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Abstract: 

For the current work, investigations were carried out using treated betelnut 
fibre reinforced polyester (T-BFRP) and chopped strand mat glass fibre 
reinforced polyester (CSM-GFRP) composites. Results revealed that T-BFRP 
showed competitive performance of about 1.16 %, 17.39 % and 4.92 % 
for tensile, flexural and compression tests as compared to the latter. 

Through tribological performance tests, T-BFRP composite showed 
superiority in wear for the dry and wet tests of about 98 % and 90.8 % 
while friction coefficient was reduced by about 9.4 % and 80 % 
respectively. Interface temperature was low by about 17 % for T-BFRP 
composite subjected to dry test as compared to the latter. SEM analysis 
revealed that the brittle effects observed on glass fibres during the tribo 
test enhanced the material removal rate which increased the thermo 
mechanical effects at the rubbing zone. As such, evidence of adhesive to 
abrasive wear transition was observed when the CSM-GFRP composite was 
subjected to the stainless steel counterface. On the contrary, T-BFRP 
composite formed a thin layer of shield (i.e. back film transfer) on its worn 
surface during the test which assisted to lower the material removal rate. 
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Betelnut fibres as an alternative to glass fibres to reinforce thermoset 

composites: A comparative study 

 

Abstract 

For the current work, investigations were carried out using treated betelnut fibre reinforced 

polyester (T-BFRP) and chopped strand mat glass fibre reinforced polyester (CSM-GFRP) 

composites. Results revealed that T-BFRP showed competitive performance of about 1.16 %, 

17.39 % and 4.92 % for tensile, flexural and compression tests as compared to the latter. 

Through tribological performance tests, T-BFRP composite showed superiority in wear for the 

dry and wet tests of about 98 % and 90.8 % while friction coefficient was reduced by about 9.4 

% and 80 % respectively. Interface temperature was low by about 17 % for T-BFRP composite 

subjected to dry test as compared to the latter. SEM analysis revealed that the brittle effects 

observed on glass fibres during the tribo test enhanced the material removal rate which increased 

the thermo mechanical effects at the rubbing zone. As such, evidence of adhesive to abrasive 

wear transition was observed when the CSM-GFRP composite was subjected to the stainless 

steel counterface. On the contrary, T-BFRP composite formed a thin layer of shield (i.e. back 

film transfer) on its worn surfaces during the test which assisted to lower the material removal 

rate. 
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Nowadays, fibre reinforced composites are known to be the best substitutes to metals due to their 

structural properties and availability. Paul et al.
1
 and Khan et al.

2
 reported that synthetic fibres 

namely glass and carbon fibres are widely used as composite materials in applications such as: 

aerospace industries, marine sectors, in the making of sport equipments and automotive 

components due to their lightweight, responsive strength and rigidity characteristics. 

Macroscopically, producing synthetic fibres consume high amount of energy 
2, 3

 which may lead 

to the contribution of green house effect. Furthermore, Khan et al.
2
 reported that synthetic fibres 

may cause potential health problem to human beings when dealing/processing glass fibres 

particulates. Interestingly, natural fibres are gaining much attention among researchers namely to 

explore on the possibility in replacing synthetic fibres. Many researchers agreed on the 

advantages possessed by natural fibres compared to synthetic fibres. Naming a few, Paul et al.
1
 , 

Joshi et al.
3
, Dillon

 4
, Yousif & El-Tayeb

5
 and Nirmal & Yousif

 6
 revealed in their work that 

natural fibres are fully biodegradable, low in density, high-specific strength, cheap, aplenty in 

availability and flexibility in usage. 

Over the past decade, many research works
1,2,4,7-9

 were carried out to explore the 

possibility of substituting glass fibres with natural fibres reinforced polymeric composites. 

Results from the literature reported that glass fibre composites were more superior in mechanical 

properties compared to natural fibre composites. This is mainly due to the characteristics 

observed by glass fibres such as their hydrophobic behavior and high fibre specific strength 
2, 10

. 

On the contrary, Paul et al.
1
 and Dillon 

4
 reported that natural fibre can replace glass fibre in 

applications that do not need high bearing load capacity. In addition, the interest of treating 

natural fibres using suitable chemical solutions and coupling agents has been proven to boost the 

mechanical properties of its composites. Sgriccia et al.
10

 reported that kenaf fibre treated with 
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saline coupling agent is equally competitive in mechanical performance when compared to glass 

fibre composite. Aziz & Ansell 
11

 reported that 6 % of sodium hydroxide treatment on long kenaf 

and hemp fibre/polyester composite showed excellent results in mechanical properties compared 

to glass fibre composite. Nirmal et al.
12

 reported that treated betelnut fibre/polyester composites 

tested under adhesive dry and wet contact conditions had excellent wear performance compared 

to glass fibre composites. This was due to the high interfacial adhesion strength achieved 

between the fibre and matrix which prevented fibre pullout during the test. In previous works 

conducted by Yousif & El-Tayeb 
13, 14

, the interfacial adhesion of oil palm fibre was highly 

improved when the fibre was treated with 6 % NaOH due to the disruption of hydrogen bonding 

in the fibre’s network structure. Nevertheless, it directly increased the surface roughness of the 

fibre. Similar findings were reported by Agrawal et al.
15

 where they indicated that a certain 

amount of oil, lignin and wax covering the outer surfaces of the natural fibre have been removed 

due to the treatment. As a result of the treatment, it exposes the short length crystallites while 

depolymerizing the cellulose. On a microscopic point of view, the chemical reaction in Equation 

1 shows that the ionization of the hydroxyl group to alkoxide occurs on natural fibres (NF) due 

to the addition of NaOH. 

)()( 2OHwaterNaONFNaOHtreatmentAlkalineOHNF +−−⇒+−  (Equation 1) 

In summary, Jähn et al.
16

 concluded that the alkaline treatment directly influences the 

extraction of lignin and the polymerization of hemicellulosic compounds and cellulosic fibril 

which improves surface wettability of natural fibres against the matrix. Besides, the treatment 

also gave better surface roughness (i.e. removing foreign impurities and entanglements of fine 

hair) which improved the interlocking characteristics of the fibre and matrix. This phenomenon 

has been confirmed by Valadez et al.
17

 where it was discovered that alkaline treatment has two 
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effects on the fibre: it increases surface roughness resulting in better mechanical interlocking and 

it increases the amount of cellulose exposed on the fibre surface, thus increasing the number of 

possible reaction sites. 

Concerning bearing applications, El-Tayeb et al.
18

 and Navin et al.
 19

 reported that glass 

fibre reinforced polyester (GFRP) composite tested in anti-parallel (AP) orientation with respect 

to the sliding direction gave high wear resistance compared to parallel (P) and normal (N) 

orientations. This was due to the formation of a thin layer consisting of broken fibres and fibre 

pullout from the fibrous region coupled with fragmentation of polyester from the resinous region 

which assisted in preventing high material removal process during longer sliding distance. El-

Tayeb 
20

 reported that CSM-GFRP composite has better wear resistance compared to short 

unidirectional sugarcane fibre/polyester composites. However, Yousif & El-Tayeb 
21

 claimed 

that oil palm fibre/polyester (OPRP) composite under two body abrasion test showed lower 

weight loss compared to CSM-GFRP composite due to the high strength of adhesion achieved 

between oil palm fibre and the matrix. Moreover, the authors stated that a transition from 

abrasive to adhesive mechanism is possible when fragments of OPRP composite are transferred 

onto the counterface during the ‘detached-attached-detached’ process. 

For the current work, betelnut fibres is proposed as a potential commercial substitute to 

CSM glass fibre for reinforcements in polymeric composites due to variety of reasons. For an 

instance, betelnut fibre has low fibre density (i.e. fully renewable and recyclable 
6
, lower 

abrasiveness to machines, having no health risknon hazardous to health 
2
 and being fully 

biodegradable 
6, 12

 compared to glass fibres. Besides that, Nirmal & Yousif 
6
, Nirmal, Singh, 

Hashim, Lau & Jamil 
22

 and Nirmal 
23

have reported in their work that betelnut fruits are highly 

abundant in Malaysia. Looking at the chemical composition in betelnut fibre husks (refer Table 
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1); the fibres are composed of varying proportions of cellulose, lignin, pectin and protopectin 

which makes them a good substitute for reinforcement purposes. For an instance, Jacob et al.
24

 

and Khalil et al.
25

 reported in their findings that the content of cellulose in certain natural fibres 

makes them highly hydrophilic (attracts water) which leads to more water uptake by the cell 

walls of the fibres surfaces and thus weakening its fibre properties; i.e. tensile strength. On the 

other hand, betelnut fibres have certain percentage of lignin on its outer fibre surfaces making it 

hydrophobic, thus, preventing large amount of water absorption into the fibre core.
10

 

Additionally, the decaying of betelnut fibre husks when composted to the soil will result in the 

production of nitrogen, potassium pentoxide and potassium oxide
26

. Ramachandra et al.
26

 

indicated in their work that these chemical substances are important to the soil as they acts as 

fertilizers, thus increasing the soil fertility. The above findings are summarized in Table 2 

highlighting the main difference between betelnut and CSM glass fibres. From the table, it is 

obvious that betelnut fibres are more favorable as compared to CSM glass fibres. 

In regard to the above considerations, the authors found an interest to use betelnut vs. 

glass fibres as potential reinforcing elements in polymeric composites aiming to explore on the 

mechanical and tribological performance of these composites. Tensile, flexural, compression and 

hardness properties of the developed composites have been investigated based on ASTM 
27-29

 

standards. For the tribological tests, a developed Block on Disc (BOD) machine has been used to 

simulate the wear and friction performance of the T-BFRP and CSM-GFRP composites subject 

to dry and wet contact conditions. The adhesive sliding of the composite was conducted on a 

smooth stainless steel counterface at sliding velocity of 2.8 m/s at applied loads of 30 N and 200 

N for dry and wet contact conditions. Based on the results obtained, a comparative study was 
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performed on the potential substitution of CSM-GFRP with T-BFRP composite in relevant 

applications. 

 

Materials preparation 

Preparation of fibres  

Raw betelnut fruits (c.f. Fig. 1a) are found abundant, in particular state of Kedah, Malaysia. The 

betelnuts have to be crushed first in order to remove the seeds. The crushed betelnuts were then 

rinsed and soaked in water for two days to ease of fibre extraction process. While still wet, the 

outer layers of the betelnut fruit were removed followed by extraction of the fine fibres (c.f. Fig. 

1b) using a fibre-extractor-machine-with-bubbling-wash-effect (FEM-BWE) which was 

previously designed and fabricated by Nirmal 
31

. Then, the extracted fibres (c.f. Fig. 1c) were 

treated in water containing 6 % Sodium Hydroxide (NaOH) solution for half an hour at room 

temperature (28 ± 2 
o
C). This was done to remove foreign substances on the fibre and to enhance 

the adhesion characteristics between the fibre and the matrix. The fibres were then taken out 

from the solution and rinsed with fresh water to remove the NaOH solution. Finally, the cleaned 

and treated fibres were arranged in a randomly distributed manner, pressed evenly into uniform 

mats (c.f. Fig. 1d) and left to dry at room temperature (28 ± 2 
o
C). In order to ensure effective 

drying of the betelnut fibres, all treated betelnut fibre mats were dried in an oven for 5 hours at 

45 ºC. Figs. 2a & b show significant differences of the betelnut fibre before and after the 

treatment. A very rough surface can be seen on the treated one, Fig. 2b, as compared to the 

untreated, Fig. 2a. This is due to the significant effects of the cleaned tiny hairy spots which 

protrude out from the surface of an individual betelnut fibre termed trichomes. They are defined 

as ‘epidermal hairs found on nearly all plants taking almost various shapes and forms’ 
31

. 
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Therefore, the present of trichomes by nature on the outer surface of the betelnut fibre may help 

improve interfacial adhesion strength of the fibre (i.e. high fibre surface roughness) in the mat 

against the matrix by minimizing fibre pullout and debonding during sliding. For chopped strand 

mat glass fibres; Fig. 2c, it was obtained from Poly Glass Fibre Manufacturing Sdn. Bhd., 

Malaysia.  

For the purpose of preparing the fibre mats (i.e. betelnut and glass fibres), all fibre mats 

were cut into the dimensions of the composite fabrication mold. The corresponding SEM images 

showing the randomly distributed betelnut and CSM glass fibre in mat form are is presented in 

Fig. 3. Table 3 summarizes basic properties of the betelnut and CSM glass fibre mats.  

 

Preparation of composite 

Unsaturated polyester (Butanox M-60) mixed with 1.5 % of Methyl Ethyl Ketone Peroxide 

(MEKP) as a catalyst was selected as a resin for the current work. Information of the resin and 

hardener is listed in Table 4 respectively 
32

. 

The resin and hardener were uniformly mixed using an electrical stirrer and poured into a 

closed mold with a size of 100 mm x 100 mm x 10 mm. The inner surfaces of the mold had 

beenwere sprayed with a thin layer of silicon as a release agent. Hand lay-up technique was used, 

by which the first layer of the composite material was obtained by pouring the unsaturated 

polyester (mixed with 1.5 wt% hardener) into the mold. Subsequently, a sheet of betelnut fibre 

mat was placed on the first layer of polyester. A steel roller was used to even out the fibre mat 

and to release air bubbles from the mixture. This procedure was repeated until a maximum 

thickness of 10 mm was achieved (resulting with 13 layers of fibre mats and 14 layers of 

polyester resin). Then, a thin steel plate of same size with the mold was placed on top of the 
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mold’s opening pressing the composite. A pressure of about 5 kPa was applied on the steel plate 

to ensure that the trapped air bubbles in the composite were completely forced out. With the 

pressure still being applied on the mold, the composite block was left to cure for 24 hours at 

room temperature (28 ± 2 °C). For thoroughness in curing, the hardened composite was removed 

from the mold and post-cured in an oven at 80 °C for one hour. Similarly, the CSM-GFRP 

composite block was fabricated using the steps explained above. 

For the purpose of conducting the mechanical tests, the cured composite blocks (i.e. T-

BFRP and CSM-GFRP composites) wereas machined into the required sizes of test samples, i.e. 

tensile, flexural and compression samples. Fig. 4 shows the dimensions of the prepared samples 

according to ASTM standards 
27-29

. 

For tribological tests, the test specimens with dimensions of 10 mm x 10 mm x 20 mm
 

had beenwere prepared from the cured composite block using a Black and Decker jigsaw 

(Model: CD301-B1). SEM images of the virgin cross section of T-BFRP and CSM-GFRP 

composite test specimen is displayed in Fig. 5a & b. From the figures, the approximate thickness 

of the polyester layer is about 130 ± 15 µm. A schematic view of the tribological test specimen 

showing its orientation of fibre mats with respect to the sliding direction is displayed in Fig. 5c. 

 

Experimental procedure 

Mechanical test 

Tensile, flexural and compression tests have beenwere conducted using a WP300 PC Aided 

Universal Material Test machine at room temperature (28 ± 2 °C). Moreover, a hardness tester 

(Model: TH210 ShoreD durometer) has beenwas also used to determine the ShoreD hardness of 

the composites. The hardness was measured perpendicular to the fibre orientation of the 
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polyester composite (perpendicular to the thickness of 10 mm for the compression test specimen, 

c.f. Fig. 4c).  

 

Tribological test 

A Block-On-Disc (BOD) machine subjected to dry and wet contact conditions was used for the 

current work. Water (hardness: 120 - 130 mg/liter) was supplied to the counterface by a pump at 

a flow rate of 0.4 l/min. Water flowing off the counterface was collected contained by a 

container, with a filter being placed along the flow of water. It was cleaned from the generated 

wear debris after each test. An Accutec B6N-50 load cell was incorporated in the BOD load 

lever in order to measure the frictional forces between the specimen and the counterface. The 

load cell was connected to a digital weight indicator (Model: Dibal VD-310) in order to capture 

the frictional forces during the test. For measuring the interface temperature (i.e. temperature 

between test specimen and counterface), a thermocouple (Model: Center 306) was adopted 

where the thermocouple probe was placed at the test specimen contacting area with the 

counterface. Accordingly, temperature measurements were recorded for every one minute of 

time interval for all dry and wet testing conditions. 

In a similar work done by Tong et al.
33

 subject to dry contact conditions, a higher PV 

limit of polyester of 1.61 MPa
.
m/s was achieved. Accordingly, for the current work, the PV limit 

achieved was between 0.14 - 0.84 MPa
.
m/s (equivalent 30 N applied load at 2.8 m/s sliding 

velocity) for the dry conditions. It is to be noted here that 30 N of applied normal load was 

chosen for comparing the wear performance of the developed composites since at this load, there 

was obvious differences in the values of Ws. At lower range of applied loads (i.e. 5 – 10 N), Ws 

was not that significant for comparison. At higher loads (>30 N), the composite failed due to the 
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high thermo mechanical loading incurred by the test specimens during the adhesive dry sliding 

test. On the other hand, under wet contact conditions, the weight loss could not be determined at 

low applied load (30 N) due to the low weight loss (less than 0.1 mg). Therefore, the wet tests 

were conducted at higher applied loads of 200 N at 2.8 m/s sliding velocity. The tests were 

performed at different sliding distances (0 - 6.72 km). The critical load was 200 N for the wet 

test due to the limitation of the load cell as confirmed by the supplier of the load cell, i.e. 

maximum loading capacity of the load cell ≤ 20 kg. 

Before each test, the composite test specimen was loaded into the specimen holder and 

abrasive paper of grade 800 was placed between the counterface and the test specimen. With a 

normal load of 20 N applied, the counterface was turned manually to achieve sufficient intimate 

contact. This procedure was repeated on the same test specimen but with a different abrasive 

paper of with grade 1000. abrasive paper instead. This was to minimize mechanical interlocking 

of the specimen against the counterface during testing. Upon completion, the test specimen was 

taken out, cleaned with a wet cloth, dried and weighed using a weighing scale (Model: Setra 

weight balance ± 0.1 mg) before the experiment. 

Concerning the stainless steel counterface, it was polished with abrasive papers starting 

with grade 200, 500, 1000 followed by 2000. After polishing, the counterface was cleaned with 

liquid acetone by means of a clean cloth. To avoid conflict in friction readings generated during 

the test which might be influenced from any thin layer of acetone remaining behind during the 

counterface cleaning process, the whole counterface was wiped with a wet cloth and dried at 

room temperature (28 ± 2 °C) before each test. This procedure was repeated for all dry and wet 

tests. For the wet tests, all specimens were dried in an oven at temperature of 40 ºC for 24 hours. 
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The specific wear rate was computed using Equation 2. The weight losses of the specimen have 

been were determined using a Setra weight balance (± 0.1 mg). 

DF

V
W

N

S
.

∆
=  (Equation 2) 

where;  Ws = Specific wear rate [mm
3
/N

.
m] 

  ∆V = Volume difference [mm
3
] 

  FN = Normal applied load [N] 

  D = Sliding distance [m] 

 

 

 

Results and discussions 

As a result of repeating the mechanical and tribological experiments for three times, the standard 

deviation is computed which is presented in Fig. 6. 

It is to be highlighted here that, due to the nature of the betelnut fibre husks being fine 

and short, it was impossible for uni-directional or bi-directional layout. Thus, randomly 

distributed fibres were preferred during composite fabrication. For comparing purposes and on 

the prospect of potential substitution in mechanical and tribological applications of polymeric 

composites, chopped strand mat (CSM) glass fibre was used as comparison since it possesses 

close or similar characteristics to betelnut fibres (i.e. randomly distributed).  

 

Mechanical performance of T-BFRP vs. CSM-GFRP composites 

Mechanical performance of the T-BFRP and CSM-GFRP composites are presented in Fig. 7. A 

visual examination on Fig. 7a reveals different trends of mechanical properties for the two types 
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of composites, i.e., T-BFRP vs. CSM-GFRP. It can be seen that the T-BFRP composite exhibits 

competitive performance in tensile, flexural and compression strength compared to the CSM-

GFRP composite. From the figure, the T-BFRP composite showed up to 1.16 %, 17.39 % and 

4.92 % in variation for tensile, flexural and compression tests compared to the latter. 

With fibre to resin ratio of about 48 %vol used during composite fabrication for both betelnut 

and CSM glass fibres, the T-BFRP composite has hardness of about 8.54 % higher compared to 

CSM-GFRP; Fig. 7b. Thus, as suggested by Tsukada et al.
34

 and Hariharan et al. 
35

, T-BFRP 

composite can be made applicable to applications where hardness is of an important factor such 

as in the making of partition boards, doors, window panels and ceilings. 

Though betelnut fibres’ mechanical properties (i.e. tensile, flexural & compression) are 

lower than those of glass fibres, their specific properties, especially fibre stiffness, is are 

comparable to the stated values of glass fibres. Fig. 8 shows a typical average load-displacement 

diagram for the glass and treated betelnut fibre through single fibre pullout test (SFPT). The 

figure indicates that the betelnut fibre exhibits ductile like behavior during the test where the 

maximum pullout force was about 16 N at fibre elongation of about 4 mm. However, glass fibre 

exhibits a maximum pullout force of about 17 N at a shorter fibre elongation of about 1.5 mm, 

(i.e. brittle behavior). 

 

Tribological performance of T-BFRP vs. CSM-GFRP composites 

The wear and frictional performance of the T-BFRP and CSM-GFRP composites at dry and wet 

contact conditions are presented in Figs. 9a & b. T-BFRP composite showed superiority in wear 

of about 98 % for dry and 90.8 % for wet tests while the friction was low by about 9.4 % and 80 

% for the dry and wet tests compared to the latter. These significant improvements in wear and 
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friction property propose the T-BFRP composite to be a potential candidate to substitute the 

latter concerning applications related to tribology. Further analysis on the worn surfaces of the 

composites will be discussed below with the assistance of SEM images. 

 

 

 

Temperature performance of T-BFRP vs. CSM-GFRP composites 

The temperature performance for T-BFRP and CSM-GFRP composites at dry and wet contact 

conditions are presented in Fig. 10. Fig. 10a shows the temperature profiles of the two different 

composites at different sliding distances. The measurements were taken at every one minute of 

time interval for a total sliding distance of 6.72 km throughout the dry and wet tribological tests. 

From Fig. 10a, it can be seen that there is a gradual increment between the interfaces 

temperature (< 4.5 km) for both composites subjected to dry contact condition. This is namely 

due to the effect of thermo mechanical loading evidenced during adhesive dry sliding. At longer 

sliding distance (> 4.5 km), temperature rise was more significant due to the fact that there was 

severe plastic deformation by the composites. Hence, the resinous regions were easily deformed 

thereby lowering the adhesion of fibres/matrix which enhanced the material removal process. 

Further examination of the composite worn surfaces will be discussed as below with the 

assistance of SEM images. When the composites were subjected to wet contact conditions, the 

effect of thermo mechanical loading was completely eliminated when water was supplied to the 

interfaces (i.e. test specimen and counterface). Thus, interface temperature of the T-BFRP and 

CSM-GFRP composite test specimens was constant throughout the test which is confirmed by 

the temperature profiles in Fig. 10a. To see the effect of different fibre reinforcements in 
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polyester composites on average interface temperatures, Fig. 10b is presented. From the figure, 

reinforcing polyester with betelnut fibres have lowered the interface temperature by about 17% 

compared to glass fibres under dry adhesive test. Interface temperature for CSM-GFRP 

composite was high due to the brittle effects of glass fibres which could influence the transition 

of wear mechanism from adhesive to abrasive between the interacting zones (i.e. test specimen 

and counterface). In the case of wet contact condition, supplied water at the interfaces kept the 

interacting surfaces clean from generated wear debris while maintaining the contact temperature 

constant throughout the test. 

To further clarify the results, Fig. 11 is presented where it explains the possible wear 

mechanism that took place during the adhesive wear test subjected to dry and wet contact 

conditions for the T-BFRP and CSM-GFRP composites. From Fig. 11a, when the composite test 

specimen (soft) is in contact with the stainless steel counterface (hard), three contact mechanism 

may had took place. They are known as ‘cold welding’ and ‘rupture’ due to the uneven surface 

of the test specimen. Besides that, fine wear particles which can’t be detected by the naked eyes 

may have also been present between the interfaces. When the sliding starts, rupture of the uneven 

surface from the test specimen takes place causing a third body between the interfaces. This third 

body (from the resinous or fibrous region) with the trapped wear particles might have been in 

circular or linear motion between the interfaces during the adhesive dry sliding causing film 

transfer onto the counterface. Therefore, possible wear mechanism on the top surface of the film 

transfer could be ‘galling’ (due to circular motion of wear debris between the interfaces) or 

‘scoring’ (due to linear motion of wear debris between the interfaces). This can cause high 

resistance of relative motion during the adhesive dry test and thus contributing to a much higher 

interfaces temperature. 
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On the contrary, Fig. 11b illustrates a different sliding mechanism for the wet test during 

start up. From the figure, the gap formed between the composite test specimen and the 

counterface due to the formation of ‘cold welding’ and trapped wear particles is now filled with 

water. It is also to be highlighted here that water was introduced to the counterface before the 

adhesive wet test was carried out. Hence, during the test, deformation of ‘cold welding’ and 

rupture of the uneven joints of the composite test specimen werewas instantly washed away from 

the interfaces with the help of flowing clean water. This eliminates the presence of third body 

(from the resinous or fibrous region) and the formation of film transfer at the interface. Thus, the 

ease of relative motion due to the presence of water contributes to a drastic drop in static to 

kinetic friction coefficient. Besides, thermo-mechanical loading is also eliminated since water 

had also played a role to keep the counterface temperature constant throughout the test.  

 

Morphology of the worn surfaces through SEM analysis 

Surface morphology of the samples was analyzed through SEM (model: EVO 50 ZEISS-7636). 

Before taking the SEM images, the samples were coated with a thin layer of gold using ion 

sputtering (model: JEOL, JFC-1600). All observing conditions were performed at room 

temperature of 28 ± 5 
o
C and at humidity level of 80 ± 10 %. 

The worn surfaces for the different composites subjected to dry contact condition at 

1000X magnification is presented in Fig. 12. Different wear features are evidenced on the worn 

surfaces subjected to different fibre reinforcements in polyester composites. An obvious sign of 

plastic deformation can be observed at the resinous regions for the T-BFRP composite associated 

with sign of soften polyester, Fig. 12a. This is due to the high intimate contact of the test 

specimen and counterface yield the polyester to melt with the influence of severe thermo 
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mechanical loading at longer sliding distances, 6.72 km. In regard to this, part of the fibres 

received poor support from the polyester matrix which contributed to the high material removal 

rate, i.e. from the fibrous regions. This is confirmed with the sign of fine debris evidenced on the 

worn surface. On the other hand, there were signs of embedded fibres in the matrix on the worn 

surface, Fig. 12a. This could be due to the effects of trichomes on the betelnut fibre surfaces 

which assisted to lock the fibres firmly in the matrix preventing complete fibre pullout. 

On the contrary, the wear damage was much significant when CSM-GFRP composite was 

subjected to the counterface, Fig. 12b. It can be seen that the glass fibre wasere deformed at 

longer sliding distance, 6.72 km. Besides that, there was also sign of fractured and deformed 

polyester at the resinous regions. This further caused damage onto the glass fibre, i.e. the fibre 

was easily broken apart due to the excessive sliding shear force by the worn polyester debris. 

Arguably, the combined brittle nature of worn polyester debris and glass fibres led to the 

formation of fine/coarse abrasive wear particles as evidenced in Fig. 12b. This further reduced 

the wear performance of the composite namely when these particles interacted at the contacting 

zones by enhancing the material removal rate by a factor of 99e-8 mm
3
/m

.
N compared to the T-

BFRP composite (c.f. Fig. 10a). Moreover, loose abrasive particles and polyester debris at the 

rubbing zone assisted to increase the friction coefficient and interfaces temperature which is 

confirmed by Fig. 9b and Fig. 10. 

Due to the fact that T-BFRP composite revealed less damage than the CSM-GFRP 

composite, possible suggestion of the proposed T-BFRP composite can be in non-structural 

applications 
1, 4

 since many attempts have been made to use natural fibre composites in place of 

glass fibre composites. Addition to this, Dahlke et al.
36

, Quig et al.
 37

, Fukuhara 
38

 and Leao et 

al.
39

 reported that a good number of automotive components previously made with glass fibre 
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composites are now being manufactured using environmentally friendly composites. Moreover, 

Eberle & Franze 
40

 further claimed that automotive giants such as Daimler Chrysler and 

Mercedes Benz are continuously producing low weight vehicles over the recent years using huge 

amount of renewable fibres in composite fabrication since for every 1 kg of weight reduction of 

an automobile vehicle, as much as 5.95 to 8.4 liters of petrol can be saved. Secondly, as 

suggested by Bhushan 
41

 and Cirino et al.
42

, the proposed T-BFRP composite can be used as 

bearing and sliding materials subjected to tribological loading conditions due to their low friction 

conditions (i.e. wet conditions), high wear resistance and easy process ability properties.  

Though T-BFRP composite offer several benefits as compared to CSM-GFRP composite, 

several major technical considerations must be addressed before the engineering, scientific and 

commercial communities gain the confidence to enable wide-scale acceptance, particularly in 

exterior parts where a Class A surface finish is required. To name but a few, these challenges 

include in depth investigation on the homogenization of the fibres’ properties and a full 

understanding of the degree of polymerization and crystallization, adhesion between the fibre 

and matrix, moisture repellence, and flame retardant properties. 

 

 

 

 

 

Conclusions 

Based on the results obtained, the following conclusions are drawn: 
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1. Betelnut fibres have commercial benefits. This may be attributed to the surface roughness 

of the trichomes which enhance the interlocking of the betelnut fibre in the matrix and the 

peculiar property of the betelnut fibrous region itself. 

2. In mechanical properties, T-BFRP composite was found to have equivalent property in 

tensile and compression strengths while flexural strength was lower by about 15% 

compared to CSM-GFRP composite. Hardness test for the T-BFRP composite was 10 % 

superior compared to CSM-GFRP composite.  

3. In tribological properties, specific wear rate for T-BFRP composite was low by about 

98% and 90.8% in both dry and wet tests compared to CSM-GFRP composite. 

Meanwhile the friction coefficient for T-BFRP composite was reduced by about 9.4 % 

and 80 % for the dry and wet tests as compared to the latter. Interfaces temperature of the 

T-BFRP composite was 17% lower for the dry test as compared to the CSM-GFRP 

composite. Under wet contact conditions, both composites did not show any significant 

effects of interfaces temperature. 
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Figure legend 

Fig. 1: Steps of betelnut fibre preparation 

Fig. 2: Micrographs of glass fibres, untreated and treated betelnut fibres 

Fig. 3: SEM images showing randomly distributed betelnut and CSM glass fibre in mat 

form 

Fig. 4: Schematic illustration of different test specimens for conducting the mechanical test 

Fig. 5: SEM of the virgin test specimens and corresponding schematic illustration of the 

specimen showing fibre orientation and sliding direction 

Fig. 6: Corresponding standard deviation for the different types of composites 

Fig. 7: Mechanical performance of T-BFRP and CSM-GFRP composites 

Fig. 8: SFPT for glass and treated betelnut fibre  

Fig. 9: Tribological performance of T-BFRP and CSM-GFRP composites 

Fig. 10: Temperature performance of the T-BFRP and CSM-GFRP composites at  

dry and wet conditions  

Fig: 11: Adhesive sliding mechanism for dry and wet contact conditions 

wet conditions 

Fig. 12: SEM images of the T-BFRP and CSM-GFRP composites at dry contact condition 

subjected to an applied load of 30 N, 6.72 km sliding distance and 2.8 m/s of counterface 

sliding velocity 
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a) Raw betelnuts  

 

b) Fibre extraction 

Extracted fibres 

Rotation 

 
 

c) Extracted fibre 
 

 

d) Fibre mats  
Fig. 1: Steps of betelnut fiber preparation 
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Foreign substance 

 
a) Untreated betelnut fibers 

Trichomes 

Rougher outer surface 

 
b) Treated betelnut fibers 

 

Smooth surfaces 

 
c) Glass fibres 

Fig. 2: Micrographs of glass fibres, untreated and treated betelnut fibers 
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Mag = 25 X EHT = 12.00 kV 
 

100 µm 
  

a) Betelnut fiber mat 

 

Mag = 25 X EHT = 25.00 kV 
 

100 µm 
  

b) CSM glass fiber mat  

Fig. 3: SEM images showing randomly distributed betelnut and CSM glass fiber in mat 
form 
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a) Tensile test specimen [24] 

 

15mm 

100mm 

10mm 

 
b) Flexural test specimen [25] 

15mm 

15mm 

 

10mm 

 
c) Compression and hardness test specimen [26] 

Fig. 4: Schematic illustration of different test specimens for conducting the mechanical 
test 
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Fiber 

Polyester 

Mag = 370 X EHT = 12.00 kV 
 

370 µm 
  

a) Virgin surface of the T-BFRP composite test specimen 

 

Fiber 

Polyester 

Mag = 300 X EHT = 20.00 kV 
 

1 µm 
  

b) Virgin surface of the CSM-GFRP composite test 

specimen 
 

Stainless steel counterface 
Sliding  
direction 

Polyester 

Fibre mat 

Normal load 

 
c) Schematic illustration of T-BFRP composite showing 

fiber mats orientation with respect to the sliding direction 
 

Fig. 5: SEM of the virgin test specimens and corresponding schematic illustration of the 
specimen showing fibre orientation and sliding direction 
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Fig. 6: Corresponding standard deviation for the different types of composites 
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a) Mechanical properties
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Fig. 7: Mechanical performance of T-BFRP and CSM-GFRP composites 
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Fig. 8: SFPT for glass and treated betelnut fibre 
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a) Specific wear rate
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b) Friction coefficient
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Fig. 9: Tribological performance of T-BFRP and CSM-GFRP composites 
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a) Temperature profiles of the composites
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b) Average interface temperature of the composites
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Fig. 10: Temperature performance of the T-BFRP and CSM-GFRP composites at  

dry and wet conditions 
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a) Sliding mechanism for adhesive dry test 
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b) Sliding mechanism for adhesive wet test 
 

Fig: 11: Adhesive sliding mechanism for dry and wet contact conditions 
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Fig. 12: SEM images of the T-BFRP and CSM-GFRP composites at dry contact 

condition subjected to an applied load of 30 N, 6.72 km sliding distance and 2.8 m/s of 

counterface sliding velocity 
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Table 1: Average chemical composition (%) for betelnut fiber 23 
 

Chemical composition Average (%) 

Cellulose: 35.0 – 64.8 
Lignin: 13.0 – 26.0 
Pectin: 9.2 – 15.4 

Nitrogen: 1.0 – 1.1 
Potassium pentoxide: 0.4 – 0.5 

Potassium oxide: 1.0 – 1.5 

 

Table 2: Comparison between betelnut and CSM-glass fibers 
 

Parameters Betelnut fibers CSM-glass fibers 

Density: 0.019-0.021 g/cm3 0.045-0.064 g/cm3 18 

Cost: Highly abundant  $1.50-$2.00/kg 6, 30 

Renewability: Yes No 
Recyclability: Yes No 

Energy consumption: Low High 
Distribution: Wide Wide 
CO2 neutral: Yes No 

Abrasion to machines: Low – fibres are soft Yes – fibres are hard 
Health risk: No Yes 

Disposal: Biodegradable Non-biodegradable 

 

Table 3: Basic properties of betelnut and CSM glass fibers 
 

Parameters: Betelnut fibers CSM glass fibers 

Thickness of the mat: 150 – 180 µm 160 – 200 µm 
Length of individual fibers in mat: 20 – 50 mm 10 – 60 mm 

Range of the fiber diameters in mat: 100 µm – 200 µm 50 µm – 100 µm 
Density of fiber mat: 200 ± 10 g/m2 450 g/m2 

Average distance of fibers in the mat: 83 ± 5 µm 60 ± 5 µm 
Size of the mat: 100 mm x 100 mm 

Randomly distributed 
48vol.% 

Orientation of fibres in the mat: 
Fibre loading: 

 
Table 4: Specifications of the resin and hardener32 

 

Resin: Unsaturated polyester Butanox M-60 

Color: Colorless 
Density: 1370 kg/m3 (20oC) 

Hardness: 84 ± 2 ShoreD  

Hardener: Methyl Ethyl Ketone Peroxide (MEKP) 

Color: Colorless 
Density: 1170 kg/m3 (20oC) 

Specific gravity: 1.05 – 1.06 (20oC) 
Percentage used: 1.25% (wt) 
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