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A B S T R A C T 

We find that the observed pressure-mode rotational splittings of slowly/moderately rotating δ Scuti stars and β Cephei stars 
mostly have a positive asymmetry. That is, the left frequency spacing is larger than the right spacing in the dipole mode 
splitting triplets and the l = 2 mode splitting multiplets (considering m = 1 , 0 , −1 modes only). This is in agreement with the
second-order perturbative effect of the rotational non-spherical distortion: both the prograde and retrograde modes have their 
frequencies shifted towards lower values relative to the m = 0 modes. We thus study the rotational perturbation both in the
first and second order, as well as the near-de generac y mode coupling effect in MESA models representing δ Scuti stars. For 
faster rotators, the near-de generac y mode coupling between the nearest radial and quadrupole modes can significantly shift 
the m = 0 modes, reduce the splitting asymmetry, and even change its sign. We find the theoretical splitting asymmetry from
the second-order non-spherical distortion can explain the observed asymmetry quantitatively. To facilitate future detections, 
we predict correlations between splitting asymmetry, splitting amplitude, and pulsation frequency. We also discuss additional 
factors that can influence splitting asymmetry, including embedded magnetic fields, resonant mode coupling, and binarity. 
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 I N T RO D U C T I O N  

he frequencies of oscillation modes in stars are affected by rotation. 
or slow rotation, the effect is well-described by a simple and sym-
etric splitting of each mode into a multiplet (e.g. Aerts, Christensen- 
alsgaard & Kurtz 2010 ). The situation is more complicated for rapid 

otation, which leads to complex mode geometries (see the re vie w
y Mirouh 2022 ). In this paper, we study the rotational splittings
f slowly and moderately rotating delta Scuti ( δ Sct) stars, for
hich perturbation theory is still valid. We particularly focus on the 

plitting asymmetry of the m = −1 , 0 , 1 modes. 1 Observationally, it
s customary to interpret the nearly-equally-spaced frequency peaks 
n the triplets or multiplets as possible rotational splittings. First- 
rder perturbation implies that the splitting is ≈(1 − C nl ) �rot , where
 E-mail: zhao.guo@kuleuven.be 
 We use the convention that m = −1 and 1 correspond to retrograde and 
rograde modes, respectively. 
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 nl is the Ledoux constant (Ledoux 1951 ), and �rot is the rotational
requency. 

Nearly continuous observations from space missions such as 
epler and TESS enable us to measure the oscillation frequencies 
ith high resolution. The precise measurements of rotational splitting 

symmetry, which are not usually scrutinized, can provide critical 
nsights into the stellar rotation, magnetism, and mode dynamics. 
 or e xample, Li et al. ( 2022 ) inferred an averaged radial magnetic
eld of about 30–100 kG in the cores of some red giant stars from the
bservations of the rotational splitting asymmetry of their g-mode 
ominated mixed modes. For acoustic modes, the situation is more 
ifficult because first-order perturbation is not adequate, even for 
lowly rotating stars. Perturbation theory to the second order has been
pplied to the p-mode splittings by Saio ( 1981 ); Su ́arez, Goupil &
orel ( 2006 ); Dziembowski & Goode ( 1992 ); Kjeldsen et al. ( 1998 );

nd Christensen-Dalsgaard & Dziembowski ( 2000 ). The second- 
rder treatment has been compared with full 2D calculations by 
eese, Ligni ̀eres & Rieutord ( 2006 ), which shows nice agreement

or slow/moderate rotation rates. And Soufi, Goupil & Dziembowski 
 1998 ) ev en e xtended the theory to the cubic order. The domain of
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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 alidity of perturbati ve treatment of dif ferent orders can be found in
eese ( 2022 ). The implications for the rotational splittings of δ Sct

tars have been summarized in Goupil ( 2011 ). Gizon et al. ( 2016 )
tudied the p-mode splitting asymmetry of the slowly rotating δ Sct
tar KIC 11145123, for which the splitting asymmetry is attributed
o stellar deformation caused by rotation. They inferred the flattening
f the star to be �R/R ≈ 10 −6 . 
Bedding et al. ( 2020 ) disco v ered a sample of high-frequency,

oung δ Sct stars, for which some radial modes and l = 1 modes can
e identified from the echelle diagram: they form clear vertical ridges
hat curve to the right. Asteroseismic modelling is now possible for
ome δ Sct stars (Murphy et al. 2023 ; Scutt et al. 2023 ). Ho we ver, in
ost cases, the rotational splittings have not been modelled in detail,
ith the exception of a few works, e.g. (P amyatn ykh 2003 ; Su ́arez,
runtt & Buzasi 2005 ; Briquet et al. 2007 ; Zwintz et al. 2014 ). 
This article is organized as follows. In Sections 2.1 – 2.3 , we layout

he theoretical expressions for the p-mode frequency corrections
nd asymmetry using the second-order perturbation theory, largely
ollowing the notations in Saio ( 1981 ) and the development in
ziembowski & Goode ( 1992 ) and Soufi et al. ( 1998 ). We write

he e xpressions e xplicitly so that readers can easily use them. We
hen calculate the frequencies of Modules for Experiments in Stellar
strophysics (MESA) models representing δ Sct stars in Section 2.4 .
e compare the theory with the observed splitting asymmetry from

e ven slo wly rotating δ Sct and β Cep stars (Section 2.5 ). In Section
 , we discuss other factors and can affect the splitting symmetry,
nd then discuss future prospects (Section 4 ). We conclude with
redictions on the rotational splitting asymmetry which can be tested
y future observations (Section 5 ). 

 S E C O N D - O R D E R  FREQUENCY  

O R R E C T I O N S  A N D  SPLITTING  ASYMME TRY  

F  ACOUSTIC  M O D E S  

.1 Rotating stellar structure models from MESA 

e use MESA (Paxton et al. 2011 , 2013 , 2015 , 2018 ) to build stellar
tructure models from the pre-main sequence. Stellar rotation is
nitiated at the zero-age main sequence (ZAMS). The settings for
hemical mixtures (Grevesse, Noels & Sauval 1993 ), OPAL opacity
ables (Iglesias & Rogers 1996 ), metallicity ( Z = 0 . 02), mixing-
ength parameter ( αMLT = 1 . 8), and exponential overshooting param-
ter f ov = 0 . 02 are the same as Guo et al. ( 2016 , 2019 ). Rotational
ixings are turned off. 
We consider uniform rotation �( r) = �rot , as asteroseismic ob-

ervations suggest that the rotational profiles of intermediate and
assive stars can be approximately described by solid-body rotation

n the radiative envelope (Aerts, Van Reeth & Tkachenko 2017 ). The
adial part of the centrifugal force, given by −(2 / 3) �2 

rot r , is included
n the gravitational acceleration to compute an ef fecti ve gravitational
cceleration g eff . 

.2 Oscillation frequencies with second-order correction 

or slow or moderate rotation, we can use perturbation theory to study
he effect of rotation on stellar eigenfrequencies, with the ratio of
otational frequency to the non-rotational oscillation frequency being
 small parameter μ = ( �rot /ω 0 ) � 1. After taking into account the
rst and second-order rotational correction and the near-de generac y
ffect, the oscillation frequencies in the observer’s frame can be
xpressed as (Su ́arez et al. 2006 ): ω = ω 0 + 

(
ω 1 + ω 

(1) 
ab 

) + 

(
ω 2 +

 

(2)
ab 

) + O( μ3 ). The frequency corrections ω 1 , ω 2 are of the order
NRAS 535, 2927–2938 (2024) 
 ( μ) and O ( μ2 ), respectively. And the ω 

1 
ab and ω 

2 
ab represent the

ear-de generac y frequenc y corrections of corresponding orders (see
he Appendix). 

The well-known first-order rotational correction ω 1 can be ex-
ressed as: 

 1 = m (1 − C nl ) ω 0 μ = m (1 − C nl ) �rot, (1) 

here the Ledoux coefficient is C nl =
∫ R

0 ρr 2
(
2 ξr ξh + ξ 2

h

)
d r/I , I 

s the mode inertia: I = 

∫ (
ξ 2 

r + l( l + 1) ξ 2 
h

)
ρr 2 d r . ξr and ξh are

he usual eigenfunctions for the radial and horizontal Lagrangian
isplacements. 
To the second-order O( μ2 ), the frequency correction is, 

 2 = 

(
D 0 + m 

2 D 1 

)
ω 0 μ

2 . (2) 

he second-order correction coefficients are D 0 = X 1 + X 2 + Z,
 1 = Y 1 + Y 2 (Saio 1981 ). The Z term (due to the spherical part

f the centrifugal force) has already been taken into account in
he MESA evolution models (Section 2.1 ). X 2 and Y 2 are due to
he rotational non-spherical distortion; X 1 and Y 1 include the first-
rder perturbation of the displacement eigenfunction and the effect
f inertia; and for p-modes, | X 2 | � | X 1 | and | Y 2 | � | Y 1 | . Thus, we
ave, 

 0 ≈ X 2 , D 1 ≈ Y 2 (p modes) . (3) 

or p-modes, the second-order frequency correction is then, 

 2 ≈
(
X 2 + m 

2 Y 2 

)
�2 

rot /ω 0 . (4) 

Fig. 3 shows the second-order rotational splitting coefficients X 2 

nd Y 2 as a function of stellar age. The calculation is based on the
ESA structure model with M = 1 . 8 M �, Z = 0 . 02 , and V ZAMS =

0 km s −1 . It can be seen that these coefficients are nearly constant,
nd their values are very close to those from polytrope models with
ndex n = 3 and γ = 5 / 3 (Saio 1981 ). At later stages of the main
equence, the signatures of a v oided crossings are evident: as the
-mode frequencies increase and approach those of the p-modes,
his sequential approach from lower to higher-order p-modes is

anifested in the sequential bumping of Y 2 and dipping of X 2 . For
hese mixed modes, the polytrope values are no longer valid.

For radial modes, the second-order frequency perturbation is
Christensen-Dalsgaard & Dziembowski 2000 ), 

 2 ( l = 0) = ( −4 / 3) �2 
rot /ω 0 . (5) 

ote that | ω 2 ( l = 0) | is a decreasing function of frequency ω 0 .
hus, high-order radial modes have smaller non-spherical-distortion

requency corrections. 
For non-radial modes, 

 2 ≈ � − 3 m 

2

4 � − 3 
J c

�2
rot 

ω 0 
, (6) 

hat is, X 2 = 

� 

4 � −3 J c and Y 2 = −3 
4 � −3 J c , where � = l( l + 1), when

omparing with equation ( 4 ). J c is an integral in Soufi et al. ( 1998 ,
ppendix B); see also Su ́arez et al. ( 2006 ), 

 c = 

(
1 

2 I 

)∫ 
ρr 2 ( d 1 F 1 + d 2 F 2 ) , (7) 

here F 1 and F 2 depend on mode eigenfunctions. And d 1 =
 

2 u 2 , d 2 = r d( r 2 u 2 ) 
d r . In these expressions, u 2 depends on the non-

pherical equilibrium structure u 2 = φ22 / ( �2 
rot r 

2 ). φ22 is the gravita-
ional potential perturbation due to rotation, and it can be calculated
y integrating the perturbed Poisson equation Soufi et al. ( 1998 ,
quation 17), see also Ouazzani & Goupil ( 2012 ). 
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To be specific, the second-order corrections for l = 1 and 2, p
odes are: 

 2 ( l = 1) = 

⎧ ⎪⎪⎪⎨
⎪ ⎪ ⎪ ⎩ 

(2 / 5) 
�2

rot 

ω 0 
J c if m = 0 

−(1 / 5) 
�2

rot 

ω 0 
J c if m = ±1 

(8) 

 2 ( l = 2) = 

⎧ ⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪ ⎪ ⎪ ⎩ 

(2 / 7) 
�2

rot 

ω 0 
J c if m = 0 

(1 / 7) 
�2

rot 

ω 0 
J c if m = ±1 

−(2 / 7) 
�2

rot 

ω 0 
J c if m = ±2 

. (9) 

ote that J c is dimensionless, m -independent, and l-dependent. For 
= 1 and 2 modes, J c is an increasing function of radial order n .
his increasing trend is partly cancelled by the term �2 

rot /ω 0 . But still,
arger frequency corrections ω 2 are expected for higher n pressure

odes.

.3 Theor etical pr essur e-mode asymmetry 

he m 

2 dependence of the second-order frequency corrections induce 
n asymmetry in the dipole and quadrupole mode splittings. We 
onsider m = −1 , 0 , 1 modes only. F or conv enience, we define the
ight and left frequency differences as: ω R = ω m = 1 − ω m = 0 and ω L =
 m = 0 − ω m =−1 . 
Similar to Deheuvels, Ouazzani & Basu ( 2017 ) and Ong, Bugnet & 

asu ( 2022 ), We define a dimensionless asymmetry parameter 

 = 

ω L − ω R

ω L + ω R 
= −ω m = 1 + ω m =−1 − 2 ω m = 0

ω m = 1 − ω m =−1 
. (10) 

ote that there is a sign difference in our definition, since p-mode
otational splittings tend to have ω L > ω R (detailed below) but most
bserved magnetic-field-induced splittings tend to have ω R > ω L , if
he magnetic axis is not too misaligned (Li et al. 2022 ; Mathis &
ugnet 2023 ; Bharati Das, Einramhof & Bugnet 2024 ), and we find

t convenient to work with positive numbers here. 
Using equation ( 4 ), we can derive the asymmetry parameter for
 = 1 , 0 , −1 modes: 

 m 1 , −1 = −�rot

ω 0 

Y 2 

(1 − C nl ) 
. (11) 

For m = 2 , 0 , −2 spittings, if we define frequency differences
s ω R = ω m = 2 − ω m = 0 and ω L = ω m = 0 − ω m =−2 , the corresponding
symmetry parameter A m 2 , −2 is: 

 m 2 , −2 = −2 
�rot

ω 0 

Y 2 

(1 − C nl ) 
. (12) 

ote that since Y 2 is strictly ne gativ e, both asymmetry parameters
 m 1 , −1 and A m 2 , −2 are positive, according to second-order frequency 

orrection expressions. Note that equations ( 11 ) and ( 12 ) do not
ndicate that A 

l= 2 
m 2 , −2 is twice that of A 

l= 1 
m 1 , −1 , since both Y 2 and C nl are

-dependent.
Thus, the most prominent feature of the p-mode rotational split- 

ings is positive asymmetry ( A > 0), i.e. the left frequency spacing
 L is al w ays larger than the right spacing ω R . 

.4 Calculated evolution of oscillation frequencies, rotational 
plitting coefficients, and asymmetry parameter A 

n Fig. 1 , we show the evolution of oscillation frequencies of l = 0 , 1
upper panel) and l = 0 , 2 (lower panel) acoustic modes as a function
f stellar age (in units of 10 8 yr), ef fecti ve temperature ( T eff ), and
tellar radius ( R ). It is based on a stellar structure model with
 = 1 . 8 M �, Z = 0 . 02, and V ZAMS = 60 km s −1 . The l = 1 splitting

riplets m = −1 , 0 , 1 and l = 2 quintuplets m = −2 , −1 , 0 , 1 , 2 are
bviously asymmetric. It can be observed that the asymmetry A m 1 , −1 

s positive, and higher radial-order modes have stronger asymmetry. 
ote that the rotation velocities of the models are slowly decreasing.
t t = [2 , 4 , 6 , 8 , 10] × 10 8 yrs, the corresponding velocities are
 = [59 . 5 , 56 . 2 , 52 . 8 , 48 . 9 , 44 . 4] km s −1 . 
In Fig. 2 , we show the first-order rotational splitting coefficients

Ledoux constant) for both dipole and quadrupole modes. For dipole 
odes, the C n,l= 1 of pressure modes are al w ays very small at the
AMS, being less than 2 per cent. As the star evolves, their values
re slowly decreasing, until an a v oided crossing occurs (sequentially
o p 1, p 2, . . . ), and the values start to become much larger, i.e. evolve
owards the asymptotic g-mode’s value 1 /� . 

For gravity modes, the initial C nl start with an value around
.48, close to the asymptotic value 1 /l( l + 1) = 0 . 5. These remain
lmost constant until a v oided crossing occurs and the values decrease
harply. This can also be seen in the right-most panel, which
hows n pg (radial order) versus C nl , where the C nl of the g modes
av e v ery small variations e xcept when a v oided crossings occur
equentially to g 1 , g 2 , ... . For instance, at t = 8 × 10 8 yr, the C nl 

f the g 1 ( n pg = −1) mode drops from 0.5 to 0.1 due to coupling
o p modes. Low radial-order g modes have a larger C nl variation,
nd higher-order g modes are much less affected. The Appendix of
urtz et al. ( 2014 ) derived the asymptotic estimate of C nl for dipole
 modes based on the theory of Takata ( 2005 ). 
For l = 2 modes, the C nl of g modes are similar although the

symptotic value is then 1 /l( l + 1) = 1 / 6 ≈ 0 . 167. For pressure
odes, ho we ver, the Ledoux coef ficients are not so small. The f
ode starts with a Ledoux value ≈0 but its value reaches ≈0.167 at

round 600 Myr. The C nl of p 1 and p 2 start with a large value of 0.15
t the ZAMS, but then decrease. Note that the l = 2 mode a v oided
rossing happens earlier than l = 1; we thus see p modes possessing
arger C nl at the early phase of the main sequence. For p 1 modes, C nl 

eaches 0.15 at 800 Myr. After that, p 3 p 4 , and p 5 sequentially reach
heir largest values as they couple to g modes. For both l = 1 and 2,
he C nl of g modes are close to the asymptotic values of 1 / 2 and 1 / 6
or high-order modes n pg < −5. 

In Fig. 3 , we show the second-order rotational splitting coefficients
 0 ≈ X 2 and D 1 ≈ Y 2 of l = 1 , 2 pressure modes for the same
ESA stellar model. Starting from the ZAMS, these coefficients 

a ve near -zero v ariations; the v alues almost follo w the constants
abulated in Saio ( 1981 ) for an n = 3 polytrope (dashed lines). X 2 

s strictly positive, and Y 2 is strictly negative. Also, higher-order p
odes have larger X 2 and | Y 2 | . At later stages of main sequence,
e can see the signatures of a v oided crossings: the increasing g-
ode frequencies are getting close to the p modes, and this happens

equentially from low to higher-order p modes, manifested as the 
equential bumping in Y 2 and dipping in X 2 . For these mixed modes,
he polytrope values are no longer valid. 

The signs of X 2 and Y 2 have implications on the splitting
symmetry. First, Y 2 is ne gativ e, thus, both prograde and retrograde
odes hav e ne gativ e second-order frequenc y shifts. Since the first-

rder Ledoux splitting is symmetric, we have ω L > ω R for second-
rder splittings, i.e. positive asymmetry parameters A m 1 , −1 and 
 m 2 , −2 . 
In Fig. 4 , we present the dimensionless asymmetry parameter of

ipole modes A m 1 , −1 and its evolution with stellar age. It can be
een that the asymmetry A m 1 , −1 is slowly evolving with stellar age,
ut sensitive to radial order n . When avoided crossing kicks in, the
symmetry decreases significantly. This happens to the p 1 mode at 
MNRAS 535, 2927–2938 (2024) 
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Figure 1. Evolution of oscillation frequencies with asymmetric rotational splittings for a typical 1.8 M �δ Sct star with solar metallicity. The x-axes include 
stellar age, ef fecti ve temperature ( T eff ), and stellar radius ( R ). 

Figure 2. Ledoux coefficients C nl of l = 1 and 2 modes for a stellar model with M = 1 . 8 M �, Z = 0 . 02. Left-hand panels show the variations with stellar age, 
and right-hand panels show the variations with radial order n at different time snap shots (using the GYRE notation of Townsend & Teitler 2013 ), n pg < 0 for g 
modes and > 0 for p modes). 
NRAS 535, 2927–2938 (2024) 
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Figure 3. Second-order rotational splitting coefficients X 2 and Y 2 calculated 
from of a M = 1 . 8 M � MESA model, with initial rotational velocity v eq = 

60 km s −1 at the ZAMS. The horizontal dashed lines are results based on 
polytrope models from Saio ( 1981 ). 
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Figure 5. The observed asymmetry parameter A for m = 1 , 0 , −1 modes 
from six stars is colour-coded. Filled symbols represent triplets, whereas 
open symbols indicate quadruplets or quintuplets. The majority of these 
measurements are situated in the upper, positive half of the plane. 
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 × 10 8 –10 × 10 8 yr, and then around 9 × 10 8 –11 . 5 × 10 8 yr to the
 2 mode. 
The right-hand panel helps readers to compare the A values with 

he actual appearance of the l = 1 triplets. 

.5 Obser v ational evidence of the p-mode splitting asymmetry 

hanks to space telescopes, we have accumulated a significant 
umber of observations of p-mode splittings in δ Sct stars with very 
igh frequency resolution. 
We have collected data on three δ Sct stars and four β Cep stars

rom the literature, all of which exhibit well-measured p-mode 
otational splittings and are slowly rotating ( v sin i � 30 km s −1 ).
etailed information on the stellar parameters and the rotational 

plittings can be found in Table A1 . The slow rotation of these
tars places them within the valid regime for applying second-order 
erturbation to rotation. As previously noted, the dominant effect of 
on-spherical distortion go v erns the p-mode splittings, allowing for 
igure 4. Left: The variation of the splitting asymmetry parameter of dipole mod
symmetric splitting triplets with decreasing asymmetry parameter A . 
he measurement and model comparison of the induced asymmetry. 
he high frequency resolution ensures that the splitting asymmetry 
arameter is determined with e xceptional precision, ev en for these
lowly rotating stars. 

In Fig. 5 , we display all the measurements of p-mode rotational-
plitting asymmetries in the seven stars. It is immediately apparent 
hat almost all the splittings hav e positiv e asymmetry A . The symbols
redominantly occupy the upper half of the plane, with only one
ode as a significant exception. This consistent positivity is a direct

onsequence of the rotational non-spherical distortion. 
In Fig. 6 , we quantitatively illustrate the asymmetry parameter A ,

alculated from models ( l = 1 in black and l = 2 in grey). The model
urv es e xtend from right to the left, reflecting the evolution of the
tar. Models of the same age are connected by dashed lines for five
ifferent epochs: t = 1 . 43 , 3 . 43 , 5 . 43 , 7 . 43 , 9 . 43 × 10 8 yr, with cor-
esponding radii R = 1 . 65 , 1 . 77 , 1 . 925 , 2 . 13 , 2 . 44 R � and rotational
elocities v = 10 . 01 , 9 . 36 , 8 . 66 , 7 . 86 , 6 . 92 km s −1 . Different curves
re for different radial orders, and we plot all the models within the 2 σ
rror boxes of mass and radius. The observed splitting asymmetries 
MNRAS 535, 2927–2938 (2024) 

es A m 1 , −1 for a M = 1 . 8 M �, Z = 0 . 02 MESA model. Right: A series of 
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M

Figure 6. The scaled rotational splitting asymmetries of KIC 10080943, KIC 

11145123, and KIC 9244992 (blue, purple, and red symbols, respectively) 
are superimposed on the theoretical asymmetry parameters for l = 1 modes 
(in black). Each line corresponds to a mode of a different radial order. Models 
co v ering a range of stellar ages are displayed, and the star evolves from the 
right end (ZAMS) to the left. Models at the same age are connected by dashed 
lines for five different epochs. For comparison, the theoretical l = 2 mode 
asymmetries are also depicted (in grey). 
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Figure 7. Summary of factors affecting the l = 1 p-mode asymmetry 
parameter A. The list includes rotational deformation, magnetic field (denoted 
as B fields), resonant mode coupling among m = 1 , 0 , −1, near-degenerate 
mode coupling, and tidal effect in close binaries. 
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n KIC 10080943 (three blue symbols) likely correspond to l = 1,
llowing for direct comparison with the models (black lines). The
tellar parameters of the δ Sct star in KIC100809043 are constrained
o M a = 2 . 0(0 . 1) , R a = 2 . 9(0 . 1), or M b = 1 . 9(0 . 1) , R b = 2 . 1(0 . 2)
n solar units, with rotational velocity v eq = 14 . 4 km s −1 (Schmid
t al. 2015 ). Rather than seeking a single optimal model, we present
arious potential models for a schematic quantitative comparison. 

Although the models are calculated for M = 1 . 9 M � and
 = 10 km s −1 , they can also be used to compare with other δ
cuti stars with different rotation rates. This is because the second-
rder splitting coefficients X 2 and Y 2 are nearly constant (they are
ssentially all close to values from Polytrope models, see Fig. 3 )
nd they are not significantly affected by the small mass differences
n δ Scuti stars. Consequently, the asymmetry parameter A m 1 , −1 is
ssentially proportional to the rotational velocity �rot (equation 11 ).
e can therefore scale the observed asymmetries to match the

xpected values at 10 km s −1 . By assuming v = 1 and 2 km s −1 

or KIC 11145123 and KIC 9244992, we scale their observed
symmetries in Table A1 by factors of 10 and 5. These scaled
symmetries are shown in Fig. 6 . 

Overall, the scaled asymmetries are consistent with the theoretical
redictions. Both the data and the theory show positive asymmetries
f a few per cent. However, there are some outliers, particularly
or KIC 9244992. These discrepancies can be attributed to large
ncertainties in the rotational velocity, potential misidentifications
f pulsation modes, etc. Additional factors can also reconcile the
iscrepancy, which are discussed in the next section. 
We need to point out that our method applies to pressure modes in

hich the rotational deformation is dominant. There can be low-order
 modes in β Cep stars, which tend to be g 3 , g 2 , or g 1 modes. For these
odes, the second-order Coriolis term dominates the second-order

requency correction. 
Note that, observationally, we usually look for almost equally

paced multiplets. When these splittings align with theoretical
redictions based on rotation, they can be used to determine the
otational velocity . Consequently , there is a pronounced bias towards
dentifying rotational multiplets for slowly rotating stars. Indeed, all
he p modes in Fig. 5 have relati vely lo w frequencies, indicating a
NRAS 535, 2927–2938 (2024) 
lightly e volved, slo wer rotation phase of the star. Notably absent
n the literature is the identification of non-equally-spaced rotational
plittings among young stars and higher frequency p-modes. 

 OTH ER  FAC TO R S  AFFECTI NG  T H E  

PLITTING  ASYMMETRY  

n Fig. 7 , we show a schematic summary of the factors that can
ffect the observed p-mode asymmetry. Except for the rotational
eformation, other factors include a magnetic field, resonance mode
oupling, tidal deformation in a close binary, and the near-de generac y
ffect. We discuss each of these factors below. 

.1 Magnetic effect on the splitting asymmetry 

ost δ Sct stars do not exhibit detectable magnetic fields at their
urfaces. The first evidence of a main-sequence magnetized δ Sct star
as reported by Neiner & Lampens ( 2015 ) in HD 188774, where
 magnetic field of < 100 G was inferred from spectro-polarimetric
easurements. Thomson-Paressant et al. ( 2023 ) found no magnetic
eld signatures in a sample of δ Sct/ γ Dor hybrid pulsators. 
Ho we ver, strong magnetic fields may still exist near the core.

bservations of g-mode dominated dipole mixed modes in red giants
ostly sho w negati ve asymmetry, with ω L < ω R , i.e. A < 0 (or a > 0

s in Li et al. 2022 ; Deheuvels et al. 2023 ). A dipole field has to be
ighly inclined (with an inclination angle β > 54 . 7 ◦) for the splitting
o e xhibit positiv e asymmetry ( A > 0), as shown by Mathis & Bugnet
 2023 ) and Bharati Das et al. ( 2024 ). This prominent feature of
e gativ e asymmetry has been employed to infer an averaged strength
f 300–100 kG for the radial components of the magnetic field. 
For p modes or p-dominated mixed modes in main-sequence stars,

he indirect effects of a magnetic field are anticipated to be larger than
he direct effects (Mathis et al. 2021 ). The influence of Lorentz force
n the stellar equilibrium structure, and consequently on the mode
ropagation and eigenfrequencies needs to be considered (Gough &
hompson 1990 ). The relative frequency shift of p-mode scales as
 v A /c) 2 (the ratio of Alfven velocity to sound speed). Since p-mode
requency is substantially higher than the Alfven frequency, this
ffect is considerably smaller than that caused by rotational non-
pherical distortion. We conduct an order of magnitude estimation
f the magnetic frequency shift for the l = 1 splittings, following
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athis et al. ( 2021 ). Assuming the magnetic field axis is aligned
ith the pulsation axis, 

δω mag 

ω 

≈ D lm

2 

∑ 

i 

∫ R 
0 ( v A /c) 2 d r/c ∫ R 

0 d r/c 
, (13) 

here D lm 

= ∫ π
0 sin 2 θ | Y 

m 

l | 2 sin θ d θ and the Alfv en v elocity v A =
 

i / 
√ 

2 πρ and ( i = θ, φ). We use a dipole field with a typical mean
alue of B ≈ 10 5 G (Bugnet et al. 2021 ), which aligns with the
easured strength in the core of red giants and near the core of the
 star HD 43317 (Lecoanet, Bowman & Van Reeth 2022 ) under

he assumption of magnetic flux conservation. We find the frequency 
hift for a 1.9 M �, R = 2 . 1 R � model with oscillation frequency f =
5 d −1 (KIC 10080943) to be δω/ω ≈ 10 −6 . Thus, for the low-order p
odes in KIC 10080943, the magnetic field-induced frequency shifts 

re much smaller than the second-order rotational ef fect. Ho we ver,
or stars with high-order p modes (e.g. the Sun and high-frequency δ
cuti stars), the magnetic frequency shifts can be comparable to the 
econd-order rotational effect (Bharati Das et al. 2023 ). A detailed 
nalysis must be performed. 

.2 Binary effect on the asymmetry A 

e expect a larger splitting asymmetry in close binaries due to 
idal distortion, in addition to the rotational deformation. Following 
aio ( 1981 ), we can estimate the effect of tidal distortion on the
scillation frequencies for very close binaries with synchronized 
rbits. The second-order frequency correction term is now s( X 2 +
 

2 Y 2 ), where s = 

(
1 + 3

2
q

1 + q

)
, q = M 2 /M 1 , with s = 1 being the

ingle star scenario. Thus, the corresponding theoretical splitting 
symmetry contains an additional factor s: 

 = −s 

(
�rot

ω 0 

)
Y 2 

(1 − C nl ) 
. (14) 

Since s > 1, we expect that the acoustic mode asymmetry A
ecomes larger in close binary systems with significant tidal dis- 
ortion. Ho we ver, none of our stars are in very close binaries with
ynchronized rotation, making this theory not directly applicable to 
he stars studied in this paper. KIC 10080943 is a binary, and it has
n eccentric, 15 d orbit. θ Oph is in a triple system, with the inner
inary in an eccentric, 56.7 d orbit. The effect of tidal distortion
ay be significant near periastron passage. A detailed calculation is 

eyond the scope of this paper. 

.3 Resonant mode coupling among m = −1 , 0 , 1 triplets 

ode coupling among the modes in the triplets satisfies the four-
ode coupling resonance condition 2 ω m = 0 ≈ ω m = 1 + ω m =−1 . 2 We 

enote the frequency detuning from this exact resonance by δω. The 
ehaviour of coupled-mode system can be described by the ampli- 
ude equation framework with third-order non-linearity (Goupil & 

uchler 1994 ; Buchler, Goupil & Serre 1995 ; Now ak owski &
ziembowski 2001 ). 
Stationary solutions and instabilities of this 1:1:1 resonance system 

av e been e xtensiv ely studied (Buchler et al. 1995 ). According
o Goupil, Dziembowski & Fontaine ( 1998 ), there are three dis-
inct regimes, depending on the frequency detuning δω and linear 
rowth/damping rate of the m = 0 mode γ0 . First, the system can
each a stationary state with constant amplitude and phase (fre- 
uency) if δω � γ0 . This frequency/phase locking regime will induce
 This is a cubic-order four-mode coupling with two same m = 0 modes. 

(  

e
c  
qually-spaced splittings ( ω L = ω R ), with asymmetry A = 0. The
econd regime involves modulation if δω � γ0 , corresponding to pe-
iodic solutions. The predicted splittings are thus periodic. In the third
egime, if the detuning is much larger than the growth rate, the system
s essentially non-resonant, and modes can be treated independently. 

It is likely that the six δ Sct systems we studied mostly fall into the
on-resonant or modulation regimes, since it requires very fine fre- 
uency detuning δω for the frequency-locking regime condition to be 
atisfied. It would be enlightening to study the amplitude/phase vari- 
tions of these l = 1 triplet and l = 2 multiplets observationally. Ob-
erved amplitude and phase (frequency) modulation of m = 1 , 0 , 1
odes in subdwarf B stars and white dwarfs have been reported by
ong et al. ( 2016 ), which corresponds to the modulation regime. 
Finally, if the pulsation axis is misaligned with the rotation axis,

he observed oscillation mode in the Fourier spectrum will exhibit 
ide peaks separated by the rotational frequency. This applies to 
he oblique pulsator roAp stars (Kurtz 1982 ), as well as the tidally
erturbed close binary systems (Fuller et al. 2020 ; Handler et al.
020 ; Van Reeth et al. 2023 ). In these cases, the asymmetry parameter
 is zero. 

.4 Near-degeneracy mode coupling effect 

his effect occurs between modes with spherical degrees l and l + 2
ith the same m (extending to l + 4 if the cubic order is considered).

t becomes stronger for higher radial orders and for faster rotation.
he appearance is that if the two modes are too close, the y be gin to

epel each other. The p-mode positive asymmetry A can be reduced
r even inverted to negative values (e.g. Fig. A1 ). This coupling can
trongly alter the radial mode and l = 2 mode frequencies of higher
rder. This phenomenon requires a technical description therefore 
e detail the rotational near-de generac y mode coupling effect and
o w it af fects the mode frequenc y, large frequenc y separation, and
plitting asymmetry in the Appendix. 

 DI SCUSSI ON  A N D  F U T U R E  PROSPECTS  

Scuti stars are typically fast rotating, and thus, the effects of
otational non-spherical distortion are crucial in the analysis of their 
scillation frequencies. Traditionally, nearly equally spaced peaks 
n Fourier spectra are identified as possible rotational splittings. 
everaging second-order perturbation theory, our research aims to 
id observers in detecting and characterizing splittings in the data, 
 xtending be yond nearly equally spaced peaks to include asymmetric
nes as well. 
A large sample of δ Sct and β Cep stars with precisely measured

scillation frequencies and amplitudes from TESS has become 
vailable (Hey & Aerts 2024 ). Rotational splittings can be identified,
nd the asymmetry can be extracted. It is desirable to verify the
orrelations predicted in this work. It is also important to study
he mode excitation preferences, mode energy distribution in the 
otational splittings (Lee & Baraffe 1995 ). On the theoretical side,
nvestigating subtle cubic-order effects and both radial and latitudinal 
ifferential rotation remains valuable (Ouazzani, Dupret & Reese 
012 ; Hatta et al. 2019 ). 
There are many δ Sct or β Cep stars in eclipsing binaries 

Gaulme & Guzik 2019 ). The p-mode asymmetry could potentially 
e used to infer the rotational and tidal distortion of the star. Some
tars have already demonstrated evidence of rotational splittings 
Southworth, Murphy & P avlo vski 2023 ). Ho we ver, it may not be
asy to find many systems in which p-mode splitting asymmetry 
an be measured, since the m = 0 modes in the edge-on systems
MNRAS 535, 2927–2938 (2024) 
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ave lower visibility due to geometric cancellation. In some tidally
erturbed binaries, the pulsation axis does not align with the rotation
xis. Orbital modulation of oscillation amplitudes creates side
eaks that complicate the measurement of true rotational splitting
symmetry. 

F or fast rotators, perturbativ e treatment becomes inadequate,
ecessitating full two-dimensional calculations. Two-dimensional
tellar structure models, such as those computed with ESTER
Rieutord, Espinosa Lara & Putigny 2016 ), and oscillation codes
ike TOP (Reese et al. 2006 ) and ACOR (Ouazzani et al. 2012 ),
ave been employed to model a select few δ Sct stars (Bouchaud
t al. 2020 ; Reese et al. 2021 ). This approach is now be-
ng extended to β Cep stars (Mombarg, Rieutord & Espinosa
ara 2023 ). 
In a future publication, we plan to present a finer grid of

scillation frequencies with second-order perturbation and near-
e generac y effect. This grid will be applied to the seismic modelling
f young δ Sct stars characterized by very regular patterns and
learly identified modes. With continuous impro v ements in both
bservational capabilities and theoretical models, the field of p-
ode asteroseismology for fast-rotating stars is poised for significant

dvancements. 

 C O N C L U S I O N S  

e examined the rotational splitting asymmetry of pressure modes
n δ Sct and β Cep stars, detailing the theoretical expressions for
he second-order perturbati ve ef fects on the splittings (Section 2 ),
omparing these with observations (Figs 5 and 6 ), and considering
ther influencing factors (Fig. 7 ). 
We summarize our results as follows: 
(1) The pressure-mode frequency shift due to rotation is dom-

nated by the non-spherical distortion, which produces positive
symmetry A > 0 for m = −1 , 0 , 1 modes (Figs 1 and 4 ). This
ositive asymmetry tends to be more pronounced for higher order
odes. 
(2) The second important factor affecting rotational splitting

symmetry is rotational near-de generac y mode coupling between
odes with l differing by two. This effect is more significant for faster

otating stars. The result is to reduce the positiveness of asymmetry A ,
nd even make A negative for higher radial order n modes (Fig. A1 ).

(3) Our collected δ Sct and β Cep stars are slowly rotat-
ng with relati vely lo w radial order p modes. Thus, we ex-
ect the dominant factor is the non-spherical rotational distortion
hich induces positive asymmetry, in agreement with observations

Fig. 5 ). 
(4) A wealth of stars showing rotational splittings is present in

he Kepler and TESS data sets. We predict the following trends
n the splittings asymmetry. There would be a correlation between
he splitting asymmetry A ’s positiv eness/ne gativ eness and the split-
ing magnitude (proportional to rotation rate). Slow rotators and
ower-frequency p modes typically show small positive asymmetry,
ith this positiveness increasing with oscillation frequency (Figs 4

nd 6 ). Very low frequency modes will show A much closer
o zero. Conversely, faster rotating stars and higher frequency p
odes will show smaller positive A and ev en ne gativ e asymme-

ries. It will be interesting to check this correlation with more
ata. 
(5) We expect the magnetic field will generally reduce the posi-

iveness of asymmetry parameter if the field is not very misaligned.
ut it is not the most important factor, given a typical field strength
f 10 4 –10 5 G near the conv ectiv e-core boundary, and the induced
NRAS 535, 2927–2938 (2024) 
requency shift is at least one order of magnitude smaller than the
forementioned second-order ef fect. Ho we ver, if the non-spherical
istortion and near-de generac y effects are accurately modelled and
emo v ed, it may become feasible to detect magnetic splittings in the
esidual signal, which should scale with the p-mode frequency as
 ω 

1 (Bugnet et al. 2021 ). 
(6) Resonant mode coupling among the m = −1 , 0 , 1 modes

ould be significant if the frequency detuning is small enough.
e may expect periodic modulation in the splitting frequencies,

nd ev en frequenc y-locking (asymmetry A = 0). Additional stellar
eformation from the tidal potential of the companion star is
xpected to increase the p-mode splitting asymmetry. It would be
esirable to examine these splittings in an ensemble of close binaries
ith p-mode pulsators and compare them to those of singular-star
ulsators. 
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PPENDI X  A :  N E A R - D E G E N E R AC Y  EFFECT  

or a rotating star with spin frequency �rot , when two oscillation
odes are close to each other ω a ≈ ω b , | ω a − ω b | ≤ �rot , and if they

lso satisfy the selection rules l a = l b or l a = l b ± 2, and m a = m b 

Su ́arez et al. 2006 ), the rotational near-de generac y mode coupling
ffect becomes significant. The mode eigenfunctions are represented 
y a sum of both modes, and new eigenfrequencies are derived
rom a quadratic equation. Visually, this appears as the two modes
eginning to repel each other. Daszy ́nska-Daszkiewicz et al. ( 2002 )
xplored the impact of near-degeneracy on amplitude ratios and 
hase differences in multicolour photometry. Su ́arez, Garrido & 

oya ( 2007 ) analysed how this effect modifies the Petersen diagram
Oscillation Period ratio versus Period) of Cepheids and later applied 
t to β Cep stars Su ́arez et al. ( 2010 ). Here, we focus on how this
ffect alters the splitting asymmetry A and the large frequency 
eparation. 

We calculate the oscillation frequencies at dif ferent le vels of
ophistication: 
ω 0 

ω lin = ω 0 + ω 1 

ω 2nd = ω 0 + ω 1 + ω 2 

ω 2nd coup = ω 0 + ω 1 + ω 2 + ω 

(2) 
ab , 

which corresponds to the non-rotational frequency, the linear 
nd second-order corrected frequencies, and the second-order cor- 
ected frequency with near-degeneracy mode coupling, respectively. 
he meaning of these frequencies follows the same notation in 
ection 2 . 
Fig. 6 of Zwintz et al. ( 2014 ) presents a ‘fork’ plot of oscillation

requencies for a M = 1 . 7 M � model across these levels of complex-
ty (see also P amyatn ykh 2003 ). The y label the ω 2nd as ‘non-spherical
istortion’ and ω 2nd coup as ‘three-mode coupling’. 3 For δ Sct stars, 
f ω n, 0 denotes the radial mode ( n = 0) frequency with radial order
 , we find a mode frequency proximity relation ω n, 0 ≈ ω n −1 , 2 . The
ifference is termed the ‘small frequency separation’, and denoted 
y δ02 . For high-order p modes, these mode pairs draw even closer, as
mplied by the asymptotic relation ω n,l+ 2 ≈ ω n −1 ,l . For l = 1 modes,
he closest l = 3 modes are further away compared to the l = 0 , 2
ase, thus δ13 > δ02 . 

Note that we consider the second-order near-de generac y fre- 
uency correction ω 

(2) 
ab 

4 to these mode pairs, both with azimuthal 
 = 0. 
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Table A1. Summary of stellar parameters and splittings of seven δ Sct or β Cep stars. 

Name Reference Type 

KIC 10080943 Schmid et al. ( 2015 ) δ Sct/Binary – –
M (M �) R ( R �) v sin i (km s −1 ) T eff (K) 

star a 2 . 0 ± 0 . 1 2 . 9 ± 0 . 1 19 . 0 ± 1 . 3 7100 ± 200 
star b 1 . 9 ± 0 . 1 2 . 1 ± 0 . 2 14 . 4 ± 1 . 4 7480 + 180

−200
Frequency ( m = 0) �f − �f + Asymmetry ( A m 1 , −1 ) 

12.76334 0.13362(2) 0.127202(5) 0.02460(8) 
15.10724 0.12312(1) 0.119406(13) 0.01531(8) 
19.51028 0.13448(4) 0.12860(2) 0.02235(18) 

KIC 9244992 Saio et al. ( 2015 ) δ Sct – –
M (M �) R ( R �) v sin i (km s −1 ) T eff (K) 

1.45 2.03 <6 7000 + 300
−100

Frequency ( m = 0) �f − �f + Asymmetry ( A m 1 , −1 ) 
12.906366 0.013838(9) 0.013692(7) 0.0053(4) 
13.995924 0.015763(73) 0.015122(71) 0.0207(33) 
14.061786 0.018019(77) 0.016755(56) 0.0364(27) 
14.806054 0.014411(105) 0.014412(69) 0.000(4) 
15.604826 0.014735(112) 0.014549(13) 0.0063(59) 
16.404983 0.015017(23) 0.0150795(155) −0.0021(9)

KIC 11145123 Kurtz et al. ( 2014 ), table 2 δ Sct – –
Partially shown M (M �) R ( R �) P rot (d) T eff (K) 

≈1 . 46 ≈2 . 24 ∼100 8050 ± 200 
Frequency ( m = 0) �f − �f + Asymmetry ( A m 1 , −1 ) 

18.3660001 0.0101696(14) 0.0101209(14) 0.00240(96) 
22.0018915 0.00856(3) 0.00853(3) 0.0017(24) 
23.5160925 0.00990(19) 0.00976(19) 0.0069(136) 
23.8185035 0.010213(13) 0.010179(91) 0.0017(78) 
24.4192854 0.009887(6) 0.00988(8) 0.00035(495) 

HD 192575 Burssens et al. ( 2023 ) β Cep – –
M (M �) R (R �) v sin i (km s −1 ) T eff (K) 

12 . 0 ± 1 . 5 ∼9 . 1 + 0 . 81 . 7 27 + 6−8 23900 ± 900 
Frequency ( m = 0) �f − �f + Asymmetry ( A m 1 , −1 ) 

6.696791(5) 0.170217(7) 0.171786(6) 0.004589(3) 
6.46341(1) 0.16731(2) 0.17058(2) 0.00968(8) 

HD 129929 Aerts et al. ( 2004 ) β Cep – –
M (M �) R ( R �) v sin i (km s −1 ) T eff (K) 
9.0–9.5 − ≤13 ∼23 990

Frequency ( m = 0) �f − �f + Asymmetry ( A m 1 , −1 ) 
6.97831(1) 0.012133(30) 0.012126(30) 0.00029(58) 

ν Eridani Handler et al. ( 2004 ) β Cep – –
M (M �) R ( R �) v sin i (km s −1 ) T eff (K) 
∼9 . 86 ∼6 . 28 ≈20 ∼22 180 ± 100

Frequency ( m = 0) �f − �f + Asymmetry ( A m 1 , −1 ) 
5.63716(2) 0.01710(3) 0.01677(3) 0.0097(13) 

θ Oph Briquet et al. ( 2007 ) β Cep/triple – –
M (M �) R ( R �) v eq (km s −1 ) T eff (K) 
8 . 2 ± 0 . 3 5 . 0 ± 0 . 4 29 ± 7 22 260 ± 280 

Frequency ( m = 0) �f − �f + Asymmetry ( A m 1 , −1 ) 
7.8742(20) 0.1083(30) 0.0992(30) 0.044(20) 
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Focusing on the l = 1 and 2 modes shown in Fig. 6 of
wintz et al. ( 2014 ), linear frequency corrections strictly re-
ult in symmetric splittings ( A = 0). Second-order corrections
enerate positive asymmetric splittings, with ω L larger than
 R . With the near-de generac y effect included, the l = 2 , m = 0
odes begin to repel the closest l = 0 modes, shifting the l =
 modes to higher frequency and the l = 2 , m = 0 modes to
ower frequency, thus reducing the splitting asymmetry A m 1 , −1 .
he splitting asymmetry is strongly affected for higher n
NRAS 535, 2927–2938 (2024) 

odes. T
The abo v e results can also be observed in Fig. A1 , where we em-
loy a model with M = 1 . 8 M �, v eq = 80 km s −1 . We demonstrate
ith the echelle diagram to better show the changes of frequency

egularities. We measure the �ν by performing a linear fit to radial
odes ranging from n = 5 to 8 (Murphy et al. 2023 ): ω( l = 0) =

 n + ε) �ν. 
In the echelle diagram in Fig. A1 , we use three different large

requency separations calculated by performing the abo v e fitting to
 0 , ω 2 nd , and ω 2nd coup (denoted by ν0 , ν2nd , and ν2nd coup in the figure).
his yields �ν = 6 . 708 , 6 . 706 , 6 . 815 d −1 , respectively. 
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Figure A1. Second-order rotational effect on the frequencies for a M = 1 . 80 M �, Z = 0 . 02, v eq = 80 km s −1 model. ν0 , νlin , ν2nd , ν2nd coup denote frequencies 
with no rotational correction, linear correction, second-order correction, second-order correction with near-de generac y coupling, respectiv ely. Upper: Echelle 
diagram of l = 0 , m = 0 and l = 2 , m = 0 modes, connected by solid and dotted lines, respectively. Black, blue, and red symbols represent the νlin , ν2nd , 
ν2nd coup , respectively. Note that the m = 0 modes are the same in the no-rotation ν0 and linear treatment νlin . The right-hand panel shows the variation of small 
separation δ02 (in d −1 ) as a function of frequency. Middle: Rotational splitting of l = 2 modes. The linear splitting νlin and second-order splitting ν2nd are 
shown. The right-hand panel shows the asymmetry parameter A m 1 , −1 . Lower: Similar to the middle plot but for ν2nd and ν2nd coup . The corresponding asymmetry 
parameters are shown in the right-hand panel. Note that the A m 1 , −1 from ν2nd coup (red symbols) changes the sign for higher-order modes. 
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In the upper left-hand panel for the radial ridges l = 0, we
an see that compared to no-rotation ridge based on ω 0 , the
 2nd coup radial ridge shifts to the left significantly (red versus 
lack). A similar shift occurs for l = 2 , m = 0 ridge, but it is more
ronounced. 
In the middle left-hand panel, we display only the l = 2 ridges. The

lack and blue symbols represent ω lin and ω 2nd , respectively. Rotation 
plits the ridges into five different ridges, with m = −2 , −1 , 0 , 1 , 2
rom left to right, and open symbols are for m �= 0 modes. It is
vident that the black ridges are symmetric and the blue ridges
re asymmetric, with larger spacing for the retrograde modes 
 = −2 , −1. The middle right-hand panel shows the correspond-

ng asymmetry parameter A m 1 , −1 , noting that A = 0 for ω lin and
 > 0 for ω 2nd . The asymmetry parameter is larger for larger
 modes. 
In the lower left-hand panel, we again show the l = 2 ridges only

ut now compare ω 2nd (blue, same we in the middle left-hand panel)
ith ω 2nd coup (red). Focusing on the l = 2 , m = 0 (filled squares),
hen near-de generac y mode coupling is included, the ω 2nd coup ridge
n red shifts to the left substantially. Note that the near-de generac y
ffect generally does not alter the m �= 0 mode frequencies (open
ymbols). The apparent shift is due to the use of different large
eparations in the echelle plot. 

As shown in the bottom panel, the ω 2nd all show positive asym-
etry in the l = 2 multiplets (blue squared), when near-de generac y

ffect is included ( ω 2nd coup ), the asymmetry A m 1 , −1 becomes ne gativ e
or p mode with n > 4. 

The frequency difference between the closest l = 0 and 2 modes
 δ02 ) decreases as n increases, suggesting a stronger near-de generac y
ffect for higher-frequency radial modes. The frequency difference 
etween l = 1 and 3 modes is much larger compared to the l = 0
nd 2 modes. For such modes, second-order non-spherical correction 
ominates o v er near-de generac y effects. 
Asteroseismic modelling has become feasible for certain young 

Sct stars after the disco v ery of this class of nice δ Sct stars
ith regular patterns. The second-order effect and near-degeneracy 
MNRAS 535, 2927–2938 (2024) 
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re typically not included, which renders significant differences in
he result. Briefly, the o v erall effect of rotation, with second-order
erturbation and near-de generac y, is to shift the m = 0 modes to
igher frequency, increase the radial-mode ridge curvature parameter
 1 , enlarge the large frequency separation �ν, and reduce the echelle
idge-offset parameter ε. In the example shown in Fig. A1 , transiting
rom no rotation ( ν0 ) to second-order rotational treatment with near-
NRAS 535, 2927–2938 (2024) 
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e generac y coupling ( ν2nd coup ), �ν is increased by about 0.1 d −1

from 6.689 to 6.800 d −1 ). The d 1 parameter increases from 0.46 to
.48, and the corresponding ε shifts from 1.624 to 1.558. We defer
he detailed asteroseismic modelling results to a future paper. 
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