
Engineering Geology 329 (2024) 107406

Available online 6 January 2024
0013-7952/© 2024 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Geotechnical characterisation of coal spoil piles using high-resolution 
optical and multispectral data: A machine learning approach 

Sureka Thiruchittampalam a,b, Bikram Pratap Banerjee c, Nancy F. Glenn d, Simit Raval a,* 

a School of Minerals and Energy Resources Engineering, University of New South Wales, Sydney, NSW 2052, Australia 
b Department of Earth Resources Engineering, University of Moratuwa, Moratuwa 01400, Sri Lanka 
c School of Surveying and Built Environment, University of Southern Queensland, Toowoomba, QLD 4350, Australia 
d Department of Geosciences, Boise State University, Boise, ID, USA   

A R T I C L E  I N F O   

Keywords: 
Object-based image analysis 
Morphology-based segmentation 
Waste materials 
Mine dump 
High-resolution UAV images 
Shear strength parameters 

A B S T R A C T   

Geotechnical characterisation of spoil piles has traditionally relied on the expertise of field specialists, which can 
be both hazardous and time-consuming. Although unmanned aerial vehicles (UAV) show promise as a remote 
sensing tool in various applications; accurately segmenting and classifying very high-resolution remote sensing 
images of heterogeneous terrains, such as mining spoil piles with irregular morphologies, presents significant 
challenges. The proposed method adopts a robust approach that combines morphology-based segmentation, as 
well as spectral, textural, structural, and statistical feature extraction techniques to overcome the difficulties 
associated with spoil pile characterisation. Additionally, it incorporates minimum redundancy maximum rele-
vance (mRMR) based feature selection and machine learning-based classification. This automated characteri-
sation will serve as a proactive tool for dump stability assessment, providing crucial data for improved stability 
models and contributing to a greener and more responsible mining industry .   

1. Introduction 

Coal mining, including the construction of coal spoil dumps, poses 
significant environmental and safety challenges when not managed 
properly. The geotechnical characterisation of coal spoil is essential for 
monitoring and evaluating environmental impacts and safety concerns, 
as well as guiding effective land restoration efforts (Zevgolis et al., 
2021). This data also supports policymaking, raises awareness about 
coal mining effects, and facilitates informed decision-making. However, 
the irregular deposition processes of spoil and inadequate compaction 
during placement can introduce complexities and uncertainties in spoil 
dump behavior (Masoudian et al., 2019). 

Analysing the spatial arrangement of characterised coal spoil is 
crucial, but it’s challenging due to variations in properties between 
mines, influenced by factors like ore type and mining techniques (Lot-
termoser, 2007). Traditional manual field methods for spoil character-
isation are time-consuming and hazardous. To address these issues, 
unmanned aerial vehicles (UAVs) provide a promising solution for 
characterising mine materials (Yang et al., 2023). 

Selecting the right sensor for a specific task in mining requires 

considering spectral and spatial resolution. For visual inspection, map-
ping, and providing useful visual information, red-green-blue (RGB) 
sensors are commonly used (Sinaice et al., 2022; Yang et al., 2023). 
Multispectral sensors with expanded spectral coverage (beyond RGB) 
are relevant for a range of mining applications and more advanced 
image analysis. In addition, the calibration of multispectral images 
captured helps mitigate the challenges posed by variations in reflectance 
caused by topographic changes. 

In the context of spoil characterisation, selecting appropriate sensors 
involves understanding the challenges associated with each step of the 
methodical workflow. Initially, this involves recognising the environ-
mental complexities, notably the irregular topography of heterogeneous 
mine spoil piles. These irregularities can impact the accuracy of classi-
fication in very high-resolution remote sensing images (Aryaguna and 
Danoedoro, 2016; Michel et al., 2012). Furthermore, capturing low- 
resolution images may lead to the loss of important textural informa-
tion. Therefore, careful consideration of these factors is necessary when 
selecting sensors for spoil characterisation to ensure accurate and 
comprehensive analysis. 

Employing appropriate sensors in conjunction with object-based 
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image analysis (OBIA) offers an effective approach for spatially mapping 
features of interest. OBIA, as demonstrated by Asthana et al. (2020), 
Keyport et al. (2018), excels in mapping rugged terrains similar to spoil 
environments. The segmentation-based methodology groups pixels into 
meaningful objects and accounts for spatial relationships between 
similar pixels. The integration of ancillary data, such as digital surface 
models (DSM), further improves object boundary definition, even in 
challenging terrain. 

Notably, few studies (Thiruchittampalam et al., 2023a; Thir-
uchittampalam et al., 2023b) have explored the potential of UAV-based 
imagery and sensitive sensors for monitoring mine dump spoil piles. 
Thiruchittampalam et al. (2023b) focuses on pixel-level coal spoil 
characterisation via UAV-based optical remote sensing, utilising struc-
tural descriptors and machine learning for in-depth analysis. This study 
also emphasises the importance of future work on OBIA for more ac-
curate results. Furthermore, Thiruchittampalam et al. (2023a)’s evalu-
ation of segmentation algorithms in spoil pile delineation benefits the 
mining industry, setting the stage for OBIA. 

To this end, this study sets two primary objectives. Firstly, it aims to 
expand upon existing research by comparing the effectiveness of optical 
RGB and multispectral sensors, utilised in conjunction with UAVs, for 
characterising materials in undulating terrains, particularly in spoil pile 
environments. One of the main goals of this study is to investigate the 
capabilities of RGB and an expanded multispectral sensor which offers 
calibrated reflectance signatures with a higher number of bands. Both 
sensors were employed to assess their comparative performance. Sec-
ondly, this study seeks to explore segmentation and classification tech-
niques specifically tailored to spoil characterisation, taking into account 
the distinctive challenges presented by the undulating topography of 
mining spoil piles. It aims to comprehensively compare the classification 
performance of optical RGB and multispectral sensors, with the objec-
tive of determining the most cost-effective and efficient option for 
identifying spoil piles. Additionally, the study aims to investigate the 
application of OBIA for geotechnical characterisation of spoil pile. By 
leveraging this analytical approach, the research aims to extract valu-
able insights and provide a more efficient and accurate mapping of 
material piles characterised by uneven surfaces and sporadically clus-
tered debris. 

The outcomes of this study hold significant potential for the mining 
and civil industry for characterising similar environments. The research 
findings are expected to facilitate enhanced decision-making in mine 
management and environmental monitoring by advancing UAV-based 
remote sensing techniques for mining applications. 

2. Material and methods 

2.1. Methodological overview 

The workflow implemented to characterise dump piles in the study 
area is shown in Fig. 1. Initially, ground truth data was collected, which 
serves as both the training and testing dataset for evaluating classifier 
performance in subsequent stages. Subsequently, an orthomosaic was 
generated by utilising geotagged RGB and multispectral images ob-
tained through UAV data acquisition. Features were extracted from 
these orthomosaics for further analysis. Concurrently, segments were 
produced from the digital surface model (DSM) using a Voronoi-based 
segmentation algorithm. Within each segment, zonal statistics of fea-
tures derived from the orthomosaics were calculated. These features 
were then ranked using the minimum redundancy maximum relevance 
(mRMR) algorithm. Finally, a selected set of features underwent ma-
chine learning based analysis to determine the best-performing algo-
rithm for each attribute. 

2.2. Study site and UAV data acquisition 

The study area covers 62,567 m2 of paddock-dumped coal spoils at a 
mine dump site in the Sydney basin of New South Wales, Australia 
(Fig. 2). This site is characterised by dump trucks unloading the spoil 
onto a confined neighboring field, resulting in the creation of ridges and 
valleys within the environment. Over time, the accumulated spoil forms 
a unique topography that exhibits a series of ridges and valleys, with 
varying elevations and slopes influenced by the dumped materials and 
the dumping method employed (Fig. 2(d)). 

The aerial images of the fields were captured using a DJI M300 RTK 
drone (SZ DJI Technology Co., Ltd., Shenzhen, China). The UAV was 
equipped with a Micasense Altum multispectral camera (MicaSense, 

Fig. 1. Workflow of object-oriented classification of attributes related to coal spoil characterisation.  
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Inc., Seattle, WA, USA), and a DJI Zenmuse P1 optical camera. Both 
sensor payloads facilitated a comprehensive data collection for an in- 
depth analysis of the spoil piles and the surrounding environment. The 
data collection was performed around local solar noon. 

The Micasense Altum camera employed is capable of capturing im-
ages across six spectral ranges, including blue, green, red, red-edge, 
near-infrared, and thermal infrared, as indicated in Table 1. This 
extensive spectral coverage allows for a comprehensive analysis of the 
study area and the spoil piles. The Micasense Altum-PT sensor is 

equipped with a downwelling light sensor (DLS) to account for varia-
tions in illumination across the area. This sensor measures ambient light 
conditions and the sun’s angle for each spectral band, enabling the 
adjustment of illumination discrepancies during data capture. Several 
measures were implemented to ensure accurate and precise georefer-
encing. Firstly, a calibrated reflectance panel (CRP) image was captured 
at the beginning of each multispectral flight. This panel serves as a 
reference for radiometric calibration. Additionally, five ground control 
points (GCP) were strategically placed around the study area. These 

Fig. 2. (a) Location of the selected mine site in New South Wales, Australia, and distribution of ground truth sample points within the RGB orthomosaic from 
Zenmuse P1 RGB camera images, (b) true color composite of the orthomosaic from Micasense Altum-PT sensor images, (c) digital surface model (DSM) derived from 
Micasense Altum-PT sensor images, (d) image of spoil piles (outlined with red dotted line) captured using hand-held camera which shows patterns of ridges and 
valleys indicative of distinct topographical features. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 

Table 1 
Specification of the sensors deployed in this study.  

Sensor Bands Image width ×
height (pixels) 

Sensor dimensions 
(mm) 

Focal length 
(mm) 

Field of view Centre wavelength 
(nm) 

Ground sampling distance 
(GSD) (cm) 

Micasense 
Altum 

Blue 2066 × 1544 7.121 × 5.327 8 48◦ HFOV × 36.8◦

VFOV 
475 4.41 cm at 100 m altitude 

Green 2066 × 1544 560 
Red 2066 × 1544 668 
Red edge (RE) 2066 × 1544 717 
Near Infrared 
(NIR) 

2066 × 1544 842 

Thermal Infrared 
(TIR) 

320 × 256 3.840 × 3.072 4.5 48◦ HFOV × 39◦

VFOV 
10,500 

Zenmuse P1 Blue 8192 × 5460 35.9 × 24 35 53.630◦ HFOV ×
36.960◦ VFOV 

470 1.22 cm at 80 m altitude 
Green 550 
Red 660  
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GCPs were evenly spaced, and their coordinates were measured using an 
Emlid Reach RS2 multi-frequency global navigation satellite system 
(GNSS) receiver, operating in kinematic survey mode and connected to a 
networked transport of RTCM via internet protocol (NTRIP) correction 
service. The integration of this setup guarantees precise positioning of 
the GCPs, which is crucial for obtaining high-quality and accurately 
georeferenced aerial imagery. 

The surveys were meticulously planned and executed using the DJI 
Pilot app (SZ DJI Technology Co., Ltd.). The UAV was operated at an 
altitude of 100 m above ground level (AGL) for the Micasense Altum 
camera, and 80 m for the Zenmuse P1 camera, ensuring comprehensive 
coverage with an 80% forward and side overlap. Both cameras were 
positioned at nadir (90◦), and a single grid flight path was established. 
The automatic capture mode was employed for image acquisition by 
both sensors. 

The DJI M300 RTK drone, serving as the platform for mounting the 
DJI Zenmuse P1 and Altum multispectral camera, exhibits robustness 
and power. It possesses physical dimensions of 81 cm × 67 cm × 43 cm 
and a mass of approximately 6.29 kg. Equipped with advanced navi-
gation systems, including GPS, GLONASS, BeiDou, and Galileo, the 
drone offers reliable navigation and precise image tagging capabilities. 

2.3. Conventional coal spoil characterisation approach and ground truth 
data collection 

The ground truthing approach utilised for characterising coal spoil 
and collecting ground truth data is based on the work by Simmons and 
McManus (2004). The work developed the BHP Mitsubishi Alliance Coal 
(BMAC) spoil shear strength framework (Tables 2 and 3), which has 
gained widespread acceptance as a categorisation system. This frame-
work relies on visual-tactile characteristics to assess shear strength pa-
rameters of coal mine spoil, eliminating the need for time-consuming 
laboratory tests. 

Spoil characterisation involves consistently assigning attributes to 
the spoil and assigning weights to each attribute using standardised 
procedures. These attributes and weights are presented in Table 2. The 
“Predominant particle size” is determined through recognised visual 
methods, while “Consistency/Relative density” is evaluated based on 
the moist condition, using tactile procedures for cohesive or cohesion-
less materials. “Plasticity” is assessed either through a liquid limit test or 
visually. The “Fabric structure” is a spoil characteristic based on the 
distribution of particle sizes. It is divided into two components: the 
“Framework” and the “Matrix.” The framework consists of larger 

particles that transmit forces within the spoil and form a rigid structure 
upon contact. The matrix comprises smaller particles that fill the gaps 
between the framework particles. The BMAC categories are determined 
by summing the relative weights of each attribute using the following 
equation, and the spoil is assigned to the category with the highest 
overall weight. 

%likelihood of category i =
∑

wattribute=0 or wattribute

wParticle size distribution +wRelative density

+wFabric structure +wPlasticity  

where, i is category (1, 2, 3, 4). wattribute is weightage of particle size 
distribution, relative density, fabric structure and plasticity under 
category i (Table 2). 

For each attribute, a weightage is allocated to a specific category that 
corresponds to the spoil, whereas all other categories within the same 
attribute are assigned a weightage of zero. The % likelihood is calculated 
for all categories, and the final BMAC category is determined as the 
category with the highest overall attribute weightage. 

The framework, summarised in Table 2, classifies spoil into one of 
the four categories and provides peak shear strength parameters, cohe-
sion (c’) and friction angle (ϕ’) for three strength mobilization modes, 
corresponding to unsaturated, saturated, and remoulded conditions 
(Table 3). This approach enabled efficient and practical geotechnical 
characterisation of spoil piles, providing valuable ground truth data for 

Table 2 
BHP Mitsubishi Alliance Coal (BMAC) framework spoil categories and their visual-tactile attributes (for current spoil strength) (adapted from Simmons and McManus, 
2004).  

Category → 1 2 3 4 Weightage 
← 

Description Fine-grained clay-rich high 
plasticity 

Fine-grained low plasticity with 
larger clasts 

Larger clasts with fine matrix, 
low plasticity 

Large blocks, minor fines, 
minor slaking 

Predominant particle 
size 

Clay Sand Gravel Cobbles 11.6 

Consistency: (Cohesive) 
Relative density: 
(Cohesionless) 

Soft to Firm 
Loose 

Stiff 
Medium Dense 

Hard 
Dense Hard packed 26.9 

Structure 26.9 

Matrix only Matrix supported Framework supported Framework only 

Liquid Limit High 
(>50) 

Intermediate 
(35–50) 

Low 
(20–35) 

Not Plastic 
(<20) 

34.6  

Table 3 
BHP Mitsubishi Alliance Coal (BMAC) framework spoil categories and their 
shear strength parameters with mobilization modes (after Simmons and 
McManus, 2004).  

Category → 1 2 3 4 

Unsaturated 

γ 
(kN/m3) 

18 
(1) 

18 
(1) 

18 
(1) 

18 
(1) 

c’ 
(kPa) 

20 
(10) 

30 
(15) 

50 
(15) 

50 
(15) 

ϕ’ 
(deg) 

25 
(2.5) 

28 
(3) 

30 
(2) 

35 
(2.5) 

Saturated 

γ 
(kN/m3) 

20 
(1) 

20 
(1) 

20 
(1) 

20 
(1) 

c’ 
(kPa) 

0 
(0) 

15 
(7.5) 

20 
(10) 

0 
(0) 

ϕ’ 
(deg) 

18 
(3) 

23 
(2.5) 

25 
(2.5) 

30 
(1.5) 

Remoulded ϕ’ (deg) 
c’ = 0 kPa 

18 
(1.5) 

18 
(1.5) 

18 
(1.5) 

28 
(2)  
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the analysis and validation of remote sensing data obtained from aerial 
imagery. 

In this study, a total of 82 piles located within a dump area spanning 
62,567 m2 were systematically categorised based on their variability 
and similarity. The distribution of groundtruths for each category across 
attributes is given in Fig. 3. The dump area consisted of coal spoil piles 
that were deposited in a paddock-like configuration. Each pile was then 
characterised according to the BMAC framework, and their spatial co-
ordinates were measured using an Emlid Reach RS2 multi-frequency 
GNSS receiver. Lithology has been included in the ground truth, 
alongside the BMAC category, due to the recognition of its significance 
in influencing various BMAC attributes in several studies (Andrade et al., 
2011; Bishwal et al., 2017). The selection of ground truths for the 
classification process, was based on two main criteria. Firstly, the 
accessibility of a pile was considered, ensuring that only piles that could 

be readily accessed were included in the study. Secondly, the differen-
tiation of the pile groups from the rest of the pile environment was taken 
into account. Within each pile group, a subset of piles with unique and 
distinguishable characteristics, setting them apart from the neighboring 
piles, was selected as ground truths. To establish similarity among the 
piles, attributes were assigned to those piles that displayed comparable 
features. Piles with similar nature, as determined through visual 
observation and analysis, were labelled with the same attributes. This 
labelling process enabled the creation of categories of piles that shared 
common characteristics, facilitating further analysis and interpretation 
of the data. 

2.4. UAV Data processing 

The raw images obtained from the UAV mission, which included 

Fig. 3. Distribution of groundtruths for each category across attributes: (a) particle size distribution, (b) relative density, (c) fabric structure, (d) plasticity, (e) BMAC 
category and (f) lithology. 
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both optical and multispectral images, were processed using Pix4D-
mapper (Pix4D SA, Lausanne, Switzerland), a structure from motion 
(SfM)-based photogrammetric stitching package. The image sets con-
sisted of 838 optical and 1175 multispectral images and mosaicked in 
respective datasets. 

The processing workflow involved an alignment process to identify 
common features in overlapping images, which helped estimate the 
camera’s position and orientation for each image. This ensured the ac-
curate alignment of the images, which is crucial for generating precise 
models. After alignment, Pix4Dmapper conducted camera calibration to 
estimate the intrinsic and extrinsic parameters of the camera. Intrinsic 
parameters, such as focal length, lens distortion, and principal point, and 
extrinsic parameters, including camera position and orientation in the 
scene, were determined. GCPs were utilised to refine the camera posi-
tioning and orientation data, serving as reference points to enhance the 
model’s accuracy. Pix4Dmapper employed the GCPs to correct for 
camera position and orientation errors, thus facilitating georeferencing 
of the resulting orthomosaic and DSM. 

Following camera calibration and GCP integration, Pix4Dmapper 
generated the final orthomosaic and DSM. For multispectral data, 
Pix4Dmapper included radiometric calibration tools. The raw multi-
spectral bands were radiometrically calibrated within Pix4Dmapper’s 
inbuilt workflow using MicaSense’s CRP. This calibration process 
enabled the acquisition of absolute reflectance values from the multi-
spectral images, ensuring consistency and comparability across different 
bands. Accurate analysis of multispectral data heavily relies on this 
calibration step. The resulting orthomosaics, both multispectral and 
RGB, had ground sampling Distances (GSD) of 4.41 cm and 1.22 cm, 
respectively. Finally, orthomosaics and DSMs were generated with a 
resolution of 5 cm for the multispectral data and 0.5 cm for the optical 
RGB data, as illustrated in Fig. 2. 

2.5. Segmentation 

We aimed to use object-based classification approaches, which are 
more suitable for identifying heterogenous spoil piles, instead of pixel- 
based classification, which is less effective for this task. To this end, 
we developed a segmentation method specifically tailored for mining 
spoil piles with irregular-shaped blobs. Our segmentation approach was 
based on Voronoi tessellation and employed a series of processes: noise 
reduction, seed point detection, background seed point removal, and 
pile polygonisation. To address the challenges posed by the irregular 
debris distribution within the spoil piles, we applied a noise reduction 
technique called Gaussian blurring (Nusantika et al., 2021). This tech-
nique helped smooth out small irregularities and noise in the DSMs, 
improving the accuracy of the segmentation. Careful parameter selec-
tion was crucial to avoid blurring or distorting the shapes of the blobs. 

Seed point detection was a critical first step in our Voronoi-based 
segmentation approach (Li et al., 2020). We used local maxima detec-
tion, which involved scanning the DSM pixel by pixel and comparing the 
elevation values of each pixel with its surrounding pixels within a 
defined neighbourhood. Pixels with higher elevation values than their 
neighbours were considered local maxima and selected as seed points for 
segmentation. Thresholding played a vital role in distinguishing be-
tween the background (valley between spoil piles) and the spoil piles 
(blobs) during the segmentation process. Adjustments were necessary to 
account for the variability in elevation values caused by the presence of 
irregularly shaped blobs. We applied Otsu’s thresholding method (Otsu, 
1979) to accurately differentiate between the background and pile 
foreground. Following the thresholding step, background seed points 
were eliminated through a binary operation, and the pile polygon areas 
were drawn based on Voronoi tessellation computed from the remaining 
seed points. By optimising the segmentation algorithm through adjust-
ments to the sigma values of the Gaussian blur, we obtained a shapefile 
containing precise segmented objects for object-based image analysis. 

To determine the optimal segmentation with the best parameter 

setting, specifically the sigma values of the Gaussian blur during the 
smoothing phase of the segmentation algorithm, the Hoover metrics 
(Hoover et al., 1996) were employed. These metrics utilise measures 
based on the degree of area overlap between segments and can be 
extended to account for partial segment matching by employing a 
threshold. These metrics aim to identify under-segmentation and over- 
segmentation errors compared to 232 manually generated groundtruth 
segments. In other words, the metrics enable the identification of per-
fect, over-segmented segments (where a single pile is split into multiple 
segments), under-segmented (where multiple piles are inadequately 
partitioned), and missed. 

To assess the performance of the segmentation with different sigma 
values during the smoothing phase, an overlapping threshold of 0.5 was 
utilised. Additionally, this threshold was used to evaluate how effec-
tively the segmentation algorithms performed. Four scores were 
computed to evaluate the segmentation algorithms: the correct detec-
tion score, the over-segmentation score, the under-segmentation score, 
and the missing detection score. 

2.6. Feature extraction 

After the process of segmentation, the next step involved accurately 
representing each cluster of pixels to facilitate the precise classification 
of the respective object. Various features were utilised to describe the 
characteristics of objects and their associations with one another. In this 
study, these features can be categorised into four groups: spectral, 
textural, structural (edge), and statistical features. These features 
pertain to the relationship of objects within the segments and their 
relationship to the overall image. It is possible to extract each of these 
features from every generated object. 

Table 4 presents the features employed in this study. Spectral fea-
tures pertain to the spectral properties of an image, encompassing 
reflectance and radiance. They are used to analyse the spectral charac-
teristics of objects, such as their color (Belgiu and Drǎguţ, 2014). 
Textural features describe the texture and patterns of objects, including 
roughness, coarseness, and directionality (Ma et al., 2015). Structural 
features encompass the size, shape, orientation, and arrangement of 
objects, involving lines, edges, and shapes (Grinias et al., 2016). Sta-
tistical features involve quantitative measures that describe the distri-
bution and pattern of pixel intensities or colors in an image. These 
distinct feature types provide complementary information, enabling a 
comprehensive understanding of the image’s content and context. 

The multispectral data has been transformed to obtain the spectral 
features i.e., band ratio and normalised difference spectral indices. On 
the other hand, the RGB data has been converted to obtain spectral, 
textural, structural, and statistical features. The textural, structural, and 
statistical features have been derived from individual bands (i.e., red, 
green and blue) of the high-resolution RGB orthomosaic (spatial reso-
lution of 0.5 cm) to ensure that as much information as possible is 
extracted. A detailed account of the extracted features used in this study 
is described and listed in Supplementary Information. A total of 564 
features were extracted by determining zonal statistics (mean and 
standard deviation) of features within each segment generated from 
Voronoi-based approach. However, after eliminating those features that 
contained null values, the number of retained features was reduced to 
516. Of these 516 features, 72 were generated from multispectral data 
while the remaining 444 features were generated from RGB data. 

2.7. Feature selection 

The inclusion of a large number of input features offers a compre-
hensive range of dimensions for training machine learning models 
within the method. However, high dimensionality can lead to in-
efficiency and prolonged convergence time for the models (Hu et al., 
2019). To address this issue, feature selection was implemented to 
identify and select only the spoil pile features that are relevant to the 
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overall spoil pile classification model. The mRMR algorithm (Peng et al., 
2005) was employed as a feature selection technique to filter out noisy 
and redundant features from the high-dimensional spectral, textural, 
structural, and statistical features of spoil environment images. This 
algorithm effectively mitigates overfitting, enhances model perfor-
mance, and conserves computational resources (Gopika and Meena, 
2018). By eliminating unnecessary or redundant features, feature se-
lection ensures that the selected subset of features is optimised for 
accuracy. 

Given the presence of 516 features in this particular study, the 
mRMR algorithm (Hanchuan et al., 2005) was used to identify the 
optimal subset of features that yielded the highest level of accuracy for 
the model. The algorithm achieves this by selecting a subset of features 
that exhibit low similarity to each other while displaying a high corre-
lation with the response variable (Zhang et al., 2012). 

To evaluate the similarity between two features, X and Y, the mRMR 
algorithm assesses each feature individually in relation to the entire 
dataset and calculates their mutual information using the formula I(X, 
Y). 

I (X, Y) =
∑

x∈X

∑

y∈Y
(x, y) log

p(x, y)
p(x)p(y)

where, p(x, y) is joint probability distribution of X and Y variables, and 
p(x), p(y) are marginal probability distribution of X and Y respectively. 

Maximum relevancy (maxV) and minimum redundancy (minW)

conditions to determine optimal set of features are defined as follows: 

maxV,V =
1
|S|

∑

Fi∈S
I(Fi,C)

minW,W =
1
|S|2

∑

Fi ,Fj∈S
I
(
Fi,Fj

)

where, S is selected subset of features, Fi, Fj are elements of subset S,and 
C is response variable (i.e., class label of particle size distribution, 
relative density, fabric structure, plasticity and BMAC category). 

The value of the mutual information quotient (MIQ) is then calcu-
lated to rank the features. A subset of features that are maximally rele-
vant and least redundant is produced by the mRMR algorithm by 
choosing features with the highest MIQ values. 

MIQFi =
VFi

WFi  

where, relevancy and redundancy of a feature are denoted by VFi and 
WFi . 

In accordance with principles of relevance and redundancy, all 516 
features generated in this study have been ranked. The objective was to 
identify a compact and effective set of features, primarily for the purpose 
of reducing computational demands. The drop in the importance score 
reflects the algorithm’s confidence in feature selection. A substantial 
drop implies confidence in selecting the most important predictor, while 
minor drops indicate that differences in predictor importance are not 
significant. Hence, features were selected up to the point where a sig-
nificant drop was observed. 

2.8. Machine learning algorithms 

A range of machine learning algorithms were utilised to evaluate and 
compare their performance in the classification of spoil piles using UAV 
imagery. The adoption of multiple algorithms is crucial to assess their 
accuracy in relation to the specific classification task and dataset, as no 
single algorithm universally excels in all classification scenarios. 
Through the comparative analysis of various algorithms, the study 
aimed to identify the most effective algorithm for accurately classifying 
spoil piles. Consequently, a selection of classification models listed in 
Table 5 was employed. 

In the context of decision tree, the number of splits in a decision tree 
analysis defines the level of complexity in the tree structure. Higher 
number splits improve categorisation accuracy, but also cast a higher 
chance of overfitting, vice-versa. Hence, an optimal number of split that 
provides a trade-off between accuracy and resource requirement pro-
duces the optimal decision tree model. This study used fine, medium and 

Table 4 
Features extracted from optical and multispectral data.   

Feature 
category 

Features Parameters [Refer Supplementary for further 
details] 

Number of 
features 

RGB data 

Spectral Red, Green, Blue, Red-Green ratio, Green-Blue ratio, Red-Blue ratio  12 

Textural 
Gabor texture features, Haralick features [Energy, Entropy, Correlation, 
Inverse Difference Moment, Inertia, Cluster Shade, Cluster Prominence, 
Haralick Correlation] 

Gabor: θ values of 0, π/4; σ values of 1,3; λ values 
of 0,π/4, π/2, 3π/4, and γ values of 0.05, 0.5. 
Haralick: kernel sizes - (3 × 3), (5 × 5), (7 × 7), 
(9 × 9), (11 × 11). 

432 

Structural 
(Edge) Canny, Prewitt, Roberts, Scharr, Sobel 

Sobel, Prewitt and Scharr use 3 × 3 kernel and 
Roberts edge operators use 2 × 2 kernel. 
Canny: Minimum and maximum values for 
double thresholding are chosen at 100 and 200, 
respectively. 

30 

Statistical Gaussian, Median 
Gaussian: σ values of 3 and 7. 
Median: 3 × 3 kernel 18 

Multispectral 
data Spectral 

Red, Green, Blue, RE, NIR, TIR, Red-Green ratio, Red-Blue ratio, Red-RE 
ratio, Red-NIR ratio, Red-TIR ratio, Green-Blue ratio, Green-RE ratio, Green- 
NIR ratio, Green-TIR ratio, Blue-RE ratio, Blue-NIR ratio, Blue-TIR ratio, RE- 
NIR ratio, RE-TIR ratio, NIR-TIR ratio, Normalised red-green difference 
index, Normalised red-blue difference index, Normalised red-RE difference 
index, Normalised red-NIR difference index, Normalised red-TIR difference 
index, Normalised green-blue difference index, Normalised green-RE 
difference index, Normalised green-NIR difference index, Normalised green- 
TIR difference index, Normalised blue-RE difference index, Normalised 
blue-NIR difference index, Normalised blue-TIR difference index, 
Normalised RE-NIR difference index, Normalised RE-TIR difference index, 
Normalised NIR-TIR difference index  

72  
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coarse trees with maximum splits 100, 20, 4, respectively. Gini’s di-
versity index, which estimates the likelihood of misclassifying a 
randomly selected element from the set based on the distribution of 
labels in the subset, was used as a split criterion to split the data effec-
tively at each node (Zambon et al., 2006). 

Under discriminant analysis, decision boundaries are defined based 
on the assumed type of relationship between features and response 
variables. Here, feature vectors are assumed to have Gaussian distribu-
tion. Linear discriminant analysis presumes a linear relationship and 
equal covariance matrices for each class whereas, quadratic discrimi-
nant analysis presumes non-linear relationship and separate covariance 
matrices for each class to define decision boundaries (Tharwat, 2016). 
Both types of models were deployed in this investigation. 

Naive Bayes classifier is a probabilistic model that assumes condi-
tional independence of features (Jahromi and Taheri, 2017). Gaussian 
naive Bayes and kernel naive Bayes are two types of naive Bayes clas-
sifiers used in this analysis. Gaussian naive Bayes assumes features are 
normally distributed and calculates the likelihood of assigning to the 
classes using Bayes theorem (Kamel et al., 2019), whereas kernel naive 
Bayes transfers input feature space into high dimensional feature space 
to divide classes easily using linear hyperplane (Lee et al., 2012). 

Support vector machine (SVM) is an algorithm that defines optimal 
boundaries that separates classes by maximising the margin between the 
classes. Based on the type of function used to differentiate classes, 
orderly linear, quadratic, cubic, or Gaussian function, SVM is labelled as 
linear, quadratic, cubic, or Gaussian SVM (Anthony et al., 2008). 
Additionally, the kernel scale that smooths the decision boundary sub-
classifies the Gaussian SVM as fine, medium, and coarse (Son et al., 
2022; Song et al., 2002). In this study, linear, quadratic, cubic, fine 
Gaussian (kernel scale: 5.7), medium Gaussian (kernel scale: 23) and 
coarse Gaussian (kernel scale: 91) were employed. 

k-nearest neighbours (kNN) uses the most common class in the 
nearest feature space to assign a class value to an unknown data point 
(Singh et al., 2017). Based on the number of neighbours, kNN which uses 
Euclidian distance metric is further divided into fine, medium, and 
coarse kNN (in this study 1, 10, and 100 neighbours are used, respec-
tively). Cosine kNN and cubic kNN uses cosine and Minkowski (cubic) 
distance metric to determine the similarity of data points. Weighted kNN 
uses square inverse distance weight and Euclidian distance metric to 
assess data similarity (Maghari, 2018). In this work, the number of 
neighbours was set at 10 for the cosine, cubic, and weighted kNN 
models. 

Ensemble algorithms categorise unclassified data by voting on the 

predictions produced by a set of classifiers (Dietterich, 2000; Fu et al., 
2022). The ensemble algorithms - boosted tree, bagged tree, and RUS-
Boosted tree - use decision trees as the basic classifier. Boosted trees use 
weak decision trees and integrate their outcomes, bagged trees train 
random samples independently using several decision trees, and the 
final prediction is made by voting on the outcomes of each algorithm, 
and RUSBoosted is a boosted tree derivative that uses random under-
sampling to balance the class distribution in the data (Singh and Ranga, 
2021). In this work, maximum number of splits and number of learners 
were kept as 20 and 30 for boosted, bagged, and RUSBoosted trees. 
Subspace discriminant and subspace kNN employ random subspace al-
gorithm (Ashour et al., 2018; Rashid et al., 2021) to increase the accu-
racy of their base learners (i.e., discriminant and kNN, respectively). The 
number of learners and subspace dimensions for these two classifiers 
were set at 30 and 258, respectively. 

Neural networks resemble biological neural networks and use 
interconnected nodes to determine the relationship between features 
and final predictions (Bishop, 1994). Based on the number of neurons in 
a layer, a neural network can be classified as: narrow, medium, and wide 
(Khan et al., 2022). This study employed only one layer with the sizes of 
10, 25 and 100, respectively. All of these classifiers in this study use 
ReLU as their activation function, with a cap of 1000 iterations. Ac-
cording to the number of connected layers, neural networks can be 
divided into bilayered (i.e., two fully connected layers) and trilayered 
categories (i.e., three fully connected layers) (Khan et al., 2022). Both of 
these neural networks were used in this investigation, with a layer size of 
10 for each, ReLU serving as their activation function, and a maximum 
of 1000 iterations. The input data was standardised in all types of neural 
networks. 

Kernel approximation algorithms project the data that cannot be 
linearly separated into a linearly separable high dimensional space 
(Tariq et al., 2023). This study employed SVM and logistic regression as 
kernel functions for this data projection. The number of expansion 
dimension, regularisation strength and kernel scale parameters were set 
to auto to determine optimal parameters for the given data. Maximum 
iteration limit was kept at 1000 for both algorithms. 

2.9. Accuracy assessment 

The attributes of ground truth were merged with the segments 
generated using Voronoi-based segmentation, based on the corre-
sponding ground truth points in the segmented polygon. These poly-
gons, along with their attributes and features, were utilised in the 
training and testing processes. 

Data partitioning, specifically the separation of training and test sets, 
has a significant impact on the performance of models. To ensure that a 
model can effectively generalise to unseen data, rather than relying on a 
single training and test dataset, k-fold cross validation is employed 
(Lyons et al., 2018). In the present study, a five-fold cross validation 
approach was utilised. This technique involves dividing the dataset into 
five equal parts, and subsequently training and testing the model five 
times. During each iteration, a portion of the dataset amounting to 20% 
(16 data points) is allocated for testing, whereas the remaining four 
portions, constituting 80% (66 data points), are employed for training. 
This process is repeated five times, with each portion of the dataset 
serving as the test set exactly once. The results obtained from the five 
iterations are then averaged to provide an overall assessment of the 
model’s performance. 

The assessment of predictive capabilities for distinct models on the 
coal spoil attributes involved the utilisation of evaluation metrics, 
including accuracy, precision, and recall, alongside the examination of 
confusion matrices. Overall accuracy served as a fundamental metric, 
quantifying the ratio of accurately predicted classifications to the total 
count of classified data. 

Table 5 
Classifiers used in this study.  

Classifiers Types of deployed classifiers Reference 

Decision tree Fine, medium, and coarse (Loussaief and 
Abdelkrim, 2018) 

Discriminant 
analysis 

Linear and quadratic discriminant (Arabameri and 
Pourghasemi, 2019) 

Naive Bayes Gaussian and kernel naive Bayes (McCann and Lowe, 
2012) 

Support vector 
machine (SVM) 

Linear SVM, quadratic SVM, cubic 
SVM, fine Gaussian SVM, medium 
Gaussian SVM, coarse Gaussian SVM 

(Loussaief and 
Abdelkrim, 2018) 

k-nearest 
neighbours 
(kNN) 

Fine kNN, medium kNN, coarse 
kNN, cosine kNN, cubic kNN, 
weighted kNN 

(Loussaief and 
Abdelkrim, 2018) 

Ensemble Boosted Trees, bagged Trees, 
subspace discriminant, subspace 
KNN, RUSBoosted Trees 

(Arboleda, 2019) 

Neural network Narrow neural network, medium 
neural network, wide neural 
network, bilayered neural network, 
trilayered neural network 

(Corenblit et al., 
2023) 

Kernel 
approximation 

SVM kernel, logistic regression 
kernel 

(Tien Bui et al., 
2016)  
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Overall accuracy =
TN + TP

TN + TP + FN + FP 

In this context, true negative (TN) represents the count of instances 
accurately identified as negatives, true positive (TP) signifies the count 
of instances correctly identified as positives, false negative (FN) denotes 
the count of instances erroneously classified as negatives, and false 
positive (FP) indicates the count of instances erroneously classified as 
positives. 

In addition, per-class accuracy was determined using precision, 
recall, and F1-score. 

Precision quantifies the ratio of correct positive identifications, 
indicating the probability that the predicted class for the spoil category 
truly belongs to that particular class. 

Precision =
TP

TP + FP 

Recall determines the ratio of true positives among all actual posi-
tives that were accurately identified. 

Recall =
TP

TP + FN 

F1-score represents the harmonic average of precision and recall. 

F1 − score =
2 × Precision × Recall

Precision + Recall 

In order to evaluate the accuracy of models when utilising features 
derived from both RGB and multispectral data, five-fold cross validation 
was employed. Subsequently, an assessment of the accuracy of the 
selected subset features using mRMR algorithm was conducted. 

3. Results 

3.1. Segmentation 

Table 6 displays the segmentation parameters associated with the 
Hoover metrics scores obtained from Voronoi-based segmentations. The 
Hoover scores, namely Rc, Rf, Ra, and Rm, represent the metrics for 
correct detection, over-segmentation, under-segmentation, and missed 
detection, respectively. The correct detection score gauges the propor-
tion of spoil pile segments accurately identified in the image. A higher 
detection score indicates superior performance in this regard. The over- 
segmentation score quantifies the percentage of detected piles that are 
segmented into multiple parts. Conversely, the under-segmentation 
score reflects the percentage of piles that are incompletely segmented. 
The missed detection score indicates the percentage of piles that remain 
undetected. Lower scores in over-segmentation, under-segmentation, 
and missed detection signify better performance in accurately detecting 
all objects present in the image. 

The results demonstrate that the Voronoi-based segmentation ach-
ieves optimal performance when utilising a sigma value of 12 for 
Gaussian blurring. When the sigma value is set to 12, both correct 
detection and over-segmentation of piles yield a Hoover score of 0.77. 
Fig. 4 visually illustrates the output generated by the Voronoi-based 
segmentation algorithm, showcasing precise delineation of individual 
spoil piles in both the DSM (Fig. 4(b)) and the true color composite of the 
orthomosaic (Fig. 4(b)). Fig. 4(d) displays a zoomed view of a subarea 
within the dumpsite, highlighting the ground truth segment, Voronoi- 
based segments, and the visual representation of Hoover scores. These 
results were obtained using images captured by the Micasense Altum-PT 
sensor. 

3.2. Feature selection 

The 516 features in the dataset were ranked based on their impor-
tance, considering their relevance to the response variable, i.e. particle 
size distribution, consistency/relative density, fabric structure, liquid 

limit, BMAC category, and lithology. Additionally, the redundancy of 
each feature in the dataset was taken into account with a measure of 
mRMR. 

A substantial drop suggests the algorithm’s strong confidence in 
choosing the most crucial predictor, while minor drops indicate that 
differences in predictor importance are not notable. 

Fig. 5 illustrates the outcomes of the mRMR algorithm. Specifically, 
considering particle size distribution, a significant drop in importance 
scores (6.95 × 10− 3 to 2.58 × 10− 13) occurs after the 462nd feature. For 
relative density, the importance scores exhibit a significant decrease 
after the 419th feature. In the case of fabric structure, the initial four 
features display minimal score variation, followed by a sudden drop in 
importance scores beyond that point. In terms of plasticity, a noteworthy 
drop in importance scores emerges after the 445th feature. Regarding 
the BMAC category, there is an abrupt decrease in the importance score 
after the 337th feature. Lastly, in the context of lithology, a substantial 
decrease in importance score is observed after the 12th feature. 

The results of the mRMR algorithm, including the top 20 features for 
each attribute and their corresponding confidence of feature selection, 
are presented in Fig. 6. 

The results indicate that Haralick features, Gabor texture features, 
and spectral features derived from multispectral bands are ranked as the 
topmost important features for the classification of all the attributes. 

3.3. Accuracy assessment 

3.3.1. Comparison of accuracy of features derived from RGB and 
multispectral data 

The best-performing machine learning algorithm and its corre-
sponding relative overall accuracy for features derived from optical 
RGB, multispectral, and a combination of both data sources are illus-
trated in Fig. 7. The results demonstrate that input features obtained 
from RGB data achieve the highest overall accuracy for classifying 
particle size distribution (fine kNN - 90.1%), relative density (wide 
neural network – 87.7%), and fabric structure (wide neural network – 
95.1%). On the other hand, input features derived from multispectral 
data result in the highest overall accuracy for plasticity (fine kNN – 
90.4%). 

For the BMAC category, the highest overall accuracy (92.6%) is 
attained when features are combined from both RGB and multispectral 
data using the ensemble (subspace discriminant) algorithm. The use of 
solely RGB data also yields a comparable accuracy for the BMAC cate-
gory. In the case of lithology, the ensemble (subspace discriminant) al-
gorithm using features combined from both RGB and multispectral data 
achieves the best overall accuracy (80.2%). 

When comparing algorithms using RGB data as input, they exhibit 
2.4%, 3.7%, and 6.2% higher accuracy in particle size distribution, 
relative density, and fabric structure, respectively, compared to algo-
rithms using features from both RGB and multispectral data. Conversely, 
algorithms utilising features derived from multispectral data as input 
show 7.7% higher accuracy for plasticity than those using features from 
both RGB and multispectral data combined. For the BMAC category and 
lithology, algorithms using features from both RGB and multispectral 
data as input outperformed other approaches. 

Table 6 
Hoover metrics scores for corresponding parameters of Voronoi-based 
segmentation.  

Gaussian (Sigma) Rc Rf Ra Rm 

9 0.651 0.109 0.015 0.025 
10 0.646 0.124 0.020 0.022 
11 0.659 0.102 0.027 0.025 
12 0.681 0.090 0.021 0.021 
13 0.656 0.095 0.037 0.034 
14 0.642 0.106 0.041 0.033 
15 0.634 0.101 0.052 0.036  
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Thematic maps created using all features derived from RGB and 
multispectral data as input for the best machine learning algorithms, 
representing various relevant attributes are presented in Fig. 8. In the 
study area, the thematic maps reveal each attribute’s distribution of 
specific categories. The results show that there are more spoil piles 
falling into category 3 for particle size distribution, category 2 for 
relative density, category 1 for fabric structure, category 2/3 for plas-
ticity, and category 2 for BMAC category. Additionally, the lithology in 
the study area is characterised by a mix of shales and fine sandstones. 

An evaluation of the algorithm’s performance using per-class accu-
racy metrics such as precision, recall, and F1-score are given in Fig. 9. 
Analysing the F1-scores for different categories reveals the algorithm’s 
performance in each specific category. Category 2 demonstrates high F1- 
scores in particle size distribution (F1-score of 0.92), relative density 
(high F1-score of 0.89), and BMAC category (F1-score of 0.91). For 
fabric structure, category 1 exhibits a high F1-score of 0.91, while 
category 4 performs well in terms of plasticity (F1-score of 0.88). 
Regarding lithology, the mixed Permian and dispersive white fine 
sandstone category achieves a perfect F1-score of 1. 

It is worth noting that both fabric structure category 1/2 and plas-
ticity category 3, yield an F1-score of 0. Additionally, categories such as 
colluvium with pebbles and remnant lumps of unconsolidated sedi-
ments, gray clay, tertiary claystone/siltstone colluvium, a mixture of 
Permian/Triassic siltstones, mixed mudstones, mixed mudstones with 
shale, and mixed mudstones with gray sandstone all result in an F1-score 
of 0. 

3.3.2. Accuracy assessment of selected subset features from mRMR 
The overall accuracy (Fig. 10), utilising mRMR-selected features 

(Section 3.2), plays a crucial role in assessing the performance of clas-
sification models. Specifically, an overall accuracy of 87.7% was ach-
ieved for particle size distribution through the utilisation of the 
ensemble (subspace discriminant) model in conjunction with a selection 
of 462 optimal mRMR features. In contrast, the relative density attained 
an overall accuracy of 87.7%, employing a set of 419 selected features 
identified by the medium neural network algorithm. For the fabric 
structure attribute, an overall accuracy of 82.7% was realised, guided by 
the weighted kNN approach, which made use of a minimal subset of 4 
selected features. Plasticity achieved an accuracy of 87.7%, through 
wide neural network algorithm, incorporating a collection of 445 
selected features. Similarly, the BMAC category attribute demonstrated 
an accuracy at 96.3%, relying on the linear discriminant method, with 
337 best selected features. In contrast, the attribute of lithology 
exhibited a lower overall accuracy of 66.7% while employing the 
ensemble (bagged trees) approach with 12 selected features. 

In the context of the per-class evaluation metrics, Fig. 11 depicts 
precision, recall, and F1-score metrics for various categories within 
distinct attributes. Notably, the particle size distribution exhibited 
varying performance across its categories, with Cat-2 displaying a 
particularly high F1-score of 0.93. However, Cat-2/3 and Cat-4 
demonstrated perfect precision but a comparatively lower recall and 
F1-score. The relative density also showcased noteworthy results, with 
Cat-1 achieving a precision of 0.93 and an F1-score of 0.91, reflecting 

Fig. 4. (a) Digital surface model (DSM) of the selected area in the dump site revealing the morphological variation of piles, (b) Voronoi-based segments derived from 
the DSM, (c) segments overlaid on the true color composite of the orthomosaic obtained from Micasense Altum-PT sensor images, demonstrating effective seg-
mentation, (d) zoomed view of ground truth segments, Voronoi-based segments and a visual representation of Hoover scores. 
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strong overall performance. Conversely, F1-score of fabric structure 
illustrated a distinction between the performance of Cat-1 and Cat-1/2 
categories, where the latter exhibited negligible values due to a lack 
of data. The plasticity further highlighted the need for precision-recall 
balance, as Cat-1 displayed perfect precision but reduced recall (0.86), 
while Cat-3 exhibited negligible value. The BMAC category showed F1- 
scores of 0.96 and 0.97 for both the categories. The lithology encom-
passed a diverse range of categories, with notable performance observed 
in sandstone achieving F1-score of 0.94. 

4. Discussion 

This study presents a novel workflow that introduces the application 
of an object-based approach coupled with machine learning to charac-
terise spoil piles with rough morphology, specifically for geotechnical 
applications. The proposed methodology aims to streamline and auto-
mate the analysis and characterisation of spoil piles, offering a more 
efficient and reliable alternative to traditional manual approaches. The 
methodology was tailored to suit the unique conditions of the site, 
taking into account factors such as the distribution of specific data 
(including distinct lithologies exclusive to the area) and the utilisation of 
images captured under optimal conditions (e.g., sunny day) to ensure 

accurate categorisation across all classifications. While the primary 
objective was to determine the final BMAC category, which holds sig-
nificant importance for the industry, this study also examined other 
attributes related to the BMAC category. This approach provides addi-
tional insights into the variability of these attributes, even when 
different materials fall under the same BMAC category. By leveraging 
object-based techniques, this study opens up a promising avenue for 
effectively assessing and understanding the geotechnical properties of 
spoil piles. It paves the way for improved geotechnical analysis and 
decision-making processes, offering new possibilities for advancements 
in this field. 

4.1. Segmentation 

Object-based classification methods offer distinct advantages over 
pixel-based classification, such as mitigating the influence of variations 
in acquisition parameters and delivering realistic and geometrically 
precise spatial feature mapping (Blaschke, 2010). Nonetheless, seg-
menting high-resolution remote sensing images of mining spoil piles 
with diverse terrains poses significant challenges. A primary hurdle lies 
in devising algorithms and parameters that consistently yield stable 
segmentation performance for all objects and locations in the image 

Fig. 5. An evaluation of feature importance using minimum redundancy maximum relevancy algorithm. All 516 features were ranked in descending order of 
importance when the response variable is (a) particle size distribution, (b) relative density, (c) fabric structure, (d) plasticity, (e) BMAC category and (f) lithology. 
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Fig. 6. Plot showing the top 20 most important features for classification of (a) particle size distribution, (b) relative density, (c) fabric structure, (d) plasticity, (e) 
BMAC category and (f) lithology according to minimum redundancy maximum relevancy algorithm. 
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Fig. 6. (continued). 

Fig. 7. Overall accuracy of best performing machine learning algorithms for attributes related to BMAC framework when input features are derived from optical 
(RGB) data, multispectral data and combination of both. 
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Fig. 8. Object-based classifications using all features derived from both RGB and multispectral data as input for: (a) particle size distribution when deploying 
medium neural network, (b) relative density when deploying bilayered neural network, (c) fabric structure when deploying ensemble (subspace discriminant), (d) 
plasticity when deploying wide neural network, (e) BMAC category when deploying ensemble (subspace discriminant), and (f) lithology when deploying ensemble 
(subspace discriminant). 
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(Hassanein et al., 2018). Moreover, segmentation quality is subjective, 
depending on the user’s definition of objects of interest and their level of 
granularity (Thiruchittampalam et al., 2023a). Noteworthy segmenta-
tion shortcomings encompass over-segmentation, where the object of 
interest fragments into multiple pieces, and under-segmentation, where 
the object of interest merges with its surroundings. These issues directly 
affect classification accuracy, underscoring the pivotal role of spoil pile 
segmentation in OBIA. In our study, we adopted a Voronoi-based seg-
mentation approach relying on morphology on DSM. This choice was 
motivated by the observation that morphology-based segmentation 
outperforms color-based methods, which are sensitive to external factors 
like sun angle and shadows (Thiruchittampalam et al., 2023a). Since 
DSM is less affected by these external factors, morphology-based seg-
mentation proves more robust for undulating pile terrains. Nevertheless, 
the irregular-shaped blobs in DSMs posed segmentation challenges. To 
address this, we applied Gaussian blurring as a pre-processing step to 
smooth out minor irregularities and noise. Careful parameter selection 

was crucial to prevent excessive blurring or distortion of blob shapes 
(Jones et al., 2005). Seed point detection, a fundamental aspect of the 
Voronoi-based segmentation approach, relied on local maxima detec-
tion. This method facilitated the identification of potential seed points 
for segmentation based on elevation values. Adjustments to the 
thresholding step were necessary to accurately distinguish between the 
irregular-shaped blobs and the background. The study found that 
optimal segmentation could be achieved by combining a Voronoi-based 
segmentation method with a Gaussian filter. The choice of the sigma 
value played a pivotal role in the segmentation results, particularly in 
noise reduction. A sigma value below a specific threshold failed to 
effectively differentiate individual pile maxima from significant noise in 
the images. Conversely, a sigma value above a certain threshold resulted 
in blurry images, making it challenging to accurately separate one pile 
from another during local maxima identification. Through meticulous 
experimentation, we determined that selecting an appropriate sigma 
value, in this case, 12, provided the best segmentation results. This value 

Fig. 8. (continued). 
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struck a balance between noise reduction and maintaining clear 
boundaries for individual spoil piles, ensuring precise segmentation and 
subsequent analysis. Thiruchittampalam et al. (2023a) provides addi-
tional background on the performance of segmentation of coal spoil pile 
and a comprehensive analysis of the Hoover analysis. 

4.2. Feature extraction and selection 

Performance evaluation of a classification machine learning algo-
rithm, along with relative overall accuracy for a given feature set, un-
derscores the crucial role of feature selection in achieving high attribute- 
specific accuracy. This emphasises the need for a precise feature com-
bination to optimise classification performance while minimising 
computational demand. 

The study underscores the significance of feature selection by iden-
tifying optimal feature sets for each attribute, leading to the improved 

classification accuracy (Zhou et al., 2018). Notably, the study reveals 
that the nature of the attribute being classified and scale influences the 
choice of features. 

Texture within an image can vary in scale. Different window sizes 
enable capturing texture information at various scales. For example, 
smaller windows highlight micro-texture, like fine grain or small pat-
terns, while larger windows focus on macro-texture, such as larger 
structures. To accommodate this, Haralick features were extracted using 
window sizes like 3 × 3, 5 × 5, 7 × 7, 9 × 9, and 11 × 11 and Gabor 
features, resulting in 432 textural features, totalling 516 features along 
with spectral, statistical and structural features. 

Feature selection involved the mRMR algorithm as illustrated in 
Fig.5. mRMR’s feature selection depends on various factors, including 
response variable variance and feature-response variable relationships. 
Higher response variable variance or weak feature-response variable 
correlation leads to the selection of more features, as seen in particle size 

Fig. 9. Precision, recall and F-Score of classifications, respectively for categories of (a) particle size distribution when deploying medium neural network, (b) relative 
density when deploying bilayered neural network, (c) fabric structure when deploying ensemble (subspace discriminant), (d) plasticity when deploying wide neural 
network, (e) BMAC category when deploying ensemble (subspace discriminant), and (f) lithology when deploying ensemble (subspace discriminant). It is note-
worthy, rare classes in field are unrecognised. 
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distribution (462 features). Conversely, strong correlations or multi-
collinearity led to fewer features, as observed in fabric structure (four 
features). These observations highlight mRMR’s adaptive nature, 
adjusting feature selection based on specific response variable charac-
teristics (Wang et al., 2022) to enhance attribute characterisation and 
prediction accuracy. Future work could focus on extracting more robust 
features to reduce computational demands. Nevertheless, this study 
provides an initial framework for feature extraction and selection in 
spoil characterisation. 

The study’s findings highlight the importance of multispectral bands, 
Haralick features, and Gabor texture features for classifying attributes, 
likely influenced by the attributes’ dependence on mineralogy and 
spatial arrangement of particles. Rankings of these features vary with 
attributes. For example, Gabor texture features dominate in BMAC 
classification, while other attributes favour Haralick texture features. 
This variance underscores how different attributes rely on these fea-
tures, and at least one multispectral characteristic among the top four 
predictors emphasises the importance of multispectral data in accurate 
spoil attribute classification. 

4.3. Accuracy assessment 

Multispectral data is vital for accurate material classification based 
on unique spectral signatures, while high spatial resolution RGB data 
excels in capturing visual attributes like texture and shape. Specifically, 
plasticity benefits most from multispectral data, whereas other attri-
butes perform best with RGB data, underscoring their reliance on par-
ticle spatial arrangement. The study’s use of diverse spatial resolution 
features from both RGB (0.5 cm) and multispectral sensors (5 cm) en-
hances categorisation of specific attributes. Notably, the BMAC category 
and lithology exhibit superior accuracy while using combined features, 
emphasise the potential of multi-resolution image analysis. 

The analysis reveals varying feature requirements for optimal accu-
racy across attributes. Some attributes need fewer features for high 

accuracy, while others require more. For instance, particle size distri-
bution attains peak accuracy with the top 462 ranked features, while 
fabric structure achieves this with just the top 4 ranked features. Feature 
subset selection enhances accuracy by addressing the “curse of dimen-
sionality,” reducing noise, and improving model efficiency. However, 
feature selection is data-dependent, and sometimes all features are 
necessary for the best performance, so it should be done carefully, 
considering the specific dataset and problem domain. In this study, 
feature subsets from the mRMR algorithm provided the highest accu-
racy, except for fabric structure and lithology. 

Per-class accuracy is a crucial performance metric for evaluating the 
effectiveness of machine learning models in multi-class classification 
tasks (Nasiri et al., 2023). However, when dealing with imbalanced 
datasets, it is essential to consider additional evaluation metrics to gain a 
comprehensive understanding of model performance. In multi-class 
classification, precision, recall, and F1-score are commonly used met-
rics, providing insights into the performance of the model for each in-
dividual class. Mine spoil classes often exhibit imbalances, leading to 
underrepresentation of less common classes due to model optimisation 
for overall error rates. Some classes may still show an F1-score of 0 after 
feature selection, highlighting the need for addressing class imbalance 
with techniques like oversampling or undersampling. However, these 
techniques should be used cautiously, considering potential overfitting, 
especially with limited data in the study. 

4.4. Study contribution 

In this study, the primary focus is on the application of machine 
learning algorithms to classify spoil based on the BMAC spoil catego-
risation framework. The research presents a comprehensive methodol-
ogy for spoil classification utilising RGB and multispectral datasets, 
which can be extended to other regions with similar spoil categories. The 
findings demonstrate that incorporating textural, statistical, and struc-
tural information extracted from the RGB and multispectral data en-
hances the accuracy of the algorithms in generating spoil categorisation 
maps. The integration of an object-based classification approach, com-
bined with machine learning algorithms, provides an effective system 
for expert-driven spoil classification. This approach not only improves 
the accuracy of the classification process but also offers practical im-
plications for various applications such as stability analysis, mapping 
factors for mine dump design and construction, and land-use planning in 
areas with rough morphology and similar spoil classes. The results of 
this study contribute to the field by demonstrating the feasibility and 
benefits of utilising machine learning techniques in the classification of 
spoil. The proposed methodology can aid decision-making processes in 
geotechnical applications and enhance the understanding of spoil 
characteristics in similar contexts. 

5. Conclusions and further study 

Mining activities generate large volumes of spoil, which can pose 
significant environmental and safety risks if not properly managed. 
Accurate and efficient geotechnical characterisation of spoil piles is 
crucial to mitigate design and structural stability issues. Traditionally, 
this task has relied on field experts who face hazardous conditions 
during the manual field assessment. However, technological advance-
ments, such as UAVs and SfM photogrammetry, offer a promising so-
lution to automate spoil characterisation, reducing the time and bias 
associated with manual methods. Taking advantage of these techno-
logical advancements, this study proposes an object-based approach that 
leverages high-resolution RGB and multispectral data to characterise the 
geotechnical properties of spoil piles. The methodology involves a 
combination of Voronoi-based segmentation, spectral analysis, textural 
analysis, structural analysis, statistical analysis, feature extraction 
techniques, mRMR based feature selection, and machine learning-based 
classification. 

Fig. 10. Overall accuracy of best performing machine learning algorithms for 
attributes related to BMAC framework, employing feature selection via the 
mRMR algorithm. 
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In this study, we conducted comprehensive experiments to investi-
gate the characterisation of spoil piles using the BMAC framework with 
RGB and multispectral sensors. We found that applying a Voronoi-based 
segmentation method with a Gaussian filter of 12 sigma value during the 
preprocessing stage of DSM yielded optimal segmentation for accurately 
characterising the geotechnical properties of spoil piles. Our research 
revealed that multispectral data features are essential for identifying 
specific materials based on their spectral signatures, while features 
derived from RGB data with high spatial resolution excel in capturing 
visual information such as texture and shape. To reduce the computa-
tional load, we employed the mRMR algorithm for feature selection 
among the 516 generated features. The results highlighted the signifi-
cance of multispectral features, Haralick features, and Gabor texture 
features in characterising all the attributes of spoil piles. However, the 
optimal combination and number of features varied depending on the 
specific attribute under examination, reflecting the intricate relationship 
between features and attributes. 

Based on the successful outcomes of our study, we recommend that 
future research endeavours adopt the methodologies outlined in this 
paper to explore and evaluate materials with different geological and 
geotechnical characteristics. Furthermore, future studies could investi-
gate advanced deep-learning techniques in conjunction with larger 
datasets. Incorporating very high-resolution satellite imagery such as, 
Maxar satellite constellation, into the existing methodology can open up 
new opportunities for detailed spoil categorisation. The increased 
spatial and temporal information available through such high-resolution 
satellite imagery can provide valuable insights over the long term. When 
implemented, this automated characterisation holds the potential to 
become a powerful tool for proactive dump stability assessment, revo-
lutionizing the field of waste material management. By continuously 
gathering and analysing crucial data, it will offer invaluable insights into 
dump stability, allowing for early detection of potential issues and 
enabling timely preventive measures. Moreover, this cutting-edge 
technology will serve as a foundation for improved stability models, 

Fig. 11. Precision, recall and F1-Score of classifications, respectively for categories of (a) particle size distribution, (b) relative density, (c) fabric structure, (d) 
plasticity, (e) BMAC category, and (f) lithology. It is noteworthy, rare classes in field are unrecognised. 

S. Thiruchittampalam et al.                                                                                                                                                                                                                   



Engineering Geology 329 (2024) 107406

19

advancing our understanding of dump behavior and enhancing the 
safety and efficiency of mining operations. In conclusion, the integration 
of this innovative characterisation system will undoubtedly pave the 
way for a safer and more sustainable approach to dump stability man-
agement, contributing to a greener, more responsible mining industry. 
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