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An improved adaptive neuro fuzzy 
inference system model using 
conjoined metaheuristic algorithms 
for electrical conductivity 
prediction
Iman Ahmadianfar1*, Seyedehelham Shirvani‑Hosseini2, Jianxun He3, 
Arvin Samadi‑Koucheksaraee1 & Zaher Mundher Yaseen4,5

Precise prediction of water quality parameters plays a significant role in making an early alert of 
water pollution and making better decisions for the management of water resources. As one of 
the influential indicative parameters, electrical conductivity (EC) has a crucial role in calculating 
the proportion of mineralization. In this study, the integration of an adaptive hybrid of differential 
evolution and particle swarm optimization (A‑DEPSO) with adaptive neuro fuzzy inference system 
(ANFIS) model is adopted for EC prediction. The A‑DEPSO method uses unique mutation and 
crossover processes to correspondingly boost global and local search mechanisms. It also uses a 
refreshing operator to prevent the solution from being caught inside the local optimal solutions. 
This study uses A‑DEPSO optimizer for ANFIS training phase to eliminate defects and predict 
accurately the EC water quality parameter every month at the Maroon River in the southwest of Iran. 
Accordingly, the recorded dataset originated from the Tange‑Takab station from 1980 to 2016 was 
operated to develop the ANFIS‑A‑DEPSO model. Besides, the wavelet analysis was jointed to the 
proposed algorithm in which the original time series of EC was disintegrated into the sub‑time series 
through two mother wavelets to boost the prediction certainty. In the following, the comparison 
between statistical metrics of the standalone ANFIS, least‑square support vector machine (LSSVM), 
multivariate adaptive regression spline (MARS), generalized regression neural network (GRNN), 
wavelet‑LSSVM (WLSSVM), wavelet‑MARS (W‑MARS), wavelet‑ANFIS (W‑ANFIS) and wavelet‑GRNN 
(W‑GRNN) models was implemented. As a result, it was apparent that not only was the W‑ANFIS‑A‑
DEPSO model able to rise remarkably the EC prediction certainty, but W‑ANFIS‑A‑DEPSO (R = 0.988, 
RMSE = 53.841, and PI = 0.485) also had the edge over other models with Dmey mother in terms of 
EC prediction. Moreover, the W‑ANFIS‑A‑DEPSO can improve the RMSE compared to the standalone 
ANFIS‑DEPSO model, accounting for 80%. Hence, this model can create a closer approximation of EC 
value through W‑ANFIS‑A‑DEPSO model, which is likely to act as a promising procedure to simulate 
the prediction of EC data.

Research background. Nowadays, water resources face plenty of serious threats, all of which are caused 
mainly by the increasing phenomenon of climate change, urbanization and inadequate water  infrastructure1. 
Undoubtedly, rivers are vital inland water resources to supply a wide range of purposes such as agricultural 
demands, industrial and recreational goals, and domestic  consumption2,3. Accordingly, the essential role of 
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existing water resources, in particular rivers, emphasizes the necessity of efficient water resource  management4. 
Admittedly, the primary key of effective water resource management is to monitor the water quality (WQ) on a 
regular  basis5–8.

Nevertheless, frequent and accurate testing and sampling of existing water bodies are time-consuming and 
exorbitant, resulting in the tedious study and limited calibration and validation of WQ  evaluation9,10. Devel-
oping appropriate data-intelligence models for WQ monitoring is part and parcel of better surface water 
 management11,12. Hence, the main benefit of modeling the water quality-related variables of surface water is to 
reach an efficient and reliable water resource management, which causes costs reduction. It is mainly because 
these models, as indirect procedures, have high reliability, which would detect the values of water quality-related 
variables in the  future13. Ensuring better WQ management demands the development of suitable models for WQ 
 monitoring14–17. As a result, reaching a better understanding of surface water-related parameters is one of the 
significant elements to have reliable water resources  management18. It can result in a more efficient emerging 
tool of water treatment cost reduction and better WQ sustainability.

Among several WQ variables, EC is an essential indicator for salinity that is highly significant for better irriga-
tion and water usages  purposes19. This is clearly explaining the importance of this variable in the surface water 
quality health as it is prevailed by the total dissolved solid (TDS) while being related to dissolved ionic solutes 
including sodium  (Na+), chloride  (Cl−), magnesium  (Mg2+), sulfate  (SO42−), and calcium  (Ca2+) in  water5,19. 
Not only does the ionic composition affect the growth of plants, but it also decreases the quality of drinking 
water remarkably. Besides, EC plays an essential role in salinity hazard measurement for irrigation and drinking 
 water5,19,20.

Problem statement. Water quality variables models are critically important tools for conducting aquatic 
systems research, bringing along an appropriate evaluation and prediction of surface WQ for effective water 
resource  management7,21–24. Indeed, this procedure causes efficient measures to ensure that pollution propor-
tions remain within permissible  limits25. One of the essential tasks to reach optimal resource management is to 
predict the WQ parameters accurately. Although the traditional process-based modeling methods lead to accu-
rate WQ parameters prediction, these models have some  restrictions3,26–29. They are limited to single particular 
catchment, certain type of data stochasticity and data redundancy. As an illustration, they work based on data set 
requiring a great deal of processing time and unknown input data. Furthermore, since WQ is affected by distinct 
parameters, conventional strategies for data processing do not have enough efficiency in solving this problem, 
and these parameters illustrate a sophisticated non-linear relationship with parameters of WQ  prediction30.

Literature review predictive models. In recent years, various modelling procedures have taken place to 
enhance the prediction accuracy of diverse WQ  models3. For example, diverse mathematical models based on 
statistical perspectives were established i.e., linear regression  model31, moving average (MA) and autoregressive 
integrated moving average (ARIMA)32,33. The forgoing models have been developed and employed to predict 
water quality; however, they give rise to some obstacles. Some drawbacks of statistical models are that they use 
linear and normally distributed relationships between the prediction and  response26. Moreover, these models are 
unlikely to supply accurate predictions owing to the shortage of authentic tools to gather observation data for 
the timeframe, the complexity of influential criteria in prediction, and the shortcoming to receive non-station-
arity and nonlinearity of the WQ  parameters34. Nowadays, using artificial intelligence methods can significantly 
assist in increasing the model’s accuracy and  reliability35–38. Using machine learning (ML) models are experi-
encing an increasing trend in solving environmental problems, which stems from their striking ability to solve 
sophisticated non-linear  problems11,14,28,39–42, and their non-reliance on pre-knowledge of the physical processes, 
although these ML models need large data volumes to work properly. Since the ML technique is an influential 
procedure to model sophisticated non-linear systems, it promotes the development of parallel computing and 
computational capabilities significantly, which causes researchers to operate ML  methods5.

Recently, to address free ammonia (AMM), total Kjeldahl nitrogen (TKN), water temperature (WT), total 
coliform (TC), fecal coliform (FC), and pH, the least square support vector machine (LSSVM), multivariate 
adaptive regression splines (MARS), and M5 model tree (M5Tree) were  conducted43. The outcomes of MARS 
and LSSVM models proved the higher ability in comparison with other methods. Adaptive neuro fuzzy infer-
ence system (ANFIS) was developed to forecast the WQ parameters in Manzala Lake by Ref.44, which led to an 
accurate WQ parameters prediction. Eventually, it detected the total nitrogen and phosphorus contents in the 
region. The mixture of artificial neural network (ANN) model and multi-objective genetic algorithm (MOGA) 
was employed by Ref.45 to enhance WQ prediction performance, which brought along better capability.

Recently, the hybrid wavelet-artificial neural network (WANN) procedures forecasted the EC of river  water20 
to assess the WQ parameters based on limited time series data,, which revealed the WANN model led to modified 
modeling. Barzegar et al.39 applied ANN, ANFIS, wavelet-ANN, and wavelet-ANFIS to evaluate water salinity 
levels according to  Ca2+,  Mg2+,  Na+,  SO42−, and  Cl− in rivers on a monthly basis. Ravansalar et al.8 enhanced a 
new hybrid wavelet-linear genetic programming (WLGP) model to forecast sodium  (Na+) concentration every 
month, bringing along the remarkable ability of the WLGP model in terms of prediction of the  Na+ peak values. 
Furthermore, Barzegar et al.6 modelled multi-step-ahead EC via a hybrid wavelet-extreme learning machine 
(WA-ELM) model, being compared with an adaptive neuro-fuzzy inference system (ANFIS). Li et al.15 combined 
recurrent neural network (RNN) with modified Dempster/Shafer (D–S) evidence theory to create a hybrid 
RNNs-DS model. Jafari et al.14 used a hybrid wavelet-genetic programming (WGP) model for improved water 
biochemical oxygen demand (BOD) prediction. Indeed, this model was assessed against 5 ML, having W-ANN, 
ANN, GP, DT, and BN, outperforming the comparative models. Najah Ahmed et al.26 presented a Neuro-Fuzzy 
Inference System (WDT-ANFIS) based on an augmented wavelet de-noising manner, dependent on historical 
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data of the WQ parameter. They used three evaluation techniques to address diverse influences on the model. 
Finally, it revealed the proposed model could forecast all WQ parameters.

In hybrid models, Deng et al.34 investigated a multi-factor WQ time series prediction model based on Heu-
ristic Gaussian cloud transformation, which led to an enhanced model for forecasting accurately. Zhou et al.24 
improved grey relational analysis (IGRA) algorithm and long-short term memory (LSTM) neural network-based 
model for WQ prediction, resulting in a noteworthy performance of the proposed model in WQ prediction 
compared to the benchmarked models. Haji Seyed Asadollah et al.3 introduced a new ensemble machine learning 
model, extra tree regression (ETR), to forecast the water quality index (WQI) amounts at the Lam Tsuen River in 
Hong Kong on a monthly basis. Comparing this model with classic standalone models, support vector regression 
(SVR) and decision tree regression (DTR), they found the ETR model led to more authentic WQI predictions 
for both training and testing phases. Dehghani et al.46 introduced a hybrid of grey wolf optimizer (GWO) with 
ANFIS model to forecast multi-ahead influent flow rate. Their results indicated that the proposed model could 
reliably estimate the influent flow rate from 5-min up to 10 days. For the prediction of the dissolved oxygen (DO) 
at two stations in Yangtze River, China, an improved least square support vector machine (LSSVM) coupled with 
the sparrow search algorithm (SSA) was introduced by Ref.47. In addition, the variational mode decomposition 
(VMD) was applied to denoise the input dataset. Their results indicated that the proposed model has better 
efficiency than standalone LSSVM, VMD-LSSVM, and SSA-LSSVM to predict the DO. The literature reviews, 
highly emphasized the implication of hybrid machine learning models for diverse environmental engineering 
 problems48–50. It has been approved as those newly developed versions are the trustworthy computer aid models 
for solving highly stochastic and non-linear historical big  data51,52.

Main objectives and contributions. Over the past decade, researchers, particularly hydrologists, have 
witnessed a remarkable increment trend around the world to discover influential computational models for 
surface WQ  simulation53,54. It has been concomitant with noteworthy advancements in modeling. Needless to 
say, understanding the surface WQ perfectly, as a natural problem, is a challenging issue. In turn, the key goal 
of devising a novel hybridized version of ML models is to assess this ordeal more effectively. The necessity of the 
internal model parameters tuning, data clustering and cleaning, data preprocessing and several others gave rise 
to some limits in Standalone ML model. Hence, the current study is motivated to develop an efficient hybrid 
model coupled with wavelet theorem, called wavelet adaptive neural fuzzy inference system couple with an 
adaptive hybrid of differential evolution and particle swarm optimization (W-ANFIS-A-DEPSO). In fact, the 
main contribution of this study is to hybridize the ANFIS model with an efficient optimization method called 
A-DEPSO, which is a novel hybrid model u. The A-DEPSO algorithm uses a powerful local and global search 
mechanism to avoid local solutions and moves toward the global solution. In addition, it uses an adaptive control 
parameter to assist the algorithm in balancing the exploration and exploitation. The model is designed to predict 
EC index on a monthly basis at Maroon River, Iran. Accordingly, a set of data including monthly discharge (Q) 
and EC measured over three decades, from 1980 to 2016, at Tange-Takab station is used for modeling.

A set of preprocessing analyzes, being essential in the proposed model training process, is intended to select 
the appropriate input parameters to the predictive models. In order to address the most excellent selective 
combinations separately for EC, the best subset regression approach is planned. By considering a wide range of 
statistical metrics, graphical implements, and error analysis in selective combinations, the predictive abilities 
for the standalone and wavelet-based ML models are evaluated.

Methodology
Adaptive neuro fuzzy inference system (ANFIS). ANFIS is a hybrid method merging the ANN and 
fuzzy logic, which is first initiated by Ref.55. ANFIS uses the IF–THEN fuzzy rules (FRs) for describing the 
knowledge between the input and target dataset of a modeling  problem56,57. The main structure of the ANFIS 
model is displayed in Fig. 1. In this model, the Takagi–Sugeno inference procedure plays an integral role in gen-
erating the if–then rules, the range from input to output.

in which α1 , β1 , γ1 , and α2 , β2 , γ2 denote the consequence parameters, and D1 , D2 , C2 , and C2 are considered 
membership functions (MFs). The ANFIS includes five layers, with it consisting of a wide range of inputs and 
just one output. This structure is elaborated as follows:

During the first layer, each node is controlled by a specific function parameter, which is then used to generate 
an amount of membership degree ( ψ ) by the bell MF.

in which ak , ek , and mk are defined as membership values. At the second layer, each node output is regarded an 
input signal, indicating the firing strength of each rule.

(1)Rule1 : if x isD1 and y isC1 , then g1 = α1x + β1y + γ1,

(2)Rule2 : if x isD2 and y isC2 , then g2 = α2x + β2y + γ2

(3)Q1k = ψDk(x), k = 1, 2,

(4)
Q1k = ψCk−2

(

y
)

, k = 3, 4

ψ(x) = 1

1+
[

(

x−ek
ak

)2
]mk , k = 1, 2
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Concerning layer 3, the strength ratio for kth rule to all rules’ sum strength is estimated by the output of 
layer 3.

In addition, the adaptive nodes can be estimated in layer 4.

Eventually, layer 5 computes the network output.

Least square support vector machine (LSSVM). Suykens and Vandewalle introduced a new method 
of the support vector machine (SVM) called LSSVM, which uses linear equations to raise the convergence 
 speed58–60. However, the SVM works with a quadratic programming technique for  training61. To put it simply, 
in terms of simple structure and high convergence speed, the LSSVM has the edge over SVM, which results in 
more popular methods in regression and classification  fields61,62. In the following, the model was formulated in 
which the training dataset is defined through ( xn , yn ), n = 1, 2, …, N, as xn and yn are considered the input and 
output dataset.

where � is considered a penalty parameter, ζ is defined as a regression error, θ(xm) is a non-linear function,ψT 
is the transposed output layer vector, b is a parameter for calculation. In addition, the Eqs. (9) and (10) may be 
expressed by the Lagrange procedure. So,

In which βn is defined as a lagrange multiplier. Through Karush–Kuhn–Tucker (KKT) conditions, some 
solutions are gained, and in the following, they are formulated:

(5)Q2k = ψDk (x)× ψD−2

(

y
)

.

(6)Q3k = wk =
ωk

∑2
k=1 ωk

(7)Q4k = wkgk = wk

(

αkx + βky + γk
)

.

(8)Q5k =
∑

k

wkgk .

(9)Minimizeψ ,b,ζF(ψ , ζ ) =
1

2
ψTψ +

1

2
�

N
∑

i=1

�
2
i ,

Subject to :

(10)yn = ψTθ(xn)+ b+ ζn,n = 1,2, . . . ,N ,

(11)L(ψ , b, ζ ,β) =Z

(

ψ , ζ )−
N
∑

n=1

βn(ψ
Tθ(xn)+ b+ ζn − yn

)

.

Figure 1.  Schematic of ANFIS model.
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The linear equations mentioned below may be gained by solving ψ and ζn parameters.

in which gn = [1, . . . , 1]T , β = [β1, . . . ,βn]T , y = [y1, . . . , yn]T And g is regarded as the unit matrix. Krl being 
the kernel functions are formulated as,

Radial basis functions (RBF) are operated as the kernel function as:

in which δ being a fixed parameter.

Generalization regression neural network (GRNN). In 1991, a probabilistic-based neural network 
based on radial basis function (RBF), known as Generalized regression neural network (GRNN), was introduced 
by  Specht63. Nowadays, this model is usually used for classification and regression while dealing with non-linear 
fitting systems in large-scale samples, and the model operates according to the nonparametric kernel regression 
network. Overall, GRNN may lead to a fewer local minimum by a learning algorithm, whereas it has fewer adap-
tation parameters by comparison with the backpropagation and RBF artificial neural  network64. In other words, 
this model accounts for four layers, input layer, radial layer, regression layer, and an output layer, with the struc-
ture consisting of a radial neurons layer and a regression layer which are located in the input and output  layers65. 
To add to it, pattern (radial neurons) layer in which there is the input data in training step, the neurons number 
is identical with the data sample points. Besides, the summation layer has provided by a different neuron rather 
than the output layer being considered to estimate the density function. However, other neurons are supplied 
with the purpose of output estimation. To sum up, the GRNN model spend less time operation in comparison 
with other ANNs, since this method has directly selection operation between predictors and  target65. This model 
uses a control parameter called spread parameter, exhibits the spread of RBF and regulates the function to obtain 
the most relevant fitness.

Multivariate adaptive regression spline (MARS). The MARS method is an innovative side of stepwise 
linear regression (SLR) and is used to solve modeling problems having high input parameters, and it was pre-
sented by  Friedman66. Regarding the MARS operation, this method works differently, as it brings about diverse 
slopes (i.e. linear bias functions (LBFs)) for different domains of variable range, whilst the SLR utilizes one slop 
for input  variable67. Therefore, it can be concluded that the MARS can be concomitant with more data than the 
SLR to elaborate on how an essential variable impacts the dependent variable. Consequently, the MARS is made 
based on the LBFs structure and stems from the SLR  classification68. This means it is unlikely to need previous 
knowledge to determine LBF numbers and parameters. In turn, it can be expressed that the MARS method has 
the edge over SLR thanks to the mentioned merit. Also, it is noteworthy that through a set of elementary LBFs 
the connection between input and output data appears, and in the following a LBF is formulated,

in which B is a beginning variable in order to divide the x range into sub-ranges, Dn is a basic function, x defines 
the input dataset. The fundamental MARS formulation is expressed as,

where G(x) demonstrates the output, N is the total number of weighting factors, and α0,α1, . . . ,αN are weighting 
factors in the MARS method.

(12)
∂L

∂ψ
= 0 → ψ =

N
∑

n=1

βnθ(xm),

(13)
∂L

∂b
= 0 →

N
∑

n=1

βn = 0,

(14)
∂L

∂ζn
= 0 → βn = �ζn,

(15)
∂L

∂βn
= 0 → ψTθ(xn)+ b+ ζn − yn = 0.

(16)
[

0 gTn
gn Krl + �

−1e

][

b
β

]

=
[

0
y

]

(17)K(xm, xi) = θ(xm)θ(xi).

(18)Krl
(

xn,xj
)

= exp

(

−
∣

∣

∣

∣xn, xj
∣

∣

∣

∣

γ 2

)

(19)Dn(x) = max(0,B− x)orDn(x) = max(0, x − B)

(20)G(x) = α0 +
N
∑

n=1

αnDn(x),
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There are two fundamental steps in the MARS application process: forward and backward stages. The forward 
is a step in which it is tried to reduce the probable errors in the training phase by increasing LBFs in the model. 
Eventually, this step is completed by the provided total number of LBFs. On the other hand, the second stage is 
to decrease the overfitting trend, with it eradicting the extra LFBs. Estimating sub-models are necessary, being 
done using the generalized cross-validation (GCV)  index69,70 so,

in which MSE is the mean square error, m is LBF number, n means observations training dataset number, pen 
defines a penalty factor, recommended by Friedman and Jekabsons, and it is in the range of Refs.69,70.

Wavelet theory. In order to reach an appropriate analysis of non-stationary signals, wavelet transform 
(WT) is operated as a novel and efficient method. It was owing to the fact that this method is more flexible than 
Fourier transform, with it bringing about flexibility between the time scale and  frequency71. Likewise, the new 
method has the advantage of analyzing signals, albeit at diverse degrees of the time scale. To put it simply, a 
wavelet works as a time function with fluctuations, and its energy is restricted to a fixed span of time. Provided 
that ϕ is considered to detect the mother wavelet, the continuous wavelet transform (CWT) is defined by the 
equation mentioned  below72,73:

where b factor is a scale and depicts the stretch or duration of the wavelet. c factor is a transfer parameter supply-
ing the required time concentration and defining the point of wavelet on the time pivot. In addition, the discrete 
type of wavelet transform (DWT) is highly likely to be utilized in order for analyzing the time series due to the 
fact that time discrete series are conventional in hydro-climatological works. At any spot in the signal (b) and 
for any scale value (c), the coefficients of wavelet are measurable by the equation mentioned below:

Regarding DWT, these transform and scale factors are disconnected as,

In fact, k and l are integers. By changing b and c in relation, the following equations can be obtained (25):

Therefore, the wavelet function is discrete wavelet. The DWT can be:

Proposed ANFIS‑ADEPSO. ANFIS model uses a classical optimization method to minimize the differ-
ence between the target and estimated outputs. The optimization method combines least squares solver (LSS) 
and gradient descent (GD) methods. The optimal MFs of input parameters and coefficients of the linear rela-
tion of FRs is determined by the hybrid optimization method during the training stage. One of the most severe 
critiques concerning the classical optimization methods is getting stuck in local  solutions36, where employing 
metaheuristic optimization methods such as A-DEPSO can be a helpful  choice74. The flowchart of the A-DEPSO 
algorithm coupled with the ANFIS model is displayed in Fig. 2 and expressed in the following section.

Adaptive hybrid of DE and PSO (A‑DEPSO). In this study, the adaptive hybrid of DE and PSO (A-DEPSO) 
introduced by Ref.74 is used to determine the ANFIS model’s decision parameters, in which mutation, crossover, 
refreshing, and selection operators are main operators. The proposed A-DEPSO algorithm is described in the 
following sections.

Mutation in A-DEPSO. Generally, a mutation operator can promote the efficiency of an optimization 
 method75,76. The A-DEPSO algorithm takes advantage of a powerful mutation operator for increasing the local 
and global searchability. The proposed mutant vector ( XDEl,j ) is generated by the mutant vector of DE (Eq. 27) 
and the vector created by the PSO algorithm (Eq. 29), which is formulated as,

(21)GCV =
MSE

(1− m+0.5×pen×(m−1)
n )2

(22)ω(b, c) =
∫

f (t)×
(

1
√
b

)

× ϕ

(

t −
c

b

)

dt,

(23)ϕb,c(t) =
1
√
b
ϕ

∣

∣

∣

∣

t − c

b

∣

∣

∣

∣

.

(24)b = 2k , c = 2kl.

(25)ϕk,l(t) = 2−k/2ϕ

[

2−kt − l
]

.

(26)ω(b, c) = 2−k/2 ∫ f (t)× ϕ(2−kt − l)dt.

(27)XDEl,j = xl,j + G.
(

xpl,j − xl,j
)

+ G.(xa1 − xa2),

(28)Vl,j = w.Vl,j + c1.rand1.
(

xpl,j − xl,j
)

+ c2.rand2.
(

xg − xl,j
)

,

(29)XPSOl,j = xl,j + Vl,j ,
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where β and δ denote two constant number, G denotes an adaptive parameter for scaling the differential vectors, ρ 
is a random number in the range of [0, 1], c1 and c2 denote two constant numbers in which their values are equal 
to each other and equal to 1.5. rand1 and rand2 denote two random number in the range of [0, 1], w denotes an 
inertial factor to control the velocities of particles. randn denotes a random number with normal distribution. l  
and L denote the number of iteration and the maximum number of iterations, correspondingly. xpl,j and xg are 
the personal best of solution j and best-so-far solution, correspondingly.

Crossover in A-DEPSO. The A-DEPSO uses a new binomial crossover (BC) to boost the population diversity. 
The BC merges three vectors, comprising the vector Xnew , xg , and the current solution ( xl,j ) by utilizing an adap-
tation rate parameter ( Ar ) in which creating the crossover vector ( zi ) is done by the following equation:

(30)Xnew = ρ×XPSOl,j+(1− ρ)×XDEl,j ,

(31)G = sin

(

β × π ×
(

l

L

))

× exp

(

−
l

L

)

× (0.5+ 0.15× randn),

(32)w = δ × exp

(

−
l

L

)

,

Figure 2.  Flowchart of the proposed ANFIS-A-DEPSO model.
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where Ar denote the adaptive rate for the BC, which is expressed as Eq. (34). pa and pb denote two random 
parameters in the range of [0,1], irand denote a random integer number in the range of [1, D]. mcr is equal to 0.5 
in the first iteration and its value can be changed based on the relationship suggested by Ref.77, is defined as,

where µ is equal to 0.1. SAr denotes all successful Ar during whole iterations. According to Eq. (35), the A-DEPSO 
determines the best amount for Ar at each iteration and assists it to implement an appropriate search in the 
solution space.

Refreshing operator in A-DEPSO. Refreshing operator (RO) is added to the A-DEPSO for enhancing the con-
vergence speed. The RO can create the vector ( zi ) based on the solution ( zi ) generated by the BC and two solu-
tions x1 and x2 . In fact, two solutions x1 and x2 are to promote the exploitation capability in the A-DEPSO. Thus, 
the RO is formulated as,

in which

where LC denote a logistic chaotic  map78,79 ( LC = 4.LC.(1− LC) ) and its initial value is 0.7. The LC is applied 
to increase the random behavior of A-DEPSO and avoid from local solutions.

Selection operator in A-DEPSO. A-DEPSO uses the selection operator (SO) to determine whether the solution 
z is better than the current solution ( xl,j ) or not. Based on the SO, the solution in the next iteration ( xl+1,j ) can 
be formulated as,

Performance evaluation. This section introduces seven statistical metrics for assessing the efficiency of 
five ML models, including Root mean square error (RMSE)39, Correlation coefficient (R)6, Mean absolute error 
(MAE)80, Relative absolute error (RAE)80, Willmott’s agreement Index (IA)81, Legate and McCabe’s Index ( E)82, 
and mean absolute percentage error (MAPE)83, which are formulated as,

(33)zi =







Xnew,i

�

ifpa < Ar and pb < 0.5
�

or i = irand
xj,i

�

ifpa < Ar and pb > 0.5
�

or i = irand
xg ,i if pa > Ar ,

(34)Ar = mcr + 0.1× randn,

(35)mcr = (1− µ)×mcr + µ×mean(SAr),

(36)z =

{

x1 if rand < LC and rand < 0.5
x2 if rand < LC and rand > 0.5
z if rand > LC

(37)x1 = z + σ .
(

2.randn.xg − xl,j
)

,

(38)x2 = xg + σ × (xa1 − xa2),

(39)xl+1,j =

{

z if f (z) > f (xl,j)
xl,j otherwise.
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where ECo,k denotes the observed EC value, ECP,k denotes the predicted EC value, ECP  and ECo,k  denote average 
values of observed and predicted EC, respectively, and M denotes the number of data samples. In addition, if the 
RMSE, MAE, RAE and MAPE are near to 0 and R, E and  IA are near to 1, the model presents better efficiency.

Since specifying the best model according to seven metrics is a difficult issue, the multi-index criterion (PI) 
(Wang et al., 2018) is used in this study to make an easy decision for selecting the best model. The formula of 
PI is defined as,

where Rmin , Emin , and IAmin are the minimum values of R , E , and IA achieved by all ML methods. Also, RMSEmax , 
MAEmax , and MAEPmax are the maximum values of RMSE , MAE , and MAEP obtained by all ML models.

Study area
In this study, the parameters selected on a monthly basis consisting of discharge and electrical conductivity, which 
is originated from the Tange-Takab gauging station (Longitude 50° 20′ 02″, Latitude 30° 41′ 09″, and 280 m from 
mean sea level) and located on the Maroon River of Khuzestan province, Iran. The exact location of the Tange-
Takab gauging station is illustrated in Fig. 3. Needless to say, this river, with a drainage area of 6824  km2 and 
almost 310 km long, has a profound impact on supplying drinking water, irrigation and recreation for Iranians, 
in particular southeastern regions’ residents in Iran. More specifically, this area, the Maroon basin, witnesses 
almost the average of 24 °C temperature and 350.04 mm precipitation annually.

Pre‑processing and selecting the best combination. The data collected in a span of 36  years 
(21-March-1980–16-Feb-2016, 432  months) is to simulate EC on a monthly basis through ML models. The 
given data provided on a monthly time step are segregate into two distinct sections, namely train and test, as 
70% (302-month) and 30% (130-month) of whole data is dedicated to training and testing set respectively. As 
can be observed, Fig. 4 (upper) depicts independent variables, being the time series of Q and Fig. 4 (lower) also 
illustrates the EC time series being considered a purpose in training and testing periods. Table 1 provides a 
classification of various statistical criteria such as minimum (MIN), maximum (MAX), average (AVG), range, 
standard deviation (SD), skewness (S), kurtosis (K), and autocorrelation coefficients (AC) for training, testing, 
and all data points. From what has been mentioned in the Table, it is clear that the S and K amounts of EC for 

(45)IA = 1−
∑M

k

(

ECP,k − ECo,k

)2

∑M
k=1

(∣

∣

(

ECP,k − ECP

)∣

∣+
∣

∣

(

ECo,k − ECo,k

)∣

∣

)2
, 0 < IA ≤ 1,

(46)E = 1−
∑M

k=1

∣

∣ECo,k − ECP,k

∣

∣

∑M
k=1

∣

∣ECo,k − ECP

∣

∣

,

(47)PI =
1

7
.

(

Rmin

R
+

RMSE

RMSEmax
+

MAE

MAEmax
+

RAE

RAEmax
+

MAEP

MAEPmax
+

Emin

E
+

IAmin

IA

)

,

Figure 3.  Location of Tange-Takab station.
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Figure 4.  Original time series of Q (input) (upper graph) and EC (target) (lower graph) for all dataset.

Table 1.  Statistic information of dataset utilized in train and test.

Mode Statistics Q  (m3/s) Ec (μS/cm)

Train

MIN 4.9 503

MAX 532 4250

Range 527.1 3747

AVG 53.09 2049

SD 73.42 655.3

S 3.469 0.1256

K 15.14 − 0.01149

Test

MIN 3.06 845

MAX 479 2800

Range 475.9 1955

AVG 29.6 2134

SD 54.17 321.4

S 6.49 − 1.205

K 48.81 2.547

AC

R1 0.439 0.690

R2 0.216 0.441

R3 0.099 0.197

R4 − 0.045 − 0.039
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both training and testing datasets have the same range of ([− 2, 2]), whereas the S range ([3.469, 6.49]) and K 
range ([15.4, 48.81]) of Q reveals the distribution of discharge time series is away from normal distribution.

The step of choosing the optimum combination of input variables in time series concerning forecasting mod-
els by ML models is considered a significant stage, in which the consecutive time series lagged data is influential to 
a great  extent84–86. There is not any criterion to specify the number of lags; however, the auto-correlation function 
(ACF), partial auto-correlation function (PACF) and cross correlation (CC) statistical methods are considered 
to detect the input combination on hydrological  models6,87.

In Fig. 5 the AF is operated to estimate the effective input parameter. As can be observed, the AC of 1-month 
and 2-month lagged signals has a more significant influence (more than 55%) on the original input datasets 
( Qt ) and ECt in comparison with the lagged times ( Qt−3,Qt−4, . . . , ;ECt−5 ). In addition, based on the PCFA, the 
1-month lagged signal for Qt and 1-month to 4-month lagged signals for ECt can be considered.

The Fig. 6 reveals the high correlation belongs to the input single  (Qt) at the current time, the first two time-
lagged signals ( Qt−1, Qt−2 ) and first four time-lagged signals of ECt(ECt−1, ECt−2,ECt−3,ECt−4 ), which has 
more significant effect on creating a predictive model compared to the Qt−3 and ECt−5 . To add to it, comparing 

Figure 5.  ACF and PACF of input and target datasets.

Figure 6.  Cross correlation between input and target dataset.
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the cross-correlation values between target signals ( ECt ) and the input signals proves that the ECt−1, ECt−2 , with 
greater correlation coefficients, by 0.68 and 0.45 respectively, play an important part in predicting the WQ param-
eter of the target. As a result, by analyzing ACF and CC, it is clear that the lagged t of up to 2 and 4 months for 
the current month predicting of ECt were accepted. Then, in order to determine the best input patterns amongst 
all available and possible patterns, one of the best subset regression analyses in this research was assessed. Simply 
put, to choose the optimal input pattern for each WQ target, four distinct criteria, namely of  R2, adjusted  R2, 
Mallows ( CP)88, and Amemiya prediction criterion (PC)89 are used. In the following CP and PC are  defined90:

In which MSEm expresses mean squared error, i is predictors’ number, RSSi is considered the residual sum 
of squares and N is the historical dataset’s number. With regard to Table 2, in which the best subset regression 
analysis’s result ECt is classified, the analysis ECt was evaluated to selected four the most appropriate pattern, 
the optimum input data for predictive models, based on the best result of factors such as  R2 ([56.90 57.00%]), CP
([4.74 8.00]) and PC ([0.441 0.444]). It is true to say; this method is unlikely to ensure alone the accuracy of the 
most suitable input combinations. In turn, taking other statistical conditions, including the Pearson correlation 
between basic input parameters and the purpose parameters and multicollinearity interaction analysis between 
inputs, into account is an essential matter to raise the certainty of the combination selection. Admittedly, the 
current Q and time-lagged EC time series affect considerably the input combination of purpose signal. Hence, 
in order to predict the current ECt on a monthly basis, four input mixtures were separately provided with the 
purpose of enhancing ML based on predictive models categorized in the form of boldface in Table 2.

Application results and discussion
In this paper, the A-DEPSO is developed to find optimal parameters of the ANFIS model and to enhance the 
convergence speed. The efficiency of the proposed method is compared with LSSVM, MARS, and GRNN models 
to predict the EC parameter in standalone and wavelet-complementary frameworks. In this regard, ANFIS-A-
DEPSO can predict the EC, with it overcoming the demerits of the basic ANFIS algorithm by optimizing coef-
ficients detecting membership functions. Thus, it is concomitant with more meticulous predictive outcomes. In 
fact, the A-DEPSO optimization method is used to extract optimal parameters of the ANFIS model and increase 
the precision and speed of convergence rate. Furthermore, the position of each member in the A-DEPSO algo-
rithm indicate the amounts of consequent ( α1 , β1 , γ1 , α2 , β2 , γ2 ) and membership parameters ( ak , ek , mk ) in the 
ANFIS model. The baseline parameter values were treated as the starting locations of the solutions. To validate 
prediction accuracy, the fitness function of root mean square error (RMSE) was used. The hybrid ANFIS model 
were run until the RMSE was reduced to a minimum and the methods were converged toward the best solutions. 
Within every update of the solution’ positions, the ideal amounts of design variables were discovered.

Likewise, operating the ANFIS, LSSVM, MARS, and GRNN as striking machine learning methods were 
useful to confirm the predictive ability of ANFIS-A-DEPSO, which leads to the major novelty of this research. 
During a trial-and-error manner, the LSSVM, GRNN, and MARS gained their substantial setting parameters. 
The given Table 3 classifies the amounts of control parameters for these mentioned methods. It should be noted 
that the population size and the maximum number of iterations for the A-DEPSO algorithm are equal to 50 and 
200, respectively.

Wavelet‑ML models. As another effective model in terms of the certainty of predictive hydrological mod-
els can refer to the complementary data-intelligence models, including wavelet discrete or continuous wavelet 
transforms (DWT and CWT, correspondingly) as well ML model, which stems from a appropriate mother wave-
let and decomposition level disintegration. It is commonly observed, two mother wavelet, namely as discrete 
Meyer (Damey) and Biorthogonal 6.8 (Bior 6.8) have proven their noteworthy ability in WQ predictive mod-
els, mainly because they support condensed form and are useful in producing time  localization12,15,20. In this 

(48)Cp =
RSSi

MSEm
+ 2i − N ,m > i,

(49)PC =
(

n+ i

n− i

)

(

1−
(

R2
))

.

Table 2.  Best subset analysis to optimally chosen the input combination of EC in ML models. Significant 
values are in bold.

Combinations R2% R2-Ajd% Cp PC

1 ECt−1 0.474 0.473 90.660 0.528

2 Q/ECt−1 0.550 0.547 18.365 0.455

3 Q/ECt−4/ECt−1 0.563 0.560 6.770 0.443

4 Qt−2/Q/ECt−4/ECt−1 0.567 0.563 4.678 0.441

5 Qt−2/Q/ECt−4/ECt−2/ECt−1 0.569 0.564 4.741 0.441

6 Qt−2/Qt−1/Q/ECt−4/ECt−2/ECt−1 0.570 0.564 6.119 0.442

7 Qt−2/Qt−1/Q/ECt−4/ECt−3/ECt−2/ECt−1 0.570 0.563 8.000 0.444
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research, the mother wavelet (i.e., bior6.8, and dmey) was used to break up the time series. In the following, the 
optimal disintegration level (1) of wavelet transform for the WQ time series was  formulate6:

In which N describes the dataset’s number, accounting for 432. So, the figure of disintegration level will be 3. 
As a result, the used basic signals in the EC modeling were divided into three levels of details and approxima-
tions as Fig. 7.

In the next step, influential sub-series was collected (e.g.,Q = A3 +
∑3

i=1 Di ) and arranged as the input vari-
ables for supplementary five ML models based on the input combinations for the EC. Figure 8 demonstrates the 
details (Ds) and approximations (As) of separated signals of the EC simulation. Figure 9 displays the flowchart 
of ML models for forecasting EC parameters.

Evaluate the performance of standalone ML models. In this subsection, four various combinations 
of input parameters given in Tables 4 and 5 evaluated the ability of five standalone ML models in forecasting the 
ECt for training and testing stages, respectively. Based on the previous  studies3,11,44,91, the models having the best 
results in the test period show the best performance, whereby the results of the test period will be examined in 
order to determine the best model in this study. In fact, the outcomes of the ANFIS-A-DEPSO model, the first 
standalone one, is addressed. In this regard, Table 5, in which the performance of the ANFIS-A-DEPSO model 
to predict the ECt in the testing phases provided reveals Combo 3 (R = 0.672, RMSE = 275.404, MAPE = 10.956, 
E = 0.394,  IA = 0.801, and PI = 0.832) has the edge over other combinations. Likewise, four combinations are used 
to recognize the most appropriate combination of input parameters in MARS and ANFIS, and the best com-
binations for both were equal to Combo 4. In GRNN (R = 0.676, RMSE = 301.595, MAPE = 12.165, E = 0.274, 
 IA = 0.803, and PI = 0.964) and LSSVM (R = 0.620, RMSE = 284.036, MAPE = 11.843, E = 0.356,  IA = 0.747, and 
PI = 0.948), the most suitable mixture is combo 4.

The given Fig. 10 provides the data on the observed against predicted WQP amounts for training and testing 
phases. It is clear that the proportion of error in predicted amounts gained through two ML models accounts 
for ± 40%. Therefore, five standalone ML models are not appropriate to predict the EC.

Figure 11 illustrates the distribution of predicted and measured amounts of the EC, which is obtained through 
the ANFIS-A-DEPSO, ANFIS, LSSVM, MARS and GRNN models for all datasets. More specifically, it is notable 

(50)nMW = int
[

log (N)
]

.

Table 3.  Control parameters of the LSSVM, MARS, and GRNN models.

Model Parameters

LSSVM � = 4989 and γ = 1265

MARS Number of BFs = 22

ANFIS Number of membership functions = 5

ANFIS-ADEPSO β = 50 and δ = 1

GRNN Spread value = 492

Figure 7.  Decomposition of datasets using DWT.
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that the disparity between the predicted and measured amounts of the EC, resulting in the five standalone ML 
models, are not able to predict the EC accurately.

Evaluate the performance of wavelet‑based ML models. In this study, the W-ANFIS-A-DEPSO, 
W-ANFIS, W-LSSVM, W-GRNN, and W-MARS models are enhanced to boost five standalone ML models’ 
accuracy (i.e., ANFIS-A-DEPSO, ANFIS, MARS, GRNN, and LSSVM). As mentioned before, decomposing the 

Figure 8.  Decomposition of Q and EC datasets for two mother wavelets (Bior6.8 and Dmey).
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time series of EC is implemented by two mother wavelets (i.e., bior6.8 and dmey). Four mixtures of input vari-
ables are used to address the ability of the W-ML models with diverse mother wavelets. The given Table 6 pro-
vides data on optimal parameters of the all-wavelet-based models.

The comparison of the W-ANFIS-A-DEPSO models’ prediction certainty towards two mother wavelets and all 
combinations are reported on Table 7, which is illustrated the W-ANFIS-A-DEPSO model with mother wavelets 
Dmey and Bior6.8, as the best combination, is Comb 4(R = 0.990, RMSE = 51.193, MAPE = 2.143, E = 0.979, and 
PI = 0.480) and Comb 1 (R = 0.988, RMSE = 54.064, MAPE = 13.5676, E = 0.977, and PI = 0.518) correspondingly 
for ECt prediction in testing phase. The outcomes reveal Dmey has the most appropriate performance comparison 

Figure 9.  Flowchart of all ML models for forecasting EC.
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with the Bior6.8 for W-ANFIS-A-DEPSO, owing to the fact that it has more suitable accuracy in comparison by 
the Bior6.8 mother wavelet.

Concerning the W-ANFIS model, it is true to say the best combination is equivalent to all mother wave-
lets and Comb 4 (Table 8). In addition, the outcomes of various mother wavelets for the best combination are 
obtained as, W-ANFIS -Dmey (Combo4: R = 0.985, RMSE = 60.295, MAPE = 2.484, E = 0.971, and PI = 0.517), 
and W-ANFIS -Bior6.8 (Combo4: R = 0.984, RMSE = 64.090, MAPE = 2.543, E = 0.967, and PI = 0.539). From 
what has been gained, it is readily apparent that the best mother wavelet is Dmey for W-ANFIS, thanks to higher 
accuracy than others.

In the case of W-LSSVM, based on Table 9, the best combination for two mother wavelets is Combo4. 
The results of Bior6.8 and Dmey mother wavelets for the best combination are: W-LSSVM -Dmey (R = 0.984, 
RMSE = 64.727, MAPE = 2.638, E = 0.967, and PI = 0.599), and W- LSSVM -Bior6.8 (R = 0.985, RMSE = 62.553, 
MAPE = 2.564, E = 0.969, and PI = 0.572). Accordingly, the results reveal that the best mother wavelet for the 
W- LSSVM is Bior6.8, which has a higher precision compared with the Dmey.

Table 4.  Statistic metrics obtained by five ML models to forecast the EC parameter in training stage. 
Significant values are in bold.

Model Criteria

Combination

Combo 1 Combo 2 Combo 3 Combo 4

ANFIS-A-DEPSO

R 0.848 0.845 0.846 0.844

RMSE 353.197 356.313 355.442 359.698

MAE 243.342 253.611 244.956 248.578

RAE 0.449 0.468 0.452 0.459

MAPE 12.960 14.165 13.460 12.950

E 0.719 0.714 0.715 0.709

IA 0.914 0.909 0.910 0.905

PI 0.977 1.000 0.983 0.982

ANFIS

R 0.841 0.841 0.836 0.841

RMSE 360.181 360.099 366.059 360.440

MAE 250.811 250.091 257.408 252.690

RAE 0.463 0.461 0.475 0.466

MAPE 13.740 13.631 14.596 13.908

E 0.708 0.708 0.698 0.707

IA 0.908 0.908 0.905 0.908

PI 0.984 0.982 1.000 0.987

LSSVM

R 0.825 0.826 0.829 0.827

RMSE 376.503 375.911 373.261 375.117

MAE 257.907 257.315 254.815 256.712

RAE 0.476 0.475 0.470 0.474

MAPE 14.637 14.510 14.377 14.506

E 0.681 0.682 0.686 0.683

IA 0.895 0.895 0.897 0.895

PI 1.000 0.998 0.994 0.997

GRNN

R 0.790 0.811 0.813 0.804

RMSE 417.344 398.072 396.565 408.553

MAE 292.164 278.826 277.396 289.653

RAE 0.539 0.514 0.512 0.534

MAPE 16.998 16.151 16.068 16.941

E 0.608 0.643 0.646 0.624

IA 0.848 0.868 0.870 0.855

PI 1.000 0.981 0.979 0.996

MARS

R 0.844 0.834 0.837 0.832

RMSE 357.725 368.062 364.990 369.822

MAE 245.850 252.034 256.522 258.810

RAE 0.454 0.465 0.473 0.478

MAPE 13.273 13.793 13.944 14.456

E 0.712 0.695 0.700 0.692

IA 0.910 0.903 0.905 0.902

PI 0.973 0.986 0.992 1.000
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According to Table 10, in which W-MARS model’s outcomes with mother wavelets Dmey and bior6.8 
is reported, proves that the best combination considered for Dmey and Bior6.8 are Comb 4 (R = 0.977, 
RMSE = 77.944, MAPE = 3.358, E = 0.951, and PI = 0.612) and Comb 4 (R = 0.978, RMSE = 77.937, MAPE = 3.337, 
E = 0.951, and PI = 0.616) correspondingly. Hence, the Bior6.8, as the best mother wavelet has better performance 
and certainty compared to the Dmey.

With regard to Table 11, the W-GRNN outcomes reveal the best combination is Combo 1 for both mother 
wavelets (i.e., Dmey and Bior6.8). Statistically, the best combination of W-GRNN-Dmey and W-GRNN-Bior6.8 
are (R = 0.811, RMSE = 214.160, MAPE = 9.055, E = 0.634, and PI = 0.937) and Comb 1 (R = 0.810, RMSE = 219.231, 
MAPE = 9.238, E = 0.617, and PI = 0.960, correspondingly. As a result, the best model is considered W-GRNN-
Dmey with the PI equal to 0.937.

Figure 12 depicts the comparison’s results of predicted ECt and observed ECt being carried out by five W-ML 
models in the best combination of each mother wavelet. As can be observed, W-ANFIS-A-DEPSO-Dmey 
(Combo 4) outperforms compared to the W-ANFIS-A-DEPSO with Bior6.8 mother wavelet and the four others 
with all mother wavelets. To add to it, the proportion of errors concerning W-ANFIS-A-DEPSO-Dmey (Combo 

Table 5.  Statistic metrics obtained by five ML models to forecast the EC parameter in testing stage. Significant 
values are in bold.

Model Criteria

Combination

Combo 1 Combo 2 Combo 3 Combo 4

ANFIS-A-DEPSO

R 0.665 0.676 0.671 0.672

RMSE 304.606 289.100 317.061 275.404

MAE 224.062 211.387 241.597 198.092

RAE 0.807 0.762 0.871 0.714

MAPE 12.452 11.573 13.049 10.956

E 0.259 0.333 0.197 0.394

IA 0.792 0.799 0.804 0.801

PI 0.933 0.874 0.996 0.832

ANFIS

R 0.626 0.620 0.650 0.659

RMSE 350.233 359.110 372.765 320.470

MAE 258.478 268.127 283.825 241.088

RAE 0.931 0.966 1.023 0.869

MAPE 13.954 14.229 14.933 12.863

E 0.020 -0.030 -0.110 0.180

IA 0.764 0.762 0.772 0.790

PI 0.947 0.968 0.990 0.887

LSSVM

R 0.676 0.676 0.667 0.671

RMSE 301.595 303.898 309.440 303.767

MAE 221.156 223.020 225.851 221.441

RAE 0.797 0.804 0.814 0.798

MAPE 12.165 12.264 12.415 12.168

E 0.274 0.263 0.235 0.263

IA 0.803 0.800 0.795 0.800

PI 0.964 0.975 1.000 0.972

GRNN

R 0.620 0.628 0.631 0.616

RMSE 284.036 288.484 290.054 295.266

MAE 214.482 221.582 222.083 223.623

RAE 0.773 0.798 0.800 0.806

MAPE 11.843 12.247 12.303 12.565

E 0.356 0.335 0.328 0.304

IA 0.747 0.750 0.750 0.724

PI 0.948 0.969 0.973 1.000

MARS

R 0.630 0.632 0.621 0.648

RMSE 332.071 327.517 322.743 314.030

MAE 249.266 247.801 233.385 231.351

RAE 0.898 0.893 0.841 0.834

MAPE 13.642 13.405 12.773 12.723

E 0.119 0.143 0.168 0.213

IA 0.764 0.772 0.770 0.786

PI 0.998 0.966 0.926 0.890
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4) accounted for under 10% for the majority of predicted values. Comparing this figure with Fig. 10, it is clearly 
observed that the hybrid model W-ANFIS-A-DEPSO can improve the correlation coefficient (R = 0.988) up to 
52% compared to the standalone ANFIS-A-DEPSO (R = 0.672) during the test period.

The spider plot based on seven factors for the top four models along with the best combination of input vari-
ables is displayed in Fig. 13. In fact, according to the mentioned diagram, the more the values of "R,  IA and  EL,M" 
and "RMSE, MAE, RAE, and MAPE" obtained by each model become closer to the value 1 and to the center of 
the diagram, respectively, the more the model is reliable. According to Fig. 13 (lower panel), the most effective 
model to rise the accuracy of forecasting the ECt is W-ANFIS-A-DEPSO-Demy with the largest R,  IA, and  EL,M, 
and smallest RMSE, RAE, and MAPE for both training and testing stages. On the other hand, Fig. 13 (upper 
panel) depicts the W-ANFIS-A-DEPSO-Bior6.8-C4 with the highest R,  IA, and  EL,M, and lowest RMSE, RAE, and 
MAPE have the most significant impact on the accuracy of ECt prediction for both training and testing stages.

Figure 10.  Compare estimated and measured values of EC utilizing the standalone ML models in the form of 
scatter plot.
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The correlation coefficient (R) was figured based on the Taylor diagram to assess the overall ability of the mod-
els, with it providing the models’ efficiency in  detail5,11. According to the R and standard deviation, the diagram 
demonstrated a more perceptible and persuasive connection between predicted and observed WQ parameters. 
The Taylor diagram illustrated in Fig. 14 associated the current monthly EC with Bior6.8 mother wavelet (Upper 
panel) and EC with Dmey mother wavelet (Lower panel) for all ML models. As a result, W-ANFIS-A-DEPSO 
has the most suitable performance for EC prediction compared with the other models and is the closest model 
to the target point.

Compare the performance of all ML models. The contrastive analysis is provided in this section to 
determine the best model. Consequently, five ML models along with two mother wavelets and four combina-
tions of input variables are under review to forecast the EC in this research. As mentioned before, the W-ANFIS-
A-DEPSO-C4 (Dmey), W-ANFIS-C4 (Dmey), W-LSSVM-C4 (Bior6.8), W-MARS-C1 (Dmey), and W-GRNN-
C1 (Dmey) have the better performance amongst all models for ECt prediction.

Figure 15 demonstrates the physical trend of five methods to further address their abilities, which results in 
the disability of standalone ML models in prediction for the ECt . Since there are high variations and the charac-
teristic non-linear correlation between the WQ parameters, making a steady model through ANFIS-A-DEPSO, 
ANFIS, LSSVM, MARS, and GRNN is sophisticated matter. In turn, the aim is to enhance five meticulous ML 
models concerning wavelet theorem and assess the impact of wavelet transform joined with ML models for EC 
prediction. According to Fig. 15 W-MLs have the edge over standalone ML models without wavelets in terms 
of efficiency.

Figure 11.  Assessing the distribution of estimated and measured values of EC obtained by all ML models.

Table 6.  Control parameters of the LSSVM, MARS, and GRNN models.

Model Parameters

LSSVM � = 1992 and γ = 1346

MARS Number of BFs = 20

ANFIS Number of membership functions = 5

ANFIS-ADEPSO β = 50 and δ = 1

GRNN Spread value = 380
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Eventually, Fig. 16, in which the relative deviation (RD) to predict the ECt by W-ANFIS-A-DEPSO, W-ANFIS, 
W-LSSVM, W-MARS, and W-GRNN in diverse combinations is illustrated, confirms that the W-ANFIS-A-
DEPSO-C4 with the RD in the domain of [− 43.89, 29.60] has the superior ability to predict the ECt amongst 
other models.

Comparison of W‑ANFIS‑A‑DEPSO with hybrid models
To further investigation of the proposed W-ANFIS-A-DEPSO efficiency, this section compares the performance 
of proposed model with three hybrid models, comprising W-ANFIS-PSO [i.e., hybrid of W-ANFIS with particle 
swarm  optimization92 (W-ANFIS-PSO)], W-ANFIS-GWO [i.e., hybrid of W-ANFIS with grey wolf  optimizer93 
(W-ANFIS-GWO)], and W-ANFIS-WOA [i.e., hybrid of W-ANFIS with whale optimization  algorithm94 
(W-ANFIS-WOA)]. To implement a fair comparison, the population size and the maximum number of itera-
tions (MaxIt) are equal to 50 and 300 for all hybrid models respectively, except for ANFIS-A-DEPSO, which is 
equal to 50. In fact, by choosing the value of 50 for MaxIt, we try to show that the proposed model can provide 
better performance than other models in a much smaller number of iterations. Table 12 reports the parameter 
settings of all methods. According to the selected hybrid models, the PSO, GWO, and WOA do not have any 
parameter settings. For instance, PSO uses a weighted factor ( w ), decreasing with a linear relationship, to damp 
its velocity, so it does not need to be set. It should be noted that the values of parameters c1 and c2 are constant. 
In Refs.74,92 their values are recommended equally to 1.5 for both of them. This is true of the other two methods 
as well (i.e., W-ANFIS-GWO and W-ANFIS-WOA). In this section, all hybrid models were applied to predict 
the EC parameter using the Combo 4-Dmey as the input, because this combination has a better performance 
for the ANFIS model based on previous sections.

Table 7.  Statistic metrics obtained by W-ANFIS-A-DEPSO model to forecast the EC parameter for all 
combinations. Significant values are in bold.

Model Criteria

Combination

Combo 1 Combo 2 Combo 3 Combo 4

Wavelet-Demy Test

R 0.866 0.960 0.962 0.990

RMSE 221.322 99.818 96.881 51.193

MAE 173.394 78.444 76.877 41.870

RAE 0.625 0.283 0.277 0.151

MAPE 9.053 4.016 4.053 2.143

E 0.609 0.920 0.925 0.979

IA 0.911 0.979 0.981 0.995

PI 1.000 0.613 0.608 0.480

Wavelet-Bior Test

R 0.857 0.959 0.955 0.988

RMSE 192.071 101.203 106.158 54.064

MAE 157.716 81.614 84.647 43.549

RAE 0.568 0.294 0.305 0.157

MAPE 7.919 4.222 4.395 2.222

E 0.705 0.918 0.910 0.977

IA 0.914 0.978 0.977 0.994

PI 1.000 0.67032 0.684 0.518

Wavelet-Demy Train

R 0.947 0.979 0.978 0.992

RMSE 213.432 134.953 140.161 83.955

MAE 164.758 102.836 104.114 65.822

RAE 0.304 0.190 0.192 0.121

MAPE 9.018 5.611 5.482 3.607

E 0.897 0.959 0.956 0.984

IA 0.972 0.989 0.989 0.996

PI 1.000 0.770 0.774 0.633

Wavelet-Bior Train

R 0.947 0.979 0.978 0.994

RMSE 213.683 134.877 138.033 75.835

MAE 155.866 104.022 107.249 59.092

RAE 0.288 0.192 0.198 0.109

MAPE 8.512 5.592 5.719 3.245

E 0.897 0.959 0.957 0.987

IA 0.972 0.989 0.989 0.997

PI 1.000 0.787 0.797 0.619
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Figure 17 displays the convergence graphs of all hybrid models to predict the EC parameter. From the figure, 
it can be clearly seen that the proposed model can converge to a lower value (83.955) compared with the other 
hybrid models. Also, the proposed model can achieve a better value of RMSE at less than 10 iterations, while the 
other hybrid models cannot even converge to a suitable solution after 50 iterations. This confirms the proposed 
model’s superiority compared to the other hybrid models again.

Tables 13 and 14 give the statistical outcomes of the WANFIS-A-DEPSO and three other hybrid models to 
predict the EC parameter for both training and testing stages. According to these tables, the proposed W-ANFIS-
A-DEPSO can provide better results in terms of RMSE (train: 83.955, test: 51.193), MAE (train: 65.822, test: 
41.870), RAE (train: 0.121. test: 0.1509), and MAPE (train: 3.607, test: 2.1427) compared with the other hybrid 
models. Simply put, due to the fact that the proposed model using powerful exploration and exploitation mecha-
nisms and adaptive parameters to better transit from global to local search, it can present more accurate outcomes 
fast compared to the other hybrid models.

Figure 18 depicts all hybrid models’ relative errors (REs). Regarding the figure, the proposed model can 
estimate the EC with a less RE range ([− 0.190, 0.191]) compared with PSO ([− 1.160, 0.22]), GWO ([− 1.610, 
0.22]), and WOA ([− 0.353, 0.276]). The proposed model can predict the EC with high accuracy based on these 
results compared with the other hybrid methods.

Conclusion
By designing a promising model called wavelet-ANFIS-A-DEPSO with two mother wavelets (Dmey and bior6.8), 
ECt prediction can be made on a monthly basis in surface water. In fact, a powerful optimization method, 
A-DEPSO, was developed to increase the ability of ANFIS models. The A-DEPSO is a hybrid of DE and PSO 
with a boost of exploration and exploitation and two adaptive parameters. In addition, a novel crossover with 

Table 8.  Statistic metrics obtained by W-ANFIS model to forecast the EC parameter for all combinations. 
Significant values are in bold.

Model Criteria

Combination

Combo 1 Combo 2 Combo 3 Combo 4

Wavelet-Demy Test

R 0.846 0.956 0.933 0.985

RMSE 210.490 104.453 128.754 60.295

MAE 157.363 82.587 96.540 46.328

RAE 0.567 0.298 0.348 0.167

MAPE 8.402 4.219 5.091 2.484

E 0.646 0.913 0.868 0.971

IA 0.916 0.977 0.963 0.993

PI 1.000 0.654 0.721 0.517

Wavelet-Bior Test

R 0.835 0.956 0.934 0.984

RMSE 199.554 104.421 128.283 64.090

MAE 153.389 82.565 92.608 50.278

RAE 0.553 0.298 0.334 0.181

MAPE 7.907 4.218 4.970 2.543

E 0.682 0.913 0.869 0.967

IA 0.912 0.977 0.965 0.992

PI 1.000 0.670 0.729 0.539

Wavelet-Demy Train

R 0.939 0.976 0.978 0.986

RMSE 228.978 146.388 138.552 112.499

MAE 170.889 111.805 105.004 67.705

RAE 0.315 0.206 0.194 0.125

MAPE 9.267 5.949 5.644 3.815

E 0.882 0.952 0.957 0.971

IA 0.968 0.987 0.989 0.993

PI 1.000 0.780 0.758 0.647

Wavelet-Bior Train

R 0.925 0.976 0.978 0.994

RMSE 253.480 146.388 139.832 75.792

MAE 183.088 111.803 107.431 60.205

RAE 0.338 0.206 0.198 0.111

MAPE 9.870 5.949 5.726 3.343

E 0.855 0.952 0.956 0.987

IA 0.960 0.987 0.989 0.997

PI 1.000 0.746 0.731 0.579
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adaptive parameters was used to increase the diversity of the population. Moreover, a refreshing operator was 
implemented to raise the chance of escaping from local solutions. Four ML models (i.e., ANFIS, LSSVM, MARS, 
and GRNN) were operated to forecast the EC with the purpose of evaluating the proposed model’s efficiency. 
Besides, standalone ML models were utilized to assess the predictive ability of all W-ML models for the EC water 
quality parameter via some metrics and validation manner. Consequently, the monthly time series of Q and EC 
were operated during 36 years in the Maroon river within two and four time-lagged correspondingly. Indeed, 
these two and four time-lagged were detected by statistical procedures, and three decomposing levels were used 
for each mother wavelets.

More specifically, the best subset regression analysis was considered to detect the best input combination of EC 
prediction. The gained outcomes of the ML model without wavelet in all combinations proved that the ANFIS-A-
DEPSO model in Combo 4 had the striking ability in the prediction of EC (PI = 0.832) on a monthly basis. To add 
to it, in Combo 4 (PI = 0.887), Combo 1 (PI = 0.964), Combo 4 (PI = 0.890), and Combo 1 (PI = 0.948), the ANFIS, 
LSSVM, MARS, and GRNN models correspondingly showed the superior performance for EC prediction. In 
addition, seven metrics obtained by the ANFIS-A-DEPSO as the best model are R = 0.672, RMSE = 275.404, 
MAE = 198.092, RAE = 0.714, MAPE = 10.956, E = 0.394, and  IA = 0.801.

More importantly, W-ML models improved the certainty of EC modelling. The Dmey, jointed with ANFIS-
A-DEPSO, ANFIS, MARS, and GRNN models to predict EC, proved the noticeable and best advancement in 
terms of the accuracy level of simulation, albeit Bior 6.8 showed appropriate performance. On the other hand, 
when Bior6.8 joined with LSSVM brought about a more suitable performance compared to Dmey.

Table 9.  Statistic metrics obtained by W-LSSVM model to forecast the EC parameter for all combinations. 
Significant values are in bold.

Model Criteria

Combination

Combo 1 Combo 2 Combo 3 Combo 4

Wavelet-Demy Test

R 0.887 0.956 0.952 0.984

RMSE 166.303 104.268 108.997 64.727

MAE 133.497 77.533 82.778 51.466

RAE 0.481 0.279 0.298 0.185

MAPE 7.046 4.033 4.398 2.638

E 0.779 0.913 0.905 0.967

IA 0.941 0.978 0.975 0.992

PI 1.000 0.729 0.754 0.599

Wavelet-Bior Tesr

R 0.863 0.959 0.953 0.985

RMSE 181.865 100.140 107.135 62.553

MAE 137.126 75.682 81.766 50.104

RAE 0.494 0.273 0.295 0.181

MAPE 7.088 3.914 4.332 2.564

E 0.736 0.920 0.908 0.969

IA 0.927 0.979 0.976 0.992

PI 1.000 0.693 0.723 0.572

Wavelet-Demy Train

R 0.938 0.980 0.980 0.993

RMSE 231.397 132.822 131.547 78.506

MAE 174.007 100.098 99.820 61.028

RAE 0.321 0.185 0.184 0.113

MAPE 9.489 5.303 5.246 3.303

E 0.879 0.960 0.961 0.986

IA 0.966 0.990 0.990 0.996

PI 1.000 0.733 0.731 0.599

Wavelet-Bior Train

R 0.931 0.977 0.979 0.993

RMSE 243.767 141.328 135.022 79.378

MAE 175.774 106.906 102.476 61.849

RAE 0.324 0.197 0.189 0.114

MAPE 9.398 5.666 5.385 3.361

E 0.866 0.955 0.959 0.986

IA 0.962 0.988 0.989 0.996

PI 1.000 0.747 0.731 0.596
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Regarding monthly ECt prediction, it is clear that W-ANFIS-A-DEPSO-Dmey in Combo 4 had the best 
efficiency (PI = 0.485), while W-ANFIS-Dmey model in Combo 4 (PI = 0.517) also proved the reliable ability, fol-
lowed by W-LSSVM-Bior6.8 in Combo 4 (PI = 0.572), W-MARS-Dmey in Combo 4 (PI = 0.612), and W-GRNN-
Dmey in Combo 4 (PI = 0.937) correspondingly. Furthermore, by comparing the seven statistical metrics obtained 
by W-ANFIS-A-DEPSO-Dmey (R = 0.988, RMSE = 53.841, MAE = 42.941, RAE = 0.155, MAPE = 2.192, E = 0.977, 
and  IA = 0.994) and W-ANFIS-Dmey (R = 0.985, RMSE = 60.295, MAE = 46.328, RAE = 0.167, MAPE = 2.484, 
E = 0.971, and  IA = 0.993), it can be clearly determined that the proposed model has a better efficiency than 
the W-ANFIS model. Moreover, according to the graphical analysis (i.e., scatter plots, time series plots, Taylor 
diagram, and violon graph), it is evident that the proposed model can predict the EC parameter more accurate 
and reliable than the other models.

Furthermore, the suggested model was compared to three hybrid models (W-ANFIS-PSO, W-ANFIS-GWO, 
and W-ANFIS-WOA) to evaluate its effectiveness. The findings show that the suggested model is more accurate 
in terms of RMSE (train: 83.955, test: 51.193) and MAPE (train: 3.607, test: 2.1427) than the other models.

To sum up, from what had been addressed in all ML-based models, it is obvious that the W-ANFIS-A-DEPSO, 
a supplementary model, is able to predict the EC accurately. As a suggestion, firstly, it would be operated as an 
ensemble multi-wavelet model in order to use wavelets simultaneously. Secondly, designing an ensemble ANFIS-
based method could have a positive impact on WQPs prediction in surface water, which may lead to accumulating 
the merits of each supplementary procedure. Finally, it can be applied to other optimization methods to optimize 
the main parameters of ANFIS  model95–97.

Table 10.  Statistic metrics obtained by W-MARS model to forecast the EC parameter for all combinations. 
Significant values are in bold.

Model Criteria

Combination

Combo 1 Combo 2 Combo 3 Combo 4

Wavelet-Demy Test

R 0.846 0.957 0.958 0.977

RMSE 194.178 104.777 102.849 77.944

MAE 141.963 81.975 80.046 64.589

RAE 0.512 0.295 0.288 0.233

MAPE 7.543 4.213 4.138 3.358

E 0.699 0.912 0.916 0.951

IA 0.914 0.975 0.976 0.987

PI 1.000 0.691 0.684 0.612

Wavelet-Bior Test

R 0.853 0.943 0.942 0.978

RMSE 187.507 123.239 121.978 77.937

MAE 142.228 97.601 93.782 63.880

RAE 0.512 0.352 0.338 0.230

MAPE 7.500 5.102 5.059 3.337

E 0.719 0.879 0.881 0.951

IA 0.910 0.963 0.965 0.987

PI 1.000 0.768 0.758 0.616

Wavelet-Demy Train

R 0.934 0.976 0.977 0.983

RMSE 237.157 144.794 143.518 123.956

MAE 176.953 110.228 107.859 95.326

RAE 0.327 0.203 0.199 0.176

MAPE 9.814 6.030 5.973 5.437

E 0.873 0.953 0.954 0.965

IA 0.965 0.988 0.988 0.991

PI 1.000 0.760 0.754 0.712

Wavelet-Bior Train

R 0.926 0.956 0.975 0.982

RMSE 252.313 196.290 148.253 126.166

MAE 186.700 151.103 115.537 97.569

RAE 0.344 0.279 0.213 0.180

MAPE 10.175 8.270 6.406 5.568

E 0.857 0.913 0.950 0.964

IA 0.960 0.977 0.987 0.991

PI 1.000 0.872 0.754 0.699
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Table 11.  Statistic metrics obtained by W-GRNN model to forecast the EC parameter for all combinations. 
Significant values are in bold.

Model Criteria

Combination

Combo 1 Combo 2 Combo 3 Combo 4

Wavelet-Demy Test

R 0.811 0.785 0.797 0.790

RMSE 214.160 224.622 220.293 225.909

MAE 166.059 181.860 179.529 185.436

RAE 0.598 0.655 0.647 0.668

MAPE 9.055 9.727 9.442 9.677

E 0.634 0.597 0.612 0.592

IA 0.879 0.869 0.881 0.881

PI 0.937 0.993 0.974 0.996

Wavelet-Bior Test

R 0.810 0.791 0.792 0.789

RMSE 219.122 221.946 222.328 225.607

MAE 171.231 180.733 180.477 184.291

RAE 0.617 0.651 0.650 0.664

MAPE 9.238 9.560 9.598 9.676

E 0.617 0.607 0.605 0.594

IA 0.876 0.877 0.875 0.878

PI 0.960 0.987 0.988 1.000

Wavelet-Demy Train

R 0.933 0.959 0.974 0.986

RMSE 251.635 200.526 159.135 115.105

MAE 185.355 148.077 114.561 77.823

RAE 0.342 0.273 0.211 0.144

MAPE 10.074 7.874 5.902 3.837

E 0.857 0.909 0.943 0.970

IA 0.956 0.973 0.984 0.992

PI 1.000 0.868 0.756 0.639

Wavelet-Bior Train

R 0.957 0.969 0.966 0.982

RMSE 204.698 176.366 182.512 134.219

MAE 146.654 128.769 133.566 93.273

RAE 0.271 0.238 0.246 0.172

MAPE 7.787 6.737 7.003 4.669

E 0.906 0.930 0.925 0.959

IA 0.972 0.980 0.978 0.989

PI 1.000 0.920 0.939 0.775
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Figure 12.  Compare estimated and measured values of EC utilizing the W-ML models in the form of a scatter 
plot.
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Figure 13.  Spider plots of seven performance criteria for prediction of EC using all ML models for Bior6.8 
(upper panel) and Dmey (lower panel) in training and testing stages.
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Figure 14.  Taylor diagram of all ML models for Bior6.8 (upper panel) and Dmey (lower panel).
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Figure 15.  Compare the physical trend of the best performance of all ML models.
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Figure 16.  Relative deviation to forecast the EC using ML models coupled with Bior6.8 (upper) and Dmey 
(lower) mother wavelets.

Table 12.  Control parameters of the LSSVM, MARS, and GRNN models.

Model Parameters

W-ANFIS-A-DEPSO β = 50 and δ = 1

W-ANFIS-GWO a = 2− iter.(2)/MaxIt

W-ANFIS-WOA a1 = 2− iter.(2)/MaxIt

a2 = −1− iter.(−1)/MaxIt

W-ANFIS-PSO c1 = c2 = 1.5 and w = 0.9− 0.5.( iter

MaxIt
)
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Figure 17.  Convergence graphs of (A) PSO, GWO, WOA, and (B) A-DEPSO.

Table 13.  Compare W-ANFIS-A-DEPSO with three hybrid models in training stage.

W-ANFIS-A-DEPSO W-ANFIS-PSO W-ANFIS-GWO W-ANFIS-WOA

RMSE 83.955 118.040 128.617 99.803

MAE 65.822 75.005 80.038 74.224

RAE 0.121 0.138 0.148 0.137

MAPE 3.607 4.224 4.402 4.115

Table 14.  Compare W-ANFIS-A-DEPSO with three hybrid models in testing stage.

W-ANFIS-A-DEPSO W-ANFIS-PSO W-ANFIS-GWO W-ANFIS-WOA

RMSE 51.1934 54.8850 57.9785 55.9158

MAE 41.8701 43.7943 47.0106 44.8192

RAE 0.1509 0.1578 0.1694 0.1615

MAPE 2.1427 2.2905 2.4507 2.3450
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