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ABSTRACT: In the mesoscale simulations by the dissipative particle dynamics (DPD), the

motion of a fluid is modelled by a set of particles interacting in a pairwise manner, and it has

been shown to be governed by the Navier-Stokes equation, with its physical properties, such

as viscosity, Schmidt number, isothermal compressibility, relaxation and inertia time scales,

etc., in fact its whole rheology resulted from the choice of the DPD model parameters.

In this work, we will explore the response of a DPD fluid with respect to its parameter

space, where the model input parameters can be chosen in advance so that (i) the ratio

between the relaxation and inertia time scales is fixed; (ii) the isothermal compressibility of

water at room temperature is enforced; and (iii) the viscosity and Schmidt number can be

specified as inputs. These impositions are possible with some extra degrees of freedom in

the weighting functions for the conservative and dissipative forces. Numerical experiments

show an improvement in the solution quality over conventional DPD parameters/weighting

functions, particularly for the number density distribution and computed stresses.
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1 Introduction

Dissipative particle dynamics (DPD) has become a popular numerical tool for probing the

behaviour of complex fluids at a mesoscopic length scale (e.g. polymeric/colloidal fluids),

(see, e.g., [1,2,3,4,5,6,7]). In DPD, the fluid is replaced by a set of particles (called DPD

particles) undergoing their Newton 2nd law of motion while interacting in a pairwise manner.

There are three typical types of interaction forces between DPD particles, a conservative force

used to model local thermodynamics, a dissipative force used to model viscous actions, and

a random force to provide a balance to the dissipative force, to maintain a constant specific

kinetic energy (defined as the Boltzmann temperature). All forces are pairwise and centre-

to-centre. DPD has a sound statistical foundation: it is shown to satisfy conservations of

mass and momentum in the mean [8,9]. The input parameters of DPD include a noise level

σ, Botzmann temperature kBT , repulsion strength aij , number density n, particle’s mass

m and cut-off radius rc (which may be different for conservative and dissipative forces). It

is noted that a friction coefficient γ is derived from the noise level through the fluctuation-

dissipation theorem; it is not an independent input. For the scaling in DPD, a physical system

represented by Nphys “molecular particles” can be scaled (coarse-grained) at different levels

ν so that one deals with a smaller number of particles N = Nphys/ν in which ν is referred

to as the coarse-grained level [10]. Let ν (modelled by {N, kBT, n,m, rc, aij, γ}) and ν ′

(
{

N ′, kBT
′, n′, m′, r′c, a

′
ij , γ

′
}

) be two different coarse-grained levels; both represent the same

physical fluid. By constraining the compressibility of the coarse-grained level fluids, it was

shown that if two different coarse-grained levels are related by (φ is the scaling)

N ′ = φ−1N, kBT
′ = φkBT, n′ = φ−1n, (1)

then

m′ = φm, r′c = φ1/3rc, τ ′ = φ1/3τ,

a′ij = φ2/3aij , γ′ = φ2/3γ, σ′ = φ5/6σ,
(2)

in which τ = rc
√

m/kBT and τ ′ = r′c
√

m′/kBT ′ are time scalings. Under these scalings, one

can show that the two coarse-grained systems are equivalent (i.e. the scale free property).

There are several issues in the classical DPD method. The physical parameters of the fluid
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to be modelled are not inputs of the DPD system, making its parametric study difficult. Any

change in the input model parameters (e.g. the cut-off radius and Botzmann temperature)

may result in a different fluid. Although the scheme defined by (1) and (2) allows of the use

of ν larger than 1, it does not provide an appropriate link between the scaling and thermal

fluctuations to ensure that the fluctuations will reduce their magnitude when the coarse-

grained level increases. Also, the method always produces a local pressure as a quadratic

function of the number density (i.e. a fixed equation of state), and does not inherit the

feature of “mesh/grid convergence” from conventional discretisation methods. There is still

no formal way of deriving DPD from an atomistic system for simple fluids (unbonded atoms).

On the other hand, DPD possesses an algorithmic simplicity and has the ability to model

many different complex fluids. Indeed, objects suspended in the fluid can also be represented

by DPD particles with appropriate forms of interactions. For example, a solid particle can

be modelled by a single DPD particle [5] or by a few constrained basic DPD particles

[7], allowing of efficient simulations of particulate suspensions [5,7,11], and of thixotropic

materials exhibiting pseudo yield stress behaviour [12] to be carried out. When the atoms

are bonded (e.g. complex molecules like proteins), the coarse-grained mapping can be well

defined and there have been many attempts in DPD modelling to explore flows of such fluids

[13,14]; here the DPD method can be regarded as a bottom-up approach. In contrast to DPD,

the smoothed DPD (sDPD) method [18] is directly derived from the Navier-Stokes equation

with the inclusion of thermal fluctuations (i.e. a top-down approach). Its formulation thus

combines the advantages of the Navier-Stokes equation (i.e. an arbitrary equation of state,

specified viscosity and convergence property) and the DPD (i.e. mesoscopic description).

Each sDPD particle is defined with an explicit volume. For the scaling in sDPD, it was

shown in [15] that the deterministic part is scale invariant and the thermal fluctuation part

has a consistent scaling with the volume of fluid particles. The reader is referred to [16] for

a recent comprehensive review of the field.

In DPDs, the compressibility of the model fluid is set to match the compressibility of water
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at room temperature, resulting in a constraint to the repulsion strength [17]

aij =
71.54kBT

nr4c
for 3D case, (3)

aij =
57.23kBT

nr3c
for 2D case, (4)

revealing the dependence of aij on kBT , n and rc. In [18], it was shown that the friction

coefficient can be chosen to fix the viscosity of the system. In [17,19,20,21,22], the dynamic

response of a DPD fluid, measured by the Schmidt number (the ratio between momentum

diffusion (viscosity) and mass diffusivity) was discussed. In this study, apart from the phys-

ical parameters just mentioned, another dimensionless parameter, i.e. the ratio between

the inertia and relaxation time scales of the DPD equations, will also be considered. This

parameter provides a direct link between the conservative and dissipative forces; it governs

how fast the system approaches the statistical equilibrium state, together with the cluster-

ing of particles, and therefore an appropriate value of this ratio helps stabilise the density

distribution of DPD particles in the flow domain.

We will examine the response of a DPD fluid to a flow condition in the following two forms.

In the first, there are two dimensionless quantities (time-scale ratio and isothermal com-

pressibility) to be imposed. The method here is basically the same as conventional DPDs,

except that its conservative force involves two free parameters (instead of one). In the sec-

ond, three dimensionless quantities (time-scale ratio, isothermal compressibility and Schmidt

number), and the viscosity are to be enforced. These simultaneous impositions are possible

by modifying both the weighting functions of the conservative and dissipative forces. Some

simulations are carried out in viscometric flows to illustrate the advantages of the proposed

DPD fluid.

The structure of the paper is organised as follows. In section 2, brief overviews of the DPD

equations and their associated standard input values are given. In section 3, numerical

issues concerning the time scales in the DPD equations are discussed. In section 4, the re-

sponse of the DPD system under constraints of satisfying some given physical/dimensionless

parameters of the fluid concerned is examined. Section 5 gives some concluding remarks.

4



2 DPD model

2.1 Equations

In DPD, the fluid is modelled by a system of particles undergoing their Newton 2nd law

motion:

mir̈i = miv̇i =
N
∑

j=1,j 6=i

(Fij,C + Fij,D + Fij,R) , (5)

where mi, ri and vi represent the mass, position vector and velocity vector of a particle

i = 1, . . . , N , respectively, N is the total number of particles, the superposed dot denotes a

time derivative, and the three forces on the right side of (5) represent the conservative force

(subscript C), the dissipative force (subscript D) and the random force (subscript R):

Fij,C = aijwCeij, (6)

Fij,D = −γwD (eij · vij) eij, (7)

Fij,R = σwRθijeij, wR =
√
wD, σ =

√

2γkBT , (8)

where aij , γ and σ are constants reflecting the strengths of these forces, wC, wD and wR

configuration-dependent weighting functions, eij = rij/rij a unit vector from particle j to

particle i (rij = ri − rj , rij = |rij|), vij = vi − vj a relative velocity vector, and θij a

Gaussian white noise. It is noted that the random force is introduced in a way that satisfies

the fluctuation-dissipation theorem.

2.2 Standard input values

Groot and Warren [17] suggested that the noise level σ can be chosen as a balance between

a fast simulation and a good satisfaction of the specified Boltzmann temperature - a value

of 3 was recommended (for kBT = 1, the corresponding γ is 4.5). They also recommended

that the repulsion strength aij is chosen such that a DPD fluid has the same compressibility

as water at room temperature. This results in the constraints (3) and (4). As discussed in

5



Section 1, a relatively small number of particles can be chosen to represent the fluid. In

practice, the number density n = 4 has been widely used.

For conventional DPDs, the weighting functions are given by

wC = 1− rij
rc

, (9)

wD =

(

1− rij
rc

)2

. (10)

It is noted that the exponent in wD is also often taken as 1/2 (rather than 2), with a

resulting improve in response of the fluid. In this study, the value of 1/2 is employed for the

conventional DPD.

3 Time scales

Let us focus on a tagged, but otherwise arbitrary DPD particle in the system, and let τ be

its relaxation time scale, τI its inertia time scale and α the ratio of the two time scales

τ = O
( γ

H

)

= O

(

γrc
aij

)

, (11)

τI = O

(

m

γ

)

, (12)

α =
τ

τI
= O

(

γ2rc
maij

)

, (13)

where H is the stiffness defined as

H = O (|∂rFC |) = O

(

aij
rc

)

. (14)

Substitution of (3) and (4) into (13) yield, respectively,

α =
τ

τI
∼ γ2r5cn

71.54mkBT
, for 3D space, (15)

α =
τ

τI
∼ γ2r4cn

57.23mkBT
, for 2D space. (16)
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It can be seen that the dimensionless quantity α is a function of m, rc, n, γ and kBT .

For the case of a small m (small τI , large α), the particles’ inertia can be neglected leading

to a fast response. Small time steps are required for a numerical simulation, but particles

are well distributed because of a low Mach number. A stochastic exponential-time differ-

encing (SETD) scheme is shown to be an efficient solver. As m → 0, the DPD equations

become singular due to the loss of their highest time derivative terms, and special numerical

treatments are required. Detailed discussions can be found in [23,24,25].

In our current investigation, we keep the mass and number density fixed (m = 1 and n = 4)

and vary the cut-off radius (rc ≥ 1).

With standard DPD input values (m = 1, kBT = 1, n = 4, σ = 3 (γ = 4.5), rc = 1), where

the DPD system is observed to well behave, the ratio between the two time scales can be

estimated as

α =
τ

τI
∼ 1.1322 = O(1), for 3D space, (17)

α =
τ

τI
∼ 1.4153 = O(1), for 2D space. (18)

Expressions (15) and (16) indicate that rc has a very strong influence on the time-scale ratio.

For example, with rc = 2.5, one has α = O(102). Also, as rc increases from 1 to 2.5, aij ,

from (4), is reduced from 14.30 to 0.91. Figure 1 displays the spatial configurations of DPD

particles at an instant, for rc = 1 and rc = 2.5, from which it can be seen that particles tend

to form local clusters as rc increases (aij decreases). It appears that a large value of α, due

to large rc, may adversely affect the stability of the DPD system through clustering. Our

recommendation here is to make α constant (independently of the input parameters) and

having an appropriate value to avoid the clustering of particles. The optimal value of α is

to be determined numerically.
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4 Imposition of physical/dimensionless parameters

4.1 Dimensionless compressibility and time-scale ratio

Our goal here is to create a new form of the conservative force that can control both the

isothermal compressibility and time scale ratio. To do so, apart from aij, there is a need for

having another free parameter. A conservative force is proposed to be

Fij,C = aij

(

1− r

rc

)s̄

, s̄ > 0, (19)

whose average gradient over 0 ≤ r ≤ rc is also aij/rc. These two free parameters, aij and s̄,

can be designed to satisfy

α =
τ

τI
=

γ2rc
maij

, (20)

κ−1 =
1

kBT

∂p

∂n
, (21)

where p and κ are the pressure and isothermal compressibility, respectively (α and κ are

given constants, e.g., for water, κ = 1/15.98).

From the virial theorem, the pressure is computed as

p = nkBT +
n2

2d

∫

dRrFij,C(r)g(r), (22)

where g(r) is the radial distribution function and d the flow dimensionality. Here, we simply

take g(r) = 1 corresponding to an infinite number of DPD particles.

Expression (22) results in

p = nkBT +
1

2

n2

3

∫ rc

0

4πr2dr

[

raij

(

1− r

rc

)s̄]

, (23)

= nkBT +
4πaijn

2r4c
(s̄+ 1)(s̄+ 2)(s̄+ 3)(s̄+ 4)

, (24)

∂p

∂n
= kBT +

8πaijnr
4
c

(s̄+ 1)(s̄+ 2)(s̄+ 3)(s̄+ 4)
, (25)
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for 3D case, and

p = nkBT +
1

2

n2

2

∫ rc

0

2πrdr

[

raij

(

1− r

rc

)s̄]

, (26)

= nkBT +
πaijn

2r3c
(s̄+ 1)(s̄+ 2)(s̄+ 3)

, (27)

∂p

∂n
= kBT +

2πaijnr
3
c

(s̄+ 1)(s̄+ 2)(s̄+ 3)
, (28)

for 2D case. Equations (25) and (28) for the variable s̄ can be solved analytically and we

are interested in only physical positive values of s̄.

Analytic solution to (20) and (21) can thus be found as

aij =
1

α

γ2rc
m

, (29)

s̄ =

√

5 + 4
√
C + 1− 5

2
, C =

8πaijnr
4
c

(κ−1 − 1)kBT
, (30)

for 3D space, and

aij =
1

α

γ2rc
m

, (31)

s̄ =
1

3B
+B − 2, B =

(

C

2
+

√

C2

4
− 1

27

)1/3

, C =
2πaijnr

3
c

(κ−1 − 1)kBT
, (32)

for 2D space. For (30) and (32) to have a physical value (i.e. s̄ > 0), it requires that C > 24

and C > 6, respectively, which can be easily satisfied.

Alternatively, the condition of isothermal compressibility can be replaced with the speed of

sound

c2s =
∂p

∂ρ
, (33)

where ρ = mn is the density. The corresponding aij and s̄ have the same forms as (29)-(30)

and (31)-(32), except that values of C in (30) and (32) are replaced with 8πaijnr
4
c/(mc2s −

kBT ) and 2πaijnr
3
c/(mc2s − kBT ), respectively.
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4.2 Viscosity and dynamic response

The fluid viscosity and its dynamic response (via the Schmidt number) can be prescribed as

input parameters of the DPD equations. Discussions were given in [18,22] from a smoothed

DPD perspective. Here, we present the formulation from a DPD perspective.

Following [26], we employ (note no overbar on s)

wD =

(

1− r

rc

)s

, s > 0. (34)

The dissipative force now involves 2 free parameters, γ and s, and we utilise them to match

two thermodynamic properties (i.e. flow resistance and dynamic response). Note that s and

s̄ are two different parameters, one used for the dissipative force and one for the conservative

force.

By means of kinetic theory, expressions for the dynamic viscosity and Schmidt number have

been derived as, in a similar manner to [4],

η = ηK + ηD =
dmkBT

2γ[wD]R
+

γn2[R2wD]R
2d(d+ 2)

, (35)

Sc =
η

ρD
, D =

2ηK
ρ

, (36)

where d is the number of dimensions, D the diffusion coefficient, [wD]R =
∫

dRwD(R) and

[R2wD]R =
∫

dRR2wD(R). With wD containing a free parameter s (34), it can be shown

that

[wD]R =
8πr3c

(s+ 1)(s+ 2)(s+ 3)
, [R2wD]R =

96πr5c
(s+ 1)(s+ 2)(s+ 3)(s+ 4)(s+ 5)

, 3D, (37)

[wD]R =
2πr2c

(s+ 1)(s+ 2)
, [R2wD]R =

12πr4c
(s+ 1)(s+ 2)(s+ 3)(s+ 4)

, 2D. (38)

In (35), there are two contributions to the viscosity, the kinetic part ηK (gaseous contribu-

tion) and the dissipative part ηD (liquid contribution). Here, we are interested in the case

where the dissipative contribution is a dominant part, i.e. ηD ≫ ηK (liquid-like behaviour)
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under which the two following constraints are approximately satisfied

ηD = η, (39)

ηD
ηK

= 2Sc, (40)

or

γn2[R2wD]R
2d(d+ 2)

= η, (41)

2γη[wD]R
dmkBT

= 2Sc. (42)

This system can be solved analytically for the two variables γ and s. In 3D space, the

solution to the system is

s =
−9 +

√
1 + 4C

2
, C =

6ScmkBTn
2r2c

5η2
, (43)

γ =
5η(s+ 1)(s+ 2)(s+ 3)(s+ 4)(s+ 5)

16πn2r5c
. (44)

Since s > 0, it requires

η <

√

3ScmkBTn2r2c
50

for a given Sc, (45)

Sc >
50η2

3mkBTn2r2c
for a given η. (46)

In 2D, the solution to the system takes the form

s =
−7 +

√
1 + 4C

2
, C =

3ScmkBTn
2r2c

4η2
, (47)

γ =
4η(s+ 1)(s+ 2)(s+ 3)(s+ 4)

3πn2r4c
. (48)

Since s > 0, it requires

η <

√

ScmkBTn2r2c
16

for a given Sc, (49)

Sc >
16η2

mkBTn2r2c
for a given η. (50)
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4.3 Isothermal compressibility and time-scale ratio as specified

inputs

The method implemented here is the conventional DPD with its conservative force in the form

of (19) instead of (9). The friction coefficient/noise level is a specified input. Simulation

is conducted on Couette flow. We estimate the optimal value of α numerically. Results

obtained are examined through the variation of the number density n and shear stress τxy

on the cross section of the flow.

Results concerning the standard deviation of n and τxy on the cross section for α = (500, 50,

5, 0.5, 0.05, 0.005, 0.0005) are shown in Figure 2, showing that the best α corresponding the

smallest variation of τxy and n is in the range of 10−1 to 10+1. The distribution of particles

over the flow domain is displayed for α = 0.0005 and α = 0.5 in Figure 3, showing that

particles tend to form local clusters at α = 0.0005. For simplicity, α = 1 is considered here

as a good choice.

Table 1 compares DPD results between the proposed conservative force (α = 1) and conven-

tional one for several values of rc. For all cases, variations of the number density and shear

stress on the flow cross section are considerably smaller with the proposed conservative force.

It is noted that different fluids are considered here, e.g., viscosity at rc = 4 is much greater

than viscosity at rc = 2. Figure 4 displays some typical DPD results, including temperature,

velocities and stresses. It can be seen that the two DPD systems have a Newtonian response

(zero normal stress difference and constant shear stress). However, with the proposed con-

servative force, much more stable results for the spatial configuration, number density and

shear stress on the cross section are observed.

4.4 Isothermal compressibility, times-scale ratio, dynamic response

and viscosity as specified inputs

These four parameters are prescribed to be inputs of DPD equations. They define a particular

fluid; but unlike conventional DPDs, a change in rc should not affect the fluid characteristics.
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For a given shear rate γ̇, shear stresses in Couette flow can be computed as τxy = ηγ̇ and

these “exact values” are used to assess the accuracy of the present DPD.

First, for a typical set of input parameters, we plot the standard deviations of n and τxy

on the cross section and percentage errors of τxy against the time-scale ratio α (Figure 5).

It can be seen that the minimum values of variations and percentage errors occur within α

range of 10−1 to 101. This range is the same as in the case of friction coefficient as a specified

input. We will choose α = 1 for simplicity.

To examine the effects of enforcing the fixed time scale ratio α = 1, the obtained results are

compared with those by the DPD, where the conventional conservative force is implemented

(i.e. variable α). Table 2 indicates that a solution by the proposed conservative force (fixed α)

is more stable and accurate than a solution by the conventional conservative force (variable α)

for several values of rc. Table 3 reveals that the viscosity estimated by the Kirkwood-Irving

formulation is closer to a specified input value with the proposed conservative force. Figure 6

shows that the proposed conservative force also results in a more stable spatial configuration,

number density and shear stress on the cross section. In comparison with Figure 4, for the

same rc, DPD results with η and Sc as specified inputs are superior (smaller variations) to

those with γ as a specified input.

5 Concluding remarks

The DPD method has received a great deal of attention in the last two decades with various

reported modelling applications involving complex fluids. Its algorithmic simplicity comes

at the expense of several shortcomings, including a fixed (quadratic) form of the equation of

state, no formal way of deriving DPD from an atomistic system for simple fluids (unbonded

atoms), and an indirect connection between the physical and model parameters which causes

difficulty in studying the effects of some input parameters such as rc, kBT and n. This paper

is concerned with the question of how to impose some physical/dimensionless parameters of

the fluid on the DPD model. The proposed scheme for imposing the viscosity and Schmidt
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number is derived from the kinetic theory, where the conservative force is set to zero and the

corresponding equation of state is that of an ideal gas. Expressions for the physical param-

eters are provided in analytic form and they are supported by numerical results, including

conservative forces. The method offers a more meaningful way to conduct a DPD simulation

which yields a more stable solution over the change in the model inputs. The proposed DPD

formulation can be combined in a straightforward manner with exiting models of suspended

phases in DPD to simulate complex fluids.

References

1. P.J. Hoogerbrugge, J.M.V.A. Koelman, Europhys. Lett. 19(3) (1992) 155-160

2. Y. Kong, C.W. Manke, W.G. Madden, A.G. Schlijper, J. Chem. Phys. 107 (1997)

592-602

3. M. Laradji, M.J.A. Hore, J. Chem. Phys. 121 (2004) 10641-10647

4. C.A. Marsh, Theoretical Aspects of Dissipative Particle Dynamics (D. Phil. Thesis),

University of Oxford, 1998

5. W. Pan, B. Caswell, G.E. Karniadakis, Langmuir 26(1) (2010) 133-142

6. N. Phan-Thien, Understanding Viscoelasticity: An Introduction to Rheology, second

ed., Springer, Berlin, 2013

7. N. Phan-Thien, N. Mai-Duy, B.C. Khoo, J. Rheol. 58 (2014) 839-867
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Table 1: Couette flow, friction coefficient as specified input, γ = 4.5, m = 1, kBT = 1, n =
4,∆t = 0.001, compressibility of water, shear rate of 0.2: Mean and standard deviation of
the number density n and shear stress τxy on the cross section of the flow for several values
of rc by the proposed (α = 1) and conventional conservative forces using the same number of
time steps. For a given rc, the variation in the DPD results is significantly reduced with the
modified conservative force. Note that different values of rc correspond to different fluids.

rc = 2
mean(n) std(n) mean(τxy) std(τxy)

Conventional FC 4 0.3896 8.8371 1.1373
Proposed FC 4 0.2269 9.1572 0.7805

rc = 2.5
mean(n) std(n) mean(τxy) std(τxy)

Conventional FC 4 0.6104 22.1690 3.0665
Proposed FC 4 0.2991 22.5067 1.8567

rc = 3.0
mean(n) std(n) mean(τxy) std(τxy)

Conventional FC 4 0.5845 46.0645 6.3739
Proposed FC 4 0.3856 46.6068 4.4636

rc = 3.5
mean(n) std(n) mean(τxy) std(τxy)

Conventional FC 4 0.6929 85.7490 14.5836
Proposed FC 4 0.3310 86.3288 6.5697

rc = 4
mean(n) std(n) mean(τxy) std(τxy)

Conventional FC 4 0.5758 146.8792 21.1133
Proposed FC 4 0.3727 147.2594 13.3966
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Table 2: Couette flow, η and Sc as specified inputs, η = 30, Sc = 400, m = 1, kBT = 1, n =
4,∆t = 0.01, compressibility of water, shear rate of 0.2: Mean and standard deviation of
the number density n and shear stress τxy on the cross section of the flow for several values
of rc with the proposed (α = 1) and conventional conservative forces. For a given rc, the
variation in the DPD results is significantly reduced with the modified conservative force.
Note that different values of rc correspond to the same fluid and the “exact” shear stress is
6 (DPD unit). The density fluctuation and the stress error generally increase with rc for the
conventional FC ; in contrast, for the proposed FC , the density fluctuation is stable over a
wide range of rc and errors are much smaller for the shear stress.

rc = 2
mean(n) std(n) mean(τxy) error(τxy) (%) std(τxy)

Conventional FC 4 0.2140 5.7873 3.5450 0.4293
Proposed FC 4 0.1043 6.0956 1.5933 0.4208

rc = 2.5
mean(n) std(n) mean(τxy) error(τxy) (%) std(τxy)

Conventional FC 4 0.2672 5.7110 4.8167 0.4688
Proposed FC 4 0.1701 6.1176 1.9600 0.4022

rc = 3.0
mean(n) std(n) mean(τxy) error(τxy) (%) std(τxy)

Conventional FC 4 0.2964 5.6590 5.6833 0.4119
Proposed FC 4 0.1396 6.0286 0.4767 0.3177

rc = 3.5
mean(n) std(n) mean(τxy) error(τxy) (%) std(τxy)

Conventional FC 4 0.3958 5.6559 5.7350 0.6375
Proposed FC 4 0.1246 6.0648 1.0800 0.3372

rc = 4
mean(n) std(n) mean(τxy) error(τxy) (%) std(τxy)

Conventional FC 4 0.3859 5.5519 7.4683 0.4635
Proposed FC 4 0.1464 6.0403 0.6717 0.4576
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Table 3: Couette flow, η and Sc as specified inputs, different viscosity inputs chosen from s
between 0 and 2 (standard value), Sc = 400, m = 1, kBT = 1, n = 4,∆t = 0.01, compressibil-
ity of water, shear rate of 0.2: Viscosities predicted by the Kirkwood-Irvin formulation for
which both the proposed (α = 1) and conventional conservative forces are employed. The
former outperforms the latter.

rc = 2.5
Conventional FC Proposed FC

Imposed η Computed η Error (%) Computed η Error (%)
47 46.6263 0.79 46.7472 0.53
45 44.4580 1.20 44.8795 0.26
43 42.4131 1.36 42.8948 0.24
41 40.2650 1.79 40.9330 0.16
39 38.3277 1.72 38.8942 0.27
37 36.1052 2.41 36.9136 0.23
35 34.1332 2.47 35.0943 0.26
33 31.9315 3.23 33.1852 0.56
31 29.7771 3.94 31.4797 1.54

rc = 3.5
Conventional FC Proposed FC

Imposed η Computed η Error (%) Computed η Error (%)
68 67.7137 0.42 67.8169 0.26
66 65.7913 0.31 65.7371 0.39
64 63.5649 0.67 63.7789 0.34
62 61.5930 0.65 61.9850 0.02
60 59.5492 0.75 59.8873 0.18
58 57.5698 0.74 58.0389 0.06
56 55.5841 0.74 55.8948 0.18
54 53.5671 0.80 53.8571 0.26
52 51.4918 0.97 51.7967 0.39
50 49.3714 1.25 49.8442 0.31
48 47.1981 1.67 47.8911 0.22
46 45.1165 1.92 46.0577 0.12
44 43.0236 2.21 44.0757 0.17
42 41.1593 2.00 42.0830 0.19
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Figure 1: No flow, m = 1, kBT = 1, n = 4, σ = 3,∆t = 0.01, compressibility of water:
Instant spatial configurations of DPD particles and their associated velocity vectors for
rc = 1(aij = 14.30) (top) and rc = 2.5(aij = 0.91) (middle) using the same number of
time steps by conventional DPD. The bottom one corresponds to a special case, where aij
is simply set to 0. Particles tend to form local clusters as aij decreases. The arrows denote
the particles’ velocities.
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Figure 2: Couette flow, friction coefficient as specified input, m = 1, kBT = 1, n = 4,∆t =
0.005, γ = 10, rc = 2.5, compressibility of water, shear rate of 0.2: Standard deviations of
the number density and shear stress on the cross section against the ratio between two time
scales. Too large or too small values of α result in larger fluctuations in n and τxy. The best
α is in the range of 10−1 to 10+1.
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Figure 3: Couette flow, friction coefficient as specified input, m = 1, kBT = 1, n = 4,∆t =
0.005, γ = 10, rc = 2.5, compressibility of water, shear rate of 0.2: An instant spatial config-
uration for α = 0.0005 (top) and α = 0.5 (bottom). Particles tend to form local clusters at
α = 0.0005. The arrows denote the particles’ velocities.
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Figure 4: Couette flow, friction coefficient as specified input, m = 1, kBT = 1, n = 4,∆t =
0.01, γ = 4.5, rc = 3.5, compressibility of water, shear rate of 0.2: DPD results with the
convention (left, α = 212) and proposed (right, α = 1) conservative forces. A clear improve-
ment is achieved for spatial configuration (top), number density (middle) and shear stress
(bottom).
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Figure 5: Couette flow, η and Sc as specified inputs, η = 30, Sc = 400, rc = 2.5, m =
1, kBT = 1, n = 4, compressibility of water, shear rate of 0.2: Standard deviation of the
number density n and shear stress τxy on the cross section of the flow for several values of
α = τ/τI . It is noted that the “exact” shear stress is 6 (DPD unit) and percentage errors
of τxy against α are also displayed. For α from 5 × 10−3 to 5 × 102, ∆t is chosen as 0.01.
For α = 5× 10−4, to maintain the satisfaction of the Boltzmann temperature, ∆t is reduced
to 0.005. Minimum values of the variations and percentage errors occur within the range of
10−1 and 101.
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Figure 6: Couette flow, η and Sc as specified inputs, η = 30, Sc = 400, rc = 3.5, m =
1, kBT = 1, n = 4,∆t = 0.01, compressibility of water, shear rate of 0.2: DPD results using
the same number of time steps with the convention (left, α = 1717) and proposed (right,
α = 1) conservative forces. A clear improvement is achieved for spatial configuration (top),
number density (middle) and shear stress (bottom). In comparison with Figure 4, for the
same rc, DPD results with η and Sc as specified inputs are superior (i.e. smaller density
fluctuations) to those with γ as a specified input.
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