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ABSTRACT
Stellar models rely on a number of free parameters. High-quality observations of eclipsing
binary stars observed by Kepler offer a great opportunity to calibrate model parameters for
evolved stars. Our study focuses on six Kepler red giants with the goal of calibrating the
mixing-length parameter of convection as well as the asteroseismic surface term in models.
We introduce a new method to improve the identification of oscillation modes that exploits
theoretical frequencies to guide the mode identification (‘peak-bagging’) stage of the data
analysis. Our results indicate that the convective mixing-length parameter (α) is ≈14 per cent
larger for red giants than for the Sun, in agreement with recent results from modelling the
APOGEE stars. We found that the asteroseismic surface term (i.e. the frequency offset between
the observed and predicted modes) correlates with stellar parameters (Teff, log g) and the
mixing-length parameter. This frequency offset generally decreases as giants evolve. The two
coefficients a−1 and a3 for the inverse and cubic terms that have been used to describe the
surface term correction are found to correlate linearly. The effect of the surface term is also
seen in the p–g mixed modes; however, established methods for correcting the effect are not
able to properly correct the g-dominated modes in late evolved stars.

Key words: stars: evolution – stars: oscillations.

1 IN T RO D U C T I O N

Stellar models describe internal structures and evolutionary states
of stars. The basic equations were established decades ago and are
able to reproduce the general features of stars. However, current
theoretical models are commonly working with a number of free
parameters. The atmospheres of stars can be measured by photom-
etry and spectroscopy, while the stellar masses, ages, and internal
structures are mostly provided by models. Thus, both observational
and theoretical calibrations are required for a proper understand-
ing of stars. Free parameters, however, undermine the reliability of
theoretical models and increase the true uncertainties of modelling
results. These parameters need calibrations for different types of
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stars, but unfortunately, theoretical tests beyond the solar case are
sparse, especially for red giants.

Among Kepler red giants, a few have been identified as eclips-
ing binaries (EBs). Combining eclipses with radial velocities from
spectra allows masses and radii of both companions of the binary
to be determined from dynamical modelling (Frandsen et al. 2013;
Gaulme et al. 2016), providing the key constraints for stars. The
structures and evolutionary histories of detached companions are
similar to that of single stars, and hence they are a good population
for testing the model parameters. Red giants have helium cores and
burn hydrogen in a surrounding shell. Characteristics of the core
decide the temperature of the H-burning shell and hence determine
the total luminosity. Tight constraints on the physics of the models
for red giants would require measurements of the core (Lagarde
et al. 2015). Modelling the red giants 30 with precise measurements
of the solar-like oscillations by Kepler can provide powerful con-
straints on stellar properties (Jiang et al. 2011; Pérez Hernández
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et al. 2016). The acoustic modes mainly probe the envelope, but
the mixed modes caused by the p- and g-mode coupling probe the
properties of the core (Bedding et al. 2011; Mosser et al. 2014;
Lagarde et al. 2016). Thus, red giants in binary systems with well-
defined oscillating patterns offer an important opportunity to test
free parameters in stellar models.

Low-mass dwarfs and red giants have convective envelopes,
where the energy transport is dominated by convection. Simulat-
ing the real dynamic process for the whole region comes with great
difficulties in computation; hence, a mixing-length approximation
is adopted in stellar evolution models. The basic idea of the mixing-
length theory is to define a characteristic length for a fluid parcel,
over which it maintains its original properties before mixing with the
surrounding fluid. The mixing-length parameter (α ≡ l/Hp) charac-
terizes this length in the stellar model, where l is the mixing length
and Hp is the pressure scale height. For low-mass red giants, the
value of α mainly correlates with the total radius and the structure
of the envelope. With the independent measurements of masses and
radii, as well as the internal structures probed by asteroseismology,
this parameter could be constrained properly by seismic red giants
in EBs.

The surface term is the systematic offset of individual frequencies
between models and observations and arises from poor modelling of
the near-surface layers (Christensen-Dalsgaard, Däppen & Lebre-
ton 1988; Christensen-Dalsgaard et al. 1996; Christensen-Dalsgaard
& Thompson 1997). Roxburgh & Vorontsov (2003) suggested us-
ing the ratio of small to large separations to fit models to observa-
tions. The advantage of this method is avoiding the uncertainty of
the outer layers since the ratio is mainly determined by the inte-
rior structure. Kjeldsen, Bedding & Christensen-Dalsgaard (2008)
fitted oscillation frequencies of the Sun and three well-identified
Sun-like dwarfs with the surface term corrected by a power law.
The approach showed good agreement and has been widely applied
to other stars. A later update of the surface-correction formulas
given by Ball & Gizon (2014) took mode inertia into account and
modelled the surface effects by terms proportional to ν−1/I and
ν3/I based on the discussion of potential asymptotic forms for fre-
quency shifts by Gough (1990). Sonoi et al. (2015) further applied
3D hydrodynamical simulations to derive expressions for the sur-
face correction. The surface term is strongly correlated to surface
properties, such as effective temperature and surface gravity. It also
relates to model parameters, especially the mixing-length parame-
ter, that determine the structure of the envelope. For this reason, the
surface term calibrated to the Sun does not apply directly to other
stars and all current methods introduce free parameters because of
the uncertainty of the surface layers. The seismic red giants in EBs,
as mentioned above, provide us some of the best constrained stars
apart from the Sun and they can be the ideal sample for studying
the surface term in evolved stars.

In this work, we selected six Kepler red giants in EBs with de-
tectable solar-like oscillations from Gaulme et al. (2016) for cali-
brating the mixing-length parameter and the surface term. We used
4 yr of Kepler data to get seismic frequencies and then generate
theoretical models for each star. All available observed constraints,
namely mass, radius, atmospheric parameters, and stellar oscilla-
tions, are used for the calibrations.

2 Kepler E B TA R G E T S

2.1 Target selection

In this work, we used red giants in detached EBs from Gaulme et al.
(2016), who used photometric data from the Kepler mission and

spectra obtained by the 3.5 m ARC telescope at APO (ARCES) and
the Sloan Digital Sky Survey (APOGEE) for measuring eclipses
and radial velocities of the binaries. These binary systems each
comprise one dwarf and one giant ranging from 1.0 to 1.6 M�.
The giants are slightly more massive than their dwarf companions.
The companions are sufficiently distant for them to evolve inde-
pendently, because the separations are roughly 10–20 times the
radii of the primary stars. From the sample, we selected six red
giants showing high-S/N solar-like oscillations as our targets. Fun-
damental stellar parameters of the selected stars are summarized in
Table 1. Obvious systematic differences can be seen in the effec-
tive temperatures and metallicities between ARCES and APOGEE.
Because both observations were based on high-resolution spectra,
we used their average Teff and [Fe/H] and the mean uncertain-
ties of the two parameters in this work, which were also given in
Table 1.

2.2 Stellar oscillation and data analysis

We used Kepler long-cadence data and the SYD pipeline (Hu-
ber et al. 2009) to extract solar-like oscillations of the six red
giants. The reduction steps for preparing light curves include
cutting out safe modes, correcting the jumps, removing long-
period variation by a high-pass filter and the eclipses using
the orbital periods in Gaulme et al. (2016). The top panel in
Fig. 1 includes the normalized light curves of KIC 9970396 af-
ter the reduction. We then calculated power spectra, estimated
the region of power excess, fitted to and corrected for the back-
ground on power spectra. The bottom panel in Fig. 1 shows
the background-corrected power spectra of KIC 9970396. It
should be noted that the unit S/N indicates the ratio between the
power density of stellar oscillations and the power density of the
background.

Because the long-term variations (from eclipses, instrumental
drifts, and stellar spots) and the granulation background had been
removed from the power spectra we used to study stellar oscilla-
tion, the noise is mainly white. The power spectrum of white noise
follows a chi-square distribution with 2 degrees of freedom in the
frequency domain (Chaplin et al. 2002). We used the frequency
bins from 5 to 290 μHz to calculate the probability density function
(PDF) of the power density, which can be seen in the bottom-right
panel in Fig. 1. The larger the power excess over the white noise
distribution, the more likely that power comes from stellar signal.
For the PDF of a given spectrum, a cumulative probability can be
set up to separate the signal and the noise. And we used a 95 per
cent threshold. To evaluate the probability of each frequency bin
being signal statistically, we applied Monte Carlo simulations and
produced 1000 simulated power spectra by multiplying the power
spectrum by a random noise distribution following χ2 with 2 de-
grees of freedom. For each simulated power spectrum, we used the
95 per cent threshold and marked every frequency bin by a flag of
‘signal’ or ‘noise’. Lastly, each frequency bin on a power spectrum
had 1000 flags. And the percentage of the ‘signal’ flags was used to
describe its signal probability (Psignal hereafter). In the bottom-left
panel in Fig. 1, the colour code showsPsignal of the frequency bins in
νmax ± 5�ν of KIC 9970396. After the above analysis, the weight
of each frequency bin in the following process could be evaluated
by its Psignal.

Peak bagging of individual frequencies was then carried out.
Low-degree p modes are essentially equidistant in frequency, so for
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Table 1. Observations of the six Kepler EBs. The first column gives the KIC number; the second to fourth columns include atmospheric parameters;
the sixth to eighth columns show the mass, radius, and surface gravity obtained by Gaulme et al. (2016) from dynamical modelling; and the last two
columns list the asteroseismic observables (�ν and νmax) extracted by the SYD pipeline (Huber et al. 2009).

Star Spectroscopic parameters Dynamical modellinga Asteroseismologyb

Teff log g [Fe/H] Ref. M R log g �ν νmax

(K) (dex) (dex) (M�) (R�) (dex) (µHz) (µHz)

KIC 4663623 4812(92) 2.7(2) − 0.13(06) ARCES 1.4(1) 9.8(3) 2.60(3) 5.18(1) 53.5(7)
4803(91) 2.7(1) 0.16(04) APOGEE
4808(92) – 0.01(05) Adopted

KIC 5786154 4747(100) 2.6(2) − 0.06(06) ARCES 1.06(6) 11.4(2) 2.35(2) 3.51(1) 30.1(4)
4747(100) – − 0.06(06) Adopted

KIC 7037405 4516(36) 2.5(2) − 0.34(06) ARCES 1.25(4) 14.1(2) 2.24(1) 2.78(1) 22.2(7)
4542(91) 2.3(1) − 0.13(06) APOGEE
4529(64) – − 0.24(06) Adopted

KIC 8410637 4699(91) 2.7(1) 0.16(03) APOGEE 1.56(3) 10.7(1) 2.57(1) 4.63(1) 46.3(9)
4800(80) 2.8(2) 0.08(13) Frandsen et al. (2013)
4750(86) – 0.12(08) Adopted

KIC 9540226 4692(65) 2.2(2) − 0.33(04) ARCES 1.33(5) 12.8(1) 2.349(8) 3.19(1) 27.8(4)
4662(91) 2.5(1) − 0.16(08) APOGEE
4677(78) – − 0.25(06) Adopted

KIC 9970396 4916(68) 3.1(1) − 0.23(03) ARCES 1.14(3) 8.0(2) 2.69(2) 6.30(1) 63.8(5)
4789(91) 2.7(1) − 0.18(07) APOGEE
4853(80) – − 0.20(05) Adopted

Notes.aGaulme et al. (2016).
bThis work.

Figure 1. Top: the normalized flux of the Kepler light curve of KIC 9970396. Bottom left: background-corrected power spectrum of solar-like oscillations of
KIC 9970396 generated by SYD pipeline (Huber et al. 2009). Colour code indicates the probability of each frequency bin being signal (Psignal). Bottom right:
the probability distribution of the power density.

a given degree (l) with a separation of �ν, the mode frequency is
approximated by

νnl ≈ �ν

(
n + l

2
+ ε

)
− δnl, (1)

where n is the radial order, ε is a parameter related to stellar surface
features, and δnl is the small separation. The large separations for the

stars were calculated by the SYD pipeline. And the small separations
are roughly measured by hand in the échelle diagram. We got the
first guesses of the modes for l = 0 and 2 by this function. The
l = 1 modes couple to g modes more strongly, and hence multiple
modes were seen for a given order (n) in the power spectrum. We
measured the median frequency of the multiple l = 1 peaks as the
initial guess for the most p-like mode. For a proper estimation of
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Figure 2. Top: two typical cases of probability distributions of individual
l = 0 modes based on 1000 Monte Carlo simulations. Left: single peak (high
S/N); right: multiple peaks (low S/N). Blue solid lines indicate the Gaussian
profile for fitting the distributions. Red error bars in the upper panels are
estimates of the mode frequencies and their uncertainties. Bottom: original
power spectrum corresponding to the two cases.

individual modes, we applied the same Monte Carlo simulations
as mentioned above and generated 1000 simulated power spectra
for each star. The least-squares method was then used to fit the
individual mode in each simulated power spectrum. A Lorentzian
function was used for fitting the modes for l = 0 and 2. For fitting
the most p-like modes for l = 1, we used a Gaussian function to fit
the shape of the power excess. The Lorentzian/Gaussian function
had three free parameters, namely the centre, the amplitude, and the
width. We fixed the baseline as 1.0, which is the median value of
the noise in the unit of S/N. The frequency range for fitting l = 0
and 2 modes was set as ±0.6δν02 centred at the initial guesses. The
fitting region for l = 1 modes varied for different cases and was
determined through visual inspection. We also adopted the Psignal

as the weight of every frequency bin when calculating the least-
squares of a fitting. First, signal deserves larger weight than noise.
Secondly, this fitting method could get reasonable width for the
radial modes with low S/N. For some cases when the power excess
of a mode shows multiple peaks in the power spectra (e.g. the l =
0 mode shown in the bottom-left panel in Fig. 2), the least-squares
method without taking into account the weight may fit one of these
peaks instead of fitting all of them, giving an unrealistically narrow
width for the mode.

After the fitting process above, each mode was measured (the
centre of the Lorentzian profile) on the 1000 simulated power spec-
tra. Then a probability distribution of these frequencies could be
obtained for estimating a mode. Two typical examples of the prob-
ability distribution are given in Fig. 2. For a mode with high S/N
(bottom-left panel), a single clear distribution can be obtained (top-
left panel). We fitted this probability distribution with a Gaussian
profile, and then adopted the centre and 1σ deviation as the esti-
mate of the mode frequency (shown by the red error bar). At low
S/N (bottom-right panel), a mode tends to get multiple solutions
(top-right panel). For this case, we first fitted each of these solu-
tions individually by a Gaussian (blue solid lines) and then fitted

the centres of these solutions with another Gaussian function (the
blue dashed line) for getting the frequency and its uncertainty (the
red error bar). The method above was used to determine the radial
modes (l = 0) and the most p-like modes for l = 1 and 2. The
identification of individual mixed modes for l = 1 will be discussed
in Section 4.

3 TH E O R E T I C A L M O D E L S

3.1 Stellar models and input physics

In this work, we used Modules for Experiments in Stellar As-
trophysics (MESA, version 8118) to compute stellar evolutionary
tracks and generate structural models. MESA is an open-source stel-
lar evolution package that is undergoing active development. De-
tailed descriptions can be found in Paxton et al. (2011, 2013, 2015).

We adopted the input physics of the calibrated solar model of the
‘test_suite’ case except for the atomic diffusion. In summary, the
solar chemical mixture [(Z/X)� = 0.0229] provided by Grevesse
& Sauval (1998) was adopted because solar models calibrated with
this mixture (Bi et al. 2011) fit the internal structures from helio-
seismic inversion better than those with more recent measurements
(Asplund, Grevesse & Sauval 2005; Asplund et al. 2009). To de-
termine initial abundances of hydrogen and helium (Xinit and Yinit)
for a given content of heavy elements (Zinit), we used the following
formula:

Y0 = 0.249 (2)

Yinit = Y0 + �Y

�Z
Zinit (3)

X + Y + Z = 1. (4)

The primordial helium abundance (Y0) is determined by Planck
Collaboration XIII (2016) using the Planck power spectra, Planck
lensing, and some external data such as baryonic acoustic oscilla-
tions. The ratio �Y/�Z in equation (3) can be computed by the
initial abundances of helium and heavy elements of the Sun. We
adopted the Y�,init and Z�,init of the calibrated solar model given by
Paxton et al. (2011), which are 0.2744 and 0.0191 (different from
the present-day abundances of 0.243 and 0.0170), and hence the
ratio �Y/�Z is 1.33. The MESA ρ–T tables are based on the 2005
update of OPAL EOS tables (Rogers & Nayfonov 2002), and OPAL
opacity for the solar composition of Grevesse & Sauval (1998) sup-
plemented by the low-temperature opacity (Ferguson et al. 2005) are
used. The mixing-length theory of convection is implemented, and
α ≡ l/Hp is the mixing-length parameter for modulating convection.
Convective overshooting is set as described by Paxton et al. (2011,
Section 5.2) and the overshooting mixing diffusion coefficient was

DOV = Dconv,0 exp

(
− 2z

f Hp

)
, (5)

where Dconv, 0 is the mixing-length theory-derived diffusion coeffi-
cient at a user-defined location near the Schwarzschild boundary,
z is the distance in the radiation layer away from the location, and
f is a free parameter to change the overshooting scale. The photo-
sphere tables are used as the set of boundary conditions for model
atmosphere.

3.2 Stellar oscillation model

The Aarhus adiabatic oscillation package (ADIPLS) is a simple
and efficient tool for the computation of adiabatic oscilla-
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Table 2. Input parameters and observed constraints for the grid computation.

KIC Grid ranges and spacing Observed constraints
M/δM [Fe/H]/δ [Fe/H] α/δα fov/δfov Teff [Fe/H] log g R
(M�) (dex) (K) (dex) (dex) (R�)

4663623 1.30–1.40/0.01 −0.19 to +0.21/0.05 1.72–2.52/0.10 0.008–0.020/0.004 4808(100) 0.01(20) 2.57(3) 9.8(3)
5786154 1.00–1.12/0.01 −0.16 to +0.04/0.05 1.72–2.52/0.10 0.008–0.020/0.004 4747(100) − 0.06(06) 2.35(2) 11.4(2)
7037405 1.21–1.29/0.01 −0.44 to −0.04/0.05 1.72–2.52/0.10 0.008–0.020/0.004 4529(110) − 0.24(20) 2.24(1) 14.1(2)
8410637 1.53–1.59/0.01 −0.05 to +0.20/0.05 1.72–2.52/0.10 0.008–0.020/0.004 4750(150) 0.12(17) 2.57(1) 10.7(2)
9540226 1.28–1.38/0.01 −0.38 to −0.08/0.05 1.72–2.52/0.10 0.008–0.020/0.004 4677(110) − 0.25(17) 2.349(8) 12.8(1)
9970396 1.11–1.17/0.01 −0.26 to −0.11/0.05 1.72–2.52/0.10 0.008–0.020/0.004 4853(150) − 0.20(10) 2.69(2) 8.0(2)

tion frequencies and eigenfunctions for general stellar models
(Christensen-Dalsgaard 2008, 2011). It was used for computing all
theoretical seismic modes in this work. Input parameters for ADIPLS

follow the suite for red giants included in the package. It should be
noted that structural models generated by MESA (Format FGONG,
http://www.astro.up.pt/corot/ntools/docs/Corot_ESTA_Files.pdf)
are redistributed for calculating seismic mixed modes. The number
of structural shells (NGrid) after redistribution could slightly change
the results of frequencies. We tested some fitting models with NGrid

from ∼2000 to ∼20 000. And computed frequencies become stable
when NGrid is greater than ∼6000. For all the calculations with
ADIPLS, we finally redistributed structural models into 9601 shells.

3.3 The surface correction

We used the combined expression and the method described by
Ball & Gizon (2014) for correcting the surface term. Based on
the discussion of potential asymptotic forms for frequency shifts
(Gough 1990), the correction formula is a combination of inverse
and cubic terms:

δν = (a−1(ν/νac)−1 + a3(ν/νac)3)/I , (6)

where a−1 and a3 are coefficients adjusted to obtain the best fre-
quency correction(δν). The method to determine these two coeffi-
cients for a given set of observed and model frequencies was de-
scribed by Ball & Gizon (2014). According to the frequency offsets
found on the Sun and other well-studied solar-like stars (Kjeldsen
et al. 2008; Ball & Gizon 2014), δν increases with frequency. In
equation (6), the surface term is also modulated by the normal-
ized mode inertia, I. The description of I can be found in Aerts,
Christensen-Dalsgaard & Kurtz (2010, equation 3.140). To avoid
confusion, we note that the output result from ADIPLS (ADIPLS notes,
equations 4.3a and 4.3b) in the current version is I/4π. νac in equa-
tion (6) is the acoustic cut-off frequency, which is derived from the
scaling relation (Brown et al. 1991):

νac

νac,�
≈ g

g�
(

Teff

Teff,�

)−1/2

. (7)

Here we take νac, � = 5000 μHz from Ball & Gizon (2014).
Solar references of effective temperature and surface gravity are
log g� = 4.44 and Teff, � = 5777 K (Cox 2000).

4 TH E O R E T I C A L C O M P U TATI O N S A N D
RE SULTS

4.1 Grid computation

The free input parameters for the grid computation include mass
(M), initial abundance of heavy elements (Zinit) converted from

metallicity ([Fe/H]), initial abundances of hydrogen and helium
(Xinit and Yinit) that are computed by equations (2)–(4) for a given
Zinit, the mixing-length parameter (α), and the overshooting param-
eter (fov). We used the masses and their 1σ uncertainties given by
Gaulme et al. (2016) as the range of input M. The input range of
[Fe/H] was estimated by both individual measurements of ARCES
and APOGEE. The lower limit was calculated with the lower ob-
served [Fe/H] minus its 1σ uncertainty, and the upper limit was got
from the higher observed [Fe/H] plus its 1σ uncertainty. For instants,
the metallicities of KIC 9970396 given by ARCES and APOGEE
are −0.23 ± 0.03 and −0.18 ± 0.07, and hence the input range of
[Fe/H] for this star is from −0.26 to −0.11. The grids of input M
and [Fe/H] were spaced by 0.01 M� and 0.05 dex, respectively. We
tested the mixing-length parameter (α) in a wide range around the
solar value (Paxton et al. 2011, α� = 1.92). The grid of α is from
1.72 to 2.52 with a step of 0.1. The overshooting parameter fov was
either 0.008, 0.012, 0.016, or 0.020, where the upper limit for this
parameter (0.020) was estimated by Magic et al. (2010). We used
the MESA astero extension’s ‘grid search’ function to generate the
grid. In this way, MESA saves structural models that fit observed
constraints for further analysis. We used four global observables of
each star as the constraints of the ‘grid search’, namely the average
effective temperature and metallicity from spectra, as well as the
surface gravity and radius from the binary studies. We set a cut-off
value of total χ2 as 8.0 for selecting MESA models. (For a χ2 dis-
tribution with 4 degrees of freedom, the probability for χ2 smaller
than 8 is 0.91.) A summary of the grid computation with MESA can
be found in Table 2. ADIPLS was then implemented for calculating
radial (l = 0) and non-radial oscillation modes (l = 1 and 2).

4.2 Reordering of theoretical mixed modes

Before discussing the subsequent fitting progress, we address one
problem that arises with the current way of applying the surface cor-
rection in evolved stars: theoretical mixed modes could lose their
original order after their surface terms are corrected. We took the
model of KIC 7037405 as an example. Fig. 3 shows the mixed
modes for l = 1 and 2 in a single order of this model. Theoretical
mode inertia are plotted against frequencies before and after the
surface correction. Due to the quick change of inertia, p-dominated
modes (with the lower inertia) get much larger corrections than
their g-dominated neighbours. And the modes obtain a new order
after the correction. Similar reordering appears in theoretical l =
1 mixed modes of KIC 5786154, KIC 7037405, and KIC 9940226
and in the l = 2 modes of all six targets. The reordering happens
because the surface corrections for the mixed modes differ by more
than the separation between consecutive modes. The g-like modes
are less changed by the surface properties than p-like modes due
to their large mode inertia. And hence we do not expect a strong
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Figure 3. Reordering of mixed modes after surface correction. The upper
panel includes the mixed modes for l = 1 of the best-fitting model of
KIC 7037405, where black open and red filled triangles indicate model
frequencies before and after the surface correction. The bottom panel is the
same as the upper one but for l = 2. The surface-correction coefficients for
the model are a−1 = 391.6 × 10−9 µHz and a3 = −28.9 × 10−7 µHz.

surface term for them. However, one thing worth noting is that
theoretical mixed modes are solved as the coupling results of p
and g modes. If the surface term of the p mode is not being cor-
rected before calculating the coupling, the mixed modes will also be
affected.

A proper way to test this issue could be correcting the acoustic
wave before calculating the mixed modes. However, no option is
available in the seismic code to do this job. Instead, we changed
the structure in the near-surface layers of the input model of ADIPLS.
This only alters the acoustic wave, but not the gravity modes be-
cause they travel inside the core. Modifying the adiabatic exponent
(�1 = (d lnp/d lnρ)ad) in the near-surface layers is a simple way
to modulate the acoustic resonance. However, it should be noted
that the structural model after this modification is no longer self-
consistent. For the case of the Sun, the surface term starts from
1 Mm below its surface where T = Teff. The depth of this region
is roughly 0.15 per cent of the total solar radius. Hence, we only
changed �1 in layers that are 0.15 per cent of the total radius be-
low the surface. As shown in the top graph of Fig. 4, we gradu-
ally increased �1 in the region from 0.9985 R to the surface. The
fractional increase at a given depth followed a Gaussian function
(blue dotted line). The centre of the Gaussian profile is right on
the top layer. And its amplitude and width are 0.3 and 0.0005R,
respectively. The mixed modes for l = 1 and 2 calculated with
the models before and after modifying the surface-corrected �1 are
also given in the middle and bottom panels. It can be found that the
change in surface layers affects the most p-like modes. Shifted p
modes then change the frequency ranges where p–g coupling hap-
pens. Thus, the surface term also affects the mixed modes in an
indirect way.

Modifying the stellar structure seems to be a way to repair the
indirect effects of the surface term on mixed modes. However, it
comes with difficulties in rebuilding the equilibrium of the model.
We hence still adopted the correcting formula (equation 6) to correct

Figure 4. The change of frequency ranges where the p–g coupling happens
before and after modifying the structures of the near-surface layers. Top: the
distribution of �1 at the near-surface layers before (black solid) and after
(blue dots) the modification. The fractional increase of �1 with the depth
(r/R) follows a Gaussian function. The centre, width, and amplitude of this
Gaussian profile are 1.0R, 0.0005R, and 0.3, respectively. Middle: mixed
modes for l = 1 of the models before (black open triangles) and after (blue
filled triangles) the modification. Bottom: mixed modes for l = 2 before
(black open circles) and after (blue filled circles) the modification.

model frequencies. To avoid the influence when using it in the
following fitting procedures, we checked the model frequencies for
all six stars. Hence, only the most p-like modes are considered
for these cases. The l = 1 mixed modes of the other three stars
(KIC 4663623, KIC 8410637, and KIC 9970396) have large enough
period spacing to overcome the surface effect without mode order
swapping and were used for the following studies. Based on the
models of six red giants, νmax greater than ∼40 μHz tends to be a
safe cut for stars whose mixed modes for l = 1 can be adopted. We
will mention the identification of observed individual mixed modes
for these stars below.

4.3 Identification of individual mixed modes

Peak bagging of individual mixed modes for red giants is compli-
cated by rotational splitting, granulation background, and random
noise. On the other side, the theoretical models provide precise os-
cillation frequencies of mixed modes for every degree and order,
which can be a guide to peak bagging.

We first found theoretical models that fit the observed modes for
l = 0 and 2 (the model with the highest 10 per cent likelihood).
These models then guided us to identify l = 1 modes. One example,
as given in Fig. 5, illustrates the peak-bagging process of mixed
modes for KIC 9970396. The model was first constrained by the
modes for l = 0 and 2 given in the middle panels, as well as a
few high-amplitude mixed modes for l = 1 (filled symbols), such
as the three peaks from 66.7 to 67.2 μHz. All model frequencies
were then plotted on the power spectrum (open triangles), sug-
gesting more potential modes like the one at 66.4 μHz, and two
at 67.4 and 67.7 μHz. It should be noted that the power of these
modes is still significant compared with the background noise level.
The method we use for getting the frequencies and uncertainties of
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Modelling Kepler red giants 987

Figure 5. The peak-bagging process of individual mixed modes for KIC 9970396. The whole power spectrum is separated into eight radial-mode orders as
shown in the middle. Close inspections of l = 2 and 1 modes are plotted on the left and right sides. The colour code was set as the same as that in Fig. 1,
indicating the Psignal of each frequency bin. Red symbols plotted on the top are theoretical frequencies of the best-fitting model. Squares, circles, and triangles
in the middle represent the p and most p-like modes for l = 0, 1, and 2. Filled symbols are the modes for picking the fitting models, and open symbols are those
for guiding the identification of other mixed modes. Circles and triangles on the left and right indicate all theoretical mixed modes in each frequency bin. And
their symbol size is scaled with 1/I2 (I is mode inertia) by reference to that of the most p-like mode in each degree and order. Larger size indicates the mode to
be more p-like and less in inertia. Small blue symbols represent identified observed frequencies.

individual mixed modes is as follows. For a potential mode based
on the visual inspection, we flagged the observed peaks with Psignal

> 0.5 around the theoretical predictions. The median value of these
peaks was adopted as the frequency of this mode. And the differ-
ence between the median value and the highest/lowest frequency
was measured as the uncertainty. The blue error bars in Fig. 1
represent all of the identified modes and their uncertainties. We
also tried to identify the g-dominated modes for l = 2 (on the left
side). However, no significant mode has been found because of their
large inertia. All the identified modes of KIC 9970396 are listed in
Table 3. The power spectra and tables of all six stars can be found in
Appendix A.

4.4 Calibrating the model parameters

We used a Bayesian method to estimate the mixing-length parameter
(α) and the two coefficients for surface correction (a−1 and a3). The
agreement between models and observations was first examined by a
likelihood function. The observed data for these stars can be divided
into three parts. The mass, radius, and atmospheres provide global
features; p and the most p-like modes mainly relate to the structure
of the envelope; and p–g mixed modes probe the characteristics of
the core. Thus, the likelihood (L) for every model comprises these
three parts, namely Lglob, Lenv, and Lcore.

The likelihood of global features was calculated using the masses,
radii, and surface gravities from dynamical modelling, as well as
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Table 3. Identified oscillation frequencies for
star KIC 9970396.

l ν (µHz) σ (µHz)

2 44.351 0.021
0 45.255 0.032
2 50.270 0.187
0 51.138 0.029
2 56.496 0.023
0 57.396 0.015
2 62.895 0.012
0 63.717 0.023
2 69.173 0.017
0 70.031 0.050
2 75.626 0.091
0 76.395 0.077
1 48.110 0.060
1 48.350 0.020
1 48.475 0.034
1 48.635 0.016
1 54.040 0.018
1 54.195 0.034
1 54.350 0.016
1 54.498 0.020
1 54.703 0.029
1 60.420 0.110
1 60.650 0.052
1 60.899 0.012
1 61.140 0.015
1 66.400 0.065
1 66.680 0.020
1 66.910 0.040
1 67.120 0.020
1 67.390 0.023
1 67.680 0.015
1 72.640 0.070
1 73.040 0.022
1 73.290 0.051
1 73.501 0.019
1 73.921 0.041
1 79.100 0.100
1 79.477 0.040
1 79.850 0.050
1 80.032 0.032

effective temperatures (Teff) and metallicities ([Fe/H]) from spectra.
It is described as

Lglob = exp

(
− 1

2n

n∑
i=1

(xi − ui)
2

σ 2
i

)
, (8)

where xi and ui indicate theoretical and observed parameters, and σ i

is the uncertainties of observations. The likelihood for the envelope
was estimated by comparing p and the most p-like mixed modes
from models and observations:

Lenv = exp

(
− 1

2n

n∑
i=1

(νmodel,i − νobs,i)
2

σ 2
obs,i

)
. (9)

Individual g-dominated mixed modes were identified for KIC
4663623, KIC 8410637, and KIC 9970396 (the other three have
the problem with the surface correction), and we used them to esti-
mate the likelihood for the core by

Lcore = exp

(
− 1

2n

n∑
i=1

(νmodel,i − νobs,i)
2

σ 2
obs,i

)
. (10)

Figure 6. Observed and theoretical échelle diagram of KIC 9970396. Grey-
scale is the observed power density. Blue and red symbols indicate model
frequencies before and after surface correction. The middle panel includes
the whole échelle diagram, where red squares are radial modes. Left- and
right-hand panels zoom in on l = 2 and 1 modes. Theoretical mixed modes
are plotted in different sizes scaled by 1/I2 (I is the normalized mode inertia)
by reference to the most p-like mode at the same degree and order. The largest
symbol indicates the most p-like mode for l = 1 and 2 in each order.

These three parts gave the final likelihood, described as

L = LglobLenvLcore. (11)

The best-fitting model of KIC 9970396 based on the likelihood test
is given in Fig. 6. It shows that model frequencies fit quite well after
the surface correction.

The theoretical models in this work have four independent in-
put parameters, namely mass (M), heavy-element abundance (Z),
the mixing-length parameter (α), and overshooting parameter (fov).
Along with age (τ ) and two coefficients (a−1 and a3), these seven
variables specify a particular model. Thus, we can write the proba-
bility of a model as

p(Model|Data) = p(Model)p(Data|Model) = prior · L, (12)

where Model = {M, Z, τ , α, fov, a-1, a3} and Data = {Teff,
log g,[Fe/H], R, ν l, n}. L is the likelihood obtained above. We as-
sumed a flat prior for all model quantities. Then the probability of
α, a−1, and a3 for a star can be calculated by marginalizing over all
the other model quantities:

p(α)=
∫

p(M,Z, τ, α, fov, a−1, a3)dMdZdτdfovda−1da3, (13)

p(a−1)=
∫

p(M,Z, τ, α, fov, a−1, a3)dMdZdτdαdfovda3, (14)

and

p(a3) =
∫

p(M,Z, τ, α, fov, a−1, a3)dMdZdτdαdfovda−1. (15)

Fig. 7 gives the probability distributions of α, a−1, and a3 for
the six stars. The histograms mainly follow Gaussian distributions.
Some profiles have a sudden drop rather than a smooth decrease
at the boundary. The reason is that the MESA astero ‘grid search’
function was set to only save models that were in reasonable agree-
ment with the observations (χ2 < 8). We used a Gaussian function
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Modelling Kepler red giants 989

Figure 7. Probability distributions for the mixing-length parameter (α) and the two coefficients (a−1 and a3) for the surface correction. Histograms are
normalized proportional to the highest peak. a−1 and a3 are scaled by 10−9 and 10−7 µHz. Solid curves are the Gaussian profiles for fitting the probability
distributions. Red dotted lines indicate solar values, which are 1.92 for α (Paxton et al. 2011), 1.73 × 10−9 µHz for a−1, and −2.25 × 10−7 µHz for a3 (Ball &
Gizon 2014).
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Table 4. Calibrated mixing-length parameter and the two coefficients in the
surface-correction expression (equation 6).

Star α a−1 a3

(10−9 µHz) (10−7 µHz)

Sun 1.92 1.73 −2.25
KIC 4663623 2.23 ± 0.12 22.50 ± 64.74 − 10.4 ± 2.4
KIC 5786154 2.29 ± 0.10 298.9 ± 87.0 − 16.9 ± 3.3
KIC 7037405 2.01 ± 0.07 435.0 ± 145.1 − 45.0 ± 8.1
KIC 8410637 2.25 ± 0.10 − 1.6 ± 102.7 − 8.5 ± 2.1
KIC 9540226 2.28 ± 0.10 354.0 ± 117.7 − 33.8 ± 9.8
KIC 9970396 2.21 ± 0.23 188.3 ± 57.5 − 26.4 ± 3.9

to fit probability distributions, and adopted the centre and 1σ devia-
tion of the Gaussian profile as the central value and the uncertainty.
The results are summarized in Table 4.

5 MO D E L PA R A M E T E R S

5.1 The mixing-length parameter

The calibrated mixing-length parameters of the six red giants
(Table 4) suggest larger α for evolved stars than that for the Sun
(α� = 1.92). The average mixing-length parameter is about 2.20.
However, KIC 7037405 converges at significantly different values
(2.00). As mentioned, the determination of α depends greatly on
the measurements of the mass (from the binary orbits). Modelling
a star with increased mass tends to lead to a smaller mixing-length
parameter when other constraints are kept fixed. Hence, systematic
errors in mass can bias the results. KIC 7037405, 9540226, and
9970396 were also recently studied by Brogaard et al. (2017). They
obtained masses that differ by −2σ for KIC 7037405, 0.96σ for
KIC 9540226, and 1.25σ for KIC 9970396. The results suggest that
KIC 7037405 could have a larger mixing-length parameter than
what was obtained (2.00) while KIC 9540226 and KIC 9970396
may converge at a slightly smaller α.

The average α obtained for our six giants is ∼1.14 ± 0.07 times
the calibrated solar value. This result is similar to that achieved
by Tayar et al. (2017) with the APOGEE-Kepler targets. Their
grid models for the red giants within the range of metallicity
([Fe/H]) from −0.5 to +0.4 required a ∼8 per cent larger α than
the Sun to fit the observations. Tayar et al. (2017) also suggested
a linear correlation between α and [Fe/H]. However, we did not
obtain a clear dependence between the two parameters in our
stars.

The realistic simulation of convection is another approach to esti-
mate the mixing-length parameter. Magic, Weiss & Asplund (2015)
calibrated α with the STAGGER grid, which predicted slightly
smaller values (0.90–0.95 α�) for red giants (Teff � 5000K and
log g � 2.5) than that for the Sun. An earlier work by Trampedach &
Stein (2011) found the mixing-length parameter to be 0.96–1.00 α�
for the red giants having similar stellar parameters to our stars (M
= 0.8–2.5 M�, Teff = 4200–5500 K, log g = 2.4–3.0) through
3D simulations (Trampedach et al. 2014). The ∼16 per cent differ-
ence of the 1D stellar model from the simulations may indicate an
improper modelling for the near-surface layers in the 1D model
with the current input physics. First, the mixing-length parame-
ter of a star varies for different evolutionary stages (Trampedach
et al. 2014; Magic et al. 2015); however, we fixed the mixing-
length parameter through the stellar evolution. Secondly, the bound-

ary conditions for red giants can be different from the Sun due
to the changes in structures. Moreover, the systematic offsets in
observed effective temperatures and metallicities could also affect
the results.

5.2 The surface term in evolved stars

The surface effect, which correlates with the near-surface prop-
erties, is believed to be a function of Teff and log g (Sonoi
et al. 2015). The comparison between hydrodynamical simula-
tions and stellar models (Ball et al. 2016) suggested an increas-
ing surface term for dwarfs from the spectral type of K5 to F3.
Trampedach et al. (2017) estimated the frequency shifts in vari-
ous types of stars with a grid of convection simulations and also
gave a clear correlation between the surface term and atmospheric
parameters.

The frequency offsets caused by the surface term in the best-
fitting models of our six red giants are given in Fig. 8. All these
stars resulted in the offsets of the order of 0.1 μHz at νmax. We
compare our results with previous studies in Fig. 9, which gives
the distribution of absolute (δν) and relative (δν/νmax) frequency
offsets as a function of the location in the HR diagram. In order
to compare with previous results, we also included the six low-
luminosity red giants studied by Ball & Gizon (2017) as well as
the simulation values given by Sonoi et al. (2015) and Trampedach
et al. (2017). Modelling results between low- and high-luminosity
red giants show an apparent reduction in both absolute and relative
offsets when stars become more evolved. The decreasing δν on the
red giant branch from modelling agrees with the trend predicted
by simulation. However, the fractional change (δν/νmax) does not
follow the simulation results.

Apart from the improper modelling for the surface layers, the
uncertainty of the mixing-length parameter also affects the surface
term. Fig. 10 shows the correlation between the mixing-length pa-
rameter and the surface-correction coefficient of the cubic term (a3).
The surface term, as expected, shows a strong dependence on the
input α of the model. It varies by a factor ranging from 1.5 to 2 for
different stars when the mixing-length parameter changes from 1.9
(the solar value) to 2.2 (the red giants’ value). This is to say, if α

cannot be handled well, the surface term will come with significant
scatter. Hence, the calibrated mixing-length parameters for the six
red giants also provide a good constraint on the surface term coef-
ficients. We state here that the degeneracy between α and a3 does
not influence our results in Fig. 7, as we have marginalized over all
other variables when deriving the posteriors, so these degeneracies
are captured in the uncertainties.

A further comparison of the coefficients of stars at different evo-
lutionary stages is given in Fig. 11. Besides the low-luminosity
giants from Ball & Gizon (2017) and the high-luminosity giants
in this work, we also selected 27 main-sequence dwarfs from the
LEGACY sample. These stars cover a range from 0.75 to 1.15 M�,
Teff = 5500–6200 K, and log g = 4.2 –4.5. The comparison shows
a significant increase of a−1 and a3 with stellar evolution. We note
that the increase is because of the growth of mode inertia, not indi-
cating an increasing surface term with stellar evolution. In contrast,
the fractional frequency offsets (δν/νmax) decrease with stellar evo-
lution. Moreover, a good linear relation between a−1 and a3 shows
in our six red giants: a3 ∼ −10 a−1. This agrees with the simula-
tion result from Trampedach et al. (2017), who found a stable ratio
between the inverse and cubic terms for red giants with similar Teff

and log g.
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Figure 8. Frequency offsets caused by the surface term of the best-fitting models of our six red giants. Three stars with their l = 1 mixed modes identified
are shown on the top, where the upper panels include p and the most p-like modes for l = 0 and 2, and the lower panels contain p–g mixed modes for l = 1.
The other three stars with only p and the most p-like modes are shown at the bottom. Blue and red symbols represent the frequency offsets before and after the
surface correction. Open squares, triangles, and circles indicate l = 0, 1, and 2 modes. Error bars are observation uncertainties.

Figure 9. Absolute (left) and relative (right) frequency shifts across the HR
diagram. The red giants studied in this work and six low-luminosity giants
from Ball & Gizon (2017) are shown by squares. Filled triangles and circles
are simulating predictions from Sonoi et al. (2015) and Trampedach et al.
(2017). Frequency shifts are colour scaled according to the colour bar shown
on the top.

6 C O N C L U S I O N S

The mixing-length parameter in stellar models, responsible for the
strength of energy transport in convective regions, is important for
the accuracy of the theoretical model. Moreover, the surface term
affects the accuracy of asteroseismic modes and brings additional
uncertainties in seismic products. In this work, six oscillating red
giants in EBs were used to calibrate these parameters for evolved
stars. Our main conclusions from the results are summarized as
follows.

Figure 10. The correlation between the mixing-length parameter and the
surface term. The coefficient of the cubic term (a3) is from the best-fitting
model for each star.

(i) The average mixing-length parameter of the six red giants
is ∼ 1.14 ± 0.07 times the calibrated solar value, which is sim-
ilar to the previous results based on the APOGEE sample (Tayar
et al. 2017).

(ii) Our calibrated α is about 16 per cent higher than the value
given by the 3D hydrodynamical simulations, possibly indicating
that the 1D stellar model does not model the near-surface layers
appropriately for the red giants with the input physics in this work.

(iii) The surface term was found to affect the mixed modes in-
directly. Its effect on acoustic waves changes the frequency range
where the p–g coupling happens.
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Figure 11. The correlation of two free coefficients (a−1 and a3) in surface-
correction expression (equation 6). Filled squares indicate the results of our
red giants. Open circles represent the six low-luminosity giants from Ball
& Gizon (2017). Open diamonds are 27 dwarfs from the LEGACY sample.
Solar value is represented by �.

(iv) For our six red giants, established surface-correction meth-
ods fail to fix the surface effects in g-dominated modes, which cause
a non-physical reordering in mixed modes.

(v) The surface term correlates with surface properties (Teff and
log g) as well as the mixing-length parameter. The frequency offset
decreases with stellar evolution on the red giant branch.

(vi) The two coefficients (a−1 and a3) in the surface-correction
expression (equation 6) significantly increase with stellar evolu-
tion due to the growth of mode inertia. They also show a linear
correlation in the six red giants.

The calibrated results of the mixing-length parameter and the sur-
face term on the six red giants can be additional references, along
with the Sun, for further studies of red giants. The results can im-
prove the accuracy of the theoretical models of stellar evolution and
stellar oscillation by narrowing down the ranges of free parameters.
High-precision measurements of the stellar atmosphere and other
key parameters, such as the mass and radius, are required to further
constrain theoretical models.
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APPENDIX A

Figure A1. The peak-bagging process of individual mixed modes for KIC 4663623. The whole power spectrum is separated into eight radial-mode orders
as shown in the middle. Close inspections of l = 2 and 1 modes are plotted on the left and right sides. The colour code was set as the same as that in Fig. 1,
indicating the Psignal of each frequency bin. Red symbols plotted on the top are theoretical frequencies of the best-fitting model. Squares, circles, and triangles
in the middle represent the p and most p-like modes for l = 0, 1, and 2. Filled symbols are the modes for picking the fitting models, and open symbols are those
for guiding the identification of other mixed modes. Circles and triangles on the left and right indicate all theoretical mixed modes in each frequency bin. And
their symbol size is scaled with 1/I2 (I is mode inertia) by reference to that of the most p-like mode in each degree and order. Larger size indicates the mode to
be more p-like and less in inertia. Small blue symbols represent identified observed frequencies.
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Figure A2. Observed and theoretical échelle diagram of KIC 4663623.
Black symbols are observed modes. Blue and red symbols indicate model
frequencies before and after the surface correction.

Figure A4. Same as Fig. A2, but for KIC 8410637.

Figure A3. Same as Fig. A1, but for KIC 8410637.
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Figure A5. Same as Fig. A1, but for KIC 9970396.
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Figure A6. Same as Fig. A2, but for KIC 9970396.

Figure A7. Same as Fig. A2, but for KIC 5786154.

Figure A8. Same as Fig. A2, but for KIC 7037405.

Figure A9. Same as Fig. A2, but for KIC 9940226.

Table A1. Identified oscillation frequencies for star KIC 4663623.

l ν (µHz) σ (μHz)

p and the most p-like modes
2 41.271 0.081
0 41.924 0.066
2 46.240 0.024
0 46.900 0.022
2 51.458 0.011
0 52.144 0.009
2 56.684 0.046
0 57.305 0.015
2 61.929 0.043
0 62.509 0.039
2 67.187 0.101
0 67.903 0.016
0 72.820 0.298

Individual mixed modes
1 44.360 0.031
1 44.499 0.022
1 44.610 0.030
1 44.732 0.028
1 49.067 0.014
1 49.550 0.075
1 49.720 0.041
1 49.930 0.085
1 54.340 0.022
1 54.520 0.041
1 54.692 0.025
1 54.814 0.045
1 54.965 0.015
1 55.150 0.055
1 59.830 0.043
1 60.010 0.028
1 60.230 0.071
1 65.270 0.042
1 65.413 0.025
1 70.465 0.090
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Table A2. Identified oscillation frequencies
for star KIC 8410637.

l ν (µHz) σ (µHz)

p and the most p-like modes
2 41.013 0.028
0 41.632 0.027
2 45.682 0.009
0 46.291 0.034
2 50.319 0.043
0 50.864 0.020
2 55.051 0.052
0 55.533 0.047
2 59.701 0.088
0 60.371 0.031

Individual mixed modes
1 39.420 0.051
1 39.600 0.018
1 44.020 0.055
1 44.110 0.015
1 44.170 0.02
1 44.290 0.011
1 48.583 0.048
1 48.712 0.043
1 48.818 0.039
1 52.920 0.025
1 53.080 0.026
1 53.203 0.011
1 53.316 0.010
1 53.414 0.034
1 58.020 0.035
1 58.210 0.025

Table A3. Identified oscillation frequencies
for star KIC 9970396.

l ν (µHz) σ (µHz)

p and the most p-like modes
2 44.351 0.021
0 45.255 0.032
2 50.270 0.187
0 51.138 0.029
2 56.496 0.023
0 57.396 0.015
2 62.895 0.012
0 63.717 0.023
2 69.173 0.017
0 70.031 0.050
2 75.626 0.091
0 76.395 0.077

Individual mixed modes
1 48.110 0.060
1 48.350 0.020
1 48.475 0.034
1 48.635 0.016
1 54.040 0.018
1 54.195 0.034
1 54.350 0.045
1 54.498 0.020
1 60.375 0.055
1 60.672 0.070
1 60.899 0.012
1 60.899 0.011
1 61.140 0.015
1 66.400 0.065
1 66.680 0.020

Table A3 –continued

l ν (µHz) σ (µHz)

1 66.910 0.041
1 67.120 0.018
1 67.390 0.023
1 67.680 0.015
1 72.640 0.070
1 73.040 0.022
1 73.290 0.051
1 73.501 0.019
1 73.921 0.041
1 79.080 0.080
1 79.477 0.040
1 79.800 0.063
1 80.050 0.018

Table A4. Identified oscillation frequencies
for star KIC 5786154.

l ν (µHz) σ (µHz)

p and the most p-like modes
0 21.112 0.056
1 22.647 0.048
2 23.858 0.030
0 24.347 0.028
1 26.187 0.010
2 27.340 0.054
0 27.874 0.016
1 29.758 0.017
2 30.876 0.019
0 31.343 0.012
1 33.271 0.071
2 34.396 0.021
0 34.882 0.021
1 36.781 0.025

Table A5. Identified oscillation frequencies
for star KIC 7037405.

l ν (µHz) σ (µHz)

p and the most p-like modes
1 15.310 0.016
2 16.182 0.021
0 16.575 0.007
1 17.929 0.041
2 18.723 0.036
0 19.120 0.018
1 20.635 0.016
2 21.530 0.036
0 21.935 0.034
1 23.432 0.020
2 24.331 0.027
0 24.695 0.041
1 26.208 0.043
2 27.164 0.089
0 27.508 0.074
1 29.034 0.025
0 30.307 0.046
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Table A6. Identified oscillation frequencies
for star KIC 9540226.

l ν (µHz) σ (µHz)

p and the most p-like modes
2 15.694 0.005
0 16.208 0.083
1 17.833 0.030
0 19.244 0.016
1 20.929 0.056
2 21.898 0.056
0 22.262 0.018
3 22.819 0.016
1 23.915 0.032
2 24.785 0.030
0 25.355 0.028
1 27.103 0.028
2 28.203 0.024
0 28.556 0.019
1 30.199 0.033
2 31.366 0.029
0 31.714 0.014
1 33.542 0.027
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