., CSVD) require further deliberation.
To date, there is no/limited study that had reported the direct
impacts of diet-induced MP formation on NDD including AD
and PD. At best, majority of previous studies focused mainly on
the role of PDMPs and EDMPs, with scarce data available on
other MP subpopulation, as well as their involvement in diet-
basedMP release, whichmay influence the risk andmanifestation
of SVD in general.

Previous studies had evaluated the role of diet-based
circulating cell activation–derived MPs in healthy and disease
populations. For example, Zhang and colleagues found that
individuals with T2DM (major risk factor for CSVD) had a
higher level of PDMPs and MDMPs (CD11b+) compared to
healthy non-diabetic individuals who practice healthy chronic
diet (i.e., oats rich in polyphenols and low GI) as reported
with MeDiets, DASH, and vegetarian diets. Additionally, they
found that P-selectin, TF, and fibrinogen-positive PDMPs are
higher in T2DM individual without obesity (347) and likewise in
individuals who practicedWPDwith higher EDMPs and PDMPs.
Of note, WPD has higher SFA, GI, and refined carbs with low
to no omega-3 fatty acids (348). In contrast, HFD and LCD
with higher SFA lead to an increase in MDMPs, PDMPs, and
EDMPs (349). Hence, diet-based PDMP release, especially in
T2DM individuals, may contribute to microthrombosis (through
GP-Ib-IX-V receptor complex binding) and inflammation. In
such instances, PDMPs with surface P-selectin, fibrinogen, and
TF enable leukocytes–platelets adhesion, platelet aggregation,
and coagulation, respectively, in small vessel and could be
more vulnerable to an early development of arteriosclerosis

and/or arteriolosclerosis and hence plausible link to CSVD
manifestation. However, polyphenols (i.e., avenanthramide and
phenolic alkaloid) found in oats (i.e., in DASH diet and MeDiet)
possess antioxidant and anti-inflammatory properties (350),
whereby avenanthramide is known to reduce the levels of PDMPs
with specific surface markers through inhibition of platelet
activation by scavenging the free radicals (from oxidative stress
mediated activation), or as antagonist on activation receptors,
hence mimicking antiplatelet agents. A recent study by Sinegre
and colleagues indicated that epicatechin (a major subclass of
flavanols found in cocoa and fruits) supplementation typically in
vegetarian dietsmay reduce the production and release of PDMPs
(GP-Ib+) and thrombin, respectively, without any impact on TF
positive MPs which signified the effects of polyphenols on MP
release and procoagulant status (351), which could influence the
onset, progression, and even prevention of CSVD.

Moreover, individuals with high-gluten diet have been
associated with higher systemic GIT-microbiota–derived MPs
(230). However, polyphenols found in gluten-free black sorghum
extract (BSE) also had been shown to possess an antioxidant
property, which helped to reduce endothelial dysfunction,
platelet activation or aggregation, and PDMP release mediated
by oxidative stress (352, 353). Nignpense and colleagues reported
that the consumption of BSE (with concentration no <40
g/mL), such as in GFD, MeDiet, and vegetarian diets, could
reduce platelet aggregation (by 19%) and PDMPs (i.e., CD42b+)
release (by 47%). The antioxidative properties found in BSE
polyphenols enabled the inhibition of PDMPs through the
process of hydrogen peroxide (H2O2) neutralization, free radical
scavenging, and/or interruption with intracellular signaling
responsible for PDMP release (353). It seems that BSE polyphenol
is a potential candidate to attenuate the thrombogenic effect
of PDMPs. Besides, polyphenols also reduced PDMP release
through the inhibition of COX-1–mediated platelet activation
(354), hence modulating microvascular environment to improve
endothelium function. Also, as mentioned in the previous
section, as MPs can be generated after a physiological shear
stress, polyphenols (i.e., spironolactone) could modulate the
blood flow (via NO release) and endothelium relaxation to
enable the inhibition of shear stress–mediated MP release
and reduced the blood pressure. In addition, grapeseed (i.e.,
proanthocyanins) extract administration (400 mg/kg) in mice
was also shown to reduce the production of P-selectins bearing
PDMPs, proinflammatory molecules (i.e., IL-6, IL-8, and TNF-
α), and vWF and adhesion molecules, whereas it increased the
expression of CD34 on ECs and vascular endothelial growth
factor receptor 2, which resulted in the inhibition of thrombosis
(355) and thus could be protective against the onset and/or
progression of CSVD.

MeDiet has been widely studied and associated with the
improvements of endothelium structure and function of different
vasculature and vascular territories (i.e., peripheral, central, and
small/micro vessel) (277). Marín and colleagues reported that
MeDiet such as the consumption of extra virgin olive oil (EVOO)
possessed the antioxidative properties that aided the reduction
of free radical release and protected against oxidative stress,
hence mitigating the production of circulating MPs (356). A
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TABLE 4 | Summary of the role of dietary patterns, its molecular/cellular response, MP release, and risk predisposition toward CSVD.

Dietary patterns Molecular and cellular response Diet-based MP correlates Risk predisposition toward CSVD

Western Pattern Diets

• (+) SFA

• (+) GI

• (+) Refined carbs

• (–) Omega-3 fatty acid

• (+) Proinflammatory response

• (+) Oxidative stress

• (+) Thrombin

• (+) Vitamin K-dependent factors (i.e., factors

II, VII, IX, X) and extrinsic TF pathway in

coagulation cascade

• (–) TFPI

• (+) PDMPs

• (+) EDMPs

• (+) Risk T2DM

• (+) Cardiometabolic syndrome

• (+) Microthrombosis

• (+) Iron-induced hypoxia

• (+) Ischemic stroke

High fat/low carbohydrate diets

• (+) SFA

• (–) PUFA (LA and ALA)

• (–) MUFA

• (+) FVIIa/VIIc and extrinsic TF pathway in

coagulation cascade

• (+) MDMPs

• (+) PDMPs

• (+) EDMPs

• (–) EDMPs (specifically

CD31+/CD41−) in LCD

• (+) GIT Dysbiosis (i.e., inflammatory response)

• (–) BDNF

• (–) EPCs

• (+) BBB damages

• (+) WMHs

Mediterranean diets

• (+) PUFA

• (+) DHA/EPA

• (+) MUFA

• (+) Polyphenols

• (–) GI

• (+) Vitamins (folic acid, B12, B6)

• (+) Anti-inflammatory response

• (+) Antioxidant (i.e., in EVOO)

• (–) Prothrombotic coagulation

• (–) ILs/NF-κβ/MMPs/VCAM/ICAM

• (–) Vitamin K dependent factors (i.e., factors

II, VII, IX and X)

• (–) Platelet aggregation

• (–) Platelets thromboxane B2

• (–) Prothrombin

• (+) TFPI/PAI-1

• (+) NO

• (–) PDMPs

• (–) EDMPs

• (–) LDMPs

• (–) SMCs-MPs

• (–) Prothrombotic MPs

• (–) Lymphocytes MPs

• (–) Risk of metabolic syndrome

• (–) Microthrombosis

• (–) Endothelial dysfunction

• (+) Flow-mediated arterial dilation

• (–) Risk of cerebrovascular disease

• (–) Risk of ischemic heart disease

• (–) Risk of RSBI and WMHs

DASH diets

• (–) Sodium

• (–) SFA

• (+) Vegetarian diets

• (–) Proinflammatory, prothrombotic, and

proatherogenic markers

• (–) PDMPs

• (–) LDMPs

• No effects on RDMPs

and EDMPs

• (–) Risks of WMHs/CMBs/lacunar

stroke/ischemic stroke

• (–) Metabolic syndrome

• (–) BMI and waist circumference

• (+) Endothelial function

• (+) GIT microbiota

Vegetarian diets

• (+) PUFA

• (+) DHA/EPA

• (+) MUFA

• (+) Polyphenols

• (–) GI

• (+) Vitamins (folic acid, B6)

• (–) B12

• (–) LDL, triglycerides, and E-selectin

• (–) Proinflammatory cytokines

• (–) Leukocyte adhesion molecules

• (–) NF-κβ

• (–) Platelet aggregation

• (+) Platelet-derived NO

• (–) COX and lipo-oxygenase

• (+) VEGF

• (–) EDMPs

• (–) SMCs-MPs

• (–) Risk of coronary heart disease, stroke,

T2DM

• (+) GIT microbiota

• (–) Arterial thrombosis

• (+) Flow-mediated dilation

• (–) Systolic blood pressure

• (+) EPCs

• Lower vitamin B12 associated with arterial

endothelial dysfunction

• (+) Phosphorylation of eNOS by ECs

Gluten based

• (+) Gluten (glutenin/gliadin)

• GFD

• (+) Phytocannabinoids

• (+) Gluten-induced inflammation

• (–) Expression of anti-inflammatory and

antidysbiotic gene (i.e., PPAR-γ)

• (+) MMPs

• (+) Expression of PPAR-γ gene

• (–) Oxidative stress

• (–) Proinflammatory cytokines

• (+) Systemic

GIT-microbiota derived

MPs

• (–) Systemic

GIT-microbiota

derived MPs

• (+) Pathogenesis of NDD

• (+) GIT dysbiosis and leak

• (–) Risk of endothelial dysfunction

• (–) GIT inflammation and dysbiosis

(+) represents increase/elevate/higher/modulate/activate; (–) represents decrease/lower/reduce/absence. ALA, α-linoleic acids; BBB, blood brain barrier; BDNF, brain-derived

neurotrophic factor; BMI, body mass index; CD, cluster differentiation; CMBs, cerebral microbleeds; COX, cyclooxygenase; DHA, docosahexaenoic acids; ECs, endothelial cells, EDMPs,

endothelial derived microparticles; eNOS, endothelial nitric oxide synthase; EPA, eicosapentaenoic acid; EPCs, endothelial progenitor cells; EVOO, extra virgin olive oil; GI, glycemic

indexes; GIT, gastrointestinal tract; ICAM, intracellular adhesion molecules; ILs, interleukins; LA, linoleic acids; LCD, low carbohydrates diets; LDL, low density lipoprotein; LDMPs,

leukocytes derived microparticles; MDMPs, monocytes derived microparticles; MMPs, matrix metalloproteinase proteins; MPs, microparticles; MUFA, monounsaturated fatty acids;

NDD, neurodegenerative disease; NF-κβ, nuclear facto kappa β; NO, nitric oxide; PAI-1, plasminogen activator inhibitor 1; PDMPs, platelets derived microparticles; PPAR-γ, peroxisome

proliferator-activated receptor γ; PUFA, polyunsaturated fatty acids; RDMPs, red blood cell derived microparticles; SFA, saturated fatty acids; SMCs, smooth muscle cells; T2DM, type

2 diabetes mellitus; TFPI, tissue factor pathway inhibitors; VCAM, vascular endothelial adhesion molecules; VEGF, vascular growth factors; WMHs, white matter hyperintensities.
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high MUFA found in EVOO also reduced the levels of PDMPs
(CD31+/CD42b+) and EDMPs (CD31+/CD42−) (349) that
enabled the reduction of subendothelium microthrombogenicity
(measured as percentage of microvascular endothelium covered
by platelets and the modification or arterial wall, i.e., wall area
reduction and foam cell count) in animal model (357). Hence, it
is tempted to posit that, through MPs modulation, MeDiet could
be protective against the onset and/or progression of CSVD.

In contrast, Weech and colleagues reported that high-
SFA diets (i.e., WPD and HFD) elevated the levels of
PDMPs (CD31+/CD42b+) and EDMPs (CD31+/AV+ and
CD144+/CD6E+/AV+) (349). A recent preclinical study
also indicated that mice treated with HFD had a higher
level of MDMPs (CD36) (358). Hence, a higher level of
prothrombotic diet–based MPs could potentially trigger the
onset and advancement of CSVD. Interestingly, Marin and
colleagues showed that MUFA (as attainable with MeDiet,
DASH, and vegetarian diets) reduced the total count of
EDMPs (CD31+/AV+ and CD144+/CD6E+/AV+) in healthy
individuals (356), whereas Chiva-Blanch and colleagues reported
EVOO consumption in MeDiet produced a reduced level of
PDMPs (PAC-1+), SMCs-MPs (SMA-α+), and lymphocytes-
derived MPs (CD3+/CD45+) released in individuals with a
high risk of cardiovascular disease (359). Moreover, MeDiet
(i.e., nuts consumption) from asymptomatic individual with
cardiovascular risk (but no cardiovascular event) had also been
shown to have lower levels of prothrombotic PDMPs (PAC-1+,
CD61+, CD142+/CD61+ and CD62P+), EDMPs (CD146+) and
otherMP subpopulations such as LDMPs (CD63+ and CD11a+),
suggesting that nuts consumption could modulate endothelial
function via MP level regulation (297). Finally, MeDiet, i.e.,
the consumption of EVOO and nuts, facilitated the reduction
of prothrombotic MPs (CD142+/AV+), procoagulant MPs (TF
bearing) and cell activation MPs (CD11a+/AV+) (360, 361), that
could be beneficial in the setting of CSVD prevention.

In relation to HFD, Heinrich and colleagues found that HFD
elevated the production of PDMPs and EDMPs (348), whereas
LCD (≥40 g/d) lowered EDMP (specifically CD31+/CD41−)
levels (275). In contrast, the supplementation or consumption of
fish oil (rich in EPA and DHA) such as in MeDiet and vegetarian
diets reduced the EDMPs (CD31+/CD42b−) level, but not
PDMPs (CD31+/CD42b+) in low to moderate cardiovascular
risk individuals (362) with no effects on PDMPs (CD41+)
level, especially in healthy individuals (363). These differences
may be due to the fact that healthy individuals may have a
lower degree of cellular activation in their systemic circulation.
Besides, an intervention using low-calorie diet such as DASH
diet in obese individuals has been reported to reduce the
level of PDMPs (GP-Ib+) and LDMPs (CD11a+ and CD4+),
but not RDMPs or EDMPs (364) despite the fact that the
obese and overweight individuals possessed a higher baseline
level of EDMPs (CD144+/CD42a−/CD45−) (365). Moreover,
weight loss in non-diabetic individuals has been associated with
reduced PDMPs (CD41+), suggesting that weight reduction may
be independently mediating the inhibition of cell activation–
mediated MP shedding (220). Furthermore, the consumption
of cocoa flavonols (from cocoa drinks or natural cocoa),
especially with DASH, MeDiet, and vegetarian diets, has been

shown to reduce EDMPs (CD31b+/CD41− and CD144b+) and
EDMPs (CD42a/CD45−/CD144b+) in individuals with coronary
artery disease and in young asymptomatic obese individuals,
respectively (365, 366). Finally, HFD supplemented with cocoa
polyphenols (400 mg/kg per day) fed to rats showed a reduction
in platelet aggregation and an elevated release of NO and
phosphorylation of eNOS by ECs (367).

Taken together, this evidence provides persuasive and
plausible roles of MeDiet, DASH, GFD, and vegetarian diets
in the regulation MP systemic release in guarding against
microthrombi formation, whereas the formation of MPs with
procoagulant TF and proinflammatory properties following
WPD, HFD, and LCD is recognized to heighten the risk for
microthrombosis and arteriosclerosis and/or arteriolosclerosis
(368, 369) and hence risk for CSVD manifestations. Table 4
summarizes the role of dietary patterns, its corresponding
molecular and cellular responses, underlying MP release, and
putative predisposition toward CSVD.

CONCLUSION AND FUTURE
PERSPECTIVE

CSVD is a complex pathophysiologic condition that originates
from small vessel (microcirculation) insults with brain
parenchymal lesions that feature as both asymptomatic
(silent) and symptomatic neurological manifestations as we grow
older. One of the probable risk factors toward the onset and
progression of CSVD is the imbalance and undesirable dietary
patterns such as WPD and HFD. Although the impact of diets
on cerebrocardiovascular disease in general has been widely
studied, to date, studies on the effect on dietary pattern in CSVD
remain largely unexplored. Scientific evidence provides crucial
pertinent leads on diets such as vegetarians, GFD, and MeDiet
that are rich in vegetables and fruits, with moderate intake of fish
reducing the prevalence of major cerebrocardiovascular disease.
This review presents the deliberations on the plausible roles of
circulating MPs (produced by oxidative stress, inflammation,
GIT microbiota dysbiosis, and cell activation) and suggests their
role as one of the novel risk factor and cell-based biomarkers
in diseases related to the brain–heart–GIT axis, with an
emphasis on CSVD and subsequent related NDD. In particular,
the understanding of the role of diet-based MPs and their
communications with and/or via microcirculation in relation
to CSVD manifestations would stir further interests in the
current limited understanding on the natural history of CSVD,
as well as an opportunity to devise novel approaches for its
preventive and therapeutic strategies. Given that MPs can be
produced and released from numerous microvascular beds of
various organs (i.e., in CNS, heart, GIT, or kidney) and circulate
through common systemic circulation to accumulate and exert
their thrombogenic effects (i.e., prothrombotic, procoagulant,
and proinflammatory) in the small end arteries especially in
the cerebral microcirculation, this could contribute as a novel
pathomechanism of CSVD, within the background of specific
diet pattern as a modifiable precursor. A more concerted
multidisciplinary and transdisciplinary research efforts to
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integrate the various aspects to advance our understanding of
CSVD shall prove beneficial for the progressively aging society.
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