ACHIEVING SECURE SERVICE SHARING OVER
[P NETWORKS

David Lai Zhongwei Zhang Chong Shen

lai@usq.edu.au zhongwei@Qusq.edu.au shen@usq.edu.au

University of Southern Queensland

Toowoomba, Queensland 4300, Australia

Abstract: No matter how many and how comprehensive the services a network can
provide, in order to satisfy the diverse requirement of services, networks should share
services among themselves. For secure service sharing on IP networks, the authenticity
of users and the scalability of participating networks are always two major issues among
others. Service Network Graph (SNG) was proposed to address the problems of cross
network authentication and scalability, which usually occur in a dynamic aggregations
of heterogeneous networks.

Our SNG approach is based on Authentication Propagation and Service Paths.
Authentication Propagation is a process of relaying authentication results from the
authenticating network to the service providing network. Within an SNG, networks
delegate authentication duties to some other networks which gather all authentication
and service information and return the authentication result to the user. A Service
Path is designed to hold all the authentication delegation information from the user’s
home network to the service providing network. An example of Service Path in a
network, Ny, looks like: < F' : /N,/N,/N,/S,/Service, >:< 4 > where the second
field, /Ny/Ny/N,/S./Service,, stands for the NetworkPath of a service, Service,,
which is provided by a server S,, in a network N,. We can work out the routes for the
authentication and service information from the NetworkPath as (1) from N, to N,
if it does not end at N,; (2) from N, to N, if it does not originate from N,; (3) from
N, to Ny if it does not end at N,; and (4) from N, to N, if it does not originate from
N,.

These routes can be represented in the 4-tuples form: (< Nety; >, < Net from >
,< Nety, >,< Netgest >) To differentiate route (2) and route (4), <Netori> is used.
Route (1) can be expressed as (Nety, Nety, Nety, Net,) using the 4-tuple notation.
Obviously, it is not efficient to extract the routes from incoming Service Paths each
and every time. Besides, the NetworkPath field may contain a substantial number of
networks. Hence reusing the routes could improve the efficiency. The 4-tuple notation
facilitates the reuse of routing information.

In this paper, we devise a 4-tuple (ATR tuple) representation of authentication and
service information routes. The ATR tuple representation is shown to be an alternative
representation of SNG other than the graphical representation. We also explore how
the ATR tuple representation can be applied to facilitate the authentication propa-
gation process. A set of experiments on network simulator, OMNeT++, have been
carried out to illustrate the application of SNG with ATR tuples to IP networks. The
preliminary simulation results show that the ATR tuple representation greatly sim-
plifies the implementation of the SNG authentication routing algorithm, and secure
service sharing can be achieved as well.

Key words: Service Network Graph, service sharing, authentication delegation, au-
thentication propagation, service path, routing tuple.

1 Introduction

A network has limited resources and can provide only a limited number of services. Admin-
istrative constraints also limit the categories of service available to users. Users may request
services that are beyond the domain of service for the network and can only be honored with
shared services provided by other networks. To share a service, authenticity of users and
scalability of participating networks are two major issues related to security.

Service sharing involves cross network authentication. For security and privacy reasons,
authentication servers keep their authentication information repository private. Further
more, different networks always use different authentication schemes. One set of authenti-
cation information can hardly fulfill the requirements of all authentication schemes.

To enable cross network authentication, an AS needs to have access to the rightful
authentication information or entrust other AS to perform the authentication task. Admin-
istration and maintenance of a global repository of authentication information render such
repository not practical. Besides sharing of the authentication information may breach the
privacy of users.

Alternatives to a global repository of authentication information include the use of
X.509 [1] digital certificates and the establishment of trust [2, 3, 4]. Both approaches re-
quire all participants involved in the authentication process to accept a single or a group of
third parties. The use of X.509 digital certificates in cross network authentication requires
a commonly trusted Certification Authority which binds the user identity with the public
key in an X.509 digital certificate and all authentication servers must trust the certificates
issued by the Certificate Authority. In other words, all of them have to adopt the use of
X.509 digital certificates as their authentication scheme and trust the same Certificate Au-
thority in performing the duty of binding user identities and the corresponding public keys
before cross network authentication is possible. In addition, they have to agree on a common
set of policies regarding the validity and revocation of X.509 digital certificates [5, 6]. In
particular, an authentication server prescribes a list of trust agents which are authorized to
issue trust tokens [7, 8, 9, 10]. The aggregated result of a number of trust tokens is used to
determine the authenticity and possible authorization of the user [11]. The authentication
server then distributes the authentication duty to the prescribed trust agents while making
its own final authentication decision. A common set of overlapped trust agents is required
for cross network authentication. i

Service Network Graph (SNG) [12, 13, 14] is a new way to handle cross network authen-
tication, which enables service sharing among dynamic aggregation of autonomous networks.
The authentication duty of the authentication server, ASj, in the service providing network,
N, is delegated to the authentication server, ASj, of the home network, N, of an individual
user. N, and AS), are referred to as the delegatee network and delegatee AS while N, and
AS, are the delegator network and delegator AS. The delegator AS), performs authentica-
tion, bundles the result, a session key and the Service Path into an authentication token
(AToken), and passes the AToken to the server via AS,. The server accepts the authen-
tication result from the delegatee AS, the same way as that from the delegator AS, and
appends the necessary service information to the AToken which is handed back to the user
via AS; and AS),. With authentication delegation, a server can authenticate any user from
a delegatee network and users from a delegatee network can access shared services provided
by delegator networks. Participating networks of an SNG can maintain their own authen-
tication schemes, keep their own private authentication information repository private and
still can perform cross network authentication. They can join or detach from SNG while
maintaining their autonomy.

When AToken is routed from a home network to a service providing network, routing
information for the AToken can be extracted from the NetworkPath information in the

Service Path which is part of the AT oken. In practice, the token routing information can
be reused and more readily available if each AS can keep its own set of AT oken routing
information. To facilitate routing of AT okens, we propose to use a 4-tuple representation
for storing the token routing information (AT R tuple). We formulated the AT R tuples in
such a way that they can be used to hold routes for forward or backward AT R routing. Each
AS is required to hold only the AT R tuples related to itself.

The rest of the paper is structured as follows: Section 2 is an overview of SNG. In
particular, Authentication Delegation, Service Paths and Authentication Propagation are
briefly explained. In Section 3 we investigate the routing of AT okens and the AT R tuple
representation. An example of deriving the AT R tuples from an SNG is also given. Lastly,
we apply the AT R tuple representation in Section 4 in an implementation of SNG over IP
networks. A set of experiments was carried out using AT R tuple implementation of the SNG
and network simulator OMNeT++. The paper is ended with a conclusion and future works.

2 Overview of Service Network Graph

SNG is based on Service Paths, Authentication Delegation and Authentication Propagation.
They are summarized in the sections below.

2.1 Authentication Delegation

In SNG, network [V, can extend its services by attaching to another network, say V,. On the
other hand, network N, shares it services by delegating its authentication duty to an attached
network say N,. Hence a network can extend its service by attaching to another network
as an authentication delegatee network and share its services as an authentication delegator
network. A delegatee network can also be a delegator network as shown in Figure 1. N, is
the delegator network of NV; and is also the delegatee network of N,. Ny and N3 are both
delegator and delegatee network of each other.

A network delegates its authentication authority to another network when its authentica-
tion server (AS) generates and shares an Authentication Token key (ATK) with the delegatee
network AS. It also informs the delegatee network AS of the services it provides, locally
or shared from other networks in the form of Service Paths detailed in section 2.2. Local
services are directly shared with the delegatee network and tagged with free or restricted to
control further delegation. Shared services with free authentication delegation can further
be shared indirectly with other delegatee networks.

When U, requests a service provided by N,, AS, in home network (V) of U, authen-
ticates U, on behalf of N,. If the authentication is successful, AS, generates a session key
for the service request. The Service Path, session key and authentication result are bundled
together to form an AT oken.

2.2 Service Paths

When referring to a service, we have to specify from where we can access the service. As a
service can be provided by different servers in more than one network, we have to specify
the network path for the service. Other important attributes for services are the service cost
and whether the service can be further shared or not. If a shared service can be shared
with other networks, it is a free authentication delegation and a restricted authentication
delegation means that the service should not be shared with other networks. So a typical
Service Path looks like:

< F:./]8/Svy>< 4>

means service Svy provided by local server S; with cost 4 units

is a service shared with free authentication delegation

and can be shared with other networks.

Authentication Propagation path is local authentication only.
<R: /Nl/N4/N2/SQ/S’U123 >:< 25 >

means service Sv23 provided by server S; in Ny with cost 25 units

is a service shared with restricted authentication delegation

and should not share with other networks.

Authentication Propagation path is Ny = Ny = Ns.

The Service Listing server (SLS) of a network provides a complete and updated list of services
available including local and shared services.

2.3 Authentication Propagation

In order to explain Authentication Propagation, we will refer to Figure 2 assuming each net-
work has an AS, a server S, a user U and a Service Listing server SLS with the appropriate
subscript to denote the network they belong to. We use P, to denote a service path in which
service y is provided by network z. The SNG depicted in Figure 2 has four participating
networks. NNV; is attached to N, as indicated by the single headed arrow while N; and N3 are
attached to one another as indicated by the double headed arrow.

The Authentication Token propagation path is represented by dotted lines as shown in
Figure 2.

We will use:

Send (< from >, < to >, < msg >)

to mean < from > send a message < msg > to < to >
Encrypt (< msg >, < key >)

to mean message < msg > is encrypted with < key >

A service request starts with a user, say U; asks for a Service List from SL.S;.

Send(< Uy >, < SLS; >, < “Request forServiceList” >)
Send(< SLS: >, < Uy >,< Py, Py, Py, Py >)

U, makes his choice, say P,, and sends his authentication information along with Psa to the
AS;.

Send(< Uy >, < AS) >, < Py,,” AuthenInfo” >)

When U; is authenticated, AS; generates a session key Kj, for the service request. The
session key is bundled with other authentication information and the Service Path as an
authentication token. The authentication token is propagated to AS; and finally reached
AS,. Note that AT Ky, is the ATK between AS; and AS,, and AT K, is the ATK between
AS4 and ASQ,

Send(< AS >, < ASy >, < Poy, Encrypt(< Ky, >, < AT Ky, >) >)
Send(< ASy >, < ASy >, < Poy, Encrypt(< Ky, >, < AT Ky, >) >)

ASs then passes the session key to the service providing server which returns the service
information to AS5. The messages are encrypted with the server key K.

4

Send(< ASy >, < Sy >, < Pay, Encrypt(< Ky >, < Ko >) >)
Send(< Sy >, < ASy >, < Py, Encrypt(< “ServiceInfo” >, < Kos >) >)

The service information follows a reversed path specified in P,, and arrives at AS;.

Send(< ASy >, < ASy >, < Py, Encrypt(< “Servicelnfo’ >, < AT Ky, >) >)
Send(< ASy >, < ASy >, < Py, Encrypt(< “Servicelnfo’ >, < ATK,q >) >)

The authentication propagation process is completed when AS; passes the service informa-
tion and the session key K, to U.

Send(< AS; >, < U >, < Py, K1y, “Servicelnfo” >)

U, can now communicate with Sy and can access service directly. Note that the security of
passing authentication information and session key from AS; to U; depends on the authenti-
cation and session key generation schemes adopted. One appropriate candidate is Dynamic
Password and the associated key exchange scheme [15] which performs authentication and
session key generation at the same time.

AS of a network in SNG holds a service list from which it will derive the forward and
backward routes for the ATokens. In the next section, we will discuss how to represent the
AToken routes in an SNG to optimized the performance for Authentication Token routing.

3 Service Network Graph Representation

The Service Network Graph is a logical representation of the authentication delegation rela-
tionships. A graphical representation is best suited for a human administrator. In practice,
we must represent the service network graph in a form which best suits our purpose - routing
of the authentication tokens and optimizing the Service paths.

To understand how an SNG can be represented using AToken routes, we will start with
the routing mechanism of Authentication Tokens.

3.1 Authentication Token Routing

A Service Path itself provides enough information to route the Authentication Token to the
destination. As an example, in Figure 2, consider a service path:

< F: /Ng/Nl/N4/S4/SU4 >< 2> (1)

When AS; gets this service path, it will parse the NetworkPath field of the service path to
get the routing information. As AS; is located in Ny, it will forward the AToken to N, if
the AToken comes from N3 or to N3 if the AToken comes from N,.

Since the AToken routing information can be reused for other service requests with the
same service path, extracting the forward and backward AToken routing information with
each and every AToken is not efficient. At the same time, the NetworkPath field of a
service path may contain substantial number of networks. Hence storing the AToken routing
information for reuse improves performance.

3.2 Tuple Representation

To reuse any AToken routing information, we must store the necessary information to de-
termine the appropriate route. Referring to the SNG shown in Figure 2, consider the pair
of Service Paths:

<FZ/N2/N1/N4/S4/SU4 >:< 4> (2)

5

<F:/N2/N1/N3/83/SU3 >:< 4> (3)

Service path 2 tells AS; to forward the AToken to N, while service path 3 instructs AS; to
forward the AToken to N53. The two AToken routes are different and the choice depends on the
destination network which are Ny and N3. Note that the destination network may not be the
same as the network an AToken is routed to. For instance, < F': /Ny/N;/N3/N5/Ss/Svs >:<
4 > informs AS; to forward the AToken to N3 and the destination network is N5. Both service
path uses the same backward AToken route: pass AToken from N; to N,.

Consider another pair of Service Paths:

< F: /Ny/Ny/Ny/Sy/Svy >:< 4> (4)

< F: /N3/Ni/Ny/Sy4/Svy >:< 4> (5)

Both Service Paths informs AS; to forward the ATokens to N,. Service path 4 tells AS;
to route the AToken to Ny while service path 5 instructs AS; to route the AToken to Nj
when the ATokens return from N,. Again, the two AToken routes are different and can be
distinguished one from another by looking at the origin network.

Hence to hold the necessary information for AToken routing, we use 4-tuples (ATR tuples)
to hold not only the network an AToken comes from (Ny,om) and goes to (IVy,), but also the
origin network (N,.;) and destination network (Nges):

(< Nori >, < Nfrom >, < Nto >, < Ndest >)

We now derive ATR tuples when from an SNG and explain how an SNG follows from an
ATR representation. The graphical representation and the ATR tuple representation are
shown to be equivalent.

3.3 Deriving ATR Tuples from an SNG

As discussed in Section 2, the following rules are used for building up an SNG:

SNG Building Rule 1 When network N; attaches to network Ny in an SNG, N, will pass
its service list to V1, assuming all services have free authentication delegation.

SNG Building Rule 2 When network N; attaches to network Ny in an SNG, it will pass
the service list it gets from Ny to all its delegatee networks. And in so doing, all
delegatee networks can access all local or shared services provided by Ns.

SNG Building Rule 3 When a network N; receives a Service Path from its delegator
network N, in an SNG, N; will pass the AToken routes (ATR tuples) it worked out
from the Service Path back to the appropriate delegator networks.

We will build an SNG such as the one shown in Figure 2. Suppose the SNG was built in
the following five stages of attachment:

1. N, attaches to Ns.
2. N, attaches to V;.
3. N; attaches to N,.
4. N3 attaches to V.
5. N; attaches to V5.

For the sake of clarity, we assume a uniform cost of 2 for all services.

6

Stage 1 N, attaches to N,.

At the very start, N, attaches to N,. After the attachment process, it has acquired the
Service Path: < F': Ny/Ny/Ss/Svs >:< 2 >. The forward and backward ATR tuples
are worked out: (NN, Ny, No, No), (Ny, Na, Ny, No) restively. The backward ATR tuple
is sent back to No. The ATR tuples derived are shown in Table 1

Stage 2 N, attaches to N;. When N, attaches to Ny, it will acquire the Service Path:
< F : Ny/Ny/S;1/Sv; >:< 2 >. N, extracts the forward ATR tuple (N, No, N1, Ni)
and backward ATR tuple (N, N1, Ny, N7) which is sent to Nj.

At the same time, Ny has to inform N, of the newly acquired Service Path and N, will
add a corresponding Service Path to its service list: < F : N;y/Ny/N1/S1/Sv; >:< 2 >.
The forward and backward ATR tuples extracted by N, from the newly acquired
Service Path are listed in Table 2. Note that a network keeps only those ATR tuples
that are useful to them. An ATR tuple is useful only to the network which has the
same name as the attribute < Nety,,, > in the tuple. Hence IV, will keep the second
and last ATR tuples while Ny will keep the first, fourth and fifth ATR tuples in Table 2.

Stage 3 N; attaches to Ny. N; acquires service paths < F': Ni/N,/Ss/Svy >:<2 >, < F':
Ni1/Ny/Ny/Ss/Sve4 >:< 2 > from N,. N; will pass the newly acquired service paths
to Ny but N, will have only one additional service paths < F': Ny /N1 /N,/Ss/Svy >:<
2 >as < F: Ny/Ni/Ny/Ny/Sy/Svy >:< 2 > is referring to a local service. No new
service path is acquired by N, as the services will then have a looping Network Path
like Ny/Ny/Ny/Ny/No/So/Svs >:< 2 >.

N; and N, will follow the same steps as discussed in Stage 2 to build up the ATR
tuples as shown in Table 3.

Stage 4 Nj attaches to N;. N3 acquires, from Nj service paths < F': N3/N;/S;/Sv; >:<
2> < F:N3/Ny/Ny/Sy/Svy >:< 2>, < F:N3/Ni/Ny/NyJSo/Svo4d >:< 2 >. ATR
tuples are generated similar to the process in previous stages and listed in Table 4.

Stage 5 N; attaches to N3. This time, N;, Ny and N, will all have new Service Paths:
< F Nl/N3/S3/SU3 >:i< 2 >, < F NQ/Nl/Ng/Sg/Svg >:< 2 >and < F :
Ny/Ny/Ny/N3/S3/Svs >:< 2 > respectively. The ATR tuples are listed in Table 5

We can easily verify that the ATR tuples indeed represent all the necessary AToken routing
information. Our next step is to demonstrate how ATR tuples can be used to build up a
graphical representation of an SNG.

3.4 Graphical Representation of SNG from ATR Tuples

We notice that in any ATR tuple, if the (< Netpom >, < Nety, >) attribute pair matches
with the attribute pair (< Nety,; >, < Netgess >) in a forward route, network Net,,; is
attached to network Netgs:. To build up a graphical representation of an SNG, we need
to have all the direct authentication delegation relationships. Other indirect authentication
delegation relationships can be used to verify the result.

From the set of ATR tuples derived in Section 3.3, we collect all distinct ATR tuples that
have the match attribute pairs in Table 6. Note that the last action ends up with a double
headed arrow. The final SNG may have a different look from the SNG in Figure 1, but they
have the same authentication delegation relationships and in which case, we consider them
as two valid graphical representations of the same SNG. In next section, we will explore how
to implement SNG over IP networks using network simulator OMNeT++-.

4 Application of SNG over IP networks

To illustrate how SNG can be applied to the secure service sharing over IP networks, we
design a few IP networks and simulate the SNG shown in Figure 2 using network simulator
OMNeT++.

The simulation network was set up with the following assumptions:

e Each network has one AuthenticationServer(AS), one ServiceListingServer(SLS),
one Server(S) and one User(U).

e Each server (network) provides one type of services.
e A service request originates from user U; of network V.
e SNG configuration is shown in Figure 2.

In the simulations, the messages used carry five parameters: server, start, stop, src, dest.
These five parameters are used to hold the information required for AToken forward and
backward routing.

The ATR tuples from Section 3.3 are hard coded in the OMNeT++ module for AS. We
code all tuples in one module used for all AS. In practice, only the tuples required for each
AS need to included in the implementation of each AS.

The simulated events are

1. A local service request for Sv; provided by S; in Ny from U;.

2. A directly shared service request for Sv, provided by S; in N, from U;. The Authen-
tication Token has to propagate from AS; to AS,

3. An indirectly shared service request for Sv, provided by S, in N, from U;. The service
is provided by Sy in Ny. Ny shares the service with Ny. On the other hand, N, shares
all services it provides, including shared service Svy, with NV;. Hence users from N; can
access indirected shared service Svs. The Authentication Token now has to propagate
from AS; to ASy via AS,.

4.1 Local Service Request

User requesting a local service is the simplest case in SNG. It does not matter if the network
is part of an SNG or not as it does not involve any Authentication Token routing. Figure 3(a)
shows the basic operation of a local service request. A local service request starts with a
request for a service list from the Service Listing Server SLS;. The user U; then choose a
service, sends the corresponding Service Path < F' :./S;/Sv; >:< 2 > and authentication
information to the Authentication Server AS;. AS; generates a session key and send it to
Server S;. Si replies AS; with the information for Sv;. AS; will relay the information
for Sv; and the session key to user U;. Note that AS; does not need any ATR tuple for
authentication Token routing.
A screen capture of simulation output window is shown in Figure 3(b).

4.2 Shared Service Request - Direct Sharing

For shared services, there are two cases - direct sharing and indirect sharing. Direct sharing
is the case when you access local services of a delegator network. Indirect sharing is the case
when you access shared services of a delegator network. Indirect sharing is possible when
the authentication delegation is not restricted. For simplicity of discussion, we assume that

all delegations are free and all shared services can be further shared with other networks
when they attach to a network in an SNG. Figure 4(a) shows an SNG with N; attached to
Ny. U; initiated a service list request to SLS;. This time, he chooses a service offered by
Sys. A screen capture of simulation output window is shown in Figure 4(b).

4.3 Shared Service Request - Indirect Sharing

When a network N; shares its services with another network N,, Ny may further share the
services to other networks attached to it. These type of sharing is an example of indirect
sharing. Figure 5(a) shows an SNG with N, attached to N,. When N; attaches to Ny, all
shared services from N, is indirectly shared with /N7 also. A screen capture of simulation
output window is shown in Figure 5(b). Note that the main difference in the three cases is
the Authentication Propagation process. In local service access, there is no Authentication
Propagation. For direct sharing of services, Authentication Propagation is just single hop
traffic and indirect sharing of services involves multi-hops Authentication Propagation.

Although extra message passing are involved in the Authentication Propagation process,
after authentication, the user communicates directly with the server. The traffic overhead
is minimized this way.

5 Conclusion

Service sharing is one of the desired features of networks. Cross network authentication is
the key to the success of service sharing. The dynamic nature of the networks participating
in service sharing adds more constraints to plausible solutions. In this paper, we proposed
the ATR tuples to represent the routing information of ATokens. We have demonstrated how
to derive those Tuples from an SNG and have established a graphical representation of an
SNG from the ATR tuples. We also applied the Tuple representation in the implementation
of SNG over IP networks and illustrated the case with an OMNeT++ simulation. In the
future, we will focus on optimizing the Service paths and establishing an optimal local view
of an SNG. Authorization for SNG is another important research topic in the future.

References

[1] X.509 (03/00). “International Telecommunication Union ITU-T Recommendations X series”,
http://www.itu.int /rec/recommendation.asp

[2] T. Beth and M. Borcherding and B. Klein, “Valuation of Trust in Open Networks”, Proceed-
ings of the Conference on Computer Security 1994, 1994.

[3] M. Reiter and S. Stubblebine, “Authentication Metric Analysis and Design”, ACM Transac-
tions on Information and System Security, Vol. 2, No.2, 1999.

[4] R. Au, M. Looi and P. Ashley, “Automated cross-organisational trust establishment on ez-
tranets”, Proceedings of the workshop on Information technology for virtual enterprises, 2001,
page 3-11.

[6] M. Naor and K. Nissim, “Certificate Revocation and Certificate Update”, Proceedings 7th
USENIX Security Symposium, San Antonio, Texas, Jan 1998.

[6] S. G. Stubblebine, “Recent-secure authentication: Enforcing revocation in distributed sys-
tems”, IEEE Computer Society Symposium on Security and Privacy, Oakland, California,
May 1995.

7]

8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

M. Montaner, B. Lopez and J. L. Rosa, “Developing Trust in Recommender Agents”, Proceed-
ings of the first international joint conference on Autonomous agents and multi-agent systems,
2002

S. Robles, J. Borrell, J. Bigham, L. Tokarchuk and L. Cuthbert, “Design of a Trust Model
for a Secure Multi-Agent Marketplace”, Proceedings of the fifth international conference on
Autonomous agents, 2001.

A. Abdul-Rahman and S. Hailes, “Using Recommendations for Managing Trust in Distributed
Systems”, Proceedings of IEEE Malaysia International Conference on Communication ’97
(MICC’97), Kuala Lumpur, Malaysia, 1997

A. Abdul-Rahman and S. Hailes, “Supporting Trust in Virtual Communities”, Hawaii Int.
Conference on System Sciences 33, Maui, Hawaii, January 2000.

A. Abdul-Rahman and S. Halles, “A Distributed Trust Model”, Proceedings of New Security
Paradigms Workshops, 1997.

D. Lai, and Z. Zhang, “Towards an Authenticated Protocol for Service Outsourcing Over IP
Networks”, Proceedings of the 2005 International Conference on Security and Management
SAMO05, CSREA Press, Las Vegas, Nevada, USA, June 2005, pp 3-9.

D. Lai, and Z. Zhang, “Network Service Sharing Infrastructure: Service Authentication and
Authorization Revocation”, Proceedings of the 9th WSEAS International Conference on Com-
munications, Vouliagmeni, Athens, Greece, July 2005, ISBN 960-8457-29-7.

D. Lai, and Z. Zhang, “An Infrastructure for Service Authentication and Authorization Re-
vocation in a Dynamic Aggregation of Networks”, WSEAS Transactions on Communications,
Issue 8, Vol 4, ISSN 1109-2742, August 2005, pp 537-547.

D. Lai, and Z. Zhang, “Integrated Key Exchange Protocol Capable of Revealing Spoofing and
Resisting Dictionary Attacks”, Technical Track Proceedings of 2nd International Conference,
Applied Cryptography and Network Security 2004, Yellow Mountain, China, June 2004, pp
115-124.

10

Figure 1: A Service Graph

Figure 2: User requesting a shared service

11

Service Path In ATR tuple Direction | Sent to
< F: N4/N2/SQ/SU2 ><2> | Ny (N4, N4,N2,N2) forward N,
(N4, No, Ny, N3) | backward Ny
Table 1: ATR tuples derived in Stage 1
Service Path in ATR tuple Direction | Sent to
< F: Nz/Nl/Sl/Svl >i< 2> N, (NQ, Ng,Nl,Nl) forward Ny
(NQ,Nl,NQ,Nl) backward N1
< F: N4/N2/N1/51/S1)1 >:<2> | Ny (N4, N4,N2,N1) forward N,
(Ng, No, Ny, N7) | backward Ny
(N4, Noy N1, N7) | forward Ny
(N4, N1, Ny, N7) | backward N,
Table 2: ATR tuples derived in Stage 2
Service Path In ATR tuple Direction | Sent to
< F: Nl/N4/S4/SU4 >i< 2> Ny (Nl, Nl,N4,N4) forward Ny
(N1, Ny, N1, Ny) | backward Ny
< F Nl/N4/N2/SQ/S’U2 >:<2> | N (Nl,Nl,N4,N2) forward N,
(Nl, N4,N1,N2) backward N4
(Nl, N4,N2,N2) forward N4
(Nl, NQ,N4,N2) backward NQ
< F: NQ/Nl/N4/S4/SU4 >:<2> | Ny (NQ, NQ,Nl,N4) forward N,
(NQ,Nl,NQ,N4) backward N1
(Na, N1, Ny, Ny) | forward Ny
(Ny, Ny, N1, Ng) | backward Ny

Table 3: ATR tuples derived in Stage 3

Service Path

in ATR tuple

Direction | Sent to

< F: N3/N;1/S1/Sv1 >:<2>

< F : N3/Ny/Ny/Ss/Svy >:< 2 >

< F: Ng/Nl/N4/N2/SQ/SUQ >:< 2>

N?n N27N47N2

backward N,

(N3, N3, N1, Ny) | forward Ns
(N3, N1, N3, N7) | backward | N
(N3, N3, Ny, Ny) | forward N
(N3, N1, N3, Ny) | backward | N,
(N3, N1, Ny, Ny) | forward N
(N3, Ny, N1, Ny) | backward | N,

N3 | (N3, N3, N1, Np) | forward N
(N3, N1, N3, N3) | backward | N,
(N3, N1, N4, Ny) | forward Ny
(N3, N4y N1, Ny) | backward | Ny
(N3, Ny, Ny, Ny) | forward N,
()

Table 4: ATR tuples derived in Stage 4

12

= 2 0D

Service Path in ATR tuple Direction | Sent to
< F: Ny/N3/S5/Svs >:< 2 > Ny | (N1, Ny, N3, N3) | forward N,
(N1, N3, N1, N3) | backward Nj
< F: Ny/N;y/N3/S3/Sv3 >:< 2 > Ny | (N3, No, N1, N3) | forward N,
(NQ,Nl,NQ,Ng) backward N1
(N3, N1, N3, N3) | forward N,
(NQ,N3,N1,N3) backward N3
< F: N4/N2/N1/N3/53/SU3 >:< 2> N4 (N4, N4,N2,N3) forward N4
(N4, NQ,N4,N3) backward NQ
(N4,N2,N1,N3) forward NQ
(N4, N1, No, N3) | backward N,
(N4, N1, N3, N3) | forward N,
(N4, N3, N1, N3) | backward Nj
Table 5: ATR tuples derived in Stage 5
ATR Tuple Action
(N4,N4,N2,N2) Draw N4.
Draw Ns.
Draw an arrow from N4 to No
(NQ,NQ,Nl,Nl) Draw Nl-
Draw an arrow from Ny to IV;
(N1, N1, Ny, Ny) | Draw an arrow from N; to Ny
(N3, N3, N1, N7) | Draw Nj.
Draw an arrow from N3 to NV;
(N1, N1, N3, N3) | Draw an arrow from N3 to NV;

Table 6: ATR tuples and the corresponding graphical representation

Eile

Edit Simulate Trace

lnspect Miew Options Help

[l (©ssiGraphy dssinst (i=1) (ptrDxa163a08)

dssinet

T G2]

bbb

EHFRESS |

UNTIL.. '@ AQ'| a| |$E E|(%|

Run #1: dasinet

|IEvent#942 |T=0.0000000 {0.005) |Running..

ksgs scheduled: 1

[Msgs created: 126 || hsms present: 126

Ev/sec: 1.37331

| Simsecisec: 0 |Ewisimsec: 0

(a) Simulation network configura-
tion

i—|E| dssin [

B schec

=l

From Sh server/start/stop/sro/dest = 203/104/102/104/1027

*t Eyent #3933, T=0,0000000 (0.00s), Module #2 'dssinet,AS1'
From AS server/start/stopdsro/dest = 203/102/402/104102/

** Eyent #3934, T=0L0000000 (0,00s), Hodule #5 “dssinet,SW1'
From Shi zerver/ztart/stopizrc/dest = 2037102/402/1041027

** Eyent #3935, T=0L0000000 (0,005}, Hodule #7 “dzsinet,R1
From R server/start/stop/sro/dest = 205/102/402/104/1027

* Eyent #3365, T=0,0000000 { 0,00s), Hodule #25 “dssinet,R4’
From R zerverdstart/stop/zrc/dest = 203/102/402/104/1027

Eyent #337, T=0,0000000 (0,00s), Hodule #24 “dssinet.Shd’
From Sh zerverdstart/stop/srcidest = 203/102/402/104/102/

#k Fyent #3328, T=0,0000000 (0,00s), Hodule #20 "dssinet.ASd’
From AS server/start/stopizrc/dest = 203/402/202/10441027

** Eyent #5939, T=0L0000000 (0,00s), Hodule #24 “dszinet,Shd4’
From Shl server/start/stop/src/dest = 2037402/ 20210441027

** Event #5340, T=0L0000000 (0,00s), Hodule #25 “dssinet.R4’
From R server/start/stop/src/dest = 202/402/202/104/1027

#H Eyent #341, T=0,0000000 (0,00s), Hodule #13 “dssinet.R2’
From B serverdstart/stop/zrc/dest = 203/402/202/104/102/

ok Eyent #342, T=0,0000000 { 0,00s), Hodule #12 “dssinet.Sh2'
From Skl server/start/stopisrc/dest = 203/402/202/1044102/

(b) Simulation output

Figure 3: Local service request

13

=l

= S E Mm@ Eile Edit Simulate Trace [nspect ¥iew Options Help

Ml (DssiGraph) dssinet (id=1) (pirDx<f163a08) | 1 | Frm—
X I.—J?I| rQi STER J' RUN’ |ras?'|m?mbssbg unm @ HR‘| a|1“":|ig | Q|

dssinet S —— — e S— - —— —
Run #1: dssinet ||Event#942 |T=0.0000000 (0.005) |Running...
sgs scheduled: 1 [Msgs created: 126 |IMsgs present 126
Ew/sec: 137931 | simsecisec: 0 |Ewisimsen: 0
[dgginj From Sl server/start/stop/sroddest = 203/104/102/104/102/ N
& sche | |[F Event #3853, T=0,0000000 { 0,00s), foduls #2 “dssinet,ASL’

From AS server/start/stop/sro/dest = 2037102/402/104,102/

w Eyent #334, T=0,0000000 { 0,00s), Hodule #6 dssinst,SW1'
From Skl zerver/start/stop/src/dest = 2032102402104 /1027

#% Byent #3935, T=0,0000000 (0,00s), Hodule #7 ‘dssinet,R1'
From R server/start/stopdsrc/dest = 203/102/402/104/102/

** Fyent #3936, T=0,0000000 (0,00s), Module #25 "dssinet,Rd’
From R zerver/start/stop/zsrcddest = 203/102/402/104/1027

** Euent #3937, T=0L0000000 (0,00s), Hodule #24 “dszinet.Shd'
From Shl server/start/stop/sro/dest = 203/7102/402/104,102/

** Event #5938, T=0L0000000 { 0,00s), Hodule #20 "dssinet,RS4’
From AS serwer/start/stop/src/dest = 203/402/202/104.102/

** Byent #5339, T=0,0000000 0,00z}, Hodule #24 “dssinet,Si4’
From Sh server/start/stop/sro/dest = 203/402/202/104/102/

*k Fuent #340, T=0,0000000 { 0,00s), Hodule #25 “dssinet,Rd’
From R server/start/stop/srcddest = 203/402/202104,/1027

*% Eyent #9341, T=0L0000000 (0,00s), Hodule #13 “dssinet.R2’
From B server/start/stop/ercidest = 205/402/202/104/1027

** Event #3542, T=0L0000000 (0,00s), Hodule #12 dssinet,SW2'
From Skl serwer/start/stop/src/dest = 203/402/202/104.102/7

(a) Simulation network configura- (b) Simulation output
tion

Figure 4: Directly shared service request

E‘E i‘ MM@‘ %] Eile Edit Simulate Trace Inspect Miesy Oplions Help
e e L0 e m G] o] b WM R D) AR B g] Q
et Run #1: dasinet ||Event#942 |T=0.0000000 {0.005) |Running..
hsgs scheduled: 1 [Msgs created: 126 || hsms present: 126
Ew/sec: 137931 | Simsecisec: 0 |Ewisimsec: 0
[m] dssin N [[From sl server/start/stop/sroddest = 203/104/102/104/102/ N

B schet *t Eyent #3933, T=0,0000000 (0.00s), Module #2 'dssinet,AS1'
From AS server/start/stopdsro/dest = 203/102/402/104102/

** Eyent #3934, T=0L0000000 (0,00s), Hodule #5 “dssinet,SW1'

From Shi zerver/ztart/stopizrc/dest = 2037102/402/1041027

** Eyent #3935, T=0L0000000 (0,005}, Hodule #7 “dzsinet,R1

From R serverd/start/stopdsro/dest = 203/102/402/104/102/

* Eyent #3365, T=0,0000000 { 0,00s), Hodule #25 “dssinet,R4’

From R zerverdstart/stop/zrc/dest = 203/102/402/104/1027

Eyent #337, T=0,0000000 (0,00s), Hodule #24 “dssinet.Shd’

From Sh zerverdstart/stop/srcidest = 203/102/402/104/102/

#k Fyent #3328, T=0,0000000 (0,00s), Hodule #20 "dssinet.ASd’

From AS server/start/stopizrc/dest = 203/402/202/10441027

** Eyent #5939, T=0L0000000 (0,00s), Hodule #24 “dszinet,Shd4’

From SW zerver/start/stop/srcidest = 203/402/202/104/102

** Event #5340, T=0L0000000 (0,00s), Hodule #25 “dssinet.R4’

From R server/start/stop/src/dest = 202/402/202/104/1027

#H Eyent #341, T=0,0000000 (0,00s), Hodule #13 “dssinet.R2’

From B serverdstart/stop/zrc/dest = 203/402/202/104/102/

ok Eyent #342, T=0,0000000 { 0,00s), Hodule #12 “dssinet.Sh2'

From Skl server/start/stopisrc/dest = 203/402/202/1044102/

\
L

(a) Simulation network configura- (b) Simulation output
tion

Figure 5: Directly shared service request

14

