
University of Southern Queensland 

Faculty of Health, Engineering and Sciences 

  

Particle and Particle-Like Solitary Wave Dynamics in 

Fluid Media  

A thesis submitted in fulfillment of the requirements of 

Doctor of Philosophy 

Nawin Raj 

 

2015



ii 

 

ABSTRACT 

 

This research deals with the study of various nonlinear wave processes in dispersive 

media by means of asymptotic methods developed upon existing exact methods in 

application to non-integrable systems. The aim of the research is to analyse wave 

models possessing solitary solutions and establish common features in the description 

of such solutions and classical particles. The new model equations have been derived 

for the description of long transverse waves propagating in the generalized atomic 

chain. The mathematical analogy between the model equations describing internal 

waves in stratified fluid (the Korteweg–de Vries and Gardner–Ostrovsky equations) 

and waves in discrete chain models (the generalized sine-Gordon–Toda model or 

Frenkel–Kontorova model) have been established. Chain models are described by sets 

of ODEs which can be readily solved with a high accuracy by existing well-developed 

solvers in mathematical software. The research includes solutions to important wave 

problems by means of approximate asymptotic and numerical methods. Results 

obtained provide an insight in understanding of details of nonlinear wave propagation 

in continuous and discrete media. An effective numerical code has been developed for 

the modeling of nonlinear phenomena both in continuous media and in the discrete 

models of interacting oscillators.  
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1. Chapter 1 Introduction and Literature Review 
 

Nonlinearity is a fascinating element of nature and its importance has been appreciated 

for many years when considering large-amplitude wave motions observed in various 

fields ranging from fluids and plasmas to solid-state, chemical, biological, and 

geological systems (Remoissenet, 2002). Fermi et al. (1955) carried out simulations on 

one-dimensional nonlinear lattice and obtained the results contradicting to their 

expectations. The unexpected results generated a lot of interest in the area of nonlinear 

science. This also gave rise to a wide array of fields such as soliton theory, discrete 

lattice dynamics and Kolmogorov–Arnold–Moser theory, all of which remain active 

research fields to date. Among the main examples, one can classify the Toda lattice, the 

Ablowitz–Ladik equation and the Calogero–Moser N-body problem (see the works of 

Calegero (1971) and Moser (1975)) (Kevrekidis, 2011).  

This research extends the theory of transverse nonlinear waves in a chain of masses 

with elastic couplings. The approach was first used by Gorbacheva and Ostrovsky 

(1983) in their investigation of transverse nonlinear waves. However, this research 

considers next two neighboring atoms in relation to the investigation in this problem. 

Furthermore, the presence of different types of solitons is investigated.  The features of 

nonlinear behavior and the chain model can provide valuable information for study of 

molecules in biology and chemistry.  The theory also has many applications in 

theoretical physics. The model of “strings”, “chains” and “lattices” could be 
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successfully used to model difficult problems of nonlinear theory (Gorbacheva & 

Ostrovsky, 1983).   

The next part of the research uses chain models described by sets of ordinary 

differential equations to numerically study nonlinear wave processes in dispersive 

media. The one dimensional chain model is used to simulate internal waves in a rotating 

ocean. This equation is well known as the Gardner–Ostrovsky equation. The electric 

version of sine-Gordon-Toda chain and Ostrovsky equation are derived from the ladder 

type transmission line with the nonlinear capacitor and inductance.  

An experimental study of ship waves have many constraints  such as using large wave 

trough, the relative weak nonlinearity at far distances from the source and the 

complexity of recording equipment (Stepanyants, 1983). Stepanyants (1983) 

demonstrated the use of two dimensional electric networks for experiments. Hirota and 

Suzuki (1973) also used a nonlinear lumped LC (Capacitor and Inductor) network to 

observe the fundamental properties of solitons indicated by Zabusky and Kruskal 

(1965). The use of the chain model derived in this study extends the method to provide 

better understanding of important nonlinear wave processes. 

 

1.1 Solitons and Solitary Wave dynamics 

 

Solitary waves or solitons demonstrate particle-like behavior as keeping its shape while 

moving at constant speed and upon interaction; the solitons remain unchanged in the 

course of interaction with each other apart from a phase shift. Solitary waves arise in 
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both continuous systems, such as water in the shallow basin, and discrete systems such 

as the Toda lattice (mechanical or electrical) (Toda, 1989a). Morikazu Toda was the 

first who discovered solitons in a discrete, integrable system. This system is currently 

well known as Toda lattice (see (1.1)):  

 
2

1 12
ln (1 ) 2n n n n

d
u u u u

dt
+ −+ = − + . (1.1) 

 

 

The stable nature of solitons and its experimental observation in various physical 

systems like biophysics, solid state physics, non-linear optics, atomic physics, granular 

crystals, plasma physics, nonlinear meta-materials, water waves and among others have 

made it a central aspect of research. Since there are so many force sources in nature 

(torsion, gravity, electron-electron interactions, electron-phonon, spin exchange etc.) 

that lead to an apparently inexhaustible store of solitons in condensed matter physics 

(Bishop et al., 1980). An important factor in the decay of water waves is the viscosity of 

the medium which is a manifestation of friction.  

Waves and particles have been intimately related in physical theory since the 

formulation of quantum mechanics in the 1920s (Rebbi, 1979). These special waves are 

described as a quantity of energy that is permanently confined to a definite region and 

while in motion, they retain their shape after collision and without dissipation. Such 

remarkable behavior is familiar in particle dynamics. If two solitary waves with 

different speeds interacting through the collision are considered, they recover their 

initial form and propagate like independent particles. Solitons were also found as 

solutions for other non-linear wave equations and it became clear that they are the 
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motion most characteristic of many nonlinear waves (Toda, 1989a). Since the soliton is 

a nonlinear dispersive wave packet equivalent of the linear dispersive, the analogy with 

particle behavior is quite strong. This important development made particle physicists 

realise that many field theoretical model for particle interactions possessed soliton 

solutions and that the solitons could to be interpreted as additional particle-like 

structures in the theory. In these investigations it was established at the quantum level 

that solitons are associated with a variety of remarkable phenomena.  

 

1.2 Historical Developments  

 

The concept “solitary wave” was coined by J. Scott-Russell who presented the first 

documented observation of this unusual occurrence in Scottish canal. J. Scott-Russell 

left a very clear and picturesque description of his observation of a solitary wave on a 

water surface in one of his subsequent report of 1844 (Ablowitz & Segur, 1981). 

The term soliton was coined by Zabusky and Kruskal (1965) to reflect both the solitary-

wave-like character and the particle-like interaction properties (Scott, 2005).  It is also 

interesting to note that, prior to the investigations of Zabusky and Kruskal, analytical 

expressions describing collision events between solitary waves within the framework of 

the equation describing dislocations in solids were found by Seeger et al. (1953). This 

equation is called the sine-Gordon equation (1.2): 

 
2 2

2

2 2
sin 0

u u
u

t x


 
− + =

 
. (1.2) 
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The complete integrability of the sine-Gordon equation (1.2) was established by 

Ablowitz et al. (1973) and they found a family of multisoliton solutions, which 

represent in this particular cases kinks and anti-kinks – the specific kind of dissipation 

less shock waves. The sine-Gordon equation is a particular case of the nonlinear Klein–

Gordon equation.  

Frenkel and Kontorova (1939) introduced the equation as a model for the dislocation in 

a crystal. It was shown that the displacement of atoms connected by linear springs may 

propagate as a kink in the periodic crystal field. The discovery of the inverse scattering 

transform (IST) for the solution of nonlinear partial differential equations (PDEs) is the 

most important development in the theory of solitons as the solitons can be defined in a 

rigorous manner. As has been shown in the numerous publications, the IST method can 

be treated as the extension of the Fourier transformation onto nonlinear dynamics. It is a 

unique method of solving the nonlinear initial value problem.  

Zakharov (1968) showed that the time evolution of the envelope of a weakly nonlinear 

deep-water wave train is described by the nonlinear Schrödinger equation (NLS) (see 

equation (1.3) below) which was later exactly solved by Zakharov and Shabat (1972) by 

the IST method:  

 

2
2

2
0g

u u u
i V u u

t x x
 

   
+ + + = 

   
. (1.3) 

 

 

This was an important discovery as it has been shown that the exact solutions are deep 

water wave envelope solitons. The initial wave packet in this case evolves into a 

number of envelope solitons and a dispersive tail. More importantly, these solutions 
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were verified experimentally by Yuen and Lake (1975). The Klein–Gordon equation is 

considered to be the relativistic version of the NLS equation. Various forms of the 

nonlinear Klein–Gordon equation are seen to have exact, soliton-like solutions when 

separation of variables is postulated and the family for which these exact solutions are 

found includes the sine-Gordon equation as a special case (Grundland & Infeld, 1992). 

Parallel to these investigations, the instability of electromagnetic waves propagating in 

nonlinear dispersive media was predicted (Ostrovskii, 1963), (Bespalov & Talanov, 

1966), (Karpman, 1967) and in another important development it was shown 

theoretically by Hasegawa and Tappert (1973) that the envelope of a light wave 

propagating in an optical fiber can also be described by the NLS equation which led to 

the existence of bright solitons being predicted. This prediction was later verified by 

Mollenauer et al. (1980) observed bright-soliton propagation in a single fiber and from 

the standpoint of technological applications, such optical–fiber solitons are very 

important. The stability of solitons can make long distance transmission possible with 

twice the capacity without the use of repeaters thereby providing a major break-through 

in information transfer. Magnetic envelope solitons were also an important area of study 

and envelope solitons of the NLS type were predicted theoretically by Zvezdin and 

Popkov (1983) for magnetostatic waves in magnetic films and later observed 

experimentally by Kalinikos et al. (1983).  

Korteweg–de Vries (KdV) equation (1.4) is an important mathematical model of waves 

in shallow water. The equation is named after Diederik Korteweg and Gustav de Vries 

(1895), although the similar equation was first formulated by Boussinesq (1871):  
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. (1.4) 

 

 

Korteweg and de Vries analytically derived a nonlinear partial differential equation with 

the delicate balance between the non-linearity and dispersion which describes the 

propagation of long waves of small amplitude in dispersive media. The KdV equation 

has a long history as the prototype of nonlinear wave equations, and from its study 

current nonlinear theory has emerged, including such concepts as the soliton, recurrence 

phenomena, conserved quantities, integrable systems, initial value problems (the inverse 

scattering transform), and so forth. It is used to describe other physical phenomena such 

as acoustic waves in crystals and ion acoustic waves in plasmas.  

The paper by Gardner et al. (1967) made an important contribution to the development 

of the theory as they showed that the analytical solution of the KdV equation can be 

obtained if the initial shape of the wave is sufficiently localized. They introduced a 

linear problem (the eigenvalue problem) where the potential represents the solution of 

the KdV equation. Their theoretical results were in remarkable agreement with the 

many of experimental results obtained by John Scott Russell (1844) more than one 

hundred and fifty years ago (Remoissenet, 2002).  

The stability of solitons results from the balance in the effects of dispersion and non-

linearity. It is now widely appreciated that the classic solitons have their genesis in the 

balancing of competing tendencies, typically dispersive effects tending to spread a 

wave-packet are balanced (or nearly so) by nonlinear terms favoring self-steepening or 
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shock front formation, because of the different velocities of ‘Fourier’ components  

(Bishop et al., 1980).  

 

1.3 Nonlinear LC circuit and nonlinear lattice 

 

Toda (1989b) showed that the equations of motion of one dimensional lattice of 

particles with exponential interactions are integrable and admit exact solution. 

Analytical solutions of equations of motion in an anharmonic one dimensional lattice 

were obtained and existence of solitons in a nonlinear lattice was found. This system is 

shown to be equivalent to an LC circuit with certain nonlinear capacitance. The figure 

1.1 shows the arrangement of the circuit. 

 

Figure 1.1: Nonlinear LC circuit equivalent to a nonlinear lattice (Toda, 1989b). 

 

Similar nonlinear lumped LC circuit was used by Hirota and Suzuki (1973) to conduct 

theoretical and experimental study of lattice solitons. Stepanyants (1983) used electrical 

simulation of ship waves with the use of LC networks. It was demonstrated that a 

complete analogy can be established between the equations of hydrodynamics and the 

network equations in a linear approximation.  
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1.4 Ostrovsky and Gardner-Ostrovsky Equation 

 

Many important extensions have been considered for the Korteweg-de Vries (KdV) 

which consider factors such as stratification, friction, higher-order linearity and rotation. 

One such interesting extension was considered by Ostrovsky (1978). The Ostrovsky 

equation is a modification of the Korteweg-de Vries equation which presents a model 

for gravity waves under the influence of Coriolis force. The equation is given as (Apel 

et al., (2007)): 

 

3 2

3 2

f
c

x t x x x c

   
  

     
+ + + = 

     
. (1.5) 

 

 

This equation is an important model for the propagation of small-amplitude internal 

waves in a rotating fluid. However, the equation is not integrable and it is an important 

problem to consider in fluid dynamics to find the numerical solution for this equation. 

An extra term with cubic nonlinearity in Korteweg–de Vries (KdV) equation is called 

the Gardner equation (Apel et al., 2007): 

 ( )
3

2

1 3
0c

t x x

  
   

  
+ + + + =

  
. (1.6) 

 

 

This equation is valid for small nonlinearity and specific stratification and describes 

strongly nonlinear internal solitons (Stepanyants, 1991). The Gardner-Ostrovsky 

equation describes long internal waves of large amplitude. It takes into account the 

dispersion effects due to nonhydrostaticity caused by the finiteness of depth and earth’s 
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rotation (Obregon & Stepanyants, 2012). The equation is given as (Obregon & 

Stepanyants, 2012): 
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1 3
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. (1.7) 

 

 

 

1.5 Techniques 

 

1.5.1 Chain Model of Nonlinear Vector Waves of Flexural Modes 

 

A chain model for the description of flexural transverse waves in the nonlinear chain of 

atoms is considered to formulate a nonlinear vector equation for the phonon modes. One 

of the pioneering work in this area was published by Gorbacheva and Ostrovsky (1983), 

who considered the interaction between only the nearest particles and derived in the 

long-wave approximation, the non-integrable vector modified Korteweg–de Vries 

(mKdV) equation. The simplest stationary solutions to that equation were also found. 

This work can be extended to a more general model taking into account the interaction 

not only between the nearest atoms, but also between the next neighbours of these two 

atoms. Such generalization allows one to model quadratic spectra of phonons which is 

observed experimentally. In the long-wave approximation, several new model equations 

can be derived, and some of them are important due to their applicability to the real 

crystals and, perhaps, to energy transport in alpha-spiral molecules (Davydov, 1985). 

Both periodic and solitary stationary solutions can be obtained within the framework of 
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this model equation. This work is extended to helical soliton and their interaction with 

plane and other helical solitons (Nikitenkova et al., 2015). 

 

1.5.2 One Dimensional Chain Model 

 

Chain models have been used in many works both in the experimental and numerical 

embodiments. One of the examples of the mechanical chain model is described, e.g., in 

the book by (Dodd et al., 1982), where it is shown that the sine-Gordon partial 

differential equation (PDE) can be modeled by a chain of coupled pendulums. Another 

well-known example is the remarkable Toda chain model (1989a), which has not been 

yet realized experimentally in the mechanical embodiment, but has been practically 

incarnated in the electric version and used in many theoretical and numerical studies. 

Other examples relate to the chains of coupled nonlinear oscillators representing 

electromagnetic transmission lines capable to model the sine-Gordon equation 

(Parmentier, 1978), (Rabinovich & Trubetskov, 1989), Korteweg–de Vries (KdV), 

(Lonngren, 1978), (Rabinovich & Trubetskov, 1989), and even more complicated wave 

equations describing, e.g., the interaction of Langmuir and ion-acoustic waves in 

plasma (Rabinovich & Trubetskov, 1989).  

There are also two-dimensional generalizations of chain models representing square or 

hexagonal lattices which can be used for the modeling of PDEs in two spatial variables 

and time [see e.g., (Stepanyants, 1981); (Zolotaryuk et al., 1988) and references 

therein]. The discrete models in many cases can be realized experimentally which can 

represent an analogous computer designed to the solution of a particular PDE. The main 
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task is to get the approximation of the PDE by means of the chain model. This could be 

solved with existing higher-quality ordinary differential equations (ODE) solvers. This 

approach to solving the PDE will be free from the problem of numerical instability.  

This is a major problem when solutions of partial differential equations are investigated. 

The numerical stability determines the accuracy of finding the solution to these PDEs.  

 

1.6 Research Objectives 

 

The aim of the research is to derive new nonlinear vector equations for the phonon 

modes by considering flexural transverse waves in a nonlinear chain of particles. The 

study will consider particular cases of the derived equation which are ‘vector mKdV’, 

‘second order cubic Benjamin-Ono (socBO), ‘nonlinear pseudo-diffusion’, and in the 

scaler case, the Kolmogorov-Petrovsky-Piskunov equation. The equations will be used 

to find stationary solutions and numerically study non stationary interactions of solitary 

waves of different polarisations. Furthermore, the non stationary dynamics of plane and 

helical solitons moving in the same direction along the x-axis, having the same and 

different polarisations will also be investigated. An efficient numerical code for 

integrable and non integrable forms of the vector mKdV equation will be developed and 

used to investigate interactions between different types of plane and helical solitary 

waves. 

Secondly, one dimensional chain will be developed to model complex nonlinear 

physical phenomena. The model will effectively show that these nonlinear wave 

processes in dispersive media can be numerically studied by means of proposed discrete 



13 

 

 

chain model described by sets of ODEs. This idea will be applied to the modeling of 

solitary wave propagation in a rotating ocean described by the Gardner–Ostrovsky PDE. 

An efficient numerical code will be used to investigate the terminal decay of KdV and 

Gardner solitons within the framework of the adiabatic approximation. 

  

1.7 Content of this Research 

 

The techniques and numerical simulations formulated in this research are original. They 

extend and build upon previously developed methods and techniques of work 

acknowledged accordingly. In application to problem studied in this project the used 

techniques are adequate and very efficient. The numerical FORTRAN code used for 

simulation of nonlinear wave phenomena with the help of discrete chain models 

provided significant advantage in computations and very efficient and accurate results. 

The research extends many important areas of nonlinear wave dynamics which are new 

and provide valuable breakthrough in the soliton theory. The outline of the research is 

as follows: 

• Chapter 2 – Flexural transverse waves in a nonlinear chain of particles have 

been considered and a nonlinear vector equation for the phonon modes is 

derived. In the long-wave approximation, various new nonlinear equations can 

be obtained depending on the parameters between the chain particles. Among 

them there are equations possessing both the linear dispersion relation, 

  and quadratic dispersion in the limiting case when the wavenumber goes 
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to zero
2  . The former case is typical for isotropic crystals, whereas the 

latter case is typical for strongly anisotropic crystals with the strong coupling 

between first next two neighboring particles from each side (Lifshitz, 1952). The 

chain equation when each particle of number n is linked with two next 

neighboring atoms from both sides is formulated. Similar equation has been 

derived in Gorbacheva and Ostrovsky (1983) where the coupling with only the 

nearest neighboring particle was taken into consideration. The derived equation 

is new and its properties were not studied before. Among the solutions of this 

equation are plane and helical nonlinear waves, both periodic and solitary. The 

structures of such waves have been found analytically. 

• Chapter 3 – Nonlinear non stationary wave evolution and interactions were 

considered in this chapter. The vector mKdV equation derived in chapter 2 is 

studied numerically. Different graphical results of the plane and helical soliton 

interactions are presented. The integrable and non integrable cases are 

compared.  

• Chapter 4 – Many nonlinear wave processes in dispersive media are numerically 

studied by means of chain models described by sets of ordinary differential 

equations (ODEs). Accurate and efficient results are obtained by using the 

standard ODE solvers within the framework of the developed approach based on 

the physical analogy between the wave processes in different media. The 

concept is demonstrated in application to the modeling of solitary wave 

propagation in a rotating ocean described by the Gardner–Ostrovsky PDE using 

a modified Toda chain model. The results are compared with approximate 
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theoretical findings and earlier published data obtained from the direct 

numerical modeling of the Gardner–Ostrovsky PDE. 

• Chapter 5 – contains conclusion and discussions of results obtained in the 

research. It also highlights further avenues of the research in this field. 
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2 Chapter 2 Non-Linear Stationary Waves in a Vector Model of a 

String 

 

2.1 Introduction 

 

The research work and results of this chapter has been successfully published in the 

journal Communications in Nonlinear Science and Numerical Simulation, 2014.  

The work on nonlinear vector waves in the atomic chain model has been presented in 

VII International Conference: 

 “Solitons, Collapses and Turbulence: Achievements, Developments and Perspectives” 

(SCT-14), 4-8 August, 2014. 

Due to its various important applications, there has been an intensive study of 

anharmonic chains and lattices in past decades. Some notable studies include Maugin 

(1999), Potapov et al. (2001), Brandt & Kulbachinsky (2007), Syrkin et al. (2009), 

Kevrekidis (2011), Rudenko & Solodov (2011). The theory of such discrete structures 

remains very topical due to their numerous applications in theoretical physics. Some of 

the examples are, the theory of crystal heat transport, thermalization in a set of coupled 

oscillators by Fermi et al. (1955), Toda (1989b), molecular physics involving transport 

of excitations in long spiral molecules by Davydov (1985), Christiansen et al. (1997), 

X-ray spectroscopy by Belenkii et al. (1988), and dusty plasma by Fortov et al. (2004), 

Farokhi et al. (2006). 
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Anharmonic chains and lattices are also studied in application to electric transmission 

lines (Scott, 1970), (Toda, 1989b). In the majority of cases either longitudinal modes or 

mixed longitudinal and transverse modes were studied this far. In the one-dimensional 

case in application to a chain of atoms the equation of motion for longitudinal modes is 

scalar describing atom vibrations in the direction of wave propagation [see, e.g., (Fermi 

et al., 1955), (Toda, 1989a)]. However, when the transverse modes are considered (see 

figure 2.1), the equation of motion becomes vector (Gorbacheva & Ostrovsky, 1983), 

(Destrade & Saccomandi, 2008). The particle displacements are described in two 

perpendicular directions transverse to the direction of wave propagation. In both these 

cases of longitudinal and transverse vibrations the dispersion law of phonon (acoustic) 

modes in the long-wave approximation is linear,  ~ k, where  is the wave frequency 

and k is the wave number of infinitesimal amplitude perturbations. 

 

Figure 2.1: Longitudinal and transverse oscillations of equal mass particles in an atomic chain 

(Gorbacheva & Ostrovsky, 1983). 
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It is an experimental fact that in many cases the transverse flexural modes in crystals 

demonstrate the quadratic dispersion law in the long-wave approximation,  ~ k 2. The 

quadratic dispersion law is typical for anisotropic crystals with strong difference 

between the inlayer and interlayer forces; for example, for the graphite (C). Figure 2.2 

from Nicklow et al. (1972) shows the dispersion laws in the anisotropic crystals. I.M. 

Lifshitz (1952) in his pioneering work pointed out at the importance of the quadratic 

dispersion law for strongly anisotropic crystals and suggested a simplified model for the 

description of flexural modes in crystal layers by analogy with the vibrations of elastic 

thin plate. Similar model is applicable for the flexural modes in the chain of atoms when 

particles interact not only with the nearest neighbours but also with the next two in the 

chain (Belenkii et al., 1988), (Syrkin et al., 2009).  

 

Figure 2.2: Quadratic phonon dispersion in Graphite (a) and linear phonon dispersion in GaS (b). 

The wavenumber is given in relative units (Nicklow et al., 1972). 
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In what follows, flexural transverse waves in an anharmonic chain of atoms are used to 

derive the nonlinear vector equation for phonon modes in the long-wave approximation 

taking into account weak dispersion.  

 

2.2 Derivation of the Vector Equation 

 

Consider the chain of equal mass atoms shown in figure 2.1. The equation of motion for 

the atom with number n can be written as: 

 
2

2 1 1 22

n
n n n n

d
m

dt
− − + += + + +F F F F


, (2.1) 

 

 

where m is the mass of each atom, n = (yn, zn) is the two-component transverse 

displacement vector with the y and z-components orthogonal to the axis x, the axis 

along which perturbations propagate, and Fn are transverse forces exerting on the nth 

atom of the chain from its nearest and next neighbours.  

Following the approach used in the paper by Gorbacheva and Ostrovsky (1983), the 

transverse force exerting on the atom is in the form: 
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where j are some coefficients which characterise the strength of the corresponding 

force (without loss of generality, we can put 1 = 1 which is presumed in what follows), 

T is the uniform tension of the chain, K is the analogue of Hook’s constant, n is the 
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local angle between the chain and axis x, j = 1 for the nearest two neighbouring atoms 

and j = 2 for the next two atoms. 

In the case of a plane polarisation when the displacement  has only one y component, 

the angle n  j can be expressed in terms of displacements:  

tan n  j = (yn  j – yn) / (ja). 

The displacement expressions can be manipulated to find the following: 
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For relatively small angles, n  j << 1, these expressions can be presented in the 

approximate form: 
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Hence, the y-component of the force exerting on the nth atom is: 
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Similarly, the z-component of the force exerting on the nth atom is: 
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and the total force F = (Y, Z) is: 
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The Newtonian equation of motion for the nth atom in the chain can be written as: 
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This equation can be further simplified and reduced to the following: 
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where  = (T /am)1/2t, n n a=   and  = aK/T. 

In the linear approximation one can derive the dispersion relation for waves of 

infinitesimal amplitude of the form n  ~ exp[i ( t –  n)]: 

 
2 2 2

24sin 1 2 cos
2 2

 
 

 
= + 

 
. (2.11) 

 

 



22 

 

 

The same equation has been derived by Brandt and Kulbachinsky (2007). As follows 

from this equation,  2 cannot be less than –1/2, otherwise the dispersion relation 

becomes complex which is physically inconsistent.  

In the limiting case  2 = –1/2, the dispersion relation reduces to: 

 
2 44sin

2


 = . (2.12) 

 

 

The graph of the dispersion relation (2.11) is shown in figure 2.3 as a function of phase 

constant  and three values of the parameter 2.  

 

Figure 2.3: Dispersion relation (2.11) for the first Brillouin zone, –    , at different values of 

the coupling constant: line 1 –  2 =0, line 2 –  2 = –1/8, line 3 –  2 = –0.4, and line 4 –  2 = –0.5. 

Brillouin zone is the fundamental period closest to the origin for the periodic dispersion relation. 

    

The parameter 2 can be varied in the long wave approximation (→0) to obtain 

different dispersion dependences observable in experiments:  the linear dispersion law, 
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 ~ , shown in figure 2.2 (a) by solid line with black dots (cf. line 1 in figure 2.3 

obtained for  2 = 0), the weak linear dependence with a comparable positive quadratic 

correction shown in figure 2.2 (b) by solid lines with open circles (cf. line 2 in figure 

2.3 obtained for  2 = –0.4), and the pure quadratic dispersion law  ~  2 shown in 

figure 2.2 (a) by solid line with open circles (cf. line 3 in figure 2.3 obtained for  2 = –

0.5).  

When the linear dispersion predominates in the long wave approximation,  << 1, the 

Taylor series expansion of equation (2.11) yields: 
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This series is valid if 1 + 2 2  0. When  2 = –1/2, equation (2.14) is obtained from 

equation (2.12): 
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Another interesting case occurs when  2 = –1/8, in this boundary case, the dispersion 

relation (2.13) in the long wave approximation is: 

 53 3

2 360
   − +  , (2.15) 

 

 

and the dispersion correction ~ 5 is negative and weakest.  
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In the cases when  2 > –1/8, the dispersion correction to the first term is negative, 

whereas in the cases when  2 < –1/8, the dispersion correction becomes positive. 

In the long-wave approximation equation (2.10) can be reduced to the partial 

differential equation (PDE). The main focus is in the case when coefficient (1 + 22)
1/2 

in the dispersion relation (2.13) is close to or equal to zero, i.e. when 2  –1/2 and 

almost quadratic dispersion law occurs,  ~  2.  

Another limiting case is when the linear dispersion law occurs,  ~  with  2 = 0. This 

has been considered in the work by Gorbacheva and Ostrovsky (1983) and Destrade and 

Saccomandi (2008). To derive the PDE, functions n j  (j = 1, 2) is expanded into the 

Taylor series around the point x = n a, where a is the interatomic distance in the chain 

(see figure 2.1): 
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where x is a continuous variable with the unit length equaled to the size of one cell a in 

the atomic chain shown in figure 2.1. Substituting this into equation (2.10) and after 

simple manipulation the following PDE is obtained: 
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Equation (2.18) is obtained after differentiating equation (2.17) with respect to x and 

introducing a new variable, n x=  u  ,  
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The fourth term in this equation proportional to the sixth derivative of u should be taken 

into account only in the case when the first dispersive term proportional to the fourth 

derivative is anomalously small, i.e. when  2  –1/8, otherwise it can be omitted. 

 Note that the nonlinear term can also turn to zero if  = (1 + 2 2)/(1 + 4 2). Then, 

higher order nonlinear terms needs to be taken into account. Such cases will not be 

considered in this study. 

If  2 ≠ –1/2, then for the unidirectional wave propagation, equation (2.18) can be 

reduced to: 

 
( ) ( ) ( )

3 5
22 22 2

2 3 5

2 2 2

1 4 1 21 8 1 32
1 2 0

24 1 2 720 1 2 4 1 2x x x x

   


   

+ − ++ +    
+ + + + + =

    + + +

u u u u
u u . (2.19) 

 

 

As has been aforementioned, the derived equations (2.18) and (2.19) for transverse 

oscillations can be considered as the generalisations of the vector string equation earlier 

derived by Gorbacheva and Ostrovsky (1983) and Destrade and Saccomandi (2008).  

In the case of  2 = 0, i.e. when the interaction with only the nearest two particles is 

taken into account, and the interaction with the second neighbour atoms is neglected, 

equation (2.19) reduces exactly to: 

 ( )
3

2

3

1 1
0

24 4x x x





   − 
+ + + =

   

u u u
u u . (2.20) 
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The higher order dispersive terms with the sixth derivative in equation (2.18) or with 

the fifth-derivative in equation (2.19) can be kept only if the coefficient  2 is very close 

or exactly equal to  –1/8. In the particular case when  2 = –1/8 equation (2.18) reduces 

to: 

 ( )
2 2 6 2

2

2 2 6 2

3 1 2 3
0

4 120 8x x x





   − 
− + − =

   

u u u
u u , (2.21) 

 

 

and its one-directional counterpart (2.19) is given as: 

 ( ) ( )
5

2

5

3 3 3
2 3 0

2 360 24x x x




   
+ − + − =

   

u u u
u u . (2.22) 

 

 

In another particular case when  2 = –1/2 the second term in equation (2.18) vanishes 

and the quadratic dispersion dependence (2.14) in the long wave approximation is 

obtained.  

In the near-critical case when  2 = –1/2 + , 0 <  << 1 is a small parameter.  

In this case, equation (2.18) reduces to: 

 ( )
2 4 2 2

2

2 4 2 2

1
2

4 2x x x






   
+ = −

   

u u u
u u . (2.23) 

 

 

In this equation it is assumed that both terms in the right-hand side (~  and ~ ) are 

very small and they can be neglected in the zero-order approximation. When  2 = –1/2 

so that  = 0, equation (2.23) can be treated as the vector version of the ‘second order 

cubic Benjamin–Ono (socBO) equation’. Similar (but scalar) equation with the 
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quadratic nonlinearity has been studied in Hereman et al. (1986), Taghizadeh et al. 

(2011), and Najafi (2012) where exact soliton solutions were constructed by different 

methods.      

For waves propagating only in one direction, in this case, to the right, equation (2.23) 

can be further simplified. It can be presented in the factorised form: 

 

2 2 2
2

2 2 2

1 1ˆ ˆH H 2
2 2 2x x x




 

        
+ − = −    

        
u u u u , (2.24) 

 

 

where Ĥ  is the operator of the Hilbert transform:  

 
( ) 11ˆ ˆ ˆH ; H H,

f x
f dx

x x

+

−

−


= = −

 −   

and the principal value of the improper integral is assumed.  

Neglecting the right-hand side of equation (2.24), the following equation in the leading 

order for linear waves propagating to the right is can be given as: 

 

2

2

1
Ĥ 0

2 x

  
+ = 

  
u , (2.25) 

 

 

which provides the dispersion relation (2.14). This equation in the scalar case (i.e. when 

u is a one-component vector) can be treated as the linearised version of the Benjamin–

Ono (BO) equation which is very well known in the theory of internal waves in the deep 

oceans (Ablowitz & Segur, 1981), (Apel et al., 2007).  

 



28 

 

 

After application of the Hilbert transform, this equation reduces to the equation of 

“imaginary diffusion” for the vector variable u:  

 
( ) 2

2

Ĥ 1

2 x

 
=

 

u u
 (2.26) 

 

 

In the next approximation taking into account small but finite terms in the right-hand 

side of equation (2.23), equation (2.26) can be rewritten in the form: 

 
( )2 2

2

2 2

Ĥ 1
2 0

2 2x x






   − + − =
   
 

u u
u u u . (2.27) 

 

 

Integrating this equation twice with the zero constants of integration, the following 

nonlinear ‘pseudo-diffusion’ vector equation is obtained: 

 
( ) 2

2

2

Ĥ 1
2

2 2x






 
= − +

 

u u
u u u . (2.28) 

 

 

This is a new equation which was not known before. In the scalar case the equation 

resembles the aforementioned BO equation, but does not coincide with it (the classical 

BO equation contains another nonlinear term ~uux which is typical for hydrodynamic 

problems).  

It can be noticed that the BO equation is one of the completely integral models in the 

theory of nonlinear waves (Ablowitz & Segur, 1981). On the other hand, equation 

(2.28) resembles the equation of nonlinear diffusion, the Kolmogorov–Petrovsky–

Piskunov (KPP) equation (1937) [see also the corresponding article in the Encyclopedia 
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of Nonlinear Science by A. Scott (2005)] (the KPP equation contains simply u rather 

than ( )Ĥu


 in the left-hand side). 

 

2.3 Stationary Waves 

 

As the first step, a family of stationary waves within the framework of equation (2.18) 

could be considered. It can be assumed that  2  –1/8 and the term with the sixth-order 

derivative can be omitted.  

Looking for solutions which depend on one variable s = x – V t only, where V is the 

velocity of a stationary wave, the following vector ODE is obtained: 

 
( ) ( )22

22 22

2

2 2

1 4 1 21 2
12 6 0

1 8 1 8

Vd

ds

  

 

+ − ++ −
+ + =

+ +

u
u u u . 

 

(2.29) 

 

 

To exclude spatially growing solutions for ( )x  ( x=  u  ), zeros are chosen for both 

the constants of integration.   

Multiplying this equation by du/ds, the first integral is given as: 

 
( ) ( )2 2

2 42 22

2 2

1 4 1 21 21 3
6

2 1 8 2 1 8

Vd
E

ds

  

 

+ − ++ −
+ + =

+ +

u
u u . (2.30) 

 

 

This equation can be interpreted as the energy integral for the point particle of unit mass 

moving in the potential field: 



30 

 

 

 ( )
( ) ( )2

2 42 22

2 2

1 4 1 21 2 3
6

1 8 2 1 8

V
P

  

 

+ − ++ −
= +

+ +
u u u . (2.31) 

 

 

The character of stationary solutions depends on the coefficient of the potential 

function.  

There are in general four options which are discussed. 

 

2.3.1 Case 1: Both Coefficients in P(u) are Negative 

 

In this case: 

 
( ) ( )2

2 22

2 2

1 4 1 21 2
0 and 0

1 8 1 8

V   

 

+ − ++ −
 

+ +
, (2.32) 

 

 

there is only one global maximum in the potential function (see figure 2.4), and there 

are no limited motions in the equivalent dynamical system (2.29) (i.e. the motion is 

unstable on both sides of the global maximum). Corresponding solutions of equation 

(2.29) are unlimited and not interesting.  

The conditions (2.32) can be fulfilled either when: 

• –1/8 <  2 < 0, V 2 > 1 + 2 2,  < (1 + 2 2)/(1 + 4 2); or when 

 

• –1/2 <  2 < –1/8, V 2 < 1 + 2 2,  > (1 + 2 2)/(1 + 4 2)  

 

[As stated parameter  > 0, see its definition after equation (2.10)]. 
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Figure 2.4: The above graph shows the qualitative shape of the cross-sections of 3D potential 

function (2.31) in equation (2.30) corresponding to case 1 above. 

 

2.3.2 Case 2: The Quadratic Coefficient in P(u) is Negative and the Quartic 

Coefficient is Positive. 

 

In this case: 

 
( ) ( )2

2 22

2 2

1 4 1 21 2
0 and 0

1 8 1 8

V   

 

+ − ++ −
 

+ +
. (2.33) 

 

 

There is one local maximum and two global minima in the potential function (see graph 

in figure 2.5). 

 

 

Figure 2.5: The above graph shows the qualitative shape of the cross-sections of 3D potential 

function (2.31) in equation (2.30) corresponding to case 2 above. 
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Such situation may occur when  2 varies from –1/4 to 0, but the parameters should be 

such that either: 

❖ –1/4 <  2 < –1/8, V 2 < 1 + 2 2,  < (1 + 2 2)/(1 + 4 2); or 

❖ –1/8 <  2 < 0, V 2 > 1 + 2 2,  > (1 + 2 2)/(1 + 4 2). 

In this case there are periodic motions with E < 0 in the dynamical system (2.29) around 

shifted centres |u| = |u0|,  

where 

 
( )

( ) ( )

2

2

0

2 2

1 2

1 4 1 2

V 

  

− +
=

+ − +
u . (2.34) 

 

Periodic motions with shifted centres correspond to periodic stationary waves on a 

constant pedestal in terms of |u|, but in terms of atom displacement such solutions 

correspond to periodic waves on infinitely growing background. Such solutions are not 

interesting and not discussed in this study.  

However, in the limiting case of waves with infinite periods and E = 0, such solutions 

reduce to solitary waves in terms of |u| or kinks in terms of ||. These solutions are 

limited and in the scalar case (when vector u has only one component u) are described 

by the following equations: 

 ( )
( )

( ) ( )1, 2 tan
cosh

sss
s s

s

A
u s y s A e C

s

− − = =  −
 

, (2.35) 
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where characteristic solition width is: 

 
( ) ( )

2

2 2

1 81

3 1 4 1 2
s

sA



  

+
 =

+ − +  
, (2.36) 

 

 

and velocity is: 

 ( ) ( )
2

2 2 21 2 1 4 1 2
4

sA
V    =  + + + − +   . (2.37) 

 

 

Both are linked with the soliton amplitude and C is an arbitrary constant. The soliton 

amplitude As may be both positive and negative and it can move both to the right and to 

the left; in terms of particle displacement ( )y s  the solution may be either kink or anti-

kink.  

If C = 0 then ( )y s  describes a kink propagating along the unperturbed atomic chain 

and displacing all atoms behind its front from zero to: 

 
( )

2

2 2

1 8

1 4 1 23
s sy A




  

+
 =  =

+ − −
. (2.38) 

 

 

However if C =  /4 then the propagating kink ( )y s  transfers atoms from one level 

2y−   to another level 2y  or vice versa.  

When –1/4 <  2 < –1/8, there is a solution representing the immovable kink with V = 0; 

in this case the corresponding standing soliton has maximal amplitude and minimal 

width is given as: 
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( )

( )

( )
( )

2

max
2 2

2

min
2

4 1 2
,

1 4 1 2

1 8
.

12 1 2

s

s

A


  





− +
=

+ − −

+
 = −

+

 (2.39) 

 

 

When soliton amplitude decreases from that maximal value, it becomes moving, and its 

speed increases on absolute value and approaches (1 + 2 2)
1/2.  

Such soliton can be dubbed the “slow soliton”. The dependence of slow soliton’s speed 

on its amplitude is shown in figure 2.6 by line 1. 

 

Figure 2.6: Dependence of soliton speed on amplitude for slow soliton (Line 1, generated for  = 1, 

 2 = –0.2) and for fast soliton (line 2, generated for  = 1.5,  2 = –1/16). Dashed line 3 shows 

asymptotic dependence of fast soliton speed on amplitude. 
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Figure 2.7: Standing soliton (line 1) and corresponding kink (line 2) as per equation (2.35). The plot 

was generated for V = 0,  = 1 and  2 = –0.2. 

 

When –1/8 <  2 < 0, there is a family of fast solitons whose speed increases with 

amplitude from Vmin = (1 + 2 2)
1/2 to infinity when As → . The corresponding 

dependence of fast soliton speed on its amplitude is shown in figure 2.6 by line 2.  

There is also a family of periodic waves with E > 0; these waves of large amplitude 

around the centre |u| = 0 are described by the following formula: 

 

( ) ( )

( )
( )

0

2 2

0

2

sn , ;

1 sn ,
arcosh

1

u s u ks

ksu
s

k



 


 

=

−
= −

−

 , (2.40) 

 

 

where arcosh x  cosh–1x is inverse function to cosh x, sn is an elliptic function and: 
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( ) ( )

( ) ( )

2 2

2 2 0 2

2

1
2

2 2

2

2 2 0

2 1 4 1 2 1 2
2

1 8

1 2
2

1 4 1 2

u V
k

V

u

   






  

−

+ − + + − −  =
+

 − − 
= + 

+ − +    

. (2.41) 

 

 

 

2.3.3 Case 3: Quadratic Coefficient in the Potential P(u) is Positive and the 

Quartic Coefficient is Negative 

 

In this case: 

 
( ) ( )2

2 22

2 2

1 4 1 21 2
0 and 0

1 8 1 8

V   

 

+ − ++ −
 

+ +
. 

(2.42) 

 

There is one local minimum and two global maxima in the potential function (see figure 

2.8).  

Conditions (2.42) can be fulfilled either when: 

❖ –1/8 <  2 < 0, V 2 < 1 + 2 2,  < (1 + 2 2)/(1 + 4 2); or when 

❖ –1/2 <  2 < –1/8, V 2 > 1 + 2 2,  > (1 + 2 2)/(1 + 4 2) ( > 0). 

In this case there are periodic motions in the equivalent dynamical system (2.29) around 

the centre |u| = 0 with 0 < E < Pmax(u). In the limit of infinite period these solutions 

reduce to the kink-type solutions for |u|. Such solutions asymptotically approach 

constants, but represent infinitely growing solutions at infinity in terms of particle 

displacement || ~ x.  
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Figure 2.8: The above graph shows the qualitative shape of the cross-sections of 3D potential 

function (2.31) in equation (2.30) corresponding to case 3 above. 

 

Such infinitely growing solutions are not interesting as well, whereas periodic solutions 

make sense and in the scalar case (when vector u has only one component u) they can 

be presented as: 

 ( ) ( ) ( )
( )2 2

0
0 2

1 sn ,
sn , ; arcosh

1

ksu
u s u ks s

k

 
 

 

−
= = −

−
, (2.43) 

 

where  

( ) ( ) 

( ) ( )

2 2

2 2 2 0

2

1
2

2 2

2

2 2 0

2
1 2 1 2 1 4 ,

1 8

1 2
1 .

1 4 1 2

k V u

V

u

   





  

−

= + − + + − +  +

 + − 
= − 

+ − +    
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2.3.4 Case 4: Both Coefficients in the Potential P(u) are Positive 

 

In this case: 

 
( ) ( )2

2 22

2 2

1 4 1 21 2
0 and 0

1 8 1 8

V   

 

+ − ++ −
 

+ +
. 

(2.44) 

 

There is only one global minimum in the potential function (see figure 2.9). Conditions 

(2.44) can be fulfilled either when: 

❖ –1/8 <  2 < 0, V 2 < 1 + 2 2,  > (1 + 2 2)/(1 + 4 2); or when 

❖ –1/4 <  2 < –1/8, V 2 > 1 + 2 2,  < (1 + 2 2)/(1 + 4 2). 

 

Figure 2.9: The above graph shows the qualitative shape of the cross-sections of 3D potential 

function (2.31) in equation (2.30) corresponding to case 4 above.  

 

Then only periodic motions with E > 0 may occur in the equivalent dynamical system 

(2.29): 

 ( ) ( ) ( )
( )2 2

0
0 2

1 sn ,
sn , ; arcosh

1

ksu
u s u ks s

k

 
 

 

−
= = −

−
, (2.45) 

 

where  
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1
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2 2

2
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2 ,
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1 2
2 .

1 4 1 2

V u
k

V

u

   






  

−

+ − + + − +  =
+

 + − 
= + 

+ − +    

 

 

2.4 Conclusion 

 

It has been shown that flexural transverse waves in an anharmonic chain of atoms can 

be described by rather general vector differential-difference equation which can be 

reduced to the generalised “string equation” in the long-wave approximation. This 

equation possesses a rich spectrum of properties and can be reduced to many different 

equations in the particular cases. The basic differential-difference equation takes into 

account the interaction of each atom with two nearest neighbours from both sides. Such 

interaction in the linear approximation leads to the dispersion relation which depends on 

the strength of bonds between the nearest atoms and next neighbours. As the result, the 

dispersion relation in the long-wave approximation may be both linear and quadratic 

depending on the relationship between the bonds.  

Experimental observations confirm that both these cases are realised in different 

crystals (Nicklow et al., 1972). In one of the particular cases the equation derived can 

be reduced to the vector mKdV equation derived for the first time by Gorbacheva and 

Ostrovsky (1983) [see also (Destrade & Saccomandi, 2008)]. In another particular case 

our equation (2.18) can be reduced to the new model equation dubbed here the ‘second 

order cubic Benjamin–Ono (socBO) equation’. Its further reduction leads to one wave 
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‘pseudo-diffusion equation’, which resembles the Kolmogorov–Petrovsky–Piskunov 

equation.  
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3 Chapter 3 Non-Linear Non Stationary Waves in a Vector Model 

of a String 
 

3.1 Introduction 

 

The previous chapter showed the existence of the stationary solitary waves. In addition 

to the stationary solitary waves, non stationary solitary waves also exist within the 

framework of the vector mKdV equation. The two typical cases are breathers and 

helical solitons. These solutions represent solitary waves propagating with the constant 

speeds and having non stationary internal structures – in the simplest embodiments they 

represent stationary propagating wave trains whose envelope and carrier waves move 

with different speeds. 

There are many studies in which the problem of interaction of vector solitary waves 

within the framework of coupled sets of mKdV equations has been studied using 

different methods of numerical solution (Erbay, 1998), (Muslu & Erbay, 2003), (Ismail, 

2008), (Ismail, 2009), (Uddin et al., 2009), (Triki & Ismail, 2010), (Uddin & Jan, 2013). 

Erbay (1998), by using asymptotic expansion technique based on the Lagrangian 

density formulation demonstrated that the nonlinear interaction between two transverse 

waves propagating in a generalized elastic solid is described asymptotically by the 

complex modified Korteweg–de Vries (cmKdV) equation. The derivation is for ion 

acoustic waves in unmagnetised plasma. It was claimed that for any non-integrable 

equation, solitons can interact and can gain or lose energy in collisions with each other 

and in particular the direct consequence of the non-integrability of the cmKdV equation 
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is that the collision of two solitary waves is possibly inelastic, with some residual 

radiation. However, the interaction of solitary waves under different polarization was 

just briefly discussed in that paper, but not investigated. 

In the study by Erbay and Muslu, (2003), cmKdV equation was solved numerically by 

three different split-step Fourier schemes. The importance of interactions of solitary 

waves under different polarization was emphasized, but not investigated in detail. 

Numerical study of a complex integrable mKdV (civmKdV) equation similar to (2.47) 

with zero right-hand side was undertaken by Karney et al. (1979). They found the 

existence of two types of solitary waves, constant phase pulses and helical solitary 

waves.  

The civmKdV equation and its relation to the non-integrable mKdV equation (2.47) 

have been examined numerically. The results obtained are presented in this chapter. It 

was confirmed that plane solitons and the corresponding kinks exist in the chain model 

in agreement with equations (2.33) and (2.34). Then, we investigated the non stationary 

dynamics of plane and helical solitons moving in the same direction along the x-axis, 

having the same and different polarisations.  

The integrable and non integrable forms of the vector mKdV equation were numerically 

solved by the developed FORTRAN code (see Appendix B for full code). Exact 

solutions of the completely integrable mKdV equation were used as the test cases to 

validate the accuracy of the numerical code. The interactions between different types of 

solitary waves in integrable and non integrable cases are compared. 
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3.2 Breather Solutions 

 

As has been mentioned, in the case of plane polarization, equation (2.20) reduces to the 

well-known and completely integrable scalar mKdV equation. This equation has 

breather solutions when the nonlinear coefficient is positive [see, e.g., (Lamb, 1980), 

(Ablowitz & Segur, 1981)].  The breather solutions may exist when the parameters of 

equation (2.20) correspond to case 2 in chapter 2. In the particular case of equation 

(2.20) the plane polarised breather is a two-parametric solution (Lamb, 1980): 

 ( )
( )

( )
21 6 2 2

cos sin tanh8
, sech

3 1 1 sin sech
u x

 


  

 −  
= − 

− +  
 

(3.1) 

 

where  

 = 431/3 x +   + 0,   = 431/3 x +   + 0,   = 8 ( 2 – 3 2), 

 = 8 (3 2 –  2), 

and 0 and 0 are arbitrary constants.  

Here,  and  are independent parameters which determine breather amplitude, width, 

as well as its group and phase speeds. The breather moves with the group speed Vg = 

 /2, whereas its phase speed is Vph =  /2. The breather shape may be very different, 

depending on the parameters,  and .  

It may represent a pair of coupled solitons of opposite polarity moving jointly and 

oscillating around each other in one limiting case, or an envelope soliton similar to the 
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soliton of the NLS equation in another limiting case (Lamb, 1980), (Ablowitz & Segur, 

1981). The plane breather solitary waves can propagate along the atomic chain at any 

angle, i.e. they may have any polarization in the plane perpendicular to the chain line. It 

can be speculated that vector breathers also can exist within the framework of the 

vector mKdV equation, but they were not found yet.  

For the sake of illustration, two different kinds of plane-polarized breathers are shown 

in figure 3.1 (Malomed & Stepanyants, 2010). Similar solutions were found within the 

Gardner equation which is related to the mKdV equation (Grimshaw et al., 2010). 
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Figure 3.1: Typical breathers at different times: (a) two periodically interacting solitons in the 

consecutive time steps with the quarter of period interval; (b) a wave packet (Malomed and 

Stepanyants, 2010). 
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3.3 Helical Solutions 

 

The mKdV equation (2.20) can be presented in the equivalent form as: 

 

23
2

3

1 1 1

24 4 4x x x x

 



   −  −
+ + + = −

    

uu u u u
u u  

 

(3.2) 

 

 

If the right-hand side of this equation equals zero, this equation is completely integrable 

(Karney et al., 1979), but no physical application was found to this equation so far. If, 

however, the right-hand side of this equation is non-zero, but relatively small, then 

equation (3.2) can be treated as the perturbed completely integrable vector mKdV 

equation (civmKdV).  

One of the options when the right-hand side is small is when the x-derivative of |u|2 is 

small. This case is realised when the career wavelength is much less than the 

characteristic width of the envelope.  Taking any exact solution of the civmKdV 

equation as the initial condition, its evolution can be studied numerically within the 

non-integrable vmKdV equation (3.2) under the influence of small right-hand side. 

Using this approach with the exact solution for the helical soliton of civmKdV equation, 

helical solitons exist within the non-integrable equation (3.2). Figure 3.3 and 3.4 show 

the helical solitons of different amplitudes and helicities obtained in numerical 

calculations.  Helical solitons resemble envelope solitons of NLS equation, the helical 

career wave travels with different speed than its envelope. 
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Figure 3.2: The bigger helical soliton obtained showing the envelope and the carrier wave inside. 

 

 

 

Figure 3.3 The smaller helical soliton obtained showing the envelope and the carrier wave inside. 
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3.4 Interaction of Solitary Waves – Numerical Results 

 

A numerical modeling of chain vibrations was undertaken on the basis of fourth order 

Runga-Kutta method. The numerical codes have been developed in GFORTRAN and 

graphical results are obtained using MATLAB. The numerical code computes the 

interaction of plane solitons at different angles (see appendix). 

 

3.5 Interaction of Plane Solitons 

 

The interactions of plane solitons of the same and perpendicular polarizations were 

investigated both for the integrable and non-integrable cases. The graphs in both these 

cases show the nature of solitons before and after the interaction. Note that in the case 

of plane polarization when solitons are of the same or opposite polarity the vector 

mKdV equation reduces to the completely integrable scalar mKdV equation. 

 Soliton interaction in this case is elastic [see, e.g., (Lamb, 1980), (Ablowitz & Segur, 

1981)]. Soliton interaction remains elastic even in the vector case of the integrable 

mKdV equation. But it is not the case when the vmKdV equation is non-integrable. The 

next st of graphs present the examples of interaction of solitons under different angles 

for the non-integrable case. Soliton interaction have been studied both numerically 

within the framework of vector mKdV equation (2.20) and within the discrete chain of 

particles (2.10). No difference was found in both of these cases.  

It has been confirmed that the interaction of plane solitons in the integrable case is 

elastic for all angles between solitons. The two solitons of the same or opposite 
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polarities is found to interact elastically similar to the scalar mKdV solitons. The 

situation drastically changes when two plane solitons enter into the interaction being 

initially in the different planes in non-integrable case. The interesting feature during the 

interaction is the transfer of energy from the smaller soliton to the larger soliton (see 

figures 3.4 – 3.20). The figures 3.11, 3.16 and 3.20 show the larger soliton with an 

increase in amplitude after interaction. The interactions of solitons lying initially in 

other planes when the angle between the planes was 30 and 150 were also 

investigated to confirm the results obtained. A dispersive wave train was generated in 

the process of soliton interaction. The intensity of the wave train depended on the initial 

angle between these solitons.  

However, interaction of two solitons lying initially in the nonparallel planes is 

essentially inelastic. In the former case, the solitons appear again after the collision with 

the same parameters as they had initially. In the latter case, the larger soliton is 

destroyed and transfers its energy to the smaller soliton and dispersive wave train.  

The figures 3.4 – 3.20 show the interaction process between the plane solitons under 

different angles. 
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3.5.1 Interaction of Plane Solitons Initially at 45 degrees in the Non 

Integrable Case 

 

 
Figure 3.4: Two plane solitons initially at 45 degrees before interaction. 

 

Figure 3.5: Two plane solitons initially at 45 degrees during interaction. 
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Figure 3.6: Two plane solitons initially at 45 degrees during interaction. 

 

Figure 3.7: Two plane solitons initially at 45 degrees after interaction. 
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3.5.2 Interaction of Plane Solitons Initially at 60 degrees in the Non 

Integrable Case 

 

Figure 3.8: Two plane solitons initially at 60 degrees before interaction. 

 

Figure 3.9: Two plane solitons initially at 60 degrees during interaction. 
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Figure 3.10: Two plane solitons initially at 60 degrees during interaction. 

 

Figure 3.11: Two plane solitons initially at 60 degrees after interaction. 
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3.5.3 Interaction of Solitons Initially in Perpendicular Planes in Non 

Integrable Case 

 

Figure 3.12: Two plane solitons initially at 90 degrees before interaction. 

 

Figure 3.13: Two plane solitons initially at 90 degrees during interaction. 
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Figure 3.14: Two plane solitons initially at 90 degrees during interaction. 

 

 

Figure 3.15: Two plane solitons initially at 90 degrees during interaction. 
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Figure 3.16: Two plane solitons initially at 90 degrees after interaction. 

 

3.5.4 Interaction of Plane Solitons Initially at 120 degrees in the Non 

Integrable Case 

 

Figure 3.17: Two plane solitons initially at 120 degrees before interaction. 
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Figure 3.18: Two plane solitons initially at 120 degrees during interaction. 

 

 

Figure 3.19: Two plane solitons initially at 120 degrees during interaction. 
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Figure 3.20: Two plane solitons initially at 120 degrees after interaction. 

 

 

3.6 Interaction of Plane and Helical Solitons 

 

This section shows how the plane and helical solitons behave in the process of collision. 

The interaction was studied numerically within the framework of vector mKDV 

equation (2.47). Two cases were studied – the integrable one, when the right-hand side 

of equation (2.47) is zero, and non-integrable, when the right-hand side is non-zero. The 

helical soliton approaches and passes through the plane soliton. The solitons return to 

their original form after the interaction in both the integrable and non-integrable case. 

The normal oscillations of the carrier waves are disturbed during this process as the 

helical solitons moves the through the profile of the plane soliton. The figures 3.21 – 

3.32 show the interaction process between the plane and helical soliton. 
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3.6.1 Interaction of Plane and Helical Solitons in the Integrable Case 

 

 

Figure 3.21: Plane and helical solitons moving closer in the integrable case of interaction. 

 

 Figure 3.22: The helical soliton is passing through the plane soliton. 
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Figure 3.23: The helical and plane soliton in the process of interaction. 

 

 

Figure 3.24: The helical soliton is in the process of moving away from the plane soliton. 
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Figure 3.25: The solitons in the process of recovering their initial forms after the interaction. 

 

 

Figure 3.26: The helical and plane soliton move away after the interaction with their initial forms. 
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3.6.2 Interaction of Plane and Helical Solitons in the Non-Integrable Case 

 

 

Figure 3.27: Plane and helical solitons moving closer before interaction. 

 

Figure 3.28: The helical soliton is passing through the plane soliton and causes the change of the 

form. 
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Figure 3.29: The helical and plane solitons are in the process of interaction with each other. 

 

 

Figure 3.30: The solitons are in the process of recovering their initial forms after the interaction. 
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Figure 3.31: The solitons are in the process of recovering their initial forms. 

 

 

Figure 3.32: The helical and plane soliton move away after the interaction with their initial forms. 
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3.7 Interaction of Helical Solitons 

 

3.7.1 Interaction of Helical Solitons of the Same Helicity in the Integrable 

Case 

 

The interaction of helical solitons of the same helicity in the integrable case is very 

interesting and non-trivial – see figures 3.33 – 3.39. The helical soliton of a smaller 

amplitude moves faster than the larger soliton. In the process of collision the helical 

solitons form a compact state and the smaller soliton does move past the larger one. 

However, after passing the bigger soliton, it moves backwards and moves to the right of 

the larger soliton. It seems to remain at the vicinity of larger soliton and oscillate around 

it.  

 

Figure 3.33: Helical solitons of the same helicity at a distance. 
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Figure 3.34: The helical solitons come close for interaction. 

 

Figure 3.35: The helical solitons in the process of interaction. 
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Figure 3.36: The helical solitons in a compact form in the interaction. 

 

Figure 3.37: The small helical soliton has moved through the larger helical soliton. 
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Figure 3.38: The smaller helical soliton has moved backwards on the right of the larger helical 

soliton. 

 

Figure 3.39: The smaller helical soliton has moved backwards further in the interaction process. 
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3.7.2 Interaction of Helical Solitons of the Same Helicity in the Non-

Integrable Case 

 

The interaction of solitons of the same helicity in the non-integrable case is different to 

the results obtained for the integrable case. The helical solitons move closer and form a 

compact state at some stage. On momentarily being in the compact state, the smaller 

soliton starts to move through the larger one. After the interaction, the solitons move in 

the same direction maintaining their initial forms without any residual ripples. Thus the 

interaction of helical solitons of the same helicity is elastic – see figures 3.40 – 3.45. 

 

 
Figure 3.40: The helical solitons with same helicity at a distance. 
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Figure 3.41: The helical solitons come close for the interaction. 

 

Figure 3.42: The helical solitons begin to form a compact state during the interaction. 
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Figure 3.43: The helical solitons are in a compact state during the interaction. 

 

 

Figure 3.44: The smaller helical soliton has moved through the larger helical soliton. 
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Figure 3.45: The helical solitons have moved away after the interaction with their initial forms. 

 

3.7.3 Interaction of Helical Solitons of Opposite Helicity in the Integrable 

Case 

 

Both helical solitons lose their forms and the disturbance is along the axis. The solitons 

then repel and start to move away from each other. The process of interaction is 

interesting and shows an unstable form during very close contact of the helical solitons 

in this. They slowly move away from each other keeping their initial forms, and 

oscillations of the carrier wave remain stable – see figures 3.46 – 3.51 
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Figure 3.46: The two helical solitons with opposite helicity at a distance. 

 

 

Figure 3.47: The helical solitons move closer and are about to interact. 
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Figure 3.48: The helical solitons are in the process of interaction and cause a slight change of the 

forms. 

 

 

Figure 3.49: The helical solitons experiencing a repulsive effect and their forms are notably 

disturbed. 
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Figure 3.50: The helical solitons repel away as they regain their forms. 

 

 

Figure 3.51: The helical solitons regain their initial forms. 
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3.7.4 Interaction of Helical Solitons of Opposite Helicity in the Non- 

Integrable Case 

 

This non-integrable case shows that the solitons come close and enter into the 

interaction however there is no loss of their forms. There is not as much disturbance in 

the structure as in the previous case and the solitons start to repel. The solitons move 

away from each other with their initial forms, and oscillations of the carrier wave 

remains stable – see figures 3.52 – 3.57. 

 

 

Figure 3.52: The two helical solitons with opposite helicity at a distance. 
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Figure 3.53: The helical solitons come closer and are in the interaction. 

 

Figure 3.54: The helical solitons are in the interaction, but retain their initial forms. 
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Figure 3.55: The helical solitons show repulsion as they have started to move away from each other.  

 

 

Figure 3.56: The helical solitons repel each other and move away after the interaction. 

 



78 

 

 

 

Figure 3.57: The helical solitons have moved further away. 

 

3.8 Relevant Experiment to Helical Solitons 

 

An experiment conducted by science presenter Steve Mould on self-siphoning beads is 

very relevant to the numerical study of helical solitons in this research. It shows the 

occurrence of helicity in the chain of beads as the chain falls from the beaker to the 

ground. The beads rise up in helical form as they leave the beaker (see figure 3.58).  

The presence of transverse vector waves as discussed (see figure 2.1) is clearly 

demonstrated in this amazing experiment. The behavior of the beads and the overall 

effect on the chain is seen in the slow motion part of this video. 
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Figure 3.58: Amazing bead chain experiment in slow motion (Steve Mould, YouTube, 

http://youtu.be/6ukMId5fIi0). 

 

3.9 Conclusion 

 

The simplest non stationary interactions of solitary waves of different polarisations have 

been investigated in this chapter. The evolution of civmKdV equation has been 

numerically studied within the integrable vmKdV (3.2) under the influence of small 

right hand side. The existences of helical solutions are confirmed. The chapter further 

shows the many scenarios of soliton interaction. The interaction of plane solitons under 

different polarisation revealed many important results. Similarly, graphical results 

obtained from numerical computation provided useful information on the interaction of 

helical solitons.  

 

http://youtu.be/6ukMId5fIi0
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4 Chapter 4 Modelling of the Gardner–Ostrovsky Equation by 

Means of the Transmission Line 
 

4.1 Introduction 

 

Numerical modeling of complex physical phenomena plays an important role in the 

contemporary mathematical physics. In many cases when exact solutions of 

mathematical equations are unavailable, researchers are forced to use numerical 

simulations. There are various numerical approaches to simulate partial differential 

equations (PDEs) such as the finite-difference methods, spectral methods based on the 

Fourier transformation, finite element methods, and so on. However, a usage of these 

approaches is related with many problems appearing either explicitly or implicitly in the 

process of discretisation of PDEs.  

Among them, the formation of a proper numerical scheme approximating the concrete 

PDE and investigation of the scheme for stability and convergence after the solution is 

obtained by numerical method. These problems are very nontrivial, especially the 

problem of the numerical scheme’s stability and convergence. Only in the rare cases the 

scheme stability can be theoretically studied and the criterion of stability can be derived. 

In some cases the stability problem is considered empirically by undertaking 

calculations with different time and space steps. More frequently, especially when each 

run is very costly in terms of computational time and machine resources, researchers 

assess the results simply relying on the common sense or intuitive physical judgment. 
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 One of the alternatives to the approaches described above is a usage of discrete chain 

models. Such models are described by sets of ODEs which can be readily solved with a 

high accuracy by existing well-developed solvers realized in many mathematical 

software.  

The next section derives a one-dimensional chain model which possesses rather big 

universality and can be used for the modeling of various nonlinear wave processes in 

dispersive media. It can be shown that for some particular choice of nonlinear and 

dispersive terms, the chain model can be used for the effective simulation of internal 

waves in a rotating ocean as described by the Gardner–Ostrovsky (GO) equation 

(Holloway et al., 1999), (Grimshaw et al., 2006), (Obregon & Stepanyants, 2012). The 

model is also used to study numerically the terminal decay of KdV and Gardner solitons 

and the results are compared with theoretical predictions obtained within the framework 

of the adiabatic approximation.  

Appendix A has the developed codes for particle chain model. The developed codes for 

the chain model used to obtain the solution for Toda chain are given in appendix C and 

D. Appendix E has the numerical codes for the chain model used in obtaining the 

solution of Gardner–Ostrovsky equation. 

 

4.2 Generalised sine-Gordon–Toda Chain Model and the Ostrovsky 

Equation 

 

The ladder type transmission line (figure 4.10) is used to derive the electric version of 

the sine-Gordon–Toda chain. A similar model leading to the discrete and continuous 
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versions of the sine-Gordon model has been studied in Parmentier (1978). A modified 

Toda chain with an additional linear term was considered in Yagi and Kawahara (2001). 

The analogy between the long-wave models of the same Toda chain with the Ostrovsky 

equation was discussed in Khusnutdinova and Moore (2011).  

The transmission line contains the nonlinear elements, the capacitor whose charge 

nonlinearly depends on the voltage Q() and inductance L1 with a nonlinear dependence 

between the current Jn and electric flux n(Jn). 

 

Figure 4.1: The ladder-type transmission line with the nonlinear capacitor and inductance L1. 

 

Applying the Kirchhoff’s laws to two neighbor cells with the indices n and n + 1, the 

following set of equations are obtained: 

 
1

1 1; ;n n n n n
n n n n n n

n

dQ dI d d dJ
I I J L

dt dt dt dJ dt
  +

+ +

 
= + + = + = = . 

(4.1) 

 

After simple manipulations, this set of equations can be reduced to the set of second-

order ODEs: 
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 ( )
2

1 12

1
2n n

n n n n

n

d Q dJ

dt L d
   − += − + −


 

(4.2) 

 

where Jn(n) is the inverse function to n(Jn).  

Equations (4.2) are rather general; making different assumptions regarding Qn(n) and 

Jn(n), various useful and interesting models are obtained which are reducible in the 

long wave approximation to different PDEs. 

Consider, for example, the case when: 

 ( ) ( ) ( ) ( )0 ln 1 and sin .n n n n n n nQ Q a dJ d r b   = +  =  
(4.3) 

 

Note that in the case of the conventional linear inductive element, the flux n is simply 

proportional to the current Jn; this case follows from equation (4.3) when n /b << 1, and 

sin (n /b)  n /b.  

With such choice of the functions Qn(n) and Jn(n) as in equation (4.3), (4.4) is 

obtained from equation (4.2): 

 
( )

( )
2

0 1 12

ln 1 1
2 sin

n n
n n n

d a
Q r

dt L b

 
  − +

+
= − + − . (4.4) 

 

In the normalized variables, un = n /rL and  = t (r /Q0)
1/2 equation (4.3) reads:  

 
( )

( )
2

1 12

ln 1
2 sin

n

n n n n

d u
u u u u

d





− +

+
= − + −  (4.5) 
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where  = rL /a and  = rL /b. Equation (4.5) readily reduces to the classical Toda chain 

(Toda, 1989a) when   = 0.  

In another limiting case when    0 and   << 1, one can replace ln (1 +  un)   un, then 

equation (4.5) reduces to the discrete sine-Gordon equation (Han et al., 2008). For the 

perturbations of infinitely small amplitudes, un → 0, equation (4.5) can be linearized: 

 
2

1 12
2n

n n n n

d u
u u u u

d
 


− += − + − , (4.6) 

 

then the dispersion relation can be derived for the sinusoidal perturbations 

 un ~ exp[i ( – k n)]: 

 
2 24

sin
2

k 


 
= + . 

(4.7) 

 

This dispersion relation is shown in Figure 4.2 for   = 1 and two values of  :   = 0 and 

  = 0.05. 

 

Figure 4.2: Dispersion relation (4.7) for   = 0  (line 1) and   = 0.05 (line 2);    = 1 in both cases. 
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In the long-wave approximation when k << 1 and  << k 2 the dispersion relation (4.7) 

can be approximated as: 

 

2

2
1

24 2

k k

k






 
 − + 

 
. 

(4.8) 

 

This dispersion relation is similar to the dispersion relation describing water waves in 

rotating fluids (Grimshaw et al., 1998b), and the corresponding nonlinear evolution 

equation, the Ostrovsky equation, can be derived from the discrete generalized Toda-

chain model (4.5).  

To demonstrate this, it is assumed that the parameter  in equation (4.5) is so small that 

even for the largest possible value of un function sin ( un) can be replaced by  un with 

the appropriate accuracy. It can be assumed further that  ~ 1 and small-amplitude 

perturbation can be considered such that un << 1 for any n. Then equation (4.5) reduces 

to the following: 

 

2 22

1 12
2

2

n
n n n n n

ud
u u u u u

d


 


− +

 
− = − + − 

 
. 

(4.9) 

 

If a wave has the characteristic wavelength much greater than the spatial size of one cell 

of the chain (assumed that it is 1),  >> 1. Then, un  1 can be presented through the 

Taylor series around the node n. Keeping only two non-vanishing leading terms of the 

Taylor series in the combination un – 1 – 2un + un + 1, and after simple manipulations, 

equation (4.10) is derived:  
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2 2 2 2 4

2 2 2 4

1 1

2 12

u u u u
u

x x

 

    

   
− = + −

   
. (4.10) 

 

(index n of the function un(t) has been omitted)  

In accordance with the assumptions, all terms in the right-hand side of equation (4.10) 

are small in comparison with the terms in the left-hand side. Therefore, in the zero 

approximation on small parameters, one can simply neglect the terms in the right-hand 

side and present the remaining wave equation in the factorized form: 

 

2 2

2 2

1 1 1
0

u u
u

x x x    

       
−  − +   

       
. 

(4.11) 

 

Each bracket in this equation describes independent wave propagating either to the left 

or to the right.  

Considering only a wave propagating to the right, the temporal and spatial derivatives in 

the zero-order approximation are linked by the formula: x     −   , where 

c0 = 1/√ is the phase velocity of long linear waves. This relationship between the 

derivatives can be used in the next approximation yielding after substitution into 

equation (4.10) and simple manipulations, the following equation: 

 

3

32 24 2

u u u u
u u

x

    


    

     
+ − − = −       

. 
(4.12) 

 

This is the well-known Ostrovsky equation which is very popular in the context of 

physical oceanography [see for details (Grimshaw et al., 1998b), (Stepanyants, 2006)]. 

When  = 0, equation (4.12) reduces to the classical KdV equation which is completely 
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integrable and has a particular solution in the form of stationary solitary wave, alias 

soliton (Ablowitz & Segur, 1981): 

 
( )

2 1 1
sech , where ,

1 6

x V
u A T V

T A A



 

−
= = =

−
. 

(4.13) 

 

The next section considers adiabatic evolution of the KdV soliton under the influence of 

small perturbation in the right-hand side of equation (4.12) which models influence of 

Earth’ rotation in the oceanographic context. 

 

4.3 Adiabatic Evolution of KdV Soliton within the Ostrovsky Equation 

 

Assuming that the term in the right-hand side of equation (4.12) is small enough, the 

approximate solution to the equation in the form of KdV soliton with gradually varying 

parameters in space (amplitude A, velocity V, and duration T) could be found. Applying 

the perturbation method described in (Grimshaw et al., 1998a), one can derive the 

energy balance equation: 

 ( ) ( )2 , ,u d u x u x d d
x




    


+ +

− − −

 
 = −  

  
   . 

(4.14) 

 

Substituting soliton solution (4.13) in (4.14), the soliton amplitude is obtained: 

 
dA A

dx



= − . (4.15) 
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This equation can be readily integrated yielding [cf. (Grimshaw et al., 1998a), 

(Grimshaw et al., 1998b)]: 

 ( ) ( )
2

0 1 tA x A x X= −  (4.16) 

 

where A0 is the amplitude of an input soliton entering into the chain at x = 0 and Xt = 

2( A0)
1/2 / is the terminal length – the length at which the soliton vanishes as its 

amplitude formally turns to zero.  

However, in reality the soliton dynamics is more complicated. Numerical calculations 

show that when the leading soliton decays, it produces an intense trailing perturbation 

which in turn evolves into another solitary wave of almost the same amplitude as the 

original soliton. This secondary soliton is also accompanied by trailing wave train. Then 

the process of secondary soliton decay repeats with a resurrection of a new soliton and 

more intense trailing perturbation (Grimshaw et al., 1998b). Such quasi-recurrence 

phenomenon may occur many times. Eventually, the soliton transfers into the stationary 

envelope soliton (which can be described by the generalized NLS equation) and 

dispersive wave train. This process has been investigated in details for the KdV soliton 

within the framework of Ostrovsky equation (Grimshaw & Helfrich, 2008). 

Soliton amplitude decay (4.16) derived within the framework of the adiabatic 

approximation was compared against numerical solution of the primitive set of 

Kirchhoff’s equations (4.1) with the Toda nonlinearity for the charge on the capacitor 

Qn (n) = Q0 ln(1 + n /a) and linear dependence of the flux n (Jn). Then in the 

normalized variables the generalized Toda chain model reduces to equation (4.5) with 
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the linear perturbative term  un rather than the sinusoidal one. Without loss of 

generality, one can put in this case  = 1, then equation (4.5) with  = 0 has the soliton 

solution (Toda soliton): 
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(4.17) 

 

The Toda soliton rapidly reduces to the KdV soliton when its amplitude becomes small 

AT  → 0. The primitive set of Kirchhoff’s equations (4.1) with the functions Qn (n) and 

n (Jn) indicated above was solved numerically for different values of the parameter  . 

The standard FORTRAN code was elaborated on the basis of the fourth-order Runge–

Kutta Solver RKGS with the modification due to Gill (see appendix). Results obtained 

are shown in Figure 4.3 in normalized variables A(X)/A0 versus X = x /Xt . 

 

Figure 4.3: Terminal decay of Toda soliton (4.17) in the electric chain (4.5). 
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Red line 1 shows the theoretical dependence (4.6) derived in the adiabatic 

approximation. Dots on that line show the numerical data obtained with A0 = 0.25 and 

characteristic time duration of the input Toda soliton TT0 = 2. Blue line 2 with small 

diamonds pertains to the numerical data with A0 = 0.1 (TT0 = √10), and black line 3 with 

triangles pertains to numerical data with A0 = 0.5 (TT0 = √2). The parameter  = 10–4 in 

all these cases. As seen in the figure (4.3), the numerical data in lines 2 and 3 deviate 

from the theoretical dependence for the KdV soliton (line 1), although their behavior is 

qualitatively similar to what is shown by line 1.  

The data deviation can be explained by inconsistency of the adiabatic theory in 

application to the numerical data on line 2. According to the main assumption of the 

adiabatic theory, the term in the right-hand side of equation (4.12) should be small in 

comparison to any term in the left-hand side of that equation.  

A rough estimate of the magnitudes of the first term in the left-hand side of equation 

(4.12) and the right-hand side is as follows: 
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(4.18) 

 

where 0 = TT0∙c0 = TT0 / √  is the half-width of the input Toda soliton. Thus, the ratio 

of the terms in the right-hand side and left-hand side is:  

RHS/LHS =  TT0
2

 /2.  
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As we have put  = 1, then for line 1 we have RHS/LHS = 2∙10–4 << 1, whereas for 

lines 2 and 3 we have correspondingly:  

RHS/LHS2 = 5∙10–4 and RHS/LHS3 = 10–4.  

The former of these two values is, apparently, not small enough, whereas the latter one 

is quite small, but soliton amplitude (A0 = 0.5) is too large which makes the difference 

between the KdV and Toda solitons (the adiabatic theory is developed for the KdV 

solitons only). 

 

4.4 Modeling of the Gardner–Ostrovsky Equation 

 

Another choice for the nonlinear dependence between the charge on the capacitor (see 

Figure 4.1) and a voltage Q() = Q0 [ /a – ( /2)∙( /a)2 – (1/3)∙( /a)3] leads to the 

chain model similar to that studied in the Fermi–Pasta–Ulam experiments (see, e.g., 

(Ablowitz & Segur, 1981), (Toda, 1989a)). Inclusion of the additional inductance L1 

with the nonlinear dependence between the current Jn and electric flux n(Jn) as in 

equation (4.3) results in the following set of second order ODEs.  

In the normalised variables, un = n /rL,  = t (r /Q0)
1/2 the set reads: 

 ( ) ( ) ( )
2

2 31
1 12

2 sin
2 2

n n n n n n n

d
u u u u u u u

d


   


− +

 
− − = − + − 

 
 (4.19) 

 

where  and 1 are some coefficients. Assuming  un << 1 (so that sin ( un) ≈  un) and 

repeating the manipulations undertaken above in the derivation of the Ostrovsky 
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equation, one can reduce the set of ODEs (4.19) to the well-known Gardner–Ostrovsky 

equation (Holloway et al., 1999), (Grimshaw et al., 2006), (Obregon & Stepanyants, 

2012): 

 

2 3
2

1 32 2 24 2

u u u u u
u u u

x

      
  

     

      
+ − − − = −        

. 
(4.20) 

 

When  = 0 this equation reduces to the Gardner (or extended KdV) equation which is 

completely integrable and also has soliton solutions (see, e.g., (Apel et al., 2007)). 

However, the structure of Gardner solitons is different from the structure of KdV 

solitons and essentially depends on the sign of the parameter 1, whereas the parameter 

 controls only the polarity of the Gardner soliton. In particular, the Gardner soliton 

with 1 < 0 and  > 0 has a positive polarity: 
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(4.21) 

 

where soliton amplitude A = – /1, velocity V = (1 +  2 2/121)
–1/, characteristic 

duration TG = (–21)
1/2/ ||, as well as ( ) ( )0.25ln 1 / 1  = + −    are determined by 

the parameter   (0, 1). Under small perturbation in the right-hand side of equation 

(4.20) when  ≠ 0 the Gardner soliton gradually decays. From the energy balance 

equation (4.14) it follows the equation for the parameter v: 
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. (4.22) 
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This equation is not solvable analytically in general, however it can be readily solved 

numerically or asymptotically for  → 0 (KdV limit) and  → 1 (table-top limit).  

The results obtained are shown in figure 4.6. Line 1 in that figure pertains to the KdV 

limit which corresponds to equation (4.16), whereas line 2 pertains to the table-top limit 

(obtained numerically by solving equation (4.22)).  

 

Figure 4.4: Bell-shaped pulse above corresponds to KdV soliton of unit amplitude. 

 

 

Figure 4.5: Wide pulse above illustrates the Table-Top soliton of unit amplitude. 
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Figure 4.6: Terminal decay of the Gardner soliton (4.21) in the electric chain (4.19).  

 

The theoretical results derived within the adiabatic approximation were compared 

against numerical data obtained from the direct solution of equation (4.19) with the 

Gardner soliton as the input signal. The following parameters of equation (4.19) were 

chosen:  

 = – 1 = 0.1,  = 1, and  = 10–4.  

It was confirmed that for small and moderate soliton amplitudes, the decay law caused 

by small perturbative factor in the right-hand side of equation (4.19) agrees well with 

the theoretical prediction (see, e.g., line 3 in Figure 4.6 which is obtained for  0 = 0.5). 

However, numerical data for large-amplitude table-top solitons are far from the 

theoretical prediction (see line 4 which pertain to the case of  0 = 10–7). The detailed 

inspection of soliton evolution shows that contrary to theoretical assumption, the table-
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top soliton decays not preserving its shape even at very early stage of the evolution (see 

figure 4.7). 

 

Figure 4.7: Time dependence of the signal generated by the Table-Top Gardner soliton (4.21) with 

 0  = 107 in different cells of the electric lattice (4.19).  Line 1 shows the input pulse, line 2 pertains 

to n = 100, line 3 to n = 200, line 4 to n = 300, line 5 – to n = 400. 

 

4.5 Conclusion 

 

It has been shown that chain models can be used for the effective modeling of partial 

differential equations describing nonlinear wave processes in continuous dispersive 

media. Dissipative terms can be also taken into account; this does not add any 

additional difficulty, whereas the numerical solution of PDEs containing both dispersive 

and dissipative terms is a more difficult problem. The results on KdV soliton decay 

within the framework of Ostrovsky equation (4.12) were obtained and it was 

demonstrated that within the range of applicability of the adiabatic theory, the 

numerical results agree fairly well with the theoretical predictions. It was also revealed 
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that the table-top Gardner soliton does not obey the adiabatic theory and decays much 

faster at the earlier stage due to transformation into bell-shaped pulse rather than 

preserving its own shape. This is in contrast to what was discovered for the adiabatic 

decay of Gardner soliton due to different dissipative perturbations (Grimshaw et al., 

2003).  
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5 Chapter 5 Conclusion and Future Work 
 

5.1 Research Outcomes 

 

The objective of this research was to study and investigate the dynamics of particle-like 

solitary waves. Various analytical and numerical methods were used to obtain 

interesting results describing the solitary waves under different conditions. Some 

derived model equations considered and studied in this research were obtained for the 

first time and provide valuable contribution to the existing literature.  Numerical results 

obtained were of high accuracy at the advantage of less computational time using well 

developed numerical codes designed in FORTRAN and MATLAB.  

Chapter 2 presented the case when transverse modes are considered as the equation of 

motion becomes vector equations in describing the particle displacements in two 

perpendicular directions transverse to the direction of wave propagation. The flexural 

transverse waves in an anharmonic chain of atoms were described by a general vector 

differential-difference equation which was reduced to the generalised “string equation” 

in the long-wave approximation. Various limiting cases were studied of the derived 

vector equation and their physical significance was studied in an anharmonic chain of 

atoms. This investigation considered the next two neighboring atoms in addition to the 

nearest neighbours. The variation of the studied parameter (2) realized in the long wave 

approximation ( → 0) provided different dispersion dependences observable in 

experiments. A new form of nonlinear ‘pseudo-diffusion’ vector equation was obtained 

which has not been derived before. The stationary waves were studied using a potential 
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form of equation derived which was interpreted as the energy integral for the point 

particle of unit mass moving in the potential field. Many cases are discussed depending 

upon the nature of the coefficients in the potential equation. It was found that breather 

solution and helical solutions also exist within the framework of the derived equation. 

Chapter 3 presented the numerical results in the study of nonlinear non stationary waves 

in the flexural transverse waves in an anharmonic chain of atoms. The behavior and 

interaction of non stationary waves were also studied in detail. The results of numerical 

modeling of chain vibrations were computed and presented in graphical forms. This 

revealed the valuable information on the interactions of solitons on the same and 

perpendicular planes. The notable case is when there is a transfer of energy from one 

soliton to another while moving perpendicular to each other. More computations were 

carried out to study the interactions of helical solitons. The results were presented as 

snapshots of the interaction process which provided valuable information of their 

dynamics in integrable and non integrable case. 

Chapter 4 provided an important and highly reliable alternative approach to describe a 

nonlinear wave model by the use of discrete chain models. Such models are described 

by sets of ODEs which can be solved with a very high accuracy. This one-dimensional 

chain model was effectively used for the modeling of various nonlinear wave processes 

in dispersive media. It was shown that at some particular choice of nonlinear and 

dispersive terms the chain model could simulate the internal waves in a rotating ocean 

as described by the Gardner–Ostrovsky (GO) equation revealing many properties of 

these interesting phenomena. An electric version of the sine-Gordon–Toda chain model 
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and Ostrovsky equation were derived using a ladder type transmission line with the 

nonlinear capacitors and inductors. The Ostrovsky equation studied is an important 

model as it considers the influence of Earth’ rotation in the oceanographic context. The 

adiabatic evolutions of important solitons (KdV & Gardner) were studied within the 

framework of the derived Ostrovsky equation. 

 

5.2 Future Directions 

 

This research has investigated and presented many results on solitary wave dynamics. 

However, many aspects of solitary wave dynamics can still be studied within the 

framework of model equations. Surface and internal shallow-water waves and its 

generalization to the deep-water waves which are described by the NLS equation could 

also be an interesting and challenging problem.  

Evidently, the non-dissipative perturbation considered in this research (see Chapter 3) 

and modeling the effect of Earth’ rotation in physical oceanography acts differently on 

such solitons than the dissipative perturbations. Dissipative perturbations can also be 

considered within the framework of model equations derived in this research. The 

numerical solution of the equations containing both dispersive and dissipative terms can 

present more complexity in finding solution to the derived equations. This can also be a 

subject of further study. 
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6 Appendix A: Program Particle Chain 
 

Program ParticleChain 

      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

      EXTERNAL FCT, OUTP 

      DIMENSION PRMT(5),Y(400000),DERY(400000),AUX(8,400000) 

C MAXIMAL NUMBER OF CELLS IS NOW NN = 10000 

      COMMON/PAR/NN,N2,N3,N4,T0,AMP1,AMP2,AMU,BETA2 

      open(100,file='ParHel.dat') 

      open(101,file='Data.dat') 

      open(102,file='Chain.dat') 

      open(1001,file='Work01.dat')     

C PARAMETERS 

******!*********!*********!*********!*********!*********!*************** 

      Ti = 0.D0 

      read(100,*) Dt,T0,AMP1,AMP2,AMU,BETA2,NN,NTS 

      write(101,100) Dt,T0,AMP1,AMP2,AMU,BETA2,NN,NTS 

  100 Format(5X,'Dt',10X,'T0',10X,'AMP1',8X,'AMP2',8X,'AMU', 

     &9X,'BETA2',8x,'NN',5x,'NTS'/1X,6E12.4,3X,2I6//) 

      write(*,*) 'NN = ',NN, 'NTS = ',NTS 

      write(*,*) 'T0 = ',T0, 'Dt = ',Dt 

      write(*,*) 'AMP1 = ',AMP1, 'AMP2 = ',AMP2 

      write(*,*) 'AMU = ',AMU, 'BETA2 = ',BETA2 

      PRM = 1.D-1 

      Accur = 1.D0 
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C********!*********!*********!*********!*********!*********!*********!** 

      NW=60 !NUMBER OF WORK FILES 

   N2 = 2*NN 

      N3 = 3*NN 

      N4 = 4*NN ! N4 IS THE NUMBER OF EQUATIONS IN THE SYSTEM 

      NT1 = NTS/NW 

      PRMT(1) = Ti ! - THE LOWER BOUND OF THE INTEGRATION INTERVAL 

      PRMT(2) = Dt ! - THE UPPER BOUND OF THE INTEGRATION INTERVAL 

      PRMT(3) = Dt*PRM ! - THE INITIAL INCREMENT OF THE INDEPENDENT 

VARIABLE 

      PRMT(4) = ACCUR ! - THE UPPER ERROR BOUND 

C ARRAY DERY BELOW IS THE INPUT VECTOR OF THE INITIAL ERROR 

WEIGHTS 

C THE SUM OF ITS COMPONENTS MUST BE EQUAL TO 1 

      DO 1 I = 1,N4 

          DERY(I) = 1.D0/FLOAT(N4) 

    1 CONTINUE 

C ARRAY Y BELOW IS A VECTOR OF INITIAL DATA 

      DO 2 M = 1,N4 

          Y(M) = 0.D0 

   2  CONTINUE 

C      NR = NN/100 

C*********************************************************************  

C The initial perturbation: 

      DO 5 J = 1,NN 
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          WRITE(102,*) J,Y(J),Y(J+NN),Y(J+N2),Y(J+N3) 

    5 CONTINUE  

C*********************************************************************  

          DO 3 JW1 = 1,NW ! - the loop for NW times writing the results of integration 

      DO 4 I = 1,NT1 ! integration of ODEs 

          CALL RKGS(PRMT,Y,DERY,N4,IHLF,FCT,OUTP,AUX) 

          PRMT(1) = PRMT(2) 

          PRMT(2) = PRMT(2) + DT 

    4 CONTINUE  

      JW = 1000 + JW1 

      DO 6 J = 1,NN 

          WRITE(JW,*) J,Y(J),Y(J+NN),Y(J+N2),Y(J+N3) 

    6 CONTINUE  

      write(*,*) 'JW1 = ',JW1 

    3     CONTINUE  

      stop 

      end 

C*********************************************************************  

      SUBROUTINE FCT(T,Y,DERY) 

      IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

      COMMON/PAR/NN,N2,N3,N4,T0,AMP1,AMP2,AMU,BETA2 

      DIMENSION Y(1),DERY(1) 

C*********************************************************************  

C THE INPUT SIGNAL IS A HELICAL SOLITON 
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      DELT1 = DSQRT((1.D0 + 8.D0*BETA2)/(3.D0*(AMU*(1.D0 + 4.D0*BETA2)  

     &- (1.D0 + 2.D0*BETA2))))/DABS(AMP1) 

      V1 = DSQRT(1.D0 + 2.D0*BETA2 + 2.5D-1*AMP1**2*(AMU*(1.D0 +  

     &4.D0*BETA2) - (1.D0 + 2.D0*BETA2))) 

      PI = 4.D0*DATAN(1.D0) 

      OMEGA = 1.0D0*PI/DELT1 

      F0 = AMP1*DSQRT(1.D0 - (DTANH(V1*(T-

T0)/DELT1))**2)*DCOS(OMEGA*T) 

      F1 = AMP1*DSQRT(1.D0 - (DTANH(V1*(T - T0 - 1.D0/V1)/DELT1))**2) 

     &*DCOS(OMEGA*(T - 1.D0/V1)) 

      G0 = AMP1*DSQRT(1.D0 - (DTANH(V1*(T-

T0)/DELT1))**2)*DSIN(OMEGA*T) 

      G1 = AMP1*DSQRT(1.D0 - (DTANH(V1*(T - T0 - 1.D0/V1)/DELT1))**2) 

     &*DSIN(OMEGA*(T - 1.D0/V1)) 

C      DELT2 = DSQRT((1.D0 + 8.D0*BETA2)/(3.D0*(AMU*(1.D0 + 4.D0*BETA2)  

C     &- (1.D0 + 2.D0*BETA2))))/DABS(AMP2) 

C      V2 = DSQRT(1.D0 + 2.D0*BETA2 + 2.5D-1*AMP2**2*(AMU*(1.D0 +  

C     &4.D0*BETA2) - (1.D0 + 2.D0*BETA2))) 

C      THET = 90.D0  

C      SHIFT = 2.D0*T0 ! - TIME SHIFT BETWEEN TWO SOLITONS 

C      SFP = 4.D0*T0 ! - TIME SHIFT IN THE 'HEVISIDE' STEP-FUNCTION TO 

SWITCH ON PERIODIC BOUNDARY CONDITIONS 

C      G00 = AMP2*DSQRT(1.D0 - (DTANH(V2*(T - SHIFT)/DELT2))**2) 

C      G11=AMP2*DSQRT(1.D0 - (DTANH(V2*(T - SHIFT - 1.D0/V2)/DELT2))**2) 

C*********************************************************************      

      DO 1 I = 3,NN-2 
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      DERY(I) = Y(NN+I) 

      DERY(NN+I) = Y(I-1) - 2.D0*Y(I) + Y(I+1) + 5.D-1*BETA2*(Y(I-2) -  

     &2.D0*Y(I) + Y(I+2)) + 5.0D-1*(AMU - 1.D0)*((Y(I+1)**2 +  

     &Y(N2+I+1)**2)*Y(I+1)-2.D0*(Y(I)**2+Y(N2+I)**2)*Y(I)+(Y(I-1)**2 +  

     &Y(N2+I-1)**2)*Y(I-1)) + 6.25D-2*BETA2*(2.0D0*AMU - 1.D0)* 

     &(((Y(I+2)+Y(I+1))**2 + (Y(N2+I+2)+Y(N2+I+1))**2)*(Y(I+2)+Y(I+1))- 

     &((Y(I)+Y(I-1))**2 + (Y(N2+I)+Y(N2+I-1))**2)*(Y(I)+Y(I-1)) -  

     &((Y(I+1)+Y(I))**2 + (Y(N2+I+1)+Y(N2+I))**2)*(Y(I+1)+Y(I)) + 

     &((Y(I-1)+Y(I-2))**2 + (Y(N2+I-1)+Y(N2+I-2))**2)*(Y(I-1)+Y(I-2))) 

      DERY(N2+I) = Y(N3+I) 

      DERY(N3+I) = Y(N2+I-1) - 2.D0*Y(N2+I)+Y(N2+I+1) + 5.D-1*BETA2* 

     &(Y(N2+I-2) - 2.D0*Y(N2+I) + Y(N2+I+2)) + 5.0D-1*(AMU-1.D0)* 

     &((Y(I+1)**2 + Y(N2+I+1)**2)*Y(N2+I+1)-2.D0*(Y(I)**2 + Y(N2+I)**2)* 

     &Y(N2+I) + (Y(I-1)**2 + Y(N2+I-1)**2)*Y(N2+I-1)) + 6.25D-2*BETA2* 

     &(2.0D0*AMU-1.D0)*(((Y(I+2)+Y(I+1))**2 + (Y(N2+I+2)+Y(N2+I+1))**2)* 

     &(Y(N2+I+2)+Y(N2+I+1))-((Y(I)+Y(I-1))**2 + (Y(N2+I)+Y(N2+I-1))**2)* 

     &(Y(N2+I)+Y(N2+I-1)) - ((Y(I+1)+Y(I))**2 + (Y(N2+I+1)+Y(N2+I))**2)* 

     &(Y(N2+I+1)+Y(N2+I))+((Y(I-1)+Y(I-2))**2+(Y(N2+I-1)+Y(N2+I-2))**2)* 

     &(Y(N2+I-1)+Y(N2+I-2))) 

   1  continue 

C*********************************************************************   

C LEFT BOUNDARY COND. FOR THE FIRST COMPONENT OF VECTOR r: 

      DERY(1) = Y(NN+1) 

      DERY(2) = Y(NN+2) 
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      DERY(NN+1) = F0 - 2.D0*Y(1) + Y(2) + 5.D-1*BETA2*(F1 -  

     &2.D0*Y(1) + Y(3)) + 5.0D-1*(AMU - 1.D0)*((Y(2)**2 +  

     &Y(N2+2)**2)*Y(2)-2.D0*(Y(1)**2+Y(N2+1)**2)*Y(1)+(F0**2 +  

     &G0**2)*F0) + 6.25D-2*BETA2*(2.0D0*AMU - 1.D0)* 

     &(((Y(3) + Y(2))**2 + (Y(N2+3)+Y(N2+2))**2)*(Y(3) + Y(2))- 

     &((Y(1) + F0)**2 + (Y(N2+1) + G0)**2)*(Y(1) + F0) -  

     &((Y(2) + Y(1))**2 + (Y(N2+2) + Y(N2+1))**2)*(Y(2) + Y(1)) + 

     &((F0 + F1)**2 + (G0 + G1)**2)*(F0 + F1)) 

      DERY(NN+2) = Y(1) - 2.D0*Y(2) + Y(3) + 5.D-1*BETA2*(F0 -  

     &2.D0*Y(2) + Y(4)) + 5.0D-1*(AMU - 1.D0)*((Y(3)**2 +  

     &Y(N2+3)**2)*Y(3)-2.D0*(Y(2)**2+Y(N2+2)**2)*Y(2)+(Y(1)**2 +  

     &Y(N2+1)**2)*Y(1)) + 6.25D-2*BETA2*(2.0D0*AMU - 1.D0)* 

     &(((Y(4) + Y(3))**2 + (Y(N2+4)+Y(N2+3))**2)*(Y(4) + Y(3))- 

     &((Y(2) + Y(1))**2 + (Y(N2+2) + Y(N2+1))**2)*(Y(2) + Y(1)) -  

     &((Y(3) + Y(2))**2 + (Y(N2+3) + Y(N2+2))**2)*(Y(3) + Y(2)) + 

     &((Y(1) + F0)**2 + (Y(N2+1)+ G0)**2)*(Y(1) + F0)) 

C RIGHT BOUNDARY COND. FOR THE FIRST COMPONENT OF VECTOR r: 

          DERY(NN-1) = Y(N2-1) 

          DERY(NN) = Y(N2) 

          DERY(N2-1) = 0.D0 

          DERY(N2)= 0.D0 

C*********************************************************************      

C LEFT BOUNDARY CONDITION FOR THE 2-nd COMPONENT OF VECTOR r: 

          DERY(N2+1) = Y(N3+1) 
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          DERY(N2+2) = Y(N3+2) 

      DERY(N3+1) = G0 - 2.D0*Y(N2+1) + Y(N2+2) + 5.D-1*BETA2*(F1 -  

     &2.D0*Y(N2+1) + Y(N2+3)) + 5.0D-1*(AMU - 1.D0)*((Y(2)**2 +  

     &Y(N2+2)**2)*Y(N2+2)-2.D0*(Y(1)**2+Y(N2+1)**2)*Y(N2+1)+(F0**2 +  

     &G0**2)*G0) + 6.25D-2*BETA2*(2.0D0*AMU - 1.D0)* 

     &(((Y(3) + Y(2))**2 + (Y(N2+3)+Y(N2+2))**2)*(Y(N2+3) + Y(N2+2))- 

     &((Y(1) + F0)**2 + (Y(N2+1) + G0)**2)*(Y(N2+1) + G0) -  

     &((Y(2) + Y(1))**2 + (Y(N2+2) + Y(N2+1))**2)*(Y(N2+2) + Y(N2+1))+ 

     &((F0 + F1)**2 + (G0 + G1)**2)*(G0 + G1)) 

      DERY(N3+2) = Y(N2+1) - 2.D0*Y(N2+2) + Y(N2+3) + 5.D-1*BETA2*(G0 -  

     &2.D0*Y(N2+2) + Y(N2+4)) + 5.0D-1*(AMU - 1.D0)*((Y(3)**2 +  

     &Y(N2+3)**2)*Y(N2+3)-2.D0*(Y(2)**2+Y(N2+2)**2)*Y(N2+2)+(Y(1)**2 +  

     &Y(N2+1)**2)*Y(N2+1)) + 6.25D-2*BETA2*(2.0D0*AMU - 1.D0)* 

     &(((Y(4) + Y(3))**2 + (Y(N2+4)+Y(N2+3))**2)*(Y(N2+4) + Y(N2+3))- 

     &((Y(2) + Y(1))**2 + (Y(N2+2) + Y(N2+1))**2)*(Y(N2+2) + Y(N2+1)) -  

     &((Y(3) + Y(2))**2 + (Y(N2+3) + Y(N2+2))**2)*(Y(N2+3) + Y(N2+2)) + 

     &((Y(1) + F0)**2 + (Y(N2+1)+ G0)**2)*(Y(N2+1) + G0)) 

C RIGHT BOUNDARY CONDITION FOR THE 2-nd COMPONENT OF VECTOR r: 

          DERY(N3-1) = Y(N4-1) 

          DERY(N3) = Y(N4) 

          DERY(N4-1) = 0.D0 

          DERY(N4)= 0.D0 

      RETURN 

      END       
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C*********************************************************************     

      SUBROUTINE OUTP(X,Y,DERY,IHLF,NDIM,PRMT) 

      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

      DIMENSION PRMT(1),Y(1),DERY(1) 

      RETURN 

      END 
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7 Appendix B: Program Vector MKDV equation 
 

Program Vector mKdV 

C Spatial step H = RL/N, temporal step TAU 

C Step for data presentation: DT = NB*TAU 

C NWAY = 1: for analitically given initial conditions 

C NWAY = 2: for numerical initial conditions 

C Criterion of stability of the numerical scheme: TAU <, = 0.384*H**3/B 

C Used markers: 1-21 

C********!*********!*********!*********!*********!*********!*********!** 

      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

      DIMENSION P(100004),U(100004),V(100000),S(100001), 

     *P1(100004),U1(100004),V1(100000),S1(100001),X(100000) 

      EQUIVALENCE (V(1),U(3)),(V1(1),U1(3)) 

      COMMON/SLT/A,A1,B,RL 

      OPEN(10,FILE='VMKDV10.DAT')  

     OPEN(101,FILE='VMKDV01.DAT') ! DATA FILE FOR RUN CONTINUATION 

     WHEN NWAY=2                           

     OPEN(102,FILE='VMKDV02.DAT') ! INTEGRAL QUANTITIES 

      OPEN(103,FILE='VMKDV03.DAT') ! MAXIMA AND MINIMA 

      OPEN(104,FILE='VMKDV04.DAT') ! DATA STORED FOR THE NEXT RUN 

C********!*********!*********!*********!*********!*********!*********!** 

C Parameters 

      A=1.D0 

      A1=1.D0 ! For the non-integrable case A1=1 and A1=0 for the integrable case 
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      B=1.D0 

      RL=1.D3 

      N=12500 

      H=RL/N 

      TAUcr=3.84D-1*H**3/B 

      TAU=1.8D-4 

      DT=1.8D0   

      NP=10 

         print 8 

  8      format(/1x,'NWAY = ?'/ 

     *   '   1 - for analyticaly given initial condition;'/ 

     *   '   2 - for numericaly given initial condition   ') 

      READ(*,*) NWAY 

      write(*,*) 'A = ',A, 'A1 = ',A1 

      write(*,*) 'B = ',B, 'Rl = ',RL 

      write(*,*) 'TAU = ',TAU, 'TAUcr = ',TAUcr 

      write(*,*) 'H = ',H, 'DT = ',DT 

      write(*,*) 'N = ',N, '     NP = ',NP 

C********!*********!*********!*********!*********!*********!*********!** 

      NB=DT/TAU+0.00001 

      write(*,*) 'NB = ',NB, '    NWAY = ',NWAY 

      N1=N+1 

      N2=N+2 

      N3=N+3 
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      N4=N+4 

      DO 11 IR=1,N 

  11  X(IR)=RL*(IR-1)/N 

C********!*********!*********!*********!*********!*********!*********!** 

C Initial conditions and first step 

      GO TO (1,2), NWAY 

   1  CALL STEP1(N,U,P,U1,P1,S,S1,A,A1,B,TAU,H,N1,N2,N3,N4) 

      T=0.D0 

      M=0 

      NB1=NB-1 

C********!*********!*********!*********!*********!*********!*********!** 

C Momentum and energy 

      DO 34 L=1,N 

      S(L)=P(L)**2 

      S1(L)=P1(L)**2 

 34   CONTINUE 

      SI1=0.D0 

      SI2=0.D0 

      SE1=0.D0 

      SE2=0.D0 

      DO 81 IJ=1,N 

      SE1=SE1+S(IJ) 

      SI1=SI1+P(IJ) 

      SI2=SI2+P1(IJ) 
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      SE2=SE2+S1(IJ) 

 81   CONTINUE 

      QI1=SI1/N 

      QI2=SI2/N 

      QES=5.D-1*(SE1+SE2)/N 

      UMA=P(1) 

      UMA1=P1(1) 

      UMI=P(1) 

      UMI1=P1(1) 

      DO 334 I=2,N 

      IF (P(I).LE.UMA) GO TO 333 

      UMA=P(I) 

      LVMAX=I 

 333  IF(P(I).GE.UMI) GO TO 334 

      UMI=P(I) 

      LVMIN=I 

 334  CONTINUE 

      DO 335 IM=2,N 

      IF(P1(IM).LE.UMA1) GO TO 336 

      UMA1=P1(IM) 

      LU1MA=IM 

 336  IF (P1(IM).GE.UMI1) GO TO 335 

      UMI1=P1(IM) 

      LU1MI=IM 
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 335  CONTINUE 

      XMA=(LVMAX-1)*H 

      XMI=(LVMIN-1)*H 

      X1MA=(LU1MA-1)*H 

      X1MI=(LU1MI-1)*H 

      PRINT 9,T,M,QI1,QI2,QES,UMA,XMA,UMI,XMI,UMA1,X1MA,UMI1,X1MI 

      DO 10 J=1,N 

      S(J)=DSQRT(P(J+2)**2+P1(J+2)**2) 

  10  CONTINUE 

C      DO 15 J=1,N 

C      S1(J)=0. 

C      IF(H*J.LT.35.) GO TO 15 

C      S1(J)=ATAN2(P1(J+2),P(J+2)) 

C      IF(H*J.GT.130.) S1(J)=PI/2. 

C  15  CONTINUE 

      DO 337 IX=1,N 

      WRITE(10,*) X(IX),P(IX+2),P1(IX+2),S(IX) 

 337  CONTINUE 

      GO TO 314  

C********!*********!*********!*********!*********!*********!*********!** 

   2  DO 300 LN=1,N4 

      READ(101,*) P(LN),U(LN),P1(LN),U1(LN) 

 300  CONTINUE 

      NB1=NB 
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      PRINT 9,T 

C********!*********!*********!*********!*********!*********!*********!** 

 314  CONTINUE 

      WRITE(102,9) 

T,M,QI1,QI2,QES,UMA,XMA,UMI,XMI,UMA1,X1MA,UMI1,X1MI 

      DO 4 I=1,NP 

      WRITE(*,*) 'NSTEP = ',I, 'T = ', T 

      DO 5 IA=1,NB1 

      UB1=U(1) 

      UV1=U1(1) 

      YU=U(2) 

      YU1=U1(2) 

      UF1=U(3) 

      UFE1=U1(3) 

      UF2=U(4) 

      UFE2=U1(4) 

      DO 6 J=3,N2 

      UB2=UB1 

      UB1=YU 

      YU=UF1 

      UF1=UF2 

      UF2=U(J+2) 

      UV2=UV1 

      UV1=YU1 

      YU1=UFE1 
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      UFE1=UFE2 

      UFE2=U1(J+2) 

C********!*********!*********!*********!*********!*********!*********!** 

      P(J)=P(J)-(TAU/H)*((B/H**2)*(UF2-2.D0*UF1+2.D0*UB1-UB2) 

     &+A*(YU**2+YU1**2+2.D0*A1*A*YU**2)*(UF1-

UB1)+2.D0*A1*A*YU1*YU* 

     &(UFE1-UV1)) 

      P1(J)=P1(J)-(TAU/H)*((B/H**2)*(UFE2-2.D0*UFE1+2.D0*UV1-UV2) 

     &+A*(YU1**2+YU**2+2.D0*A1*A*YU1**2)*(UFE1-

UV1)+2.D0*A1*A*YU1*YU* 

     &(UF1-UB1)) 

  6   CONTINUE 

      DO 7 K=3,N2 

      W=P(K) 

      P(K)=U(K) 

      W1=P1(K) 

      P1(K)=U1(K) 

      U1(K)=W1 

   7  U(K)=W 

      U(1)=U(N1) 

      U(2)=U(N2) 

      U(N3)=U(3) 

      U(N4)=U(4) 

      U1(1)=U1(N1) 

      U1(2)=U1(N2) 



115 

 

 

      U1(N3)=U1(3) 

      U1(N4)=U1(4) 

   5  CONTINUE 

      NB1=NB 

C********!*********!*********!*********!*********!*********!*********!** 

      DO 234 L=1,N 

      S(L)=U(L+2)**2 

      S1(L)=U1(L+2)**2 

 234  CONTINUE 

      SI1=0. 

      SI2=0. 

      SE1=0. 

      SE2=0. 

      DO 281 IJ=1,N 

      SE1=SE1+S(IJ) 

      SI1=SI1+V(IJ) 

      SI2=SI2+V1(IJ) 

      SE2=SE2+S1(IJ) 

 281  CONTINUE 

      QI1=SI1/N 

      QI2=SI2/N 

      QES=5.D-1*(SE1+SE2)/N 

      UMA=V(1) 

      UMA1=V1(1) 
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      UMI=V(1) 

      UMI1=V1(1) 

      DO 134 I0=2,N 

      IF (V(I0).LE.UMA) GO TO 133 

      UMA=V(I0) 

      LVMAX=I0 

 133  IF(V(I0).GE.UMI) GO TO 134 

      UMI=V(I0) 

      LVMIN=I0 

 134  CONTINUE 

      DO 135 IM=2,N 

      IF (V1(IM).LE.UMA1) GO TO 136 

      UMA1=V1(IM) 

      LU1MA=IM 

 136  IF(V1(IM).GE.UMI1) GO TO 135 

      UMI1=V1(IM) 

      LU1MI=IM 

 135  CONTINUE 

      XMA=(LVMAX-1)*H 

      XMI=(LVMIN-1)*H 

      X1MA=(LU1MA-1)*H 

      X1MI=(LU1MI-1)*H 

      M=M+NB 

      T=T+DT 
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C      PRINT 9,T,M,QI1,QI2,QES,UMA,XMA,UMI,XMI,UMA1,X1MA,UMI1,X1MI 

      WRITE(102,22) T,QI1,QI2,QES 

      WRITE(103,23) T,UMA,XMA,UMI,XMI,UMA1,X1MA,UMI1,X1MI 

      DO 110 J=1,N 

      S(J)=DSQRT(V(J)**2+V1(J)**2) 

  110 CONTINUE 

C      DO 115 J=1,N 

C      S1(J)=0. 

C      IF(H*J.LT.35.) GO TO 115 

C      S1(J)=ATAN2(V1(J),V(J)) 

C      IF(H*J.GT.130.) S1(J)=PI/2. 

C  115 CONTINUE 

      DO 237 IX=1,N 

      WRITE(10+I,*) X(IX),P(IX+2),P1(IX+2),S(IX) 

 237  CONTINUE 

  4   CONTINUE 

      DO 200 LN=1,N4 

      WRITE(104,*) P(LN),U(LN),P1(LN),U1(LN) 

 200  CONTINUE 

      CLOSE(104) 

C********!*********!*********!*********!*********!*********!*********!** 

      STOP 

   9  FORMAT(/1X,2HT=,G10.4,3X,2HM=,I7,3X,'QI1=',G10.4,3X,'QI2=',G10.4, 

     &3X,'QES=',G16.10,1X,'UMA= ',G10.4,3X,'XMA= ',G10.4,'UMI= ',G10.4, 
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     &3X,'XMI=',G10.4,1X,'U1MA=',G10.4,3X,'X1MA=',G10.4,'U1MI=',G10.4, 

     &3X,'X1MI=',G10.4) 

  22  FORMAT(4E12.4) 

  23  FORMAT(9E12.4) 

      END 
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8 Appendix C: The Toda Chain Program 
 

Program Tchain 

      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

      EXTERNAL FCT, OUTP 

      DIMENSION PRMT(5),Y(1000),DERY(1000),AUX(8,1000) 

      COMMON/PAR/NN, N2, T0, R, Del 

      open(0,file='Param.dat') 

      open(1,file='Work1.dat') 

      open(2,file='Work2.dat') 

      open(3,file='Work3.dat') 

      open(10,file='Data.dat') 

      open(11,file='Chain.dat') 

C PARAMETERS 

******!*********!*********!*********!*********!*********!*************** 

      Ti = 0.D0 

      read(0,*) Dt,T0,R,Del,NN,NTS 

      write(10,100) Dt,T0,R,Del,NN,NTS 

  100 Format(7X,2HDt,14X,2HT0,15X,1HR,18X,3HDel,13x,2HNN,5x,3HNTS/ 

     &1X,4E12.4,3X,2I5//) 

      PRM = 1.D-2 

      Accur = 1.D0 

C********!*********!*********!*********!*********!*********!*********!** 

!      NN = 500 

      N2 = 2*NN ! N2 IS THE NUMBER OF EQUATIONS IN THE SYSTEM 

!      NTS = 500 ! - NUMBER OF TIME STEPS FROM Ti 

!      Dt = 5.D-1 ! - STEP OF INTEGRATION 
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      PRMT(1) = Ti ! - THE LOWER BOUND OF THE INTEGRATION INTERVAL 

      PRMT(2) = Dt ! - THE UPPER BOUND OF THE INTEGRATION INTERVAL 

      PRMT(3) = Dt*PRM ! - THE INITIAL INCREMENT OF THE INDEPENDENT 

VARIABLE 

      PRMT(4) = ACCUR ! - THE UPPER ERROR BOUND 

C ARRAY DERY BELOW IS THE INPUT VECTOR OF THE INITIAL ERROR 

WEIGHTS 

C THE SUM OF ITS COMPONENTS MUST BE EQUAL TO 1 

      DO 1 I = 1,N2 

          DERY(I) = 1.D0/FLOAT(N2) 

    1 CONTINUE 

C ARRAY Y BELOW IS A VECTOR OF INITIAL DATA 

      DO 2 M = 1,N2 

          Y(M) = 0.D0 

   2  CONTINUE 

C      DO 4 M = 1,NN ! - SMALL INITIAL PERTURBATION 

C          Y(M) = 2.D-2*DEXP(-(M - NN/4)**2/5.D0) 

C   4  CONTINUE 

      NR = NN/10 

      write(1,*) Ti, Y(NR), Y(NN+NR)  

      write(2,*) Ti, Y(2*NR), Y(NN+2*NR)  

      write(3,*) Ti, Y(3*NR), Y(NN+3*NR)  

C*********************************************************************     

      DO 3 I = 1,NTS ! integration of ODEs 

          CALL RKGS(PRMT,Y,DERY,N2,IHLF,FCT,OUTP,AUX) 

          write(1,*) PRMT(2), Y(NR), Y(NN+NR)  

          write(2,*) PRMT(2), Y(2*NR), Y(NN+2*NR)  
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          write(3,*) PRMT(2), Y(3*NR), Y(NN+3*NR)  

          PRMT(1) = PRMT(2) 

          PRMT(2) = PRMT(2) + DT 

    3 continue 

      DO 5 J = 1,NN 

          WRITE(11,*) J,Y(J) 

    5 CONTINUE  

      stop 

      end       

C*********************************************************************    

      SUBROUTINE FCT1(T,Y,DERY) 

C INPUT SIGNAL - A KINK 

      IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

      COMMON/PAR/NN, N2, T0, R, Del 

      DIMENSION Y(1),DERY(1)  

      A = 1.D0 

      DO 1 I = 2,NN-1 

          DERY(I) = (Y(NN+I) - Y(NN+I+1))*(1.D0 + Y(I)) 

          DERY(NN+I) = Y(I-1) - Y(I) 

   1  continue 

      Y(1) = 5.D-1*A*(1.D0 + DTANH((T - T0)/Del)) ! Y(1) = u(1) 

      Y(NN+1) = 0.D0 

C MATHCHED LOAD BOUNDARY CONDITION 

      Y(NN) = R*Y(N2) 

      DERY(N2) = (1.D0 + Y(NN))*(Y(N2-1) - Y(N2))/R 

      RETURN 
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      END       

C*********************************************************************   

      SUBROUTINE FCT(T,Y,DERY) 

C INPUT SIGNAL - SOLITON TODA 

      IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

      COMMON/PAR/NN, N2, T0, R, Del 

      DIMENSION Y(1),DERY(1)  

      A = 2.D0*(DSINH(1.D0/Del))**2 

      V = Del*DSINH(1.D0/Del) 

      DO 1 I = 2,NN-1 

          DERY(I) = (Y(NN+I) - Y(NN+I+1))*(1.D0 + Y(I)) 

          DERY(NN+I) = Y(I-1) - Y(I) 

   1  continue 

      Y(1) = A*(1.D0 - (DTANH((T - T0)*V/Del))**2) ! Y(1) = u(1) 

c      Y(NN+1) = 0.D0 

      Y(NN+1) = (A*Del/V)*(DTANH((T - T0)*V/Del) -  

     &DTANH(((T - T0)*V - 1)/Del)) ! Y(NN + M)) = i(M) 

C MATHCHED LOAD BOUNDARY CONDITION 

      Y(NN) = R*Y(N2) 

      DERY(N2) = (1.D0 + Y(NN))*(Y(N2-1) - Y(N2))/R 

      RETURN 

      END       

C*********************************************************************     

      SUBROUTINE OUTP(X,Y,DERY,IHLF,NDIM,PRMT) 

      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

      DIMENSION PRMT(1),Y(1),DERY(1) 
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      RETURN 

      END 
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9 Appendix D: Rotational Toda Chain Program 
 

Program RotationalTodaChain 

      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

      EXTERNAL FCT, OUTP 

      DIMENSION PRMT(5),Y(1500),DERY(1500),AUX(8,1500) 

C MAXIMAL NUMBER OF CELLS IS NOW NN = 500 

      COMMON/PAR/NN, N2, N3, T0, R, Del, F 

      open(0,file='Rparam.dat') 

      open(1,file='Work1.dat') 

      open(2,file='Work2.dat') 

      open(3,file='Work3.dat') 

      open(10,file='Data.dat') 

      open(11,file='Chain.dat') 

C PARAMETERS 

******!*********!*********!*********!*********!*********!*************** 

      Ti = 0.D0 

      read(0,*) Dt,T0,R,Del,F,NN,NTS 

      write(10,100) Dt,T0,R,Del,F,NN,NTS 

  100 Format(7X,'Dt',14X,'T0',15X,'HR',18X,'Del',18X,'F',11x,'NN',5x, 

     &'NTS'/1X,5E12.4,3X,2I5//) 

      PRM = 1.D-2 

      Accur = 1.D0 

C********!*********!*********!*********!*********!*********!*********!** 

      N2 = 2*NN 
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      N3 = 3*NN ! N3 IS THE NUMBER OF EQUATIONS IN THE SYSTEM 

      PRMT(1) = Ti ! - THE LOWER BOUND OF THE INTEGRATION INTERVAL 

      PRMT(2) = Dt ! - THE UPPER BOUND OF THE INTEGRATION INTERVAL 

      PRMT(3) = Dt*PRM ! - THE INITIAL INCREMENT OF THE INDEPENDENT 

VARIABLE 

      PRMT(4) = ACCUR ! - THE UPPER ERROR BOUND 

C ARRAY DERY BELOW IS THE INPUT VECTOR OF THE INITIAL ERROR 

WEIGHTS 

C THE SUM OF ITS COMPONENTS MUST BE EQUAL TO 1 

      DO 1 I = 1,N3 

          DERY(I) = 1.D0/FLOAT(N3) 

    1 CONTINUE 

C ARRAY Y BELOW IS A VECTOR OF INITIAL DATA 

      DO 2 M = 1,N3 

          Y(M) = 0.D0 

   2  CONTINUE 

      NR = NN/100 

      write(1,*) Ti, Y(4*NR), Y(NN+NR)  

      write(2,*) Ti, Y(5*NR), Y(NN+2*NR)  

      write(3,*) Ti, Y(6*NR), Y(NN+3*NR)  

C*********************************************************************       

      DO 3 I = 1,NTS ! integration of ODEs 

          CALL RKGS(PRMT,Y,DERY,N3,IHLF,FCT,OUTP,AUX) 

          write(1,*) PRMT(2), Y(4*NR), Y(NN+NR)  

          write(2,*) PRMT(2), Y(5*NR), Y(NN+2*NR)  
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          write(3,*) PRMT(2), Y(6*NR), Y(NN+3*NR)  

          PRMT(1) = PRMT(2) 

          PRMT(2) = PRMT(2) + DT 

    3 continue 

      DO 5 J = 1,NN 

          WRITE(11,*) J,Y(J) 

    5 CONTINUE  

      stop 

      end       

C*********************************************************************   

      SUBROUTINE FCT(T,Y,DERY) 

C INPUT SIGNAL - SOLITON TODA 

      IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

      COMMON/PAR/NN, N2, N3, T0, R, Del, F 

      DIMENSION Y(1),DERY(1)  

      A = 2.D0*(DSINH(1.D0/Del))**2 

      V = Del*DSINH(1.D0/Del) 

      DO 1 I = 2,NN-1 

          DERY(I) = (Y(NN+I) - Y(NN+I+1) - Y(N2+I))*(1.D0 + Y(I)) 

          DERY(NN+I) = Y(I-1) - Y(I) 

          DERY(N2+I) = Y(I)/F 

   1  continue 

      Y(1) = A*(1.D0 - (DTANH((T - T0)*V/Del))**2) ! Y(1) = u(1) 

      Y(NN+1) = 0.D0 
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      Y(N2+1) = 0.D0 

C      Y(NN+1) = Y(NN+2) + (A*Del/V*F)*(DTANH((T - T0)*V/Del) -  

C     &DTANH(((T - T0)*V - 1)/Del)) ! - this is current j 

C MATHCHED LOAD BOUNDARY CONDITION 

      Y(NN) = R*Y(N2) 

      DERY(N2) = (1.D0 + Y(NN))*(Y(N2-1) - Y(N2))/R 

      Y(N3) = 0.D0 

      RETURN 

      END       

C*********************************************************************     

      SUBROUTINE OUTP(X,Y,DERY,IHLF,NDIM,PRMT) 

      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

      DIMENSION PRMT(1),Y(1),DERY(1) 

      RETURN 

      END 
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10 Appendix E: Program Chain Model for the Gardner–Ostrovsky 

Equation 
 

ParticleChainGO 

      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 

      EXTERNAL FCT, OUTP 

      DIMENSION PRMT(5),Y(30000),DERY(30000),AUX(8,30000) 

C MAXIMAL NUMBER OF CELLS IS NOW NN = 10000 

      COMMON/PAR/NN,N2,N3,T0,R,F,ALPHA,ALPHA1,ANU,PHI,TG 

      open(100,file='Rparam.dat') 

      open(101,file='Data.dat') 

      open(102,file='Chain.dat')  

      open(1001,file='Work1.dat') 

      open(1002,file='Work50.dat') 

      open(1003,file='Work100.dat') 

      open(1004,file='Work150.dat') 

      open(1005,file='Work200.dat') 

       

C PARAMETERS 

******!*********!*********!*********!*********!*********!*************** 

      Ti = 0.D0 

      read(100,*) Dt,T0,R,F,ALPHA,ALPHA1,ANU,NN,NTS 

      write(101,100) Dt,T0,R,F,ALPHA,ALPHA1,ANU,NN,NTS 

  100 Format(7X,'Dt',14X,'T0',15X,'HR',18X,'F',15X,'ALPHA',10X,'ALPHA1', 

     &10X,'ANU',13x,'NN',5x,'NTS'/1X,7E12.4,3X,2I6//) 
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      PHI = 2.5D-1*DLOG((1.D0 + ANU)/(1.D0 - ANU)) 

      TG = DSQRT(-2.D0*ALPHA1)/(ANU*DABS(ALPHA)) 

      write(*,*) Dt,T0,R 

      write(*,*) F,ALPHA,ALPHA1 

      write(*,*) ANU,NN,NTS 

      write(*,*) PHI,TG 

      PRM = 1.D-2 

      Accur = 1.D0 

C********!*********!*********!*********!*********!*********!*********!** 

      N2 = 2*NN 

      N3 = 3*NN ! N3 IS THE NUMBER OF EQUATIONS IN THE SYSTEM 

      PRMT(1) = Ti ! - THE LOWER BOUND OF THE INTEGRATION INTERVAL 

      PRMT(2) = Dt ! - THE UPPER BOUND OF THE INTEGRATION INTERVAL 

      PRMT(3) = Dt*PRM ! - THE INITIAL INCREMENT OF THE INDEPENDENT 

VARIABLE 

      PRMT(4) = ACCUR ! - THE UPPER ERROR BOUND 

C ARRAY DERY BELOW IS THE INPUT VECTOR OF THE INITIAL ERROR 

WEIGHTS 

C THE SUM OF ITS COMPONENTS MUST BE EQUAL TO 1 

      DO 1 I = 1,N3 

          DERY(I) = 1.D0/FLOAT(N3) 

    1 CONTINUE 

C ARRAY Y BELOW IS A VECTOR OF INITIAL DATA 

      DO 2 M = 1,N3 

          Y(M) = 0.D0 



130 

 

 

   2  CONTINUE 

C      NR = NN/100       

      write(1001,*) Ti, Y(1) 

      write(1002,*) Ti, Y(50)  

      write(1003,*) Ti,Y(100) 

      write(1004,*) Ti,Y(150) 

      write(1005,*) Ti,Y(200) 

C*********************************************************************       

      DO 3 I = 1,NTS ! integration of ODEs 

          CALL RKGS(PRMT,Y,DERY,N3,IHLF,FCT,OUTP,AUX)       

      write(1001,*) PRMT(2), Y(1)  

      write(1002,*) PRMT(2), Y(50)  

      write(1003,*) PRMT(2), Y(100) 

      write(1004,*) PRMT(2), Y(150) 

      write(1005,*) PRMT(2), Y(200) 

          PRMT(1) = PRMT(2) 

          PRMT(2) = PRMT(2) + DT 

    3 continue 

      DO 5 J = 1,NN 

          WRITE(102,*) J,Y(J) 

    5 CONTINUE  

      stop 

      end       

C*********************************************************************    
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      SUBROUTINE FCT(T,Y,DERY) 

C THE INPUT SIGNAL IS TODA SOLITON 

      IMPLICIT DOUBLE PRECISION(A-H,O-Z) 

      COMMON/PAR/NN,N2,N3,T0,R,F,ALPHA,ALPHA1,ANU,PHI,TG 

      DIMENSION Y(1),DERY(1)  

      DO 1 I = 2,NN-1 

          DERY(I) = (Y(NN+I) - Y(NN+I+1) - Y(N2+I)) 

     &/(1.D0 - ALPHA*Y(I) - ALPHA1*Y(I)**2) 

          DERY(NN+I) = Y(I-1) - Y(I) 

          DERY(N2+I) = Y(I)/F 

   1  continue 

      Y(1) = -(5.D-1*ANU*ALPHA/ALPHA1)*(DTANH((T - T0)/TG + PHI) -  

     &DTANH((T - T0)/TG - PHI)) ! Y(1) = u(1) 

      Y(NN+1) = 0.D0 

      Y(N2+1) = 0.D0 

C MATHCHED LOAD BOUNDARY CONDITION 

      Y(NN) = R*Y(N2) 

      DERY(N2) = (1.D0 + Y(NN))*(Y(N2-1) - Y(N2))/R 

      Y(N3) = 0.D0 

      RETURN 

      END       

C*********************************************************************     

      SUBROUTINE OUTP(X,Y,DERY,IHLF,NDIM,PRMT) 

      IMPLICIT DOUBLE PRECISION (A-H,O-Z) 
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      DIMENSION PRMT(1),Y(1),DERY(1) 

      RETURN 

      END 
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