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Abstract: Water temperature (WT) is a crucial factor indicating the quality of water in the river system.
Given the significant variability in water quality, it is vital to devise more precise methods to forecast
temperature in river systems and assess the water quality. This study designs and evaluates a new
explainable artificial intelligence and hybrid machine-learning framework tailored for hourly and
daily surface WT predictions for case studies in the Menindee region, focusing on the Weir 32 site. The
proposed hybrid framework was designed by coupling a nonstationary signal processing method of
Multivariate Variational Mode Decomposition (MVMD) with a bidirectional long short-term memory
network (BiLSTM). The study has also employed a combination of in situ measurements with gridded
and simulation datasets in the testing phase to rigorously assess the predictive performance of the
newly designed MVMD-BiLSTM alongside other benchmarked models. In accordance with the
outcomes of the statistical score metrics and visual infographics of the predicted and observed WT,
the objective model displayed superior predictive performance against other benchmarked models.
For instance, the MVMD-BiLSTM model captured the lowest Root Mean Square Percentage Error
(RMSPE) values of 9.70% and 6.34% for the hourly and daily forecasts, respectively, at Weir 32.
Further application of this proposed model reproduced the overall dynamics of the daily WT in
Burtundy (RMSPE = 7.88% and Mean Absolute Percentage Error (MAPE) = 5.78%) and Pooncarie
(RMSPE = 8.39% and MAPE = 5.89%), confirming that the gridded data effectively capture the
overall WT dynamics at these locations. The overall explainable artificial intelligence (xAI) results,
based on Local Interpretable Model-Agnostic Explanations (LIME), indicate that air temperature
(AT) was the most significant contributor towards predicting WT. The superior capabilities of the
proposed MVMD-BiLSTM model through this case study consolidate its potential in forecasting WT.

Keywords: water temperature; hybrid modeling; MVMD; deep learning; Menindee

1. Introduction

Water temperature (WT) is a critical physical indicator of river water quality, with pre-
vious studies reporting a link between climate change and river WT [1,2]. Climate change
and variations in land use have led to significant variability in the quantity and quality of
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inland waters worldwide [3]. According to [4], the mean surface air temperature (AT) has
increased by more than 1.4 °C since 1910, with 2019 recorded as the warmest year. Day
and night-time temperatures have risen across Australia locations throughout the year. In
addition, owing to a combination of factors, drier conditions have been observed across the
south-east and south-west, with years of below-average rainfall occurring more frequently.
Droughts and extreme temperatures in the Murray–Darling Basin are two critical factors
affecting inflow volume, and these factors have led to fish kills [5–8]. Therefore, due to
the significant water quality variability in the Murray–Darling Basin, accurate methods for
predicting WT in the river system are crucial for assessing water quality.

Fish kill events occur frequently in the Murray–Darling Basin [6,9,10], and in recent
years in the Menindee region, hundreds of thousands of large fish kills have occurred in the
Darling Basin. Evidence shows that these fish killings were produced by low flows and low-
oxygen conditions, high flows (also called blackwater events) and low-oxygen conditions,
or the stranding of fish when there is insufficient water [5]. Fish kills are associated with
poor water quality in river systems and affect local and regional communities; hence, WT
prediction can inform management interventions.

WT models can be classified into physical-based (process-based, mechanistic, or
deterministic) and statistical or stochastic models [11–13]. Physical-based models predict
WT by quantifying energy fluxes at the air–water interface and have been applied with
hourly and daily resolutions. Statistical or stochastic models primarily depend on data for
predicting WT and have been used with daily, weekly, and monthly resolutions [11].

Physical-based models simulate the processes that control river temperature by con-
sidering hydrological, topographic, channel topologic, and morphologic factors [12]. These
models require many inputs to assess flux components (advection, conduction, convection,
and radiation), and the significance of energy exchanges at the riverbed can differ by loca-
tion [14]. Most physical-based river temperature models, according to [15–18], are highly
parameterized and require considerable data. Therefore, intermediate approaches have
been proposed, such as the Air2Stream model, which is a hybrid statistical–physical model.
This model combines a physical-based equation with a stochastic calibration of model
parameters and is based on a given discharge scenario and AT [19]. Two mathematical
models have been developed in Australia for river systems in south-eastern Australia [1],
and for a shallow tidal wetland calibrated for hot, dry, and windy conditions in south-west
Western Australia [20]. However, they are completely localized, and their applicability to
other locations and conditions presents limitations due to site-specific temperature and
water dynamics.

According to [13], statistical/stochastic models can be classified as linear regression,
autoregressive, hybrid, or artificial intelligence (AI) models. AI models do not require data
related to initial conditions that are necessary to simulate any given target variable in a
physical-based model. Instead, an AI-based model prediction is largely based on a reason-
ably lengthy dataset that provides input features to construct a reliable model. Over the
last few decades, a large and growing body of literature has explored the prediction of WT
using AI-inspired models. These models can be divided into four main categories: artificial
neural networks (ANNs), adaptive neuro-fuzzy inference systems (ANFIS), gaussian pro-
cess regression (GPR), and other AI models [13]. ANNs are widely used in water modeling.
The multilayer perceptron (MLP) is the most basic ANN architecture. It has been used to
forecast river WTs in various studies across different time horizons: 10-min [21], hourly [22],
daily [23,24], and monthly [25]. ANFIS is a popular model, an adaptive network that inte-
grates fuzzy if–then rules to enhance the ability to adapt to classical ANNs [26]. Even when
ANFIS has been slightly more accurate in certain river stations than MLP, MLP neural net-
work models have generally outperformed ANFIS [27]. The underlying premises of GPR
are that the probability distribution is Gaussian, where prior knowledge is incorporated
as kernels, and uncertainty measures for predictions are provided [28]. In reference [29] is
proposed a daily stream WT prediction based on two GPR models describing long-term and
short-term components for both periodic and non-periodic changes. GPR performs well
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compared to traditional modeling approaches; however, ANNs surpass applications with
complex relationships and little knowledge regarding the underlying process. Other AI
models include the extreme learning machine [30], support vector machine [31], and hybrid
models. Certain hybrid models were proposed by [32], combining the Complete Ensemble
Empirical Mode Decomposition with Adaptive Noise technique, random forest (RF), and
extreme gradient boosting in their case study. Another hybrid model was proposed by [33],
who found that coupling variational mode decomposition (VMD) with machine-learning
(ML) methods could improve the accuracy of river WT prediction. However, the impact of
other signal processing methods on the accuracy of WT predictions remains unclear.

Recently, investigators have used deep learning (DL) to predict WT and enhance
performance. In reference [34] proposed a model using long short-term memory (LSTM)
and found that LSTM outperformed several other models in forecasting daily river WT.
Similarly, in reference [35] is developed a hybrid model based on an ANN to process
missing values, discrete wavelet transforms to divide data into low- and high-frequency
signals, and LSTM. This model outperformed the other models in terms of the different
evaluation metrics. However, few studies have explored the impact of DL networks on
river water temperature prediction; therefore, additional research on a DL method for
forecasting river WTs is required.

This study aims to design and test a new model for predicting surface WT using a
specific case study. The proposed model was improved by coupling the nonstationary signal
processing method, such as the Multivariate Variational Mode Decomposition (MVMD),
with DL predictive methods to achieve higher accuracy. Thus, this hybrid model was
denoted as MVMD-bidirectional long short-term memory (BiLSTM). The hybrid model
was developed to better understand WT changes in the Murray–Darling Basin River system,
focusing on Weir 32. Its applicability in similar locations in the same region is explored,
in situ measurements and gridded and simulation datasets are assessed, and explainable
artificial intelligence (xAI) is used to explain the model’s predictions.

The novelty and the scientific contributions of this study are summarized as follows:

(a) No prior study has developed a river water temperature using explainable artificial
intelligence and hybrid machine learning for the Menindee region in Australia, which
is an important ecological zone. Therefore, a primary contribution of our study is
to adopt the MVMD method to first decompose the original time-series data that
can enhance the predictive performance of the resulting MVMD-BiLSTM model for
this region.

(b) To further improve the proposed model, we have designed and applied the hybridized
model to predict the surface WT in the Menindee region that focuses on Weir 32. The
proposed model, termed MVMD-BiLSTM, has improved the prediction capability
and, therefore, makes a novel contribution to WT forecasting.

(c) To make the approach practical, we have evaluated the MVMD-BiLSTM model’s
effectiveness and accuracy with robust statistical score metrics and visual analysis of all
tested data alongside other decomposition-based and standalone benchmarked models.

(d) As an added contribution, we have examined the behavior of the proposed MVMD-
BiLSTM model outcomes at the local levels by incorporating for the first time the Local
Interpretable Model-Agnostic Explanations (LIME) and therefore contributed to an
xAI approach that has not been developed before for this specific purpose and study
region. The application of these explanation metrics, especially for WT prediction in
the present study region, has been largely absent in previous studies. Therefore, this
study attempts to explain how the proposed model achieves a specific result driven by
the model inputs across the different temporal ranges and for the seasons by testing
its efficacy at Weir 32.

(e) Our study also makes an important scientific contribution through accurate and
interpretable predictions of WT by the newly developed predictive system that can
facilitate the end-users to deliver a more precise understanding of the WT and the
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potential impact of its changes on aquatic organisms and ecological processes in
the river.

The remainder of this paper is organized as follows: Section 2 provides a theoretical
overview of the techniques used to construct the MVMD-BiLSTM model, including a
description of the MVMD method and benchmark models. Section 3 includes the details
of the study area, characteristics, data pre-processing, and prediction model development.
Results are presented and discussed in Section 4. Section 5 summarizes the main findings
of this study.

2. Theoretical Overview

In this study, we developed an MVMD-BiLSTM model for hourly and daily WT
predictions at Weir 32. What follows next are the theoretical details of the developed model,
including the objective (LSTM and Bidirectional LSTM) model, the benchmark AI models,
the Air2Stream physical model, and the data decomposition method.

2.1. The Objective (LSTM and Bidirectional LSTM) Model

LSTM is a recurrent neural network (RNN) designed to address the vanishing gradient
problem (difficult learning process), which impedes the learning process by preventing the
adjustments of weights in earlier layers during backpropagation [36].

A set of connected memory cells constitutes an LSTM layer that can remember previous
long-term time-series data. The content of the memory cells is modulated by the input,
output, and forget gates using the hyperbolic tangent (tanh) activation function to update
the cell. Gates control the flow of information internally, both within and outside the
network. These gates are used to remember multiple data items. First, to protect the
memory content from irrelevant perturbations, an input gate is introduced. This gate
generates a fraction (between 0 and 1) that is multiplied by the output of the tanh block,
therefore determining which content is allowed to enter. Second, the output gate protects
other units from irrelevant content stored in the current unit, therefore generating another
fraction. Third, the forget gate determines which content is relevant and which can be
ignored by generating a fraction between 0 and 1 (0 indicates that everything should be
forgotten, whereas 1.0 indicates that everything should be remembered). This is computed
as follows:

The input gate:

it = σ(Wih [ht−1], Wix [xt], bi) (1)

c̃t = tanh(Wch [ht−1], Wcx [xt], bc) (2)

The update for the LSTM memory:

ct = ft ∗ ct−1 + it ∗ (c̃t) (3)

The output gate:
ot = σ(Woh [ht−1], Wox [xt], bo) (4)

ht = ot ∗ tanh(ct) (5)

The forget gate:
ft = σ(W fh

[ht−1], W fx [xt], b f ) (6)

For the above equations, ct indicates the value to be updated, ot is the output value,
and ft is the output of the forget gate.

The decision is made based on the values of ht−1 and xt, bi, bo and b f are the bias
values, c̃t is the vector of new candidate values, σ and tanh are activation functions, and
Wi, Wc, Wo and W f are learnable weight matrices.

In this study, we have adopted BiLSTM, which is an extension of the LSTM algorithm
and is formed by two LSTM layers, forward and backward LSTM, without the limitation of
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simply using input information in a present future frame [37]. In principle, one layer of the
network processes inputs in the forward direction while another layer handles inputs in
the backward direction. The final output is then based on the combined outputs of the two
hidden layers. The accuracy of the model can then be improved as the LSTM algorithm is
applied twice [38], leading to an overall efficacy of the proposed BiLSTM model.

2.2. The Benchmark Models

In this study, the objective (BiLSTM) model has been benchmarked against several
competing models, such as the Gated Recurrent Network (GRU), Bidirectional GRU, and the
Air2Stream physical model. Furthermore, the proposed BiLSTM and all benchmark models
were also improved using the Multivariate Variational Mode Decomposition (MVMD)
method to improve the accuracy of the proposed models. In this study, the MVMD approach
has been utilized specifically to decompose all input and target features simultaneously,
which provides the model greater clarity on the patterns, trends, and important features to
create a reliable model [39]. Next, we discuss the overall theoretical details of these models.

2.2.1. Gated Recurrent Network and Bidirectional Gated Recurrent Network

The Gated Recurrent Network (GRU) is a variation of LSTM that reduces the number
of gates [40]. It consists of two gates: update and reset gates, which control the information
with activation functions. The update gate controls the extent to which new information is
used, while the reset gate regulates the degree to which previous information is discarded.
According to [41], this is computed as follows:

Activation of GRU using linear interpolation:

ht = (1 − zt)ht−1 + zt h̃t (7)

The update gate:
zt = σ(Wzxt + Uzht−1) (8)

The candidate activation:

h̃t = tanh(Wxt + U(rt ⊙ ht−1)) (9)

The reset gate:
rt = σ(Wrxt + Urht−1) (10)

The decision is made based on the values of ht−1 and xt, σ and tanh are activation
functions, Wz, W f , and Wr are the learnable weight matrices, and Uz, U and Ur are weights.

A Bidirectional Gated Recurrent Unit (BiGRU) is formed by two unidirectional GRU
layers facing opposite directions [42] with one layer processing the input forward and the
second layer processing it backward. The BiGRU is computed using these two GRU layers.
Bidirectional neural networks can capture the long-term relationships between sequence
pieces, enabling the handling of complex sequential dependencies.

2.2.2. Air2stream

Air2stream [19] is a physical process model that simulates WT using a minimal set of
driving fields to describe the complex processes of heat exchange and changes in WT at
a fixed point along a river. It is a hybrid model that combines heat transfer analysis with
the stochastic calibration of model parameters to determine the daily average river WT. A
reduction in the complexity of the process structure resulted in a set of eight parameters.
The model could subsequently be simplified further under specific assumptions to yield
even simpler models with seven, five, four, and three parameters. Further details can
be found in the study conducted by [19,43]. The parameters were determined for each
site using a known daily discharge time series and WT by applying a particle swarm
optimization routine.
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This model depends only on daily AT and discharge. It is recommended to consider
discharge in the case of heavily regulated rivers, and it is not necessary to indicate the
location of upstream boundary conditions. The equation for the eight-parameter form of
the Air2Stream model is as follows:

dTw

dt
=

1
δ

(
a1 + a2Ta − a3Tw + θ(a5 + a6 cos(2π(

t
ty

− a7)))− a8Tw
)

(11)

where δ = θa4 and θ = Q
Q̄ , and where a1–a8 represents the eight model parameters estimated

through calibration. This calibration captures features such as the characteristics of the
river reach and local effects. Ta indicates the AT, Tw is the WT, ty represents the duration of
a year, and Q is discharge.

An application to approximately 60 river gauges in 5 catchments in South East Aus-
tralia [1] showed that parameterization using 7 parameters delivered the best results under
Australian conditions.

2.3. Multivariate Variational Mode Decomposition Method

In this study, we decomposed the original time series to develop an MVMD-BiLSTM
model using a data pre-processing technique called MVMD [44]. MVMD extends the VMD
algorithm, extracting multivariate modulated oscillations from input data and featuring a
mode-alignment property across multiple data channels. It decomposes a signal into new
components called intrinsic mode functions (IMFs). The sum of the IMFs and residuals
exactly recovers the original signal, as follows:

x(t) = ΣK
k=1 IMFK(t) + res(t) (12)

The mode number (K) can be selected by minimizing the bandwidth summation of
the modes, and each mode is derived by solving a variational problem as follows:

minimise{uk,c}{wk}{ΣkΣc||∂t[uk,c
+ (t)e−jwkt]||22} (13)

subject to Σkuk,c(t) = xc(t) (14)

With c = 1..C, and where ∂t is the partial derivative operation with respect to time, uk,c
+

is the analytic signal corresponding to uk,c(t), uk,c denotes the k (1 ≤ k ≤ K) mode in the r
data channel, K indicates the total number of modes, c is the data channel number, C is the
set of AM–FM components, e−jwkt is the complex exponential of frequency, wk is the center
frequencies of uk,c, and x(t) is the input data (original signal).

The optimization of the MVMD model aims to minimize the summation of the modes
(Equations (12) and (13)), which is solved using an alternate direction method of multipliers
(ADMM) approach until convergence. This can be described as follows:

1. Initialization
u1

k,c, w1
k , λ1 (15)

where λ is Lagrangian multipliers.
2. Mode update:

ûn+1
k,c (w) =

x̂c(w)− Σi ̸=kûi,c(w) + ( λ̂c(w)
2 )

1 + 2α(w − wk)2 (16)

with c = 1..C and k = 1. . . K, and where α is the penalty factor and is calculated based
on K.

3. Centre frequency update:

wn+1
k =

Σc
∫ ∞

0 w|ûk,c(w)|2dw)

Σc
∫ ∞

0 |ûk,c(w)|2dw)
(17)
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with k = 1. . . K.
4. Lagrangian multiplier operators update:

λn+1
c = λn

c + τ(xc − Σkun+1
k,c ) (18)

with c = 1. . . C.
5. Repeat 3–5 until convergence.

Further information is provided on how the ADMM approach is applied to solve the
MVMD optimization problem (see [44]).

3. Materials and Methods

This section details the study area, data, data pre-processing, development of the
prediction model, and metrics to evaluate performance. Together, these elements provide
an understanding of the study’s methodology and evaluation.

3.1. Study Site and Data

The development and evaluation of the proposed MVMD-BiLSTM model for hourly
and daily WT predictions were undertaken for a site immediately downstream of Menindee
Lakes, Weir 32. It is in the lower Darling River, New South Wales, Australia, and is part
of the Murray–Darling Basin River system. River flow exhibits significant variability,
with prolonged droughts and sudden flood events in certain years linked to large-scale
climatic patterns. This has led to problems related to blue-green algal blooms in the Darling
River and other rivers in the Murray–Darling Basin [45], and in recent years (2018/19
and 2023), to massive fish kill events not previously observed [8]. Two other downstream
sites (Pooncarie and Burtundy) were selected to test the daily MVMD-BiLSTM model.
Figure 1 shows the geographic locations of these sites, indicating the weather and water
monitoring stations that were considered for the provision of model input data for the
proposed MVMD-BiLSTM model to predict WT.

Biogeochemical processes are strongly associated with WT and flow hydrology. Thus,
the primary drivers of WT are meteorological and hydrological conditions. For this study,
meteorological data for the two weather stations were obtained from the Bureau of Meteo-
rology (BoM) [46]. Various WT drivers were available, including AT and relative humidity
(RH), which were recorded daily at 9:00 am for Menindee and twice daily for Pooncarie
(9:00 am and 3:00 pm), as well as daily minimum and maximum temperatures and daily
solar exposure for both sites. Due to the unavailability of mean temperature data, only
the daily minimum and maximum temperatures for these two locations were selected
from this source. Hydrological data were obtained from Water New South Wales (Water-
NSW) [47]. These data included WT, water level, and discharge, with annual, monthly,
daily, hourly, and 15 min data intervals for these locations. Thus, hourly data were collected
from WaterNSW for Weir 32, Pooncarie, and Burtundy.

We also used gridded climate data for locations without data records. Historical
climate records from the Scientific Information for Land Owners (SILO) [48] are accessible
for daily solar radiation and evaporation data for Australia, with a spatial resolution of
approximately 5 km × 5 km and a temporal resolution of 1-d for each location (Weir 32,
Pooncarie, and Burtundy). The data were used, selecting the nearest grid point from the
SILO database for the three locations.

The amount of data required for ML models depends on different factors, such as
the type of problem and model complexity. However, consistently measured data are not
available everywhere. Therefore, for this study to incorporate the hourly AT, solar radiation,
and RH into the features of the MVMD-BiLSTM model for Weir 32, we used simulated
gridded data from Meteoblue [49]. These data had a spatial resolution of 30 km × 30 km
and a temporal resolution of 1-h. To evaluate the performance of the MVMD-BiLSTM daily
model in the absence of data, the daily average air temperature (AT) from Meteoblue was
used for Pooncarie. For Burtundy, both the daily average and minimum ATs were utilized.
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Figure 1. The study site (Weir 32) and another two sites close by (Pooncarie and Burtundy) located
in the Murray–Darling Basin. The figure also includes the weather and water monitoring stations
from where data were extracted to develop and evaluate the proposed Multivariate Variational Mode
Decomposition (MVMD)-bidirectional long short-term memory (BiLSTM) model. WaterNSW: Water
New South Wales; BoM: Bureau of Meteorology; SILO: Scientific Information for Land Owner.

The target (WT) and predictor variables, along with their daily descriptive statistics,
are presented in Table 1. Notably, AT and RH data presented in this table were derived
from Meteoblue datasets, WT from WaterNSW, and shortwave solar radiation (SR) and
evaporation from SILO for these three locations.

Table 1. Descriptive statistics of the predictor (input) variables and the target variable (i.e., water
temperature) for the present study site at Weir 32 and the two nearby locations in the Murray–Darling
Basin from 1 January 2012 to 31 July 2023. The acronyms WT (°C), AT (°C), RH (%), SR (MJ/m2), and
EVA (mm) represent the predictors: water temperature, air temperature, relative humidity, shortwave
solar radiation, and evaporation, respectively.

Predictor Variable
Weir 32
Lat: 32.44◦ S
Lon: 142.38◦ E

Pooncarie
Lat: 33.39◦ S
Long: 142.57◦ E

Burtundy
Lat: 33.75◦ S
Long: 142.27◦ E

Mean WT
Minimum WT
Maximum WT
STD WT

19.288
9.688
32.621
5.663

20.435
8.063
36.966
7.103

18.814
8.092
32.192
5.746
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Table 1. Cont.

Predictor Variable
Weir 32
Lat: 32.44◦ S
Lon: 142.38◦ E

Pooncarie
Lat: 33.39◦ S
Long: 142.57◦ E

Burtundy
Lat: 33.75◦ S
Long: 142.27◦ E

Mean AT
Minimum AT
Maximum AT
STD AT

20.225
5.600
42.174
7.437

19.142
5.419
40.217
7.184

18.928
4.947
40.113
7.107

Mean RH
Minimum RH
Maximum RH
STD RH

43.078
6.375
93.458
16.418

47.044
6.833
92.792
16.612

47.900
6.875
92.667
16.522

Mean SR
Minimum SR
Maximum SR
STD SR

18.418
2.950
34.325
7.370

17.993
2.850
33.175
7.559

17.993
2.850
33.175
7.559

Mean EVA
Minimum EVA
Maximum EVA
STD EVA

4.122
0.525
9.575
2.271

3.970
0.500
9.250
2.274

3.970
0.500
9.250
2.274

3.2. Development of the Proposed Predictive Model

The proposed hybrid MVMD-BiLSTM (and standalone benchmark models) were
built using a Python Software environment 3.11.5, including packages for executing DL
algorithms: the TensorFlow [50] and Keras [51] 2.13.1 frameworks. These models were
executed using an Intel Core i7 @ 2.00 GHz processor and a 32.0 GB memory computer.
The model development stages are shown in Figure 2 and were as follows:

Figure 2. A schematic flowchart illustrating the steps used to develop the proposed MVMD-BiLSTM
model for the daily (d) and hourly (h) water temperature prediction at Weir 32. Note that AT = air
temperature, MNT = minimum air temperature, SR = shortwave solar radiation, RH = relative
humidity, EVA = evaporation, IMF = intrinsic mode function, xAI = explainable artificial intelligence
and LIME = Local Interpretable Model-Agnostic Explanations.

The model development phase involved proposing standalone (methods that function
independently) and hybrid (methods that function together) models using RNNs (LSTM,
BiLSTM, GRU, BiGRU) and inputs. For the hybrid modeling approach, input decomposi-
tion was performed using the MVMD method. These decomposed inputs were then fed
directly into the RNN models. Next, the standalone and hybrid models were compared in
terms of performance, and the models were selected based on the best global performance
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for hourly and daily predictions at Weir 32. Subsequently, xAI was applied using LIME
to elucidate individual predictions by season and generate a collection/family of local
explanations to provide an approximated global explanation (Figure 2).

3.2.1. Data Pre-Processing
Missing Values

Time series data must be complete, gap-free, and regular to feed the models. If
there are gaps (missing data), the impact must be evaluated to ensure that these gaps are
insignificant, and imputation and interpolation methods must be considered. To perform
the evaluation, the data were organized on an hourly and daily basis. The percentage of
missing data in this dataset was determined to be less than 5%. Using Little’s test [52] in
SPSS 29.0, an appropriate imputation method was selected. This test provides evidence
that the missing data of these features are not entirely random (MCAR). Therefore, at a
significance level of 0.05, they are either Missing At Random (MAR) or non-ignorable. In
principle, a MAR mechanism aims to describe systematic missingness of the data where
missing data depends partly on other data in the dataset but not on any missing value [53].
Consequently, this dataset exhibits a MAR data pattern. Thus, three imputation methods
and one interpolation method were explored to fill in the missing values of the features
from WaterNSW (WT, water level, and discharge). These methods included forward and
backward filling, mean imputation, and splines. The most appropriate imputation method
for these features was selected based on the accuracy of the metrics, data gap structure, and
the procedure proposed by [54].

Multivariate Variational Mode Decomposition Method

In this study, to develop the proposed MVMD-BiLSTM model, we applied the MVMD
method [44] as the foremost pre-processing step using MATLAB R2023b (see method
description in Section 2.3). MVMD was applied to the hybrid framework, where all input
time series were decomposed into IMFs and residuals. This enabled the analysis of the
data from a new perspective and yielded novel insights into inherent data that were not
observable using the complete data. In the multivariate framework, our specific interest
was in analyzing how different signals were related. Subsequently, the different signals
were fed directly into the ML models.

The solution parameters were set to their default values: The parameter defining
the bandwidth of extracted modes (α) was set to 2000, where α is calculated based on the
number of modes to be recovered (K). The timestep of the dual accent (τ) was set to 0, all
omega values start as uniformly distributed with (init) = 1, and the tolerance value for
converge of the ADMM algorithm (tol) was set to 1 × 10−7. In contrast, the number of
modes to be recovered (K) varied between three and ten, with the best results obtained
when K = 7. In this study, the number of IMFs was determined through a trial-and-error
process, and the most informative IMFs were selected using a two-step selection method.
First, the optimal IMF candidates were identified using a correlation matrix, and the IMFs
were subsequently removed based on their impact on the actual prediction accuracy.

3.2.2. Model Design Procedure

The hourly and daily time series were divided into two groups: training (80%) and
testing (20%). The training and testing sets were available for all seasons.

The following features were explored as inputs for the hourly and daily models: For
the hourly models, mean AT, RH, shortwave radiation, and water level were used. For
the daily models, the mean, minimum, and maximum ATs, mean shortwave radiation,
evaporation, and water level were explored. The water level does not play a role because it
was removed during the feature selection process. During this process, the impact of each
feature on the performance degradation of the model was verified, and when the water
level was removed, the accuracy of the model improved. The selected features are listed
in Table 2.
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Table 2. The set of input features used to construct the proposed hybrid MVMD-BiLSTM model
for 1-h and 1-d horizons. The acronyms AT, RH, SR, and EVA represent the predictors of water, air
temperature, shortwave solar radiation, relative humidity, and evaporation, respectively.

1-h Model Input Features 1-d Model Input Features

AT (◦C) AT (◦C)
SR (MJ/m2) SR (MJ/m2)
RH (%) Minimum Air Temperature MNT (◦C)

Evaporation–Morton’s shallow lake evaporation EVA (mm)

All input features were scaled using MinMaxScaler, normalizing them between zero
and one, which is standard practice in developing predictive models.

The prediction model used zero lags as inputs and the highest correlated significant
lag at 12 h for AT and RH in the 1-h time horizon model. For the 1-d time horizon model,
inputs at 0 d for the mean and minimum ATs and 0 and 12 d for solar radiation and
evaporation were used. However, another study could include lagged combinations of
hourly and daily inputs.

3.2.3. Hyperparameter Tuning

The optimal hyperparameters for the MVMD-BiLSTM and benchmarked models
were selected based on a grid search procedure, where, at every iteration, a model was
trained and evaluated using a subset of values until all combinations were evaluated.
This procedure is time-consuming and incurs a high computational cost; however, the
computational time was reduced once the optimal parameters were identified (<4 min).

In addition, the MVMD-BiLSTM model utilizes dropout to control overfitting during
the training period. The dropout layer randomly drops neurons by setting them to zero.
The frequency was set to 0.1, which represents the fraction of the units set to zero.

Table 3 details the proposed model’s optimal architecture. This includes the number of
neurons or units, the layers that are formed by these neurons, the epoch or cycle where all
the training dataset is trained in the neural network, the learning rate at which an algorithm
updates to determine the minimum weight value, the batch size or number of samples used
in one epoch, the dropout or fraction of units set to zero, the loss function that compares
observed and predicted values, and the optimizer that adjusts the parameters of the neural
network to minimize the loss function. It is important to note that these parameters were
determined by trial-and-error testing to arrive at optimal model parameters for hourly and
daily models.

Table 3. Parameter settings for 1-h and 1-d models including the datasets used for training and
testing the models.

Site Forecast Model Time Horizon Data Used Train/Test (%) Model Parameters

Weir 32 MVMD-BiLSTM 1-h

Train: 1 January 2012
–6 April 2021
Test: 7 April 2021–
31 July 2023

Train 80%
Test 20%

Layers = 2
Learning rate = 0.00975705
Neurons = 32
Epochs = 50
Batch_size = 512
Dropout = 0.1
Loss function = MSE
Optimizer = Adam SGD

Weir 32 MVMD-BiLSTM 1-d

Train: 1 January 2012
–6 April 2021
Test: 7 April 2021–
31 July 2023

Train 80%
Test 20%

Layers = 2
Learning rate = 0.0095
Neurons = 32
Epochs = 250
Batch_size = 256
Dropout = 0.1
Loss function = MSE
Optimizer = Adam SGD
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3.3. Model Performance Metrics

The objective model, denoted as MVMD-BiLSTM, was evaluated against the bench-
marked models applied in forecasting hourly (h) and daily (d) WTs at Weir 32 using different
metrics widely used for assessing models: Pearson’s correlation (r), Root Mean Square Error
(RMSE) (◦C), Mean Absolute Error (MAE) (◦C), modified Willmott’s index (WI), Nash
Sutcliffe Coefficient (NSE), Legate-McCabe Efficiency Index (LME), Root Mean Square
Percentage Error (RMSPE) (%), and Mean Absolute Percentage Error (MAPE) (%). These
model evaluation metrics are given as follows:

r =
Σ(yi − ȳ)(xi − x̄)√
Σ(yi − ȳ)2(xi − x̄)2

(19)

RMSE(◦C) =

√
(Σ(xi − yi)2)

n
(20)

MAE(◦C) =
|xi − yi|

n
(21)

WI = 1 −
Σn

i=1|xi − yi|
Σn

i=1(|yi − x̄ + xi − x̄|) (22)

NSE = 1 −
Σn

i=1(xi − yi)
2

Σn
i=1(xi − x̄)2 (23)

LME = 1 −
Σn

i=1|xi − yi|
Σn

i=1|xi − x̄| (24)

RMSPE(%) =

√√√√( 1
n

Σn
i=1

(
xi − yi

xi

)2
)
× 100 (25)

MAPE(%) =
1
n

Σn
i=1

(
xi − yi

xi

)
× 100 (26)

where xi is the observed WT, yi is the predicted WT, (x̄, ȳ) are the average observed and
predicted WTs, respectively, and n is the total number of data points. The values of r and
NSE range from −∞ to 1, where 1 is the ideal value for a perfect model. r records the level
of agreement between observations and predictions, and NSE assesses the ability of the
model to predict values different from the observed mean of the target variable. However,
NSE often overestimates larger values and neglects smaller values [55]. The RMSE and
MAE range from 0 to ∞, where 0 is the ideal value; they measure the goodness of the
model’s fit; however, their sensitivity to outliers is a common concern. The WI and LME
range from 0 to 1, where 1 is the ideal value. WI and LME have an advantage over r,
RMSE, and MAE because they do not give outliers unnecessary weight. The RMSPE and
MAPE range from 0 to 100%, where 0% is the ideal value, and they are measures of errors,
expressed as a percentage in relation to observations, and it is used to compare models
with different ranges; however if the observation is zero it is affected by a division error.

3.4. Explainability of Model Outcomes

In this study, we improved the practical utility of the proposed MVMD-BiLSTM
model using xAI methods. In principle, xAI methods can provide both local and global
explanations and interpretations of the model’s behavior based on the feature inputs (or
predictor variables). An explanation is an interpretable description of the model’s behavior,
where a local explanation model explains individual predictions, and a global model
explanation explains the complete behavior of the model. In general, we have adopted xAI
as explainability aims to be consistent with prior knowledge; if any explanation contradicts
prior knowledge, there tends to be less trust in such explanations.
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In this study, local explanations of the proposed MVMD-BiLSTM model were per-
formed using LIME, which aimed to build the explanations of individual predictions by
identifying an interpretable model, as presented by [56]. Three formats are supported
by LIME: text, image, and tabular data [57]. Therefore, this study applied the recurrent
tabular explainer format to produce local explainability. The following produced the LIME
explanation ϵ:

ϵ(x) =
argmin
g ∈ G

L( f , g, πx) + Ω(g) (27)

where g is the explanation model, G is the class of potential set of interpretable models, f
is the original model, L ( f ,g,πx) is the measurement of the unfaithfulness of model g in
approximating the predictions of model f , πx is the proximity measure, and Ω(g) is the
measure of complexity of the explanation for all explanation models.

The LIME algorithm operates by taking a point (xi), perturbing it several times by
adding random Gaussian noise, and producing instances around xi until a group of in-
stances is generated in the local neighborhood. Subsequently, the predictions for each
of these perturbations were determined using the underlying model. According to the
distance to xi, points closer to xi have higher weights than those further away from xi.
Subsequently, a simple linear model was fitted to the weighted samples. This model
provides a group of coefficients or weights associated with different features, which is
the explanation. Essentially, LIME indicates the importance and direction of importance
(positive or negative) for each feature.

4. Results and Discussion

In this section, we now describe the results obtained to forecast river water temperature
using the proposed hybrid modeling approach for the case of the Menindee region in
Australia. In doing so, this study evaluated the performance of the proposed hybrid
predictive model developed by combining the MVMD and ML methods. The results are
specifically evaluated for forecasting the one-hour and one-day-ahead WTs at Weir 32,
located in the Menindee region in Australia.

4.1. Appraisal of Model Performance to Forecast One-Hour-Ahead Temperature

Based on the forecasted versus observed river water temperature, we now show in
Table 4 the model performance metrics based on r, RMSE, and MAE, which are expected
to register values close to 1 (for r) and 0 for RMSE/MAE, respectively. For the non-
dimensional metrics WI, NSE, and LME, a perfect predictive model is expected to record
a value close to 1, whereas the RMSPE and MAPE values are expected to be close to 0%.
Table 4 shows the evaluation of the accuracy of the hourly model during the training period.

Table 4. Training performance (hybrid 1-h model) for Weir 32. Note: Pearson’s correlation coefficient—
r, Root Mean Square Error—RMSE (◦C), Mean Absolute Error—MAE (◦C), Willmott’s index—
WI, Nash Sutcliffe Coefficient—NSE, Legate-McCabe Efficiency Index—LME, Root Mean Square
Percentage Error—RMSPE (%), Mean Absolute Percentage Error—MAPE (%). The most accurate
models in the training phase are boldfaced.

Forecast Model r RMSE MAE W I NSE LME RMSPE MAPE

MVMD-BiGRU 0.953 1.714 1.365 0.862 0.909 0.730 9.840 7.500
MVMD-BiLSTM 0.953 1.717 1.344 0.862 0.908 0.730 9.850 7.500
MVMD-GRU 0.951 1.758 1.370 0.857 0.904 0.723 10.230 7.770
MVMD-LSTM 0.950 1.781 1.366 0.854 0.901 0.717 10.500 8.000

BiGRU 0.917 2.277 1.784 0.812 0.839 0.644 13.690 10.120
BiLSTM 0.915 2.290 1.784 0.813 0.837 0.642 13.880 10.240
GRU 0.908 2.376 1.796 0.803 0.825 0.627 14.420 10.650
LSTM 0.907 2.388 1.791 0.801 0.823 0.625 14.510 10.740
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The hybrid models MVMD-BiLSTM, MVMD-BiGRU, MVMD-GRU, and MVMD-
LSTM have demonstrated the highest overall predictive accuracy compared with stan-
dalone models, with an average of r = 0.952, RMSE = 1.743 ◦C, and MAE = 1.361 ◦C.
In terms of the normalized metrics, we note a value of WI = 0.859, NSE = 0.906, and
LME = 0.725, which also shows significantly accurate results. In terms of the relative er-
rors, the hybrid models recorded an RMSPE = 10.110%, and MAPE = 7.690%, which is
well below the 10% error recommended for excellent performance [58]. In general, our
results indicate that the predictive capabilities of the MVMD-BiLSTM and MVMD-BiGRU
models outperform those of other hybrid and standalone models when using the training
dataset. These results suggest that the MVMD algorithm is significantly advantageous in
increasing accuracy due to the mode-alignment property across all channels and excellent
noise resistance [44].

We now discuss the application of the proposed hybrid models (i.e., MVMD-BiLSTM,
MVMD-BiGRU, MVMD-GRU, and MVMD-LSTM) with respect to standalone models
for the testing phase. A comparison of the performance of all eight models adopted for
predicting the 1-hourly WTs for the testing period showed that the proposed MVMD-
BiLSTM hybrid model outperformed the other ML models. As listed in Table 5, the MVMD-
BiLSTM hybrid model displayed the highest r value (0.955) (representing a high degree of
agreement between the forecasted and the observed WT) and the lowest RMSE (1.690 ◦C)
and MAE (1.347 ◦C) values for Weir 32 site. Indicating that predicted and observed hourly
WT agree reasonably well and that the results of the testing phase are consistent with the
results of the training phase.

Table 5. Testing performance (hybrid 1-h model) for Weir 32. The most accurate models in the testing
phase are boldfaced.

Forecast Model r RMSE MAE W I NSE LME RMSPE MAPE

MVMD-BiLSTM 0.955 1.690 1.347 0.860 0.907 0.724 9.700 7.600
MVMD-BiGRU 0.955 1.702 1.365 0.859 0.906 0.723 9.800 7.600
MVMD-GRU 0.954 1.714 1.370 0.857 0.904 0.720 9.900 7.700
MVMD-LSTM 0.952 1.742 1.365 0.852 0.901 0.713 10.200 8.000

GRU 0.879 2.711 2.190 0.753 0.761 0.549 18.600 13.600
BiLSTM 0.877 2.722 2.187 0.753 0.759 0.547 18.600 13.700
BiGRU 0.878 2.708 2.187 0.751 0.761 0.547 18.400 13.600
LSTM 0.875 2.751 2.194 0.748 0.754 0.542 18.900 13.900

Similarly, the objective model (MVMD-BiLSTM) exhibited the highest WI (0.8602)
and NSE values (0.907). The MVMD-BiLSTM model was assessed using the LME and
outperformed the other models (i.e., LME = 0.722–0.724). All hybrid models combined
with the MVMD method achieved LME values of 0.713–0.724 compared to 0.542–0.549 for
the LSTM, GRU, BiLSTM, and BiGRU models. These results show that the inclusion of the
MVMD contributes to the models’ performances.

A comparison of the MVMD-BiLSTM model in terms of the RMSE, MAE, RMSPE,
and MAPE is shown in Table 5 and Figure 3. The results showed low values for the objective
model: RMSE = 1.690 ◦C, MAE = 1.347 ◦C, RMSPE = 9.740%, and MAPE = 7.560%,
indicating good model performance. The model performance assessment revealed a
significant improvement with the MVMD-BiLSTM model. These results demonstrate
the influence of AT, SR, and HR as inputs on changes in hourly WT.
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(a) (b)

Figure 3. (a) The RMSE and (b) MAE generated by the models during the testing phase for all 1-h
horizon models.

Figure 4 shows a Taylor diagram, which determines the link between forecasted and
observed WTs based on the correlation coefficient and standard deviation values. The
diagram evaluates all predictive models: hybrid and standalone. The values predicted by
the hybrid models were close to the observed WTs, making the MVMD-BiLSTM model the
most accurate. In contrast, the standalone models showed the lowest accuracy, positioned
further from the observed WT.

Figure 4. Taylor diagram depicting the observed and predicted WTs of all hourly models at Weir 32.
(- -) The dashed line represents the correct standard deviation.

Consequently, the MVMD-BiLSTM model captured the highest LME, had low relative
errors, and made predictions closest to the observed WT in the Taylor diagram, indicating
that the objective model (MVMD-BiLSTM) displayed the lowest errors in predicting WT.
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4.2. Appraisal of Model Performance to Forecast One-Day-Ahead Temperature

As listed in Table 6, during the training period, the one-day ahead hybrid model
exhibited better performance than the standalone models, where the MVMD-BiLSTM
presents a r = 0.984, and the RMSE between predicted and observed values is 1.101 ◦C.
This demonstrates that daily WT predictions correlate significantly with observed values,
and the objective model (MVMD-BiLSTM) can replicate the WT well at Weir 32.

Further comparison of the models’ performance was conducted based on LME values.
The MVMD-BiLSTM, MVMD-LSTM, and MVMD-GRU models exhibited the highest LME
values of 0.8266, 0.8337, and 0.8321, respectively, indicating that hybrid models demonstrate
superior performance compared to standalone models of BiLSTM, LSTM, GRU, and BiGRU.

In terms of the MAPE, all hybrid models (MVMD-BiLSTM, MVMD-LSTM, MVMD-
GRU, and MVDM-BiGRU) exhibit values lower than standalone models (BiLSTM, LSTM,
GRU, BiGRU), which are lowers than 10% [58], consequently, hybrid models can achieve
better predictions.

We now discuss the proposed hybrid models and standalone models for the testing
phase. For all experiments with the testing datasets, the proposed MVMD-BiLSTM model
for the 1-d horizon achieved the highest r value to 3 decimal places (i.e., 0.984) with
actual values between 0.9836–0.9835 for MVMD-LSTM, MVMD-GRU, and MVMD-Bi-GRU,
respectively. This represents the forecasted and observed WTs being closest to unity for
the proposed MVMD-BiLSTM model for the 1-d horizon and the lowest RMSE of 1.039
(Table 7). Hence, daily WT appeared to be well reproduced by AT, SR, MNT, and EVA
at Weir 32.

Table 6. Training performance (hybrid 1-d model) for Weir 32. The most accurate models in the
training phase are boldfaced.

Forecast Model r RMSE MAE W I NSE LME RMSPE MAPE

MVMD-BiLSTM 0.984 1.101 0.862 0.910 0.962 0.827 6.340 4.900
MVMD-LSTM 0.981 1.110 0.861 0.915 0.962 0.834 5.620 4.380
MVMD-GRU 0.980 1.131 0.841 0.916 0.960 0.832 5.660 4.360
MVMD-BiGRU 0.982 1.196 0.867 0.903 0.956 0.811 7.130 5.440

GRU 0.974 1.316 1.073 0.893 0.946 0.792 7.400 5.740
BiLSTM 0.975 1.335 1.076 0.891 0.945 0.788 7.100 5.690
BiGRU 0.976 1.369 1.088 0.887 0.942 0.783 7.000 5.670
LSTM 0.971 1.375 1.082 0.888 0.941 0.781 8.030 6.170

Table 7. Testing performance (hybrid 1-d model) for Weir 32. The most accurate models in the testing
phase are boldfaced.

Forecast Model r RMSE MAE W I NSE LME RMSPE MAPE

MVMD-BiLSTM 0.984 1.039 0.856 0.917 0.965 0.839 5.840 4.400
MVMD-LSTM 0.984 1.091 0.859 0.913 0.961 0.831 5.800 4.490
MVMD-GRU 0.984 1.136 0.817 0.910 0.958 0.826 5.850 4.580
MVMD-BiGRU 0.984 1.187 0.822 0.904 0.954 0.818 6.330 4.830

GRU 0.970 1.404 1.194 0.878 0.936 0.767 8.240 6.410
LSTM 0.970 1.421 1.218 0.876 0.934 0.763 8.480 6.620
BiLSTM 0.966 1.522 1.256 0.870 0.924 0.749 8.710 6.790
BiGRU 0.964 1.649 1.304 0.858 0.911 0.730 9.050 7.150

The objective model (MVMD-BiLSTM) showed the highest WI (0.9172) and NSE
(0.965) and the highest LME (i.e., LME = 0.820–0.840). Again, the hybrid models exhibited
higher WI, NSE, and LME values than the standalone models. Results demonstrate that
including MVMD greatly improves the model performances; however, this effect is more
pronounced for the MVMD-BiLSTM model.

The MVMD-BiLSTM model also performed better in terms of the MAPE, achieving a
value of 4.400%, which is below 10% [58]. Table 7 and Figure 5 show the magnitudes of
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RMSPE and MAPE for all tested models. The objective model (MVMD-BiLSTM), when
compared with the other models, exhibited low relative errors. Therefore, the efficacy of
the MVMD-BiLSTM was verified, including relative predictive errors, and it can be clearly
seen that these features are major factors contributing to the daily WT prediction at Weir 32.

Earlier results in Tables 4–7 showed that there was a certain degree of variability in
the training and testing performance among the prescribed models developed using the
MVMD approach. Therefore, we have summarized the performance of the MVMD-based
model as follows:

• For the 1-h forecast horizon: The proposed MVMD-BiLSTM model performed slightly
better in terms of the training phase based on the MAE value, whereas the MVMD-
BiGRU model was the best based on all the other metrics. In the testing phase, however,
the proposed MVMD-BiLSTM was the best model if we ignored the slightly larger
value of r for the MVMD-BiGRU model.

• For the 1-d forecast horizon: There has been a larger variability in the training phase
for this forecast horizon. For example, the proposed MVMD-BiLSTM model was better
than other models based on r, RMSE, NSE, whereas based on MAE, the proposed
MVMD-LSTM was superior based on the larger magnitude of WI, the MVMD-GRU
was superior whereas based on MAPE, the MVMD-BiGRU was the best model. For the
testing phase, however, the proposed MVMD-BiLSTM attained the best performance
based on r, RMSE, WI, NSE, LME, and MAPE.

(a) (b)

Figure 5. (a) The RMSE and (b) MAE generated by the model during the testing phase for all 1-d
horizon models.

Despite the subtle variability in performance among the trained and the tested models,
it is noteworthy that the hybrid models were always better than the standalone models,
and the proposed MVMD-BiLSTM was the best model for 1-h and the MVMD-BiLSTM was
the best model for the 1-d forecast horizon if a majority of the model performance metrics
were considered.

The Taylor diagram (Figure 6) shows that the result of the MVMD-BiLSTM model is
positioned close to the observed WT (reference data point); therefore, the objective model
(MVMD-BiLSTM) was the most accurate. Besides the hourly horizon, in the daily forecast
horizon, the standalone models exhibited the largest discrepancy between the testing and
observed data, located farther from the reference point. Consequently, it was evident that
the proposed MVMD-BiLSTM model for the 1-d time horizon outperformed all comparable
models during testing.

A study [34] assessed daily WT forecasting for seven rivers in China, the USA, and
Switzerland and found that an LSTM model performed better than RF and Back Propa-
gation Neural Networks. However, the overall trend in this study was consistent with
previous findings from another time-series study. Researchers in reference [38] found that
BiLSTMs outperformed unidirectional LSTMs for daily, weekly, and monthly forecasting.
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They stated that BiLSTMs could capture the underlying context by learning from past and
future data; however, they observed that the training was slower than that for LSTMs.

In summary, for the 1-h and 1-d time horizons, the hybrid approach exhibited the
highest model performance. In contrast, the standalone models showed poor accuracy. In
particular, the MVMD-BiLSTM model exhibited superior performance compared to the
MVMD-LSTM, MVMD-GRU, MVMD-BiGRU, LSTM, GRU, BiLSTM, and BiGRU models.
One implication of this study is the potential to estimate hourly and daily river WTs at Weir
32 using MVMD with ML models.

Another point to note is that an increase in the forecast time horizon leads to a decrease
in the RMSPE and MAPE. An increase in the time horizon from 1-h to 1-d leads to an
improvement in model performance, and this result was similar to that reported by [59].
One reason for this could be the addition of minimum AT and the use of evaporation
instead of HR in the daily model.

Figure 6. Taylor diagram illustrating the observed and predicted WTs for all daily models at Weir 32.
(- -) The dashed line represents the correct standard deviation.

Figures 7 and 8 show visual comparisons of the interannual variability in WT for
hourly and daily time horizons. Overall, the models had good dynamics to reproduce WT,
and in general, the daily model presented a better response across all seasons compared to
the response of the hourly model. They followed annual oscillations, in which the seasonal
variation in WT is represented by the annual component.

Figure 7. Evaluation of the hourly MVMD-BiLSTM model, illustrating the observed and predicted
WTs at Weir 32 over a two-year horizon. Blue line: observed. Red line: predicted.
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Figure 8. Evaluation of the daily MVMD-BiLSTM model, illustrating the observed and predicted
WTs at Weir 32 over a two-year horizon. Blue line: observed. Red line: predicted.

These figures reproduce this for two years, with the second being the warmer year.
The models did not reproduce these peaks during warmer summers. The response of the
MVMD-BiLSTM 1-h time horizon to changes during summer and autumn was underesti-
mated (Figure 7), whereas the MVMD-BiLSTM 1-d time horizon underestimated changes
during spring and summer, particularly during the second year (Figure 8).

When we used these features, the WT was mostly lower, particularly during daytime
and across different seasons. The biases decreased at lower temperatures, and notable
differences were observed in the maximum temperatures during spring for the daily model.
These differences could be associated with not considering the maximum temperature as
a feature in the model because it presents a high correlation with the mean AT. However,
when considering the maximum temperature, the large differences during spring did
not change, and the model’s accuracy decreased; for example, the LME decreased from
0.840 to 0.800. It is likely that factors that were not considered may have affected this
result. Therefore, events during spring were poorly predicted by the model, with hourly
and daily models underestimating peaks during summer. One factor to be considered is
that upstream of Weir 32, the river forms a weir pool, which is strongly affected by the
river input and the inputs from the Menindee Lakes. Another factor is the use of gridded
simulated data to incorporate hourly and daily mean ATs into the models, which could
introduce bias.

We evaluated the MVMD-BiLSTM model for n-hour and n-day ahead forecasts, and
we observed that when the number of days increased, the indices were impacted (Table 8).
When the model behavior of MVMD-BiLSTM was compared with the forecast, the error
bias was higher when the number of hours increased from 1-h to 24-h, and the same
pattern was found when the number of days increased from 1-d to 7-d. On the one hand,
when focusing on the RMSE and MAE, if the number of days increased, then the indices
increased; for instance, the RMSE increased by 38.660% and the MAE by 33.480% for the
hourly model, while the RMSE increased by 62.980% and the MAE by 64.470% for the
daily model. On the other hand, focusing on WI, the NSE, and the LME, when the number
of days was increased, these indices were reduced. For the hourly model, the indices were
reduced between 1-h and 24-h: WI, 10.150%; NSE, 12.050%; and LME, 19.710%. For the
daily model, these indices were reduced from 1-d to 7-d: WI, 16.370%; NSE, 30.230%; and
LME, 58.280%. This gradual decline in these metrics indicates that the performance of the
model is degrading and that the model’s performance degrades more quickly in the daily
model than in the hourly model. Poorly performing models can emerge over time because
of changes in the properties of the input data, shifts in the underlying relationships between
the target variable and input features, changes in underlying data distribution, changes in
the importance of features, or alterations in the model’s underlying assumptions.
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Table 8. The model performance for n-hour and n-day ahead forecasts in terms of r, RMSE (◦C),
MAE (◦C), WI, NSE, LME, RMSPE (%) and MAPE (%). Note: ‘h’ stands for hourly, and ‘d’ stands
for daily forecast model.

Model and Forecast Horizon r RMSE MAE W I NSE LME RMSPE MAPE

Hourly Horizon
MVMD-BiLSTM: 1-h 0.980 1.369 1.190 0.868 0.939 0.753 9.400 7.400
MVMD-BiLSTM: 6-h 0.979 1.803 1.566 0.819 0.894 0.676 11.100 9.100
MVMD-BiLSTM: 12-h 0.988 1.920 1.609 0.812 0.880 0.667 9.900 8.600
MVMD-BiLSTM: 24-h 0.985 2.232 1.789 0.788 0.838 0.629 10.400 9.100

Daily Horizon
MVDM-BiLSTM: 1-d 0.986 1.046 0.820 0.917 0.965 0.831 5.800 4.600
MVDM-BiLSTM: 3-d 0.985 1.994 1.639 0.851 0.872 0.663 14.700 11.000
MVDM-BiLSTM: 5-d 0.982 2.194 1.764 0.838 0.844 0.637 16.400 12.000
MVDM-BiLSTM: 7-d 0.974 2.826 2.308 0.788 0.741 0.525 20.900 15.400

4.3. Explainability

The bar graphs (Figure 9) show the local explainability of instances for different
seasons using LIME. In this study, the number of instances was equal to the number of
time points in the testing phase (instances for the hourly model range from instance 0 to
846, and the daily model range from 0 to 20,304). These instances were selected randomly
for each season. Instances illustrate individual contributions toward predicting WT during
the testing period. Thus, the features can positively or negatively influence the predicted
value. Positive contributions are in green, negative contributions are in red, and the most
important features with the highest coefficients are at the top of the bar graphics.

LIME is an approximation method because a simple linear model approximates an-
other non-linear model in the neighborhood of an instance. It selects an arbitrary model,
giving more weight to samples near the point being explained and less weight to those
far away. Therefore, the weights are not necessarily the same. Moreover, it is based on
sampling, and true complexity cannot be captured. Even the random nature of perturbation
methods, such as LIME, can lead to inconsistent or unstable results [60]. According to [61],
the disadvantages of LIME include its assumption of independence among features, as well
as sampling issues and uncertainty in defining the correct neighborhood. These factors
decrease accuracy and lead to problems with consistency, confidence, and stability in the
interpretation of tabular data. However, certain patterns can be observed within these
instances. Therefore, by using average patterns, these approximations can provide an idea
of how the model learns during training.

Figure 9 shows the comparison results for the hourly and daily models at Weir 32.
Five instances per season were randomly selected for the 1-h and 1-d models, and certain
patterns were observed between the instances across different seasons.

For the 1-h MVMD-BiLSTM model in winter, at instance 4379, solar radiation had a
positive effect, while AT at the 12-h lag (AT12) had a negative effect. The AT at the 12-h
lag was the most important feature (Figure 9a). At instance 5122, Solar radiation and AT12
push positively during spring, with AT12 being the most crucial feature (Figure 9b). At
instance 8302, AT12 was the most influential feature during summer, with a positive effect
along with solar radiation and temperature at a 0-h lag (AT0) (Figure 9c). During autumn,
at instance 12,602, AT12 (the most important feature) and AT0 had a negative effect, while
solar radiation and RH had a positive effect (Figure 9d). In summary, AT, with the highest
lag correlation, was the most important feature, and SR had a positive influence across all
seasons. AT12 was the most influential feature during winter and autumn, but it also had a
negative influence due to the decrease in AT. In contrast, during spring and summer, the
most crucial feature (AT12) had a positive influence due to the increase in AT.
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(a) (e)

(b) (f)

(c) (g)

(d) (h)

Figure 9. LIME explanation bar plots for the hourly (a–d) and daily (e–h) MVMD-BiLSTM models
at Weir 32: (a) 4379 and (e) 136 random instances during winter, (b) 5122 and (f) 306 random
instances during spring, (c) 4379 and (g) 327 random instances during summer, and (d) 12,602
and (h) 455 random instances during autumn. Positive contributions are in green and negative
contributions are in red color.

For the 1-d MVMD-BiLSTM model, the most significant features had a negative effect
in winter (instance 136) and autumn (instance 455) but a positive effect in spring (instance
306). Summer (instance 327) did not present a specific pattern; it featured a weight in each
direction. These figures can be read as feature importance plots, with the most important
features having the highest coefficients. Therefore, AT was the most important feature
across all seasons, which was discretized, with either positive or negative effects on the
final result depending on the weather conditions. Other features also have an impact but
are not sufficient to significantly influence the WT prediction.

Consequently, when modeling hourly data, it is important to take heat fluxes into
account because of the significant daily variations and heat exchange in WT over the day.
The 1-d component can be modeled using AT data. Thus, these overall LIME results can
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enhance the trustworthiness of the hybrid MVMD-BiLSTM model. Applying this approach
offers explanations of the proposed black-box’ model, addressing a gap in the literature.

The aforementioned findings indicate that the demand for explainability in AI models
is increasingly critical across various sectors due to regulatory requirements for features
like interpretability, transparency, and traceability [62,63]. To cultivate trustworthy AI
in the realm of WT prediction, it is essential that AI models adhere to legal and ethical
standards [63]. Additionally, robust ML systems based on AI are very sensitive to small
perturbations in practice, complicating the interpretation of predicted results. Variations in
input data can greatly impact outcomes, particularly in critical areas that face challenges
due to low-quality datasets that do not conform to independent and identically distributed
data standards [62]. Thus, our study seeks to tackle these vital issues by utilizing an
advanced xAI-based LIME tool to ensure trustworthy AI in the WT predictive framework.

Figure 10 shows boxplots for the 1-h (a) and 1-d (b) time horizon models. These figures
were obtained by randomly selecting five instances for each season and then calculating
the absolute average difference between the predicted values and local predictions. Thus,
the average difference between the predicted values per model and local predictions
was calculated. As demonstrated by the boxplots, the hourly model presented more
considerable differences across all seasons compared to those of the daily model, with
poorer performance during summer (with a median of 1.700 °C) and optimal performance
during autumn (with a median of 1.000 °C). For the daily model, spring and summer
exhibited higher differences (medians of 0.850 °C and 0.300 °C, respectively), and winter
exhibited the lowest differences (median of 0.350 °C). These results confirm the visual
evaluation in Figures 7 and 8, which show considerable differences during summer and
spring for the hourly and daily models, respectively.

(a) (b)

Figure 10. Boxplots of the absolute average difference between predicted values and local predictions
by season using LIME for (a) hourly and (b) daily MVMD-BiLSTM models at Weir 32

4.4. Comparison to Air2Stream

The results of the MVMD-BiLSTM 1-d time horizon and Air2Stream models showed
good performance with respect to the observations.

The best Air2Stream model was achieved using the parameterization p = 5, which
assumes a constant discharge. When the model with eight parameters was executed, similar
results were obtained. However, discharge is generally a minor factor in Air2Stream,
particularly in our rivers, where low flow or discharge is insufficient. In low-rate rivers
with slow flow and due to the local climate, there is minimal influence on discharge.

The objective model, the MVMD-BiLSTM 1-d time horizon model, was compared to
the five-parameter Air2Stream parameters version (Air2Stream-5). The objective model
performed better than Air2Stream-5 at Weir 32, Pooncarie, and Burtundy, with lower
RMSE, MAE, and relative error values and higher r, WI, NSE, and LME indices (Table 9).
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Table 9. Comparison of the proposed MVMD-BiLSTM objective model against the five-parameter
Air2Stream physical model evaluated in respect to the r, RMSE (◦C), MAE (◦C), WI, NSE, LME,
RMSPE (%) and MAPE (%) derived from forecasted and observed WT.

Model and Study Site r RMSE MAE W I NSE LME RMSPE MAPE

MVMD-BiLSTM|Menindee 0.984 1.039 0.856 0.917 0.965 0.839 5.840 4.400
Air2stream-5|Menindee 0.963 1.511 1.002 0.876 0.926 0.753 8.230 6.610

MVMD-BiLSTM|Pooncarie 0.983 1.369 1.017 0.913 0.962 0.833 8.390 5.890
Air2stream-5|Pooncarie 0.966 2.423 1.463 0.826 0.879 0.686 12.430 10.120

MVMD-BiLSTM|Burtundy 0.982 1.274 0.953 0.902 0.952 0.812 7.880 5.780
Air2stream-5|Burtundy 0.968 1.749 1.973 0.865 0.910 0.729 11.320 8.750

The Air2Stream-5 model performed better at Menindee (LME = 0.753), followed
by Burtundy (LME = 0.7290) and Pooncarie (LME = 0.686). The WI, NSE, and LME
seemed sensitive to over- and underestimations, presenting significant differences in the
Air2Stream-5 model at Pooncarie during the summer season, underestimating low and

high temperatures during this period. However, Air2Stream is a local method that requires
input from local stations and needs WT for calibration, which is typically unavailable.

Prior studies have predicted the mean daily river WT using ML methods and con-
cluded that these models perform well and even more accurately than the Air2Stream
model [34]. They conducted a comparison between an LSTM model integrated with AT
and discharge as the primary predictors and the Air2Stream model that incorporated
eight parameters for predicting the mean daily WT. The LSTM model achieved superior
performance compared to the Air2Stream model. This was attributed to the model con-
sidering the input and output as two time-series sequences, allowing it to learn to forget
unimportant information and when to retain information.

4.5. Performance of the MVMD-BiLSTM Model in Other Locations

The proposed model was trained at Weir 32 and tested in Pooncarie (approximately
150 km from Weir 32) and Burtundy (approximately 100 km from Pooncarie) to assess how
well the model predicted within other datasets using gridded data.

The overall predictive skill of the MVMD-BiLSTM daily model was obtained by
comparing the relative model error. The best performance was obtained at Menindee
(RMSPE = 5.84% and MAPE = 4.4%), followed by Burtundy (RMSPE = 7.88% and
MAPE = 5.78%) and Pooncarie (RMSPE = 8.39% and MAPE = 5.89%). These results
exhibit the same trend as those obtained using the Air2Stream-5 model.

The WTs at Weir 32 and Burtundy have comparable mean (19.29 and 18.81 ◦C),
maximum (32.62 and 32.19 ◦C), and STD (5.66 and 5.74 ◦C) values. In contrast, at
Pooncarie, the mean WT difference was higher (∆ = 1.1473 ◦C), and the mean AT dif-
ference was lower (∆ = −1.0838 ◦C). Although both locations exhibited good performances,
the MVMD-BiLSTM model provided overall lower relative errors in Burtundy than in
Pooncarie (Table 9).

Certain studies have compared gridded and observational data. A study in the Apulia
region (southern Italy) compared the use of gridded data with observed data, focusing on
AT and precipitation data. They revealed that gridded data can reproduce the observed
trend patterns with some deviations, indicating the general spatiotemporal evolution of
these variables in the region [64]. Another study assessed how well gridded data replicated
observed data for precipitation and temperature and observed that the coarse spatial
resolution of the gridded data could misrepresent complex topographies, such as the
Chilean topography [65]. We do not have implications regarding the topography of this
region, but they demonstrated differences between gridded data and observations.

In this study, despite merging observation (MNT) and gridded data (AT, RH, SR, and
EVA), the data with a coarse spatial resolution (SILO 5 km × 5 km data and Meteoblue
30 km × 30 km data) could explain the underestimation of WT during the spring and
summer seasons. It is also possible that these data cannot capture certain underlying
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processes or rare events, ignoring their existence. It is important to balance the data to
increase the weight of these rare events and to incorporate physics at various stages in the
ML process such that the dynamics can be captured. However, performance is not always
good or bad when the grid is coarser, as the MVMD-BiLSTM model can reproduce the
overall dynamics of the WT in these locations.

5. Conclusions and Future Work

This study aimed to design an MVMD method combined with a BiLSTM model
(MVMD-BiLSTM) to forecast WT. The results confirmed that the MVMD-based hybrid
models are considerably better for forecasting the hourly and daily WTs at Weir 32 than the
standalone model versions of the LSTM, GRU, BiLSTM, and BiGRU models. In particular,
among the hybrid and standalone models considered, the results showed that the pro-
posed MVMD-based BiLSTM model was significantly superior to the BiLSTM (and other
standalone) model, which was demonstrated from Tables 4–7. The MVMD method offers
significant benefits in inaccurate model creation, which leads to accurate performance [39].
First, the MVMD approach splits the complex dataset into variational mode signals. This
ability to decompose and analyze multiple correlated variables simultaneously leverages
cross-variable relationships among predictor and target variables that provide improved in-
sights and predictive performance due to the integration of dependencies among variables.
This is carried out using variational principles to decompose signals into intrinsic mode
functions (IMFs) or components that are smoother and more interpretable. The primary
advantage here is a better separation of mixed signals or patterns, leading to more robust
feature extraction. Second, with respect to noise reduction and signal clarity for the BiLSTM
predictive model, the MVMD effectively separates noise from true signal components in
multivariate datasets. Therefore, this capability of the MVMD method provides enhanced
signal-to-noise ratio detection and improves the accuracy and reliability of the BiLSTM
model. Thirdly, compared to other decomposition tasks, the MVMD method aims to mit-
igate the mode-mixing issues by separating distinct frequency bands and patterns more
effectively, which leads to improved performance of the resulting BiLSTM model. A higher
accuracy of the Bi-LSTM is therefore achieved by the provision of cleaner, non-overlapping
signal components, which is critical for accurate analysis and predictions generated by the
BiLSTM model, as noted in Tables 4–7. The distinct advantage of MVMD-based models
over standalone models was clearly demonstrated using several performance metrics (r,
RMSE, MAE, WI, NSE, LME, RMSPE, and MAPE). Overall, the performance of the
MVMD-BiLSTM model was much better compared with all the other comparison models.

Overall, the MVMD-BiLSTM model demonstrated good dynamics in reproducing WT,
and the 1-d model generally shows improved performance compared to the 1-h model.
However, models performing poorly over time were observed when the time horizon
increased from 1-h to 24-h and from 1-d to 7-d. This was due to model degradation, which
led to less accurate predictions and caused the model to potentially miss new trends.

The model-agnostic LIME tool delivers local model explainability, and this study
attempted to explain the MVMD-BiLSTM model’s predictions for WT. Therefore, in both
time horizon models (1-h and 1-d), AT was the most significant predictor variable for WT at
Weir 32, which was consistent with highly associated variables. However, in the 1-h horizon
model, other features (SR and RH) significantly contributed and changed depending on
the season.

In addition, this study demonstrated the ability of gridded data to reproduce the
overall dynamics of WT in these locations. However, deviations were observed owing to
the inability of gridded data to capture certain underlying processes or rare events, as it
can only explain variability to a certain extent. We also acknowledge that in the present
study, no lagged combinations of predictor datasets were used for the AI models. Therefore,
we recommend that future studies address this limitation and benefit by testing lagged
features, which might capture temporal dependencies more effectively. Furthermore, we
note that the proposed MVMD-BiLSTM model was developed specifically for Weir 32, but
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the performance has also been assessed for two other locations with similar datasets. These
locations include Pooncarie and Burtundy sites, which demonstrated reliable and accurate
performance. However, it would be useful to discuss the generalizability of the proposed
MVMD-BiLSTM Model to other regions with similar datasets in future work.

This case study supports the merits of the MVMD-BiLSTM predictive model for
attaining accuracy in forecasting WT. However, the reproducibility of this research is a
potential limitation due to the lack of open data available for these locations. Even when in
situ measurements and gridded data were used in this study, additional simulated data
for these locations was required from Meteoblue because of this lack of data. Another
limitation in this study includes the use of a unique xAI method (LIME) to generate local
explanations, which present accuracy issues for tabular data. For future tests, the WT
can be forecast at other points where we currently lack sufficient data combining in situ
measurements gridded and simulated data. Nevertheless, to determine if the approach is
transferable to other locations, future research should focus on further testing DL methods
and incorporating physics at various stages in the ML process to capture the underlying
dynamics, as well as other xAI methods should be used to produce explanations in deep
neural networks.

In the Murray–Darling Basin, it is imperative to develop tools that rely on a few
input variables, primarily meteorological drivers, due to the scarcity of data in many
locations. This case study demonstrates the merits of the MVMD-BiLSTM predictive model
in achieving accuracy for forecasting WT. Therefore, one application of the case study is
predicting hourly and daily WTs when observed data are limited. This prediction helps in
understanding the WT and the potential impact of WT changes on aquatic organisms and
ecological processes in the river. Also, an accurate WT forecast can be used for management
decisions in the case of water quality concerns, and if we have an accurate temperature
forecast, we can better forecast other water quality parameters that depend on WT, like
dissolved oxygen, and therefore predict fish kills.
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