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Nonlinear stability in seismic waves
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Abstract

We analyse a passive system featuring a neutrally stable short-
wavelength mode. The system is modelled by the Nikolaevskiy equation
relevant to elastic waves, reaction-diffusion systems and convection.
After quickly falling onto a centre manifold, the system then exhibits
slow decay. Using the centre manifold technique, we deduce that the
decay law is the inverse square root of time. The result is confirmed by
direct computations of the system.
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1 Introduction

The Nikolaevskiy equation was originally derived for elastic and seismic
waves [1] aiming, in particular, to explain the experimentally detected dom-
inant frequencies. Subsequently, the equation was also linked to Rayleigh-
Benard convection [2] and reaction-diffusion systems [3]–[5]. The initial focus
within the equation was on the formation and stability of patterns such
as stationary rolls, which emerge from an instability in a spatially uniform
state [6]–[9]. Further attention was given to more complex dynamics, espe-
cially chaos [3, 10]. Generally, the Nikolaevskiy equation includes two groups
of terms—the dispersion terms and dissipation/excitation terms, with the
latter group being responsible for the growth or decay of the patterns. In this
paper we focus on the effects of dissipation/excitation in seismic waves, so for
simplicity we consider the nondimensional Nikolaevskiy equation

∂tv = A∂
2
xv+ C∂

4
xv+ F∂

6
xv+Gv∂xv , (1)

where A > 0 , C > 0 , F > 0 and G are constants. For reaction-diffusion
systems the dispersion terms are not part of the equation. We integrate (1)
over x and rewrite it in terms of the derivative, v = ∂xu . After rescaling
u = αu1 , x = βx1 and t = γt1 and requiring that three coefficients in the
new equation be units (this is achieved by appropriate selection of the three
scaling factors α, β and γ) we obtain

∂tu = ∂2xu+ α∂4xu+ ∂6xu+ (∂xu)
2 + E , (2)

where the subscripts ‘1’ are omitted for simplicity, E is the constant of
integration, and α is a free parameter. In the context of elastic waves,
v represents the velocity in the reference frame moving with the wave. In the
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Figure 1: The increment λ versus wave number k for an active system (dashed
line) and passive system (as an example, the mode with N = 3 is shown as
neutral).
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context of reaction-diffusion systems, u stands for the phase of oscillations of
chemical concentration and E = 0 (the transition u→ u+ Et eliminates E).

When α > 2 , for a small perturbation ∼ eλt+ikx of the stationary state
u =const, the curve representing the increment λ(k) as a function of the wave
number k is partly located above zero (see the dashed line in Figure 1). Niko-
laevskiy [1] introduced the wave number k∗ corresponding to the maximum
of λ which translates into the dominant seismic frequency ν = ck∗ , where
c is the average wave velocity.

As recently argued [11], for a passive system, such as an elastic wave, self-
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Figure 2: The Voigt element consisting of masses, springs and friction pistons.

 
 

excitation is prohibited because of the absence of internal energy sources.
In other words, rocks at rest (corresponding to the state v(x, 0) = 0 or
u(x, 0) = const) cannot start moving on their own. Strunin [11] provided
a more detailed discussion, but here observe Figure 2 which illustrates the
absence of internal sources of energy in the Voigt element, used to derive the
stress-strain relation [1, 6]. In applications to systems where an internal energy
supply exists, self-excitation is possible; for example, in reaction-diffusion
systems where energy is internally generated by reactions [4]. These arguments
do not mean that the dominant frequency cannot be explained within the
Nikolaevskiy equation, but, in our view, the interpretation of this frequency
needs to be modified. The dominant frequency mode is the one that exhibits
the slowest decay relative to the other modes, rather than fastest growth. Such
a mode survives for longer periods of time compared to the other modes, and
thus is the one recorded experimentally. Accordingly, the curve λ(k) should
lie entirely below zero, as shown by the solid lines in Figure 1). This leads
to the question of how the decay progresses in time. Although the decaying
dynamics may be less interesting compared to nontrivial pattern formation
in systems with self-excitation (such as stationary or chaotic patterns in the
excited Nikolaevskiy equation), they still deserve attention.
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Upon adopting periodic boundary conditions, simulating a closed loop of
elastic material, we expand into the Fourier series

u(x, t) =
∞∑

n=−∞An(t)e
inkx . (3)

Here A−n = A∗
n to ensure that u is real-valued.

For elastic waves, since the original equation is written in terms of the
velocity v, not u (see (1)), the adopted condition of periodicity of u is a more
strict condition than periodicity of v: generally, the function u is allowed to
be non-periodic.

Substituting (3) into (2) we obtain

dAn

dt
=

[
−(kn)2 + α(kn)4 − (kn)6

]
An − k

2

∞∑
m=−∞An−mAmm(n−m) . (4)

For the linearised equation (4), the modes behave as An ∼ eλnt with

λn = −(kn)2 + α(kn)4 − (kn)6 .

Consider the limiting case of α = 2 , when one of the modes is only neutrally
stable. The increment curve λ(k) touches zero when nk = 1 . Therefore, if
such a neutral mode is chosen to be the Nth Fourier mode, then the wave
number is

k = 1/N . (5)

Thus, under the linearised version of the model, we have one neutral mode
and a discrete set of exponentially decaying modes. This situation is ideal
for the centre manifold technique; it allows us to asymptotically describe the
decaying dynamics at large times. Inserting α = 2 and (5) into (4) gives

dAn

dt
=

[
−
(n
N

)2
+ 2

(n
N

)4
−
(n
N

)6]
An−

(
1

N

)2 ∞∑
m=−∞An−mAmm(n−m) .

(6)
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2 Decay on the centre manifold

We start with the case when the neutral mode is the first, N = 1 . Using
N = 1 in (6) and restricting attention to a few leading modes,

dA1

dt
= 4A2A

∗
1 + 12A3A

∗
2 + · · · ,

dA2

dt
=− 36A2 −A21 + 6A3A

∗
1 + · · · ,

dA3

dt
=− 576A3 − 4A1A2 + · · · .

(7)

Centre manifold theory states that the modes which experience a stage of ex-
ponential decay caused by the linear terms (in (7) these modes are A2 and A3),
drop onto a surface, or manifold, where they then evolve slowly [12]. On the
manifold these fast modes become connected to the neutral mode by a stiff
algebraic expression. As a consequence, they become dependent on time not
independently but via the neutral mode. We seek the modes A2 and A3 in
the form of power series in A1 and A∗

1 :

A2 = a1A1 + b1A
∗
1

+ a2A1A
∗
1 +m2A

2
1 + n2A

∗
1
2

+ a3A
2
1A

∗
1 + b3A

∗
1
2A1 + g3A

3
1 + h3A

∗
1
3

+w4A
4
1 + x4A

3
1A

∗
1 + y4A

2
1A

∗
1
2 + z4A1A

∗
1
3 + l4A

∗
1
4 + · · · , (8)

A3 = p1A1 + q1A
∗
1

+ p2A1A
∗
1 + f2A

2
1 + k2A

∗
1
2

+ p3A
2
1A

∗
1 + q3A

∗
1
2A1 + v3A

3
1 + y3A

∗
1
3 + · · · . (9)

We substitute (8) and (9) into the second and third equations of (7) while
simultaneously replacing dA1/dt with the first equation of (7). Collecting
like powers of A1, A∗

1 and their products with the help of computer algebra
(Maxima) we obtain equations for the leading non-zero coefficients of the
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series (8) and (9),

m2 =−
1

36
, v3 = −

4

576
, m2 =

1

5184
,

x4 =
6v3 − 8m

2
2

36
= −

13

93312
. (10)

The structure of the power series is (the coefficients and stars are omitted)

A2 ∼ A
2
1 +A41 +A61 + · · · ,

A3 ∼ A31 +A51 +A71 + · · · ,
A4 ∼ A41 +A61 +A81 + · · · ,

and similarly for higher orders. Based on (10) and (7), the slow evolution on
the manifold, up to the fifth order, is

dA1

dt
= 4(m2A

2
1 + x4A

3
1A

∗
1 + · · · )A∗

1 + 12(v3A
3
1 + · · · )(m2A

∗
1
2 + · · · )

= −
1

9
A21A

∗
1 −

29

46656
A31 (A

∗
1)
2
+ · · · . (11)

A simple approximation is derived when we retain only the leading term
in (11),

dA1

dt
= −

1

9
A21A

∗
1 . (12)

For the real and imaginary parts defined by A1 = Z+ iY we get the system

dZ

dt
= −

1

9

(
Z3 + ZY2

)
,

dY

dt
= −

1

9

(
Z2Y + Y3

)
, (13)

which has the solution
Z =

Z0√
t
, Y =

Y0√
t
, (14)
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for constant Z0 and Y0. Further, inserting (14) into (13) we establish that
Z0 and Y0 are connected by

Z20 + Y
2
0 =

9

2
. (15)

The individual values of Z0 and Y0 depend on a specific trajectory governed
by (7).

Figure 3 is an example of a numerical solution of the three-component sys-
tem (7), obtained using the solver of Roberts [13]. On the vertical axis we
plot the imaginary and real parts multiplied by

√
t. This way we show the

asymptotic stage (t→ ∞) more vividly as the curve becomes horizontal over
a longer range relative to the early stage of the dynamics. In contrast, the
traditional log-log plot would give a much shorter horizontal stretch of the
asymptotic stage, athough this is the stage of interest. Recall that the 1/

√
t

regime is asymptotic, therefore the early stage in Figure 3 is to be ignored.

The settling of the curves in Figure 3 to constants proves that Re A1 and
Im A1 are eventually proportional to 1/

√
t. An inspection of the settled levels

confirms the prediction (15).

Now consider the case when the neutral mode is the second node, N = 2 .
Using N = 2 and n = 1, 2, 3, 4 in (6) we obtain

dA1

dt
=−

9

64
A1 + 6A4A

∗
3 + 3A3A

∗
2 +A2A

∗
1 + · · · ,

dA2

dt
= 4A4A

∗
2 +

3

2
A3A

∗
1 −

1

4
A21 + · · · ,

dA3

dt
= −

255

64
A3 + 2A4A

∗
1 −A1A2 + · · · ,

dA4

dt
=− 36A4 −

3

2
A1A3 −A

2
2 + · · · . (16)

The modes A1, A3 and A4 are sought in the form of a power series in A2 and
A∗
2 , leading to the centre manifolds

A1 = 0 , A3 = 0 , A4 = −
1

36
A22 −

1

5832
A32A

∗
2 + · · · . (17)
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Figure 3: Settling of the inverse-square-root law for the neutral mode N = 1
from (7); the initial condition is A1 = A2 = A3 = 1+ i .

This results in the slow motion on the manifold according to

dA2

dt
= −

1

9
A22A

∗
2 −

1

1458
A32A

∗
2
2 + · · · . (18)

To leading order, equation (18) has the same form as (12), so that the neutral
mode decays as the inverse square root of time. This is confirmed by the
numerical solution of (16), see Figure 4. Figure 5 shows the exponential decay
of A1 and A3 towards their respective centre manifolds A1 = 0 and A3 = 0 .

For the case of the neutral mode with N = 3 , equation (6) gives the system
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Figure 4: Settling of the inverse-square-root law for the neutral mode N = 2
from (16); the initial condition is A1 = A2 = A3 = A4 = 1+ i .

of equations
dA1

dt
=−

64

729
A1 +

8

3
A4A

∗
3 +

4

3
A3A

∗
2 +

4

9
A2A

∗
1 +

40

9
A5A

∗
4 +

60

9
A6A

∗
5 + · · · ,

dA2

dt
=−

100

729
A2 +

16

9
A4A

∗
2 +

3

2
A3A

∗
1 −

1

9
A21 +

10

3
A5A

∗
3 +

48

9
A6A

∗
4 + · · · ,

dA3

dt
=

8

9
A4A

∗
1 −

4

9
A1A2 +

20

9
A5A

∗
2 + 4A6A

∗
3 + · · · ,

dA4

dt
=−

784

729
A4 −

3

2
A1A3 −

4

9
A22 +

10

3
A5A

∗
1 +

24

9
A6A

∗
2 + · · · ,

dA5

dt
=−

6400

729
A5 −

8

9
A1A4 −

4

3
A2A3 +

12

9
A6A

∗
1 + · · · ,

dA6

dt
=− 36A6 −

10

9
A1A5 −

16

9
A2A4 −A

2
3 + · · · . (19)
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Figure 5: The exponential decay (asymptotically) of A1 and A3 for the case
N = 2 .
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Figure 6: Settling of the inverse-square-root law for the neutral mode N = 3
from (19); the initial condition is A1 = A2 = A3 = A4 = A5 = A6 = 1+ i .

Analysis of (19) results in the centre manifolds

A1 = 0 , A2 = 0 , A4 = 0 , A5 = 0 , A6 = −
1

36
A23 + · · · . (20)

Then, the slow motion of the neutral mode on the centre manifold is governed
by

dA3

dt
= −

1

9
A23A

∗
3 + · · · . (21)

The numerical solutions of (19), shown in Figure 6 and Figure 7, confirm the
centre manifolds (20) and the law (21).
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Figure 7: The exponential decay (asymptotically) of A1, A2, A4 and A5 for
the case N = 3 .
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3 Conclusions

Elastic waves and similar systems are characterised by the spectrum with
dominant frequency/wave number. We interpret this dominant frequency
as the one belonging to the mode with slowest decay (not fastest growth as
usually adopted). We investigated the critical case when this mode is neutrally
stable and, therefore, the decay occurs on a centre manifold. Asymptotic
inverse-square-root laws for the decay are derived and confirmed numerically.
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