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A B S T R A C T

Meteorological conditions are important factors in the development of fungal diseases in winter wheat and are
the main inputs of the decision support systems used to forecast disease and thus determine timing for efficacious
fungicide application. This study uses the Fourier transform method (FTM) to characterize temporal patterns of
meteorological conditions between two neighbouring experimental sites used in a regional fungal disease
monitoring and forecasting experiment in Luxembourg. Three meteorological variables (air temperature, relative
humidity, and precipitation) were included, all conducive to infection of wheat by Zymoseptoria tritici cause of
Septoria leaf blotch (STB) in winter wheat, from 2006 to 2009. The intraday, diurnal, dekadal and intra-seasonal
variations of the meteorological variables were assessed using FTM, and the impact of existing contrasts between
sites on the development of STB was analyzed. Although STB severities varied between sites and years
(P≤ 0.0003), the results indicated that the two sites presented the same patterns of meteorological conditions
when compared at larger temporal scales (diurnal to intra-seasonal scales, with time periods> 11 h). However,
the intraday variations of all the variables were well discriminated between the sites and were highly correlated
to STB severities. Our findings highlight and confirm the importance of intraday meteorological variation in the
development of STB in winter wheat fields. Furthermore, the FTM approach has potential for identifying mi-
croclimatic conditions prevailing at given sites and could help in improving the prediction of disease forecast
models used in regional warning systems.

1. Introduction

Integrated disease management based on decision support systems
and disease forecasting models has become important more recently
due to the increased need for sustainable practices in agriculture
(Moreau and Maraite, 2000; Verreet et al., 2000; Audsley et al., 2005;
Langvad and Noe, 2006). Reliable and timely information on plant
fungal diseases epidemics are crucial for optimizing the use of fungi-
cides while ensuring economic benefits (Fones and Gurr, 2015).

Plant disease epidemics of fungal origin result from the interaction
between the pathogens, presence of susceptible hosts, and favourable
meteorological conditions. Meteorological variables are most often the
data used as inputs of disease forecasting models for fungal diseases of

winter wheat (Triticum aestivum L.). Among the meteorological condi-
tions, air temperature (T), relative humidity (RH), and precipitation
(namely rainfall, R), are by far the most important. Numerous studies
(e.g., Shaw and Royle, 1993; Eyal, 1999; Gladders et al., 2001; Lovell
et al., 2004) have highlighted the effects of T, RH, and R on infection
and progress of Septoria leaf blotch (STB, caused by Zymoseptoria tritici
(Desm.) Quaedvlieg & Crous) in winter wheat. For the development of
STB, T determines the rate at which fungal development and spore
dispersal processes occur (Eyal, 1999; Gladders et al., 2001). A pro-
longed period of T below −2 °C has adverse effects on the fungus re-
sulting in low survival and thus reduces inoculum to infect the wheat
crop (Shaw and Royle, 1993). This, in turn, leads to a late or very slow
development of the epidemic in the following spring even if weather

http://dx.doi.org/10.1016/j.fcr.2017.07.012
Received 2 May 2017; Received in revised form 17 July 2017; Accepted 19 July 2017

⁎ Corresponding author.
E-mail address: philippe.delfosse@list.lu (P. Delfosse).

Field Crops Research 213 (2017) 12–20

0378-4290/ © 2017 Published by Elsevier B.V.

MARK

http://www.sciencedirect.com/science/journal/03784290
http://www.elsevier.com/locate/fcr
http://dx.doi.org/10.1016/j.fcr.2017.07.012
http://dx.doi.org/10.1016/j.fcr.2017.07.012
mailto:philippe.delfosse@list.lu
http://dx.doi.org/10.1016/j.fcr.2017.07.012
http://crossmark.crossref.org/dialog/?doi=10.1016/j.fcr.2017.07.012&domain=pdf


conditions are favourable (Lovell et al., 2004; El Jarroudi et al., 2009;
Beyer et al., 2012). RH can affect the rate of plant disease epidemic
development because micro-organisms generally grow (spore germi-
nation and infection) only when there is sufficient moisture
(RH ≥ 60%) (Moreau and Maraite, 1999; El Jarroudi et al., 2009;
Suffert et al., 2011). Rainfall is a key requirement for the development
of STB as it allows for the swelling of pycnidia and aids the dispersal of
spores in splash to the upper leaves of wheat plant (Shaw and Royle,
1993; Lovell et al., 1997; Gladders et al., 2001).

For disease risk assessments at the regional scale, the meteorological
data used as main inputs for forecasting models originate from me-
teorological networks with automatic weather stations (AWS) (Gladders
et al., 2001; Magarey et al., 2001; El Jarroudi et al., 2009; Te Beest
et al., 2009; Beyer et al., 2012; Junk et al., 2016). Most often, these
forecast models are based solely on the meteorological data from the
nearest AWS or interpolated from a set of neighbouring sites. Inter-
polation procedures such as the nearest neighbour method, kriging, co-
kriging, or inverse weighted-distance method are typically performed
(Lam, 1983; Hartkamp et al., 1999; DeGaetano and Belcher, 2007).
Although these schemes are used widely, they do suffer from some
potential sources of error, e.g. difficulty in capturing small scale var-
iation, failure to account for topographical features, etc. Furthermore,
the choice of location for an AWS within a field or the distance between
AWS locations are both factors that hamper accurate forecasting of
fungal diseases at regional scales (Jones et al., 2012). Thus, to develop
reliable disease forecasting models that can be applied efficiently in
operational disease monitoring (i.e. embedded in a decision support
system and applied at sub-regional and regional scales), a detailed
analysis of weather data, both spatially and temporally, is of great
importance (Henshall et al., 2016; Donatelli et al., 2017). Indeed, the
difference in weather conditions between neighbouring wheat fields
(5–15 km, straight line) is often not perceptible, yet crucial in disease
forecast models.

Fourier transform methods (FTMs) constitute one of the most widely
used operations to obtain a spectral representation of a time series of
discrete data samples (Chatfield, 1996; Blommfield, 2000; Brillinger,
2002; Craigmile and Guttorp, 2011; Mikosch and Zhao, 2014). Al-
though they have been used for several and various purposes (e.g.
Estrada-Pena et al., 2014; Mikosch and Zhao, 2014), their application
for weather data analysis and plant disease development has yet to be
fully investigated. In this study we investigate the causes of difference
in STB expression across neighbouring locations based on the analysis
of weather patterns at various temporal scales. First, a comprehensive
theoretical framework of linear spectral analyses based on FTM, along
with a conceptual framework, was devised. Then the approach was
applied to a case study of two neighbouring sites included in a regional
fungal disease monitoring and forecasting experiment.

2. Materials and methods

2.1. Theoretical framework of the Fourier transform method

FTM principles have been discussed extensively (e.g., Jones, 1964;
Bergland, 1969; Chatfield, 1996; Blommfield, 2000). Only some general
principles were summarized in the following paragraphs.

A filtered series Yt is a weighted sum of the time series (the discrete
data samples) Xt defined as,
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and F (λ)X is the Fourier transform (or discrete-time Fourier transform)
of the time series Xt given for a finite duration sequence of length n by
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where X kˆ ( ) represents the frequency domain function and Xt the time
domain function. Using this pair of formulae, we can move back and
forth between a time representation of data = −X( )t t n0 , ..., 1 and its fre-
quency domain representation = −X( ˆ )t n0, .... , 1 that is, the discrete
Fourier transform is invertible. Also, it is possible to modify the fre-
quency spectrum in order to change the time representation, i.e. to
allow the filtering.

The Fourier transform of the linear filter a (denoted B) is called the
transfer function of the linear filter. The transfer function B describes
how the amplitude (corresponding to the standard deviation) is trans-
ferred from X to Y, and the quantity B 2 describes how the energy
(variance) is transferred from the original series X to the filtered series
Y. For a simple moving average filter q defined through = ∈a a( )k k Z ,
with
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2.2. Conceptual approach of the FTM

The conceptual approach uses a mathematical function called KZ
transformation (Zurbenko, 1986; Hogrefe et al., 2000) which is based
on a linear filter q. This linear filter is a simple moving average iterated
k times. The function KZ is identified as a function of the variables X, q,
k, where X is a given meteorological variable, q is the linear filter as-
sociated to the moving average, and k refers to the iterations (in our
study k varies between 1 and 3). KZ can be expressed in terms of the
Fourier transform involving a series of equations with a sampling in-
terval (or time frequency) 1/2 Δt (indeed the time scale is a minimum
of 2 h, thus 1/2 Δt = 1 h). To find the power transfer function for the
KZ(q, k)-function, the rule of sequential filtering is applied, that is,
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Based on the KZ-function and the filter q, a given meteorological
variable is decomposed in a series of filtered data. For each
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meteorological variable, we have:
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Where t= time (hours); i= the index; q = the filter; Xt = the actual
value at time t, and Yt = the predicted value at time t; Zt is the iteration
of the predicted value Yt at time t (i.e. its Fourier transform) and Wt is
the Fourier transform of the iteration Zt. The same moving average filter
q is applied here 3 times sequentially (k = 3) giving,
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The different meteorological variables considered for our study are
T, RH and R. Thus, the previous equations can be summarized as fol-
lows for T, RH, and R:
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Depending on the value of the linear filter, the amplitude of the
analysed parameter can be viewed within day (intraday), between days
(diurnal), within a dekade (dekadal) or within the season (intra-sea-
sonal). The value of the filter is low (i.e. q = 1) for small changes and
increases gradually as the variation becomes important. The choice of
temporal windows was based on Horne and Baliunas (1986) and
Gilliam et al. (2006).

Thus, we define the intraday variation, WID, as the tendency of each
meteorological variable in the day (< 11 h) from a moving average
filter q= 1, given by,

WID = Xt − Wt(q = 1).

The intraday variation for T, RH, and R is calculated as:
TID = T − T13, RHID = RH − RH13, and RID = R − R13, respectively.

The diurnal variation, WDU, refers to the tendency of each meteor-
ological variable between 11 and 48 h which follows in general the set
of intraday variations. It is given by,

WDU = Wt (q = 1) − Wt(q = 6); that is, for T, RH, and R,
TDU = T24 = T13 − T63, RH24 = RH13 − RH63, and R24 = R13 − R63,
respectively.

The dekadal variation, WDK, is the tendency of each meteorological
variable between 48 h to 40 days. WDK is given by,

WDK = Wt (q = 6) − Wt (q = 120); that is, for T, RH, and R,
TDK = T63 − T120, RHDK = RH63 − RH120, and RDK = R63 − R120, re-
spectively.

The intra-seasonal variation, WIS, represents the tendency over a
long period (> 40 days) and it given by (moving average with filter
q = 120),

WIS =Wt(q = 120); that is, for T, RH, and R, TIS = T120,
RHIS = RH120, and RIS = R120, respectively.

2.3. Study sites, disease infection simulation, field experiments and disease
severity assessment

To characterize the patterns of T, RH and R, the FTM was performed
using data from two sites, one located at Christnach (49°47′N, 6°16′E,

Table 1
Agronomic information for winter wheat fields at the study sites in Luxembourg during the 2006–2009 cropping seasons.

Site Year Cultivar STB susceptibilitya Sowing date Harvest date Previous crop

Christnach 2006 Flair 4 12 Oct. 2005 25 Jul. 2006 Maize
2007 Tommi 4 12 Oct. 2006 26 Jul. 2007 Maize
2008 Flair 4 23 Oct. 2007 5 Aug. 2008 Maize
2009 Boomer 5 23 Oct. 2008 6 Aug. 2009 Maize

Everlange 2006 Flair 4 10 Oct. 2005 7 Aug. 2006 Fallow
2007 Flair 4 10 Oct. 2006 26 Jul. 2007 Pea
2008 Tommi 4 8 Oct. 2007 5 Aug. 2008 Fallow
2009 Achat 5 13 Oct. 2008 6 Aug. 2009 Oilseed rape

a SLB susceptibility: Scale 1 (low susceptibility) to 9 (high susceptibility) (BSA 2008).

Fig. 1. Boxplot of the average Septoria leaf blotch (STB) severity during GS 75 to GS 85/
87 by site (A) and year (B). Data from control plots were used (n = 4 per site and per
year).
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elevation 313 m) and the second at Everlange (49°46′N, 5°57′E, eleva-
tion 309 m). Both sites are located in the Gutland region which is a
region of lower elevation consisting of hills and broad valleys
(Luxembourg has two topographic regions; the second being the
Oesling region). The distance (straight line) between the sites is ap-
proximately 15 km. Hourly meteorological data covering the
2006–2009 growing seasons for winter wheat were used (Table 1).
They were retrieved from a web-based database (www.agrimeteo.lu)
and processed using an automatic data processing chain for quality
check and gap filling (Junk et al., 2008).

STB incidence and severity were monitored during the 2006–2009
cropping seasons. Wheat varieties with the same susceptibility to STB
were grown at the two sites (Table 1). The trials were designed in a
randomized block with four replicates (one replicate plot = 12 m2).
Each replicate block consisted of fungicide treated and non-treated
(control) plots, but only assessments from control plots were used in
this study. The assessments of STB severity were made weekly from
growth stage (GS) 29/30 to GS 85/87 (Zadoks et al., 1974) on the same
10 plants. Care was taken to minimize errors in disease estimates by
training raters using standard area diagrams and disease assessment
software and ensuring the same raters assessed the same experiments in
each season (El Jarroudi et al., 2014).

Along with field observations, the STB development at the selected
sites was also simulated using the disease forecast model PROCULTURE
(Moreau and Maraite, 2000). The ability of the PROCULTURE model to
reliably predict STB occurrences at the two sites has been successfully
demonstrated (see El Jarroudi et al., 2009). In PROCULTURE, specific
meteorological conditions must be met for infection to occur: during a
2-h rainfall event, the rainfall in the first hour must be at least 0.1 mm,
followed by a second hour of rainfall with at least 0.5 mm. In addition
to the rainfall, RH must be higher than 60% during the 16 h following
the rain event, and T must remain above 4 °C for 24 h (Moreau and
Maraite, 1999; El Jarroudi et al., 2009).

2.4. Data analysis

Observed meteorological data from the 1 May–30 June period were
filtered based on the conceptual FTM approach defined previously. The
1 May–30 June period includes the critical period for STB infections in
wheat at the two study sites, i.e. the period spanning the development
of the three upper leaves L1-L3 (L1 being the flag leaf) when STB in-
fections are most likely to result in yield reduction (El Jarroudi et al.,
2012; El Jarroudi et al., 2015). Indeed, these upper leaves are the main
contributors to grain filling, and therefore to grain yield, in wheat. STB
development conditions on these leaves were compared over the same
period. We assumed that spores of Z. tritici are present in sufficient
numbers to infect leaves at both sites and that any difference in STB
development was due solely to the meteorological conditions. Contrasts
between sites at the different temporal scales (i.e., intraday, diurnal,
dekadal and intra-seasonal, as defined above) were assessed through

Table 2
Timing of the development of wheat plants (growth stages) at Christnach and Everlange
in Luxembourg during the 2006–2009 cropping seasons.

Site Year GS45a GS59 GS69 GS75 GS85

Christnach 2006 29 May 12 June 19 June 26 June n.a.b

2007 14 May 21 May 29 May 11 June 18 June
2008 26 May 02 June 09 June 30 June 07 July
2009 25 May 02 June 15 June 22 June 29 June

Everlange 2006 29 May 06 June 12 June 26 June n.a.
2007 14 May 21 May 29 May 11 June 18 June
2008 26 May 02 June 09 June 30 June 07 July
2009 25 May 02 June 15 June 22 June 29 June

a GS: Zadoks’ growth stage (Zadoks et al., 1974).
b Not applicable.

Fig. 2. Septoria leaf blotch (STB) severity on the three upper leaves L1-L3 (L1 being the
flag leaf) from the last week of May to the end of June at Christnach (dashed lines) and
Everlange (solid lines) during the 2006–2009 cropping seasons. The start period was
determined by the first appearances of STB on L3. At both sites this occurred during the
last 2 weeks of May during the study period. In 2008 at Christnach the maximum STB
severity percentage on L1 was 0.2%.
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correlation analyses using their non-filtered and filtered meteorological
data. Additionally, the average STB severity on L1-L3 during GS 75 to
GS 85/87 stages were compared between sites over the study period to
determine whether there were any difference in disease severity. The
progress of STB on the three upper leaves was assessed based on the
variations of the meteorological variables at these different temporal
scales. All analyses were performed in R (R Development Core Team,
2014) and MS Excel (Microsoft, Redmond, WA).

3. Results

3.1. Septoria leaf blotch severity at the study sites

The average severity of STB during GS 75 to GS 85/87 over the
study period for the two sites is presented in Fig. 1. The two way
ANOVA carried out on the average disease severity by site and year
indicated a statistically significant difference between sites [F(1,24)
= 40.24, P < 0.0001] and between years [F(3,24) = 9.19,
P = 0.0003], as well as a significant interaction between the two effects
[F(3,24) = 15.31, P < 0.0001]. Normality checks and Levene’s test
were carried out and the assumptions were met. Tukey’s HSD post hoc
tests were carried out. For the years 2006 and 2008, the average STB
severity at Everlange was significantly different to that of Christnach
(P = 0.0008 and< 0.0001, respectively). For 2007 and 2009 no sta-
tistical difference was found.

The temporal development of the wheat plant is indicated by the
dates at which each growth stage was attained (Table 2). There was a
range in STB severity among sites and years during the critical period
for STB development on L1-L3 (Fig. 2). Overall, there was a trend for an
increase in STB on L1-L3 throughout the season each year, with marked
differences between sites for the same leaf in all years, except in 2007.
The differences were particularly striking during June. For example, on
19 June 2006, the severity of STB was 13% on L3 at Christnach, while it
was 74% at Everlange (Fig. 2). In 2007 and 2009, the difference in STB
severity on all leaves was less pronounced (< 10%), except on L3 in
2009. It should be noted that other foliar diseases including wheat leaf
rust and powdery mildew were observed at the selected sites during the
study period (El Jarroudi et al., 2012). Indeed, during GS 77 and GS 87
the average severity of wheat leaf rust on the three upper leaves over
the 4-year period ranged from 4 to 15% at Everlange (with most severe
rust in 2008 and 2009) and 1–22% at Christnach (with most severe rust
in 2007). The average severity of powdery mildew was less than 5% at
both sites during the same period.

3.2. Temporal patterns of air temperature, relative humidity and rainfall

The FTM approach was used to distinguish the patterns of meteor-
ological conditions between the two sites over the study period. Non-
filtered data for T and RH were highly correlated (r ≥ 0.726,
P < 0.0001; Table 3). However, non-filtered data for R showed a range
in correlation (r = 0.165 to 0.957, P < 0.0001) between sites over the
4-year study period. With filters applied, the intraday variation for T,
RH and R were contrasted between the two sites. The correlations (r)
ranged from 0.430 to 0.553 (P < 0.0001), 0.008 (P = 0.7632) to
0.418 (P < 0.0001), and −0.049 (P= 0.0819) to 0.480
(P < 0.0001), for T, RH and R respectively (Table 3). At the diurnal to
intra-seasonal scales association among meteorological variables be-
tween the two sites remained strong for both T and RH (r ≥ 0.683,
P < 0.0001; Table 3). However for R, weak associations between the
two sites were observed at the intra-seasonal scale in 2007 and 2008
(r = 0.335 and −0.210, respectively; P < 0.0001 for both correla-
tions), and strong associations were mostly found for diurnal to intra-
seasonal scales in 2006 and 2009 (Table 3). A graphical trend analysis
of the meteorological variables was performed. An example of the
variations at the different temporal scales over the period May-June
2006 is shown in Fig. 3A–L. The trends presented here for 2006 did not
differ greatly from the same period in the remaining years (Supple-
mentary Figs. S1–S3). The trend and amplitude in T in 2006 were
pronounced at the intraday (Fig. 3A) and diurnal scales (Fig. 3D), with
values at Everlange higher in most cases (particularly at the intraday
scale). There was a clear difference in patterns of RH between sites at
the intraday scale (Fig. 3B). Overall, the trends at the diurnal and de-
kadal scales were similar (Fig. 3E and H), although there were some
discernible differences in amplitude at the intra-seasonal scales
(Fig. 3K). Noticeable differences in trend and amplitude in R at all
temporal scales were found between Christnach and Everlange (Fig. 3C,
F, I and L). The amplitudes recorded for R over larger temporal scales
(dekadal to intra-seasonal) might be explained by the time required for
rain-bearing cloud to move from one site to the other, or by localised,
small-scale convective events (summer storms). Overall, these findings
provide insight into the contrast in meteorological patterns at different
scales between the two sites, which are only 15 km apart; for each of
the meteorological variables this was noticeable at small temporal
scales, namely at the intraday scale.

3.3. Relationships between STB development and the meteorological
patterns

The number of infection days predicted by PROCULTURE during the

Table 3
Pearson’s product-moment correlation coefficients of selected meteorological variables between Everlange and Christnach over the 2006–2009 cropping seasons. The comparisons were
performed using hourly raw data (before filtering) and filtered data (filtering using a Fourier transform method at different temporal scales) over the period 1 May–30 June. The intra-
seasonal scale include an extended period (April–June).

Year Variable Before filtering After filtering

Intraday scale (< 11 h) Diurnal scale (11–48 h) Dekadal scale (2–40 d) Intra-seasonal scale (> >40 d)

2006 Air temperature 0.949 0.453 0.968 0.973 0.999
Relative humidity 0.881 0.370 0.915 0.910 0.981
Rainfall 0.543 0.273 0.731 0.898 0.999

2007 Air temperature 0.954 0.537 0.959 0.979 0.994
Relative humidity 0.781 0.008a 0.683 0.846 0.991
Rainfall 0.502 0.299 0.663 0.740 0.335

2008 Air temperature 0.956 0.430 0.968 0.992 0.998
Relative humidity 0.925 0.308 0.950 0.959 0.938
Rainfall 0.165 −0.049b 0.445 0.515 −0.210

2009 Air temperature 0.976 0.553 0.983 0.987 0.982
Relative humidity 0.726 0.418 0.971 0.968 0.998
Rainfall 0.957 0.480 0.875 0.954 0.992

Note: P < 0.0001 in all cases except in a and b where P= 0.7 and 0.08, respectively.
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period critical for infection with Z. tritici indicates that there was a
relatively high number of days at Everlange in 2006, 2007 and 2009
(Table 4), although the STB severity observed at Everlange was higher
compared to that at Christnach in all years, except 2007 (Fig. 2). For the
period May-June 2006, a detailed analysis of Z. tritici favourable in-
fection periods and intraday variations in meteorological variables

indicates that on 15 June 2006 Z. tritici favourable infection periods
were recorded at Everlange but not at Christnach (Fig. 4). The ampli-
tudes in T and RH at the intraday scale were very pronounced at
Everlange, while at Christnach only variations in temperature were
pronounced. Thus, while the comparison based on non-filtered data
resulted in similar meteorological pattern between sites (and would

Fig. 3. Example of the variations in air temperature (T), relative humidity (RH) and rainfall (R) at different temporal scales at Christnach (orange lines) and Everlange black lines). A–C:
intraday variation of T, RH and R, respectively. D–F: diurnal variation of T, RH and R, respectively. G–I: dekadal variation of T, RH and R, respectively. J–L: dekadal variation of T, RH and
R, respectively. The intraday, diurnal and dekadal scales are computed over the period 1 May–30 June 2006. Whereas the intra-seasonal scale is computed over the period October
2005–June 2006. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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have not explained the differences relating to infection conditions), the
combined effects of intraday variation of T and RH provide valuable
information and a better basis for understanding differences between
sites. Similar differences in conditions were observed in the different
cropping seasons (for example, in years 2007 and 2008, Supplementary
Figs. S4 and S5, respectively).

Furthermore, an analysis of PROCULTURE outputs shows a differ-
ence between the two sites and the existence of an offset for the in-
fection periods. An example is given in Fig. 5 for illustration purpose. In
this case, at Everlange L5 was infected on 1 April, whereas L4 and L3
were infected on 1 May, and L2 and L1 on 7 June. However, at
Christnach, although L5-L3 were infected during the same period as at
Everlange, L2 and L1 were infected almost one week earlier (end of
May).

For instance, if the meteorological conditions T = 4 °C, RH = 90%,
and R = 0.1 mm were recorded at 2 p.m. at Everlange, and T = 3 °C,
RH = 92%, and R = 0 mm were recorded at the same time at
Christnach, PROCULTURE would indicate the start of an infection
period only at Everlange (with subsequent STB development being
more severe at this site); whilst the comparison of meteorological
conditions would give a good correlation between the two sites and
thus suggest similar development of STB. In such cases the spectral
decomposition analysis of T, RH and R would reveal the difference
between sites at the intraday scale rather than at the diurnal scale over
the period considered, thereby providing the insight needed to differ-
entiate disease development at the two sites.

4. Discussion

Developing an adequate disease forecasting model requires detailed
analysis of available weather data in relation to disease development.

The density of the weather stations in the field, as well as the applicable
area represented by each of the weather stations are critical features in
determining the accuracy of the interpolated values for each variable.
Given the potential adverse impacts of fungal diseases and the en-
vironmental concerns of fungicides, sophisticated forecasting models
are needed to minimise and improve the timing of control measures (Te
Beest et al., 2009; Lucas, 2011; Shtienberg, 2013; Small et al., 2015). In
operational warning systems for plant diseases at regional scale, a close
examination of stations that exhibit quite similar patterns of weather
conditions, but have crops with contrasting disease development de-
spite cultivars with the same susceptibility, deserves special attention as
a basis for the improvement of the forecasting systems.

We investigated the application of the Fourier transform method for
frequency domain analysis of three meteorological variables (T, RH and
R) between two relatively close sites which are part of the framework of
an operational warning system for fungal diseases of winter wheat in
Luxembourg (El Jarroudi et al., 2015). Findings indicate that there was
a contrast in intraday variations between the two sites for all the me-
teorological variables. But when compared at diurnal, dekadal and
intra-seasonal scales, the sites behaved quite similarly. The difference
between sites at the intraday temporal scale can be explained, partly, by
the type of rain, its persistence and its distribution in space and time,
especially during the stem elongation phase of winter wheat (GS 30 to
GS 39) where convective events (e.g. summer storms) are frequent in
Luxembourg. Mahtour et al. (2011) noted that radar technology pro-
vided better estimates of rainfall occurrence over a continuous space
than AWS, but deriving absolute precipitation values from radar data is
still challenging. The topography, direction of prevailing winds or dis-
tance from large bodies of water, not evaluated in detail in this study,
may also explain the amplitude fluctuations of the meteorological
variables studied between the sites (Kuuseoks et al., 1997; Magarey
et al., 2001).

The analysis of the variations of meteorological conditions at dif-
ferent temporal scales and STB progress on the three upper leaves in
winter wheat was based on the assumption that at both sites spore
availability and dispersal were the same in a given year. Fungal disease
epidemic progress from small to larger scales may vary greatly within
and between sites. The impact of Z. tritici spore dispersal at the study
sites was not investigated here. Although modelling spore dispersal at
different spatial scales remains challenging (namely because of the
complexity of inoculum dispersal processes, the difficulty of collecting
empirical dispersal data at relevant spatial scales, and the mathematical

Table 4
The number of infection days for Zymoseptoria tritici (cause of Septoria leaf blotch) as
simulated by the PROCULTURE model between 1 May and 30 June at Christnach and
Everlange during the 2006–2009 cropping season.

Year Christnach Everlange

2006 9 16
2007 16 23
2008 11 12
2009 14 16

Fig. 4. The simulated number of infections periods
for Zymoseptoria tritici (cause of Septoria leaf blotch)
during the period 1 May–30 June 2006 at Christnach
and Everlange. An example of the variations in
temperature and relative humidity at the intra-day
scale for the 15 June is shown in order to demon-
strate the difference between sites.
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complexity of atmospheric dispersion models; Shaw, 1994a,b; Brown
and Hovmøller, 2002; Filipe and Maule, 2004; Garrett et al., 2011),
warning systems like those employed in Luxembourg for fungal disease
monitoring would benefit from such integrated FTM approaches and
spore dispersal modelling. This remains an area open for further re-
search.

Fourier-transformed data/methods have been used in many epide-
miological studies, including the description of plant pathogen popu-
lation progress throughout cropping seasons (e.g. Shaw, 1994b),
building outperforming data sets for characterizing the abiotic niches of
parasitic organisms (e.g. Estrada-Pena et al., 2014), or as automation
method for fungal spore detection (e.g. Hahn, 2002). In our case study
STB was selected and studied in relation to filtered patterns of T, RH
and R. A similar FTM approach can be used with other meteorological
data and for other economically important fungal pathogens for ex-
plaining the spatial variations in disease. For reliable monitoring of
fungal diseases at regional scales, the spatial distribution and

representativeness of weather data is crucial. FTM might be a suitable
approach to determine the minimum distance between fixed stations by
analysing the intraday amplitudes of the primary meteorological vari-
ables. Determining this distance will enable informed decisions to be
made regarding the number and positioning of weather stations, in turn
allowing a better differentiation between sites and thereby ensuring an
accurate, site-specific disease forecast model. The FTM approach has
potential for specifying the microclimate conditions prevailing at given
sites and could help improve the prediction accuracy of disease forecast
models involved in regional warning systems and decision support
systems.
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lines), observed start date of leaf senescence (blue bars), actual STB severity (%, primary infections pink areas, secondary infections dark pinAk areas) and simulated STB severity
(primary infections light brown, and secondary ones dark brown areas) for leaves L5 to L1 (L1 being the flag leaf). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in the
online version, at http://dx.doi.org/10.1016/j.fcr.2017.07.012.
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