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Abstract

The estimation of the slope parameter of two linear regression models with normal
errors are considered, when it is apriori suspected that the two lines are parallel. The
uncertain prior information about the equality of slopes is presented by a null hypothesis
and a coefficient of distrust on the null hypothesis is introduced. The unrestricted
estimator (UE) based on the sample responses and shrinkage restricted estimator (SRE)
as well as shrinkage preliminary test estimator (SPTE) based on the sample responses
and prior information are defined. The relative performances of the UE, SRE and
SPTE are investigated based on the analysis of the bias, quadratic bias and quadratic
risk functions. An example based on a health study data is used to illustrate the
method. The SPTE dominates other two estimators if the coefficient of distrust is not
far from 0 and the difference between the population slopes is small.
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1 Introduction

Traditionally the classical estimation methods exclusively use the sample data in the

estimation of unknown parameters. Bancroft (1944) introduced the idea of inclusion of

non-sample uncertain prior information in the estimation of the parameters. The method

presents the non-sample uncertain prior information by a null hypothesis and removes the

uncertainty through an appropriate statistical test, and is popularly known as the prelim-

inary test estimator (PTE). Later, Stein (1956), and James and Stein (1961) introduced

the well known James-Stein estimator as an improvement on the unrestricted estimator for

multivariate models. They used the sample information as well as the non-sample informa-

tion along with an appropriate test statistic in the definition of the estimator. The reason
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for the inclusion of non-sample information in conjunction with the sample information is

to improve the statistical properties of the estimators. Recently, Khan and Saleh (2001)

have used the coefficient of distrust 0 ≤ d ≤ 1, a measure of degree of lack of trust on

the null hypothesis, in the estimation of parameters. This coefficient of distrust reflects

on the reliability of the prior information. In particular, d = 0 implies no distrust on

the null hypothesis, d = 0.5 implies equal distrust and trust in the null hypothesis, and

d = 1 implies total distrust in the null hypothesis. The selection of an appropriate value

of d is subjective, and individual researcher would determine a specific value of d based on

expert knowledge and, or, practical experiences. Combining the sample and non-sample

information as well as the coefficient of distrust we propose the shrinkage restricted esti-

mator (SRE) and shrinkage preliminary test estimator (SPTE), as a generalization of the

restricted and preliminary test estimators, for the slope parameters of two suspected parallel

linear regression models. Khan (2003) discussed different estimators of the slope under the

suspected parallelism problem. However, it does not deal with the shrinkage preliminary

test estimator.

The linear regression method is by far the most popular statistical tool that has a very

wide range of real life applications. This popular and simple statistical method has been

used in statistical analysis in almost every sphere of modern life. The parallelism problem

may arise in a variety of real world situation when there are two regression lines representing

the same variables whose slopes are suspected to be equal. As an example, in the study

of obesity among adult population, medical practitioners may be interested in the linear

relationship between body fat and waist size by gender. In another example, the clinical

researchers may wish to investigate the relationship between the systolic blood pressure rate

and the age of smokers and non-smokers separately. In both cases the equality of the rate of

change of the response variable on the explanatory variable could be suspected. Often, the

researchers may wish to combine the two data sets to formulate an overall regression model,

if the respective parameters of the two different regression models do not differ significantly.

However, in practical problems the parameters of the models are usually unknown and the

equality of slopes can only be suspected with a certain degree of distrust. Each of the above

cases can be modelled by the suspected parallelism of the pairs of regression lines. This kind

of suspicion is treated as non-sample uncertain prior information and can be incorporated

in the estimation of the parameters of the models.

The problem under consideration falls in the realm of statistical problems known as

inference in the presence of uncertain prior information. The usual practice in the liter-

ature is to specify such uncertain prior information by a H0 and treat it as a “nuisance

parameter”. Then the uncertainty in the form of the “nuisance parameter” is removed by

‘testing it out’. In a series of papers Bancroft (1944, 1964, 1972) addressed the problem,

and proposed the well known preliminary test estimator. A host of other authors, notably
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Kitagawa (1963), Han and Bancroft (1968), Saleh and Han (1990), Ali and Saleh (1990),

Mahdi et al. (1998), and Saleh (2006) contributed in the development of the method under

the normal theory. Furthermore, Saleh and Sen (e.g., 1978, 1985) published a series of arti-

cles in this area exploring the nonparametric as well as the asymptotic theory based on the

least square estimators. Bhoj and Ahsanullah (1993, 1994) discussed the problem of estima-

tion of conditional mean for simple regression model. Khan and Saleh (1997) discussed the

problem of shrinkage pre-test estimation for the multivariate Student-t regression model.

In the next section, we introduce the parallelism model and define the null hypothesis

to present the uncertain prior information. Section 3 defines three different estimators of

the vector of the slope parameters. Some important results, that are necessary for the

computations of bias and risk of the estimators are discussed in section 4. The expressions

for bias of the estimators and their analyses are provided in section 5. The performance

comparison of the estimators of the slope parameter based on the quadratic risk criterion is

discussed in section 6. Section 7 provides an example based on a set of health study data.

Some concluding remarks are included in section 8.

2 The Parallelism Problem

The parallelism problem can be described as a special case of two related regression lines on

the same response variable. The explanatory variable is also the same, but coming from two

different categories of the respondents. To formulate the problem, consider the following

two regression equations:

y1j = θ1 + β1x1j + e1j ; j = 1, 2, · · · , n1 and y2j = θ2 + β2x2j + e2j ; j = 1, 2, · · · , n2 (2.1)

for the two data sets: y = [y′1, y′2]′ and x = [x′1, x′2] where y1 = [y11, y12, · · · , y1n1 ]
′, y2 =

[y21, y22, · · · , y2n2 ]
′, x1 = [x11, x12, · · · , x1n1 ]

′ and x2 = [x21, x22, · · · , x2n2 ]
′. Note that yij

is the jth response of the ith model and eij is the associated error component; xij is the

jth value of the regressor in the ith model; and βi and θi are the slope and intercept

parameters of the ith regression equation, for i = 1, 2. Here x1 and x2 represent the same

explanatory variable but coming from two different categories of respondents. In some cases

a common set of responses may relate to two separate explanatory variables, but this study

in not devoted to such cases. We assume that the errors are identically and independently

distributed as normal variables with mean 0 and variance, σ2 . Our problem is to estimate

the vector of the slope parameters, β = (β1, β2)′, when equality of slopes is suspected, but

not sure. The non-sample prior information of suspected equality of the slopes of the two

regression equations as well as the sample data are used to estimate the parameters of the

suspected parallelism model. Furthermore, following Khan and Saleh (2001) the coefficient

of distrust 0 ≤ d ≤ 1 is introduced as a measure of the degree of lack of trust on the prior

information.

3



The two regression equations can be combined in a single model as

y = XΦ + e (2.2)

where X = [X1, X2]′ with X1 = [1, 0, x1, 0]′ and X2 = [0, 1, 0, x2]′, Φ = [θ1, θ2,β1, β2]′ e =

[e1, e2]′, θ = [θ1, θ2]′ and β = [β1, β2]′. Now, if it is suspected that the two lines are

concurrent with common slope β then the suspicion in the non-sample uncertain prior

information, can be expressed by the null hypothesis,

H0 : [0, 0, 1,−1]Φ = 0. (2.3)

In general, the null hypothesis of equality of slopes is given by H0 : CΦ = r, and the

alternative hypothesis, Ha : negation of the H0, where C is a known matrix and r is a

known vector of appropriate order. It is under the suspected null hypothesis in (2.3), we

wish to estimate the slope parameter of the regression lines represented in (2.1).

In this paper, we define the maximum likelihood estimator (mle) of the elements of

β in (2.2) assuming that the errors are independent and identically distributed as normal

variables with mean 0 and unknown variance, σ2. Such an estimator is known as the unre-

stricted estimator (UE) of β. Then we define the shrinkage restricted estimator (SRE) of

β under the constraint of the H0 along with the associated degree of distrust. Finally, we

define the shrinkage preliminary test estimator (SPTE) of β by using an appropriate test

statistic that can be employed to test the null hypothesis. The main objective of the paper

is to study the properties of the three different estimators, namely the UE, SRE and SPTE,

for the slope parameter of the two suspected parallel regression lines. Also, we investigate

the relative performances of the estimators under different conditions. The analysis of the

performances of the estimators are provided that can be used as a basis to select a ‘best’

estimator in a given situation. The comparisons of the estimators are based on the criteria

of unbiasedness and risk under quadratic loss, both analytically and graphically.

Traditionally the PTEs are defined as a function of the test statistic appropriate for

testing the null hypothesis as well as the UE and RE. In this paper we introduce the

coefficient of distrust in the definition of the PTE. Thus, we define the SPTE as a linear

combination of the UE and the SRE. Hence the SPTE depends on both the test statistic

and the coefficient of distrust on the null hypothesis. From the definition, it yields the

unrestricted estimator (UE) if the null hypothesis is rejected at a pre-selected level of

significance; otherwise it becomes the shrinkage restricted estimator (SRE). Therefore, the

shrinkage preliminary test estimator indeed gives us a choice between the two estimators,

UE and SRE.
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3 Formulation of the estimators

From the specification of the model in (2.1), the unrestricted estimator (UE) of βi is

obtained by the method of maximum likelihood (or equivalently the least squares method)

as

β̃i =
ni∑

j=1

(xij − x̄i)(yij − ȳi)
niQi

(3.1)

where x̄i = 1
ni

∑ni
j=1 xij , ȳi = 1

ni

∑ni
j=1 yij and niQi =

∑ni
j=1(xij − x̄i)2 for i = 1, 2.

Then the unrestricted estimator (UE) of the vector of the slopes β = (β1, β2)′ becomes

β̃ = (β̃1, β̃2)′. (3.2)

When the null hypothesis of equality of slopes holds, then the restricted estimator (RE) of

the slope parameter becomes

β̂ =
1

nQ

2∑

i=1

niQiβ̃i with nQ =
2∑

i=1

niQi. (3.3)

This is the pooled estimator of the slope parameter. Thus the restricted estimator (RE) of

the slope vector β is defined as

β̂ = β̂l2 = (β̂, β̂)′ (3.4)

where l2 = [1, 1]′. The shrinkage restricted estimator (SRE) of the slope vector is defined

using the coefficient of distrust as well as the UE and RE of β as follows:

β̂d = dβ̃ + (1− d)β̂. (3.5)

Note that when d = 0 the SRE becomes the RE, and when d = 1 the SRE yields the UE.

Thus the SRE is a convex combination of the UE and RE. Unlike the PTE, the SRE allows

smooth transition between the UE and RE through different values of d.

To remove the uncertainty in the null hypothesis we require to test the H0 by using an

appropriate test statistic. For the current problem, we consider the likelihood ratio test

based on the following statistic

Ln =
(β̃ − β̂)′D−1

3 (β̃ − β̂)
s2

(3.6)

where D−1
3 = Diag{ 1

n1Q1
+ 1

nQ , 1
n2Q2

+ 1
nQ} and s2 = 1

m

∑2
i=1

∑ni
j=1[(yij − ȳi) − β̃i(xij −

x̄i)]2 with m = (n− 4) and the numerator can be expressed as

(β̃1 − β̂)2
(n1Q1nQ)

(n1Q1 + nQ)
+ (β̃2 − β̂)2

(n2Q2nQ)
(n2Q2 + nQ)

. (3.7)

Under the null hypothesis, the above test statistic follows a central F -distribution with 2

and m degrees of freedom (D.F.). Let Fα denote the (1− α)th quantile of an F2,m variable
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such that (1−α)×100% area under the curve of the distribution is to the left of Fα. Then,

the preliminary test estimator (PTE) of the slope vector β is defined as

β̂
pt

= β̂I(Ln < Fα) + β̃I(Ln ≥ Fα) (3.8)

where I(A) denotes an indicator function of the set A. The PTE, defined above, is a choice

between the UE and the RE, and depends on the random coefficient, ζ = I(Ln < Fα) whose

value is 1 when the null hypothesis is accepted, and 0 otherwise. Also note that, unlike the

SPTE (defined in eq 3.9), the PTE is a extreme choice between the UE and RE. At a given

level of significance, the PTE may simply be either the UE or the RE depending on the

rejection and acceptance of the null hypothesis respectively. Therefore, for large values of

Ln the PTE becomes the UE and for smaller values of Ln the PTE turns out to be the RE.

Obviously, the PTE is a function of the test statistic as well as the level of significance, α.

Hence, the PTE may change its value with a change in the choice of α. Therefore, a search

for an optimal value of α becomes essential. In this paper, the optimality of the level of

significance is in the sense of minimising the maximum risk of an estimator. Methods are

available in the literature that provide optimal α. Following Akaike (1972), Khan (2003)

obtained an optimal value of α based on the AIC criterion . Another fact about the PTE

is that it does not allow smooth transition between the two extremes, the UE and RE.

Khan and Saleh (1995) provided a shrinkage preliminary test estimator to overcome such

a problem.

The shrinkage preliminary test estimator (SPTE) of the slope vector is defined as

β̂
pt

d = β̂dI(Ln < Fα) + β̃I(Ln ≥ Fα). (3.9)

A simpler form of the SPTE is expressed as

β̂
pt

d = β̃ − (1− d)(β̃ − β̂)I(Ln < Fα). (3.10)

Clearly the PTE is a special case of the SPTE. In particular, the SPTE becomes the PTE

when d = 0, and it turns out to be the UE when d = 1, regardless of the value of I(Ln ≥ Fα).

We have defined three different estimators for the slope parameter vector in this paper.

A natural question arises as to which estimator should be used, and why? The answer

to the question requires to investigate the performances of the estimators under different

conditions. To study the properties of the above estimators of the slope vector, some useful

results are provided in the next section.

4 Some Preliminaries

In this section, we provide some useful results that are instrumental to the computation of

expressions for bias and risk under quadratic loss function for the three different estimators.
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First, observe that the joint distribution of the element of β̃ is bivariate normal with

E[β̃] = β and covariance matrix, Cov[β̃] = σ2D2 (4.1)

where D2 = Diag{ 1
n1Q1

, 1
n2Q2

}. Then, the joint distribution of the elements of β̂ is bivariate

normal with the mean vector,

E[β̂] = β0 = βl2 and covariance matrix, Cov[β̂] = σ2D∗
2 (4.2)

where D∗
2 = Diag{ 1

nQ , 1
nQ}. Finally the distribution of (β̃ − β̂) is bivariate normal with

E[β̃ − β̂] = δ and covariance matrix, Cov[β̃ − β̂] = σ2D3 (4.3)

where δ = (β − β0) and D3 = D2 + D∗
2 = Diag{ 1

n1Q1
+ 1

nQ , 1
n2Q2

+ 1
nQ}.

In the next section, we derive the expressions of bias for the previously defined estimators

of the slope parameters.

5 The bias of estimators

First, the expression for the bias of the UE of β is obtained as

B1(β̃) = E(β̃ − β) = 0. (5.1)

Thus β̃ is an unbiased estimator of β. This is a well-known property of the mle under the

normal model. The bias of the RE of β is found to be

B∗
2(β̂) = E(β̂ − β) = −(β0 − β) = −δ (5.2)

where δ = (β−βl2), deviation of β from its value under H0. Clearly, the RE is biased. The

amount of bias of the RE becomes unbounded as δ → ∞, that is, if the true value of β is

far away from it’s hypothesized value, βl2. On the other hand the bias is zero when the null

hypothesis is true. Thus unlike the UE, the RE is biased except then the null hypothesis

is true.

The bias of the SRE of β is found to be

B2(β̂d) = E[β̂d − β] = −(1− d)δ. (5.3)

The bias of the SRE becomes that of the RE when d = 0 and that of the UE when d = 1.

Also, the bias expression for the PTE of the slope vector is obtained as

B∗
3(β̂

pt
) = E(β̂

pt − β) = −δG3,m(lα;∆) (5.4)

where ∆ = δ′D−1
3 δ

σ2 , lα = 1
3Fα and G3,m(lα; ∆) =

∫ lα
z=0 fZ(z)dz in which Z has a non-

central F−distribution. For the computational purposes, G3,m(lα;∆) can be written as

G3,m(lα;∆) =
∞∑

r=0

e−
∆
2 (∆

2 )r

r!
IB1

qα

(
3
2

+ r,
m

2

)
(5.5)
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Figure 1: Graph of Quadratic Bias functions of the estimators for Different
Values of d When σ2 = 1. Body Fat Example.

where IB1
qα

(
3
2 + r, m

2

)
is the incomplete beta function ratio with qα = m

m+F1,m(α) . In the

derivation of the bias expression for the PTE we use the result of Appendix B1 of Judge

and Bock (1978) as well as the results in the previous section.

Similarly, the bias of the SPTE of β is

B3(β̂
pt

d ) = E[β̂
pt

d − β] = −(1− d)δG3,m(lα;∆). (5.6)

The bias of the SPTE becomes that of the PTE when d = 0.

Obviously, the SPTE is a biased estimator, and the amount of bias depends on the

value of G3,m(·), the cdf of the non-central F distribution and the extent of departure of

the parameter from its value under the null hypothesis. However, since 0 ≤ G3,m(·) ≤ 1,

the bias of the SPTE is always smaller than that of the SRE, except for ∆ = 0.

5.1 The Quadratic Bias and Its Graph

Obviously the bias function of the slope vector is also a vector of the same order. Therefore

direct comparison of the bias functions of the estimators are not meaningful. So for the
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sake of comparing the overall bias of the estimators we define the quadratic bias as the

vector product of the bias by itself. The quadratic bias is a scalar quantity and hence it

can be compared for various estimators. The plot of the quadratic bias function of the UE,

SRE and SPTE with α = 0.05, 0.15 and 0.25 are provided in Figure 1 for different values

of the non-centrality parameter ∆ and d when σ = 1. The quadratic bias of the UE is 0

for all values of ∆ and that of the SRE is unbounded and increases as the value of ∆ grows

large regardless of the value of d. However, as the value of d approaches from 0 to 1, the

growth rate of the quadratic bias of the SRE declines remarkably. At d = 1, the quadratic

bias of the SRE is 0, as the SRE becomes the UE for that particular value of d.

The quadratic bias of the SPTE is a function of the level of significance as well as the

coefficient of distrust. As shown in the graphs in Figure 1, the shape of the curve of the

quadratic bias function of the SPTE is skewed to the right. At ∆ = 0 it starts at the

origin and moves upward sharply until it reaches a pick for some moderate value of ∆ and

then gradually declines to the horizontal axis. This is true for all values of α and d, except

at d = 1. Thus for very large values of ∆ the quadratic bias of the SPTE is no different

from that of the UE. The quadratic bias of the SPTE increases as the preselected level

of significance decreases. This is quite clear from the graphs in Figure 1. At d = 0, the

quadratic bias of the SPTE equals that of the PTE. But at d = 1, the quadratic bias of

the SPTE becomes 0. Therefore when there is a complete distrust on the prior information

then the quadratic bias of both the SRE and SPTE is no different from that of the UE.

The quadratic bias function of the SRE and SPTE increases as the variance of the

population grows larger.

6 The risk of estimators

Let t∗ be an estimator of the parameter, µ. Then the quadratic error loss function of t∗

is defined as

L(t∗,W,µ) = (t∗ − µ)′W (t∗ − µ)

where W is a positive definite matrix of appropriate dimension. Consequently, the quadratic

risk of t∗ in estimating µ is the expected value of L(t∗, W,µ). Thus for the slope vector,

the quadratic risk function is given by

R(β∗,W2, β) = E(β∗ − β)′W2(β∗ − β) (6.1)

where β∗ is the estimator of β and W2 is a positive definite matrix of appropriate dimen-

sions. Therefore, the expression of the quadratic risk for the UE of β becomes

R1(β̃; W2) = E(β̃ − β)′W2(β̃ − β) = σ2tr(W2D2). (6.2)

Similarly, the quadratic risk of the RE of β is found to be

R∗
2(β̂; W2) = E(β̂ − β)′W2(β̂ − β) = σ2tr(W2D

∗
2) + δ′W2δ. (6.3)
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Then the quadratic risk of the SRE of β is obtained as

R2(β̂d; W2) = E[β̂d − β]′W2[β̂d − β]

= d2σ2tr(W2D3) + (1− 2d)σ2tr(W2D
∗
2) + (1− d)2δ′W2δ. (6.4)

The quadratic risk of the SRE becomes that of the RE when d = 0.

Now, for the PTE of β, the quadratic risk expression is given by

R∗
3(β̂

pt
; W2) = E(β̂

pt − β)′W2(β̂
pt − β) = σ2

{
tr(W2D2)− tr(W2D3)G3,m(lα;∆)

}

+δ′W2δ
{
2G3,m(lα;∆)−G5,m(l∗α;∆)

}
. (6.5)

Finally, the quadratic risk expression of the SPTE of β is given by

R3(β̂
pt

d ; W2) = E[β̂
pt

d − β]′W2[β̂
pt

d − β]

= σ2
{
tr(W2D2)− (1− d2)tr(W2D3)G3,m(lα;∆)

}

+δ′W2δ
{
2(1− d)G3,m(lα;∆)− (1− d)2G5,m(l∗α;∆)

}
. (6.6)

The risk of the SPTE becomes that of the PTE when d = 0. The derivation of the above

results is straightforward by using the Appendix B1 of Judge and Bock (1978).

6.1 Risk analysis for estimators

The comparisons of the risks are useful in studying the relative performances of the

estimators and thereby selecting an appropriate estimator in a given situation. In this

subsection we provide the analytical analyses of the quadratic risk function of the estimators

of the slope parameter vector.

Comparison of UE and SRE

First consider the difference between the quadratic risks of the UE and SRE,

N12(β̃, β̂d; W2) = R1(β̃;W2)−R2(β̂d;W2)

= σ2{tr(W2D2)− d2tr(W2D3)− (1− 2d)tr(W2D
∗
2)}

−(1− d)2δ′W2δ. (6.7)

Thus the value of N12(β̃, β̂d; W2) is positive, zero or negative depending on

(1 + d)
(1− d)

tr{W2D3} − 2
1− d

tr{WD∗
2}>=

<
δ′W2δ

σ2
. (6.8)

Therefore, the performance of the estimators depends on the value of δ. The SRE over

performs the UE if the actual value of the slope parameter is not far from its value under

the H0. Otherwise, β̃ dominates β̂d. For further comparisons, note that by Courant Theorem

(cf. Puri and Sen, 1971, p.122) we have

λ1 ≤
[ δ′W2δ

δ′D−1
3 δ

]
≤ λ2 (6.9)
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where λ1 is the smallest and λ2 is the largest characteristic roots of the matrix [W2D3].

Then we have ∆λ1 ≤
[
δ′W2δ

σ2

]
≤ ∆λ2. Thus the risk of the SRE is bounded in the following

way

R1(β̃; W2) + ∆λ1 − tr(W2D
∗
2) ≤ R2(β̂d;W2) ≤ R1(β̃;W2) + ∆λ2 − tr(W2D

∗
2). (6.10)

Clearly, when H0 is true then ∆ = 0 and the bounds are equal. In a special case, if

W2 = D−1
3 we get tr(W2D3)

λ2
= tr(W2D3)

λ1
= 2 and the difference between the risks becomes

N12(β̃, β̂; W2)
>=
<

0 according as ∆ <=
>

(1 + d)− ψ2 (6.11)

where ψ2 is defined in (6.27). In another special case, if W2 = I2 then the RE is superior

to the UE if ∆ ≤ tr(W2D3)
λ2

, which depends on the value of the elements of the matrix D3.

Comparison of UE and SPTE

The risk-difference of the UE and SPTE is given by

N13(β̃, β̂
pt

d ; W2) = R1(β̃; W2)−R3(β̂
pt

d ; W2)

= (1− d2)σ2tr(W2D3)G3,m(lα; ∆)− δ′W2δ

×
{
2(1− d)G3,m(lα;∆)− (1− d2)G5,m(l∗α; ∆)

}
. (6.12)

Thus we have

N13(β̃, β̂
pt

d ; W2)
>=
<

0 whenever

δ′W2δ

σ2

<=
>

(1 + d)tr(W2D3)G3,m(lα;∆){
2G3,m(lα;∆)− (1 + d)G5,m(l∗α;∆)

} . (6.13)

Then the bounds of R3(β̂
pt

d ; W2) can be expressed as

RL
3 ≤ R3(β̂

pt

d ; W2) ≤ RU
3 (6.14)

where

RL
3 = R1(β̃;W2) + ∆λ1

{
2G3,m(lα;∆)− (1 + d)G5,m(l∗α;∆)

}

RU
3 = R1(β̃; W2) + ∆λ2

{
2G3,m(lα; ∆)− (1 + d)G5,m(l∗α;∆)

}
. (6.15)

The bounds become equal when ∆ = 0, that is, when the H0 is true. But, under the Ha

N13(β̃, β̂
pt

d ; W2) ≤ 0 if ∆ ≤ (1 + d)tr(W2D3)G3,m(lα;∆)

λ1

{
2G3,m(lα;∆)− (1 + d)G5,m(l∗α;∆)

}

N13(β̃, β̂
pt

d ; W2) ≥ 0 if ∆ ≥ (1 + d)tr(W2D2)G3,m(lα;∆)

λ2

{
2G3,m(lα;∆)− (1 + d)G5,m(l∗α;∆)

} . (6.16)

11



In a special case, if W2 = D−1
3 the difference between the risks becomes,

N13(β̃, β̂
pt

d ; W2)
>=
<

0 according as ∆ <=
>

2(1 + d)G3,m(lα;∆){
2G3,m(lα; ∆)− (1 + d)G5,m(l∗α;∆)

} . (6.17)

Furthermore, under the H0, ∆ = 0, and hence the risk of the SPTE reduces to

R0
3(β̂

pt

d ;W2) = σ2
{
tr(W2D2)− (1− d2)tr(W2D3)G3,m(lα; 0)

}
(6.18)

which is equal to the risk of the UE for d = 1, but less than that of the UE whenever

d 6= 1. However, as ∆ moves away from 0, the risk of the SPTE increases and reaches the

maximum at ∆α (say) after crossing the risk line of the UE at ∆0α given by (6.18) then

decreases towards σ2tr(W2D2), the risk of the UE as ∆ →∞.

Comparison of SPTE and SRE

The difference between the quadratic risks of the SPTE and SRE is

N32(β̂
pt

d , β̂d; W2) = R3(β̂
pt

d ;W2)−R2(β̂d; W2)

= σ2
{
d2tr(W2D3) + (1− 2d)tr(W2D

∗
2)− tr(W2D2)

+(1− d2)tr(W2D3)G3,m(lα;∆)
}
− δ′W2δ

×
{
(1− d)2G3,m(lα; ∆)− (1− d2)G5,m(l∗α;∆)− (1− d)2

}
. (6.19)

Thus we get

N32(β̂
pt

d , β̂d;W2)
<=
>

0 according as
δ′W2δ

σ2

>=
<

ΛU (W2, D, ∆)
ΛL(G, d,∆)

(6.20)

where

ΛU (W2, D, ∆) =
{
d2tr(W2D3) + (1− 2d)tr(W2D

∗
2)− tr(W2D2)

+(1− d2)tr(W2D3)G3,m(lα;∆)
}

(6.21)

ΛL(G, d,∆) =
{
(1− d)2G3,m(lα;∆)− (1− d2)G5,m(l∗α;∆)− (1− d)2

}
. (6.22)

Therefore,

N32(β̂
pt

d , β̂d; W2) ≥ 0 if ∆ ≤ ΛU (W2, D,∆)
λ1 × ΛL(G, d, ∆)

and

N32(β̂
pt

d , β̂d; W2) ≤ 0 if ∆ ≥ ΛU (W2, D,∆)
λ2 × ΛL(G, d, ∆)

. (6.23)

Under the H0, ∆ = 0 and hence the risk-difference reduces to

N32(β̂
pt

, β̂, W2, ∆ = 0) = σ2
{
tr(W2D3)

[
d2(1−G3,m(lα; 0)) + G3,m(lα; 0)

]

+tr(W2D
∗
2)(1− 2d)− tr(W2D2)} . (6.24)
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Figure 2: Graph of Quadratic Risk functions of different estimators for selected
values of d and σ = 1. Blood Pressure and Smoking Example.

In a special case, when W2 = D−1
3 ,

N32(β̂
pt

, β̂,W2)
>=
<

0 according as

∆ <=
>

2[d2(1−G3,m(lα;∆)) + G3,m(lα;∆)] + (1− 2d)ψ2 − ψ1

2(1− d)G3,m(lα;∆)− (1− d2)G5,m(l∗α; ∆)− (1− d)2
(6.25)

where

ψ1 = tr(D−1
3 D2) =

3(nQ)2

(n1Q1 + nQ)(n2Q2 + nQ)
(6.26)

ψ2 = tr(D−1
3 D∗

2) =
n1Q1(n2Q2 + nQ) + n2Q2(n1Q1 + nQ)

(n1Q1 + nQ)(n2Q2 + nQ)
. (6.27)

6.2 Graphical Analysis of Quadratic Risks

Figures 2 displays the graphs of the quadratic risk function of the estimators against the

non-centrality parameter for some selected values of d and σ = 1. The risk of the UE
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is constant and hence remains the same for all values of ∆. However, this constant risk

increases with the increase in the value of σ. The quadratic risk of the SRE is unbounded

and increases as the value of ∆ grows large for all values of d, except d = 1. Nevertheless,

it has smaller risk than the UE when the null hypothesis is true as well as when ∆ is very

small. But for larger values of ∆, the SRE performs the worst. Like the quadratic bias, the

rate of growth of the quadratic risk of the SRE declines as the value of d moves away from

0 to 1. However, at d = 1 the quadratic risk of the SRE is a constant.

The quadratic risk function of the PTE depends on the selected level of significance and

the coefficient of distrust. When the null hypothesis is true, the SPTE has the smallest

risk among the three estimators, regardless of the value of α. However, the minimum risk

increases as the value of d grows larger. The difference among the different values of the

quadratic risk of the SPTE for various values of α reduces as the value of d approaches to

1. This domination of the SPTE over the UE and SRE continues up to some small value

of ∆, (say ∆P ), and than the risk function of the SPTE crosses that of the UE from the

below and slowly grows up to a maximum for some moderate value of ∆. Then it declines

gradually towards the risk curve of the UE. All the graphs in Figures 2 and 3 show the

same behaviour of the SPTE with the change of α and σ.

From the analytical results and graphical representation it is evident that there is no

clear cut domination of one single estimator over the others for all values of ∆, d and α. If

it is known that the null hypothesis is true, the RE is the best choice. But in real life, this

is hardly the case. So, for unknown ∆, the RE could be the worst. The SPTE is better

than the UE if ∆ is small and d = 0 or near 0. For moderate values of ∆, the SPTE is

worse than the UE. This is more so when α is small.

The shape of the graphs of the quadratic risk functions and their properties do not

depend on the choice of any particular data set.

7 An Example from Health Study

To demonstrate the application of the method, we consider a data set on a health study

from Plank (2001, p.8.27). The study investigates the systolic blood pressure of a group

of patients divided in to the smoking and non-smoking categories. In the sample there are

10 smokers and 11 non-smokers. The age of the patients is the explanatory variable, X,

and is divided in to X1, the age of the smoking patients and X2, that of the non-smoking

patients. The systolic blood pressure is the response variable, Y . Regression lines of Y on

X1 and Y on X2 have been fitted to the data for the two group of patients separately. The

scatterplot and the fitted regression lines are given in Figure 3. The fitted regression lines

for the two groups of data are

ŷ1 = −21.9487 + 3.0911x1, (R2
1 = 0.9512) (7.1)
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Figure 3: Graph of the Least Squares Regression Line of Systolic BP on Age by
Smoking Habit.

ŷ2 = 47.7437 + 1.6978x2, (R2
2 = 0.6761). (7.2)

Other statistics relevant to the current study are n1Q1 = 208.5, n2Q2 = 259.64, nQ =

468.14 and β̂ = 2.3184. The observed value of the test statistic is 5.555 with a P-value of

0.0307. Hence there is not enough sample evidence to reject the null hypothesis of equal

slopes, and thus the slopes of the two regression lines are not significantly different from

one another.

8 Concluding remarks

In this paper we have defined the unrestricted, shrinkage restricted and shrinkage pre-

liminary test estimators for the slope parameters of the two suspected parallel regression

models. The performances of the three different estimators of the slope parameter vector

have been analyzed by using the criteria of quadratic bias and risk under quadratic loss.

The SPTE has always smaller quadratic bias than the SRE for values of d 6= 1, except

at ∆ = 0. But the quadratic bias of the UE is always 0 for all values of ∆. Based on

the criterion of quadratic bias, the UE is the best among the three estimators. Based on

the quadratic risk criterion, the superiority of estimators depends on various conditions

discussed in section 6 and the graphs displayed in Figures 2. The SRE is the best if and

only if ∆ = 0. In the face of uncertainty on the value of ∆, if ∆ is likely to be small, then

the SPTE is the preferred estimator, regardless of the choice of α. One may use the UE

as the best option if ∆ is likely to be moderate, for which the quadratic risk of the SPTE

reaches its maximum. For very large values of ∆ the SPTE performs as good as the UE

under the quadratic risk criterion, but a lot better than the SRE.

In practice, the prior information on the equality of slopes would either come from

expert knowledge of the data generating process or from the results of previous studies. In
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either case, the value of ∆ is very unlikely to be too large, but most likely to be close to

0. Also, in such a situation the value of d would be closer to 0, rather than 1. If d is close

to 0, the reliability of the prior information is too low. Thus in most realistic situation, ∆

is likely to be close to 0 and d should not be far away from 0. Therefore, under the above

situation the SPTE would be the best choice to guarantee the minimum quadratic risk.

We have provided the marginal analysis of the problem. The joint study of the parameter

sets of slopes and intercepts remains to be an open problem. Moreover, Stein-type shrinkage

estimation is also possible for a set of p > 2 parallel regression models.
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