
Citation: Brown, I.; McDougall, K.;

Chadalavada, S.; Alam, M.J. An

Alternative Method for Estimating

the Peak Flow for a Regional

Catchment Considering the

Uncertainty via Continuous

Simulation. Water 2023, 15, 3355.

https://doi.org/10.3390/w15193355

Academic Editor: Gwo-Fong Lin

Received: 14 August 2023

Revised: 13 September 2023

Accepted: 20 September 2023

Published: 25 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

An Alternative Method for Estimating the Peak Flow for a
Regional Catchment Considering the Uncertainty via
Continuous Simulation
Iain Brown 1,* , Kevin McDougall 1 , Sreeni Chadalavada 1 and Md Jahangir Alam 1,2

1 School of Engineering, University of Southern Queensland, Toowoomba 4350, Australia;
kevin.mcdougall@usq.edu.au (K.M.); sreeni.chadalavada@usq.edu.au (S.C.);
mdjahangir.alam@usq.edu.au (M.J.A.)

2 Murray-Darling Basin Authority, Australian Capital Territory, Canberra City 2601, Australia
* Correspondence: iain.brown@usq.edu.au

Abstract: Estimating peak flow for a catchment is commonly undertaken using the design event
method; however, this method does not allow for the understanding of uncertainty in the result.
This research first presents a simplified method of fragments approach to rainfall disaggregation
that ignores the need to consider seasonality, offering a greater diversity in storm patterns within
the resulting sub-daily rainfall. By simulating 20 iterations of the disaggregated sub-daily rainfall
within a calibrated continuous simulation hydrologic model, we were able to produce multiple long
series of streamflow at the outlet of the catchment. With these data, we investigated the use of
both the annual maximum and peaks over threshold approaches to flood frequency analysis and
found that for a 1-in-100-year annual exceedance probability peak flow, the peaks over threshold
method (333 m3/s ± 50 m3/s) was significantly less uncertain than the annual maximum method
(427 m3/s ± 100 m3/s). For the 1-in-100-year annual exceedance probability, the median peak flow
from the peaks over threshold method (333 m3/s) produced an outcome comparable to the design
event method peak flow (328 m3/s), indicating that this research offers an alternative approach to
estimating peak flow, with the additional benefit of understanding the uncertainty in the estimation.
Finally, this paper highlighted the impact that length and period of streamflow has on peak flow
estimation and noted that previous assumptions around the minimum length of gauged streamflow
required for flood frequency analysis may not be appropriate in particular catchments.

Keywords: uncertainty; flood frequency; rainfall disaggregation; peak flow continuous simulation

1. Introduction

Estimating peak flow rates from a catchment has long been a focus of engineering hy-
drologists and is fundamental to the design of flood protection infrastructure [1–4]. Under-
standing the uncertainty associated with peak flow estimation is, however, often neglected
by practitioners, despite the acceptance that many sources of uncertainty exist [1,5–7].
The commonly used design event method requires antecedent moisture conditions to be
adjusted to ensure a probability-neutral conversion of rainfall to runoff [4,8–10]. Ref. [11]
detailed the benefits of continuous simulation over the design event method with their
development of a calibrated hydrologic model in a regional town in the state of Queensland,
Australia. This paper expands on the research undertaken by the authors [11], whose focus
was the calibration of the continuous simulation hydrologic model to historical events, with
the aim of deriving flood frequency estimates with a greater understanding of uncertainty.

To estimate peak flows from a continuous simulation model, the data should normally
follow a flood frequency distribution similar to gauged streamflow records. A model
that can replicate a long series of streamflow (i.e., continuous simulation) can assist in
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overcoming the shortcomings of stream gauge data, most noticeably the impact of urbani-
sation [1]. A flood frequency analysis (FFA) can be undertaken using one of two sampling
approaches: annual maximum series and peaks over threshold (also known as partial
series) [12]. The annual maximum series, while easier to identify independent flood events,
produces fewer data points than the peaks over threshold series [13] but also prioritises the
maximum annual flood over multiple larger floods that may have occurred in the same
year. In contrast, the peaks over threshold approach offers added complexity due to the
requirement of selecting an appropriate threshold flow. Some researchers found the best
results of their FFA occurred when the number of data points (m) equalled the years of data
(n) [11,14,15], while others recommended a ratio of 1 m:3 n [16]. Both sampling approaches
rely on a long series of continuous streamflow, with at least 50 years of data recommended
to be used [17].

To produce a long series of continuous streamflow, a continuous simulation model
requires an extended period of recorded rainfall at a suitable time step for the size and level
of urbanisation of the catchment [18]. In the case of a relatively small urban catchment,
rainfall at a sub-hourly interval is required. Obtaining a recorded rainfall series of sufficient
length over this time scale is extremely challenging given the lack of sub-daily rainfall
gauges available not only globally [19] but more relevant to this research in sparsely popu-
lated countries such as Australia [20]. This contrasts recent reviews of global precipitation
data, with some locations offering sub-daily rainfall that spans multiple decades [21]. The
availability of sub-daily rainfall data has supported recent advancements in the use of
continuous simulation hydrologic modelling [22]; however, this research is unique in that
the lack of availability of site-based sub-daily rainfall data requires alternate considerations.
To address this issue, sub-daily rainfall can be generated from coarser timescale (daily)
rainfall records via disaggregation [23] if historical daily rainfall data for at least 100 years
are available for the site [24].

The most commonly used rainfall disaggregation approaches are summarised in the
literature [23], including parametric sampling methods such as the Poisson-cluster models
and the random scale models, as well as nonparametric sampling methods such as the
Method of Fragments (MoF). They concluded that the MoF, first proposed as a method
to disaggregate streamflow [25], was more flexible for operational use. At its core, the
MoF simply disaggregates daily rainfall by selecting the pattern or ‘fragments’ of a known
sub-daily event. The process of selection of suitable sub-daily events varies across the
literature, including the use of the previous and subsequent day wetness to limit the sample
size [26] or adding classes based on rainfall magnitude to ensure the daily rainfall was
disaggregated based on sub-daily rainfall of a similar magnitude, as well as limiting the
selection to events that occurred in the same month as the disaggregated rainfall [23]. While
a long series of sub-daily rainfall data was produced, neither study used their dataset for
continuous hydrologic modelling to estimate flood frequency.

This research offers new insight via the presentation of an alternate method for es-
timating peak flow in a small regional urban catchment. Via the inclusion of associated
uncertainty, this method also offers practical insight into how accurate regional author-
ities should consider their hydrological assessments to be. The results of this research
also contribute significantly to the understanding of hydrologic uncertainty, especially in
an urban catchment where the reliance on accurate hydrologic modelling is at its’ great-
est. By assessing the impact that the length and period of streamflow series has on peak
flow estimation, we highlight the limitations associated with peak flow estimations from
gauged catchments.

In particular, this research aims to develop a long series of sub-daily (6 min) rainfall
data for use in a continuous simulation model using a simplified version of the MoF and a
long series of continuous flow data using the calibrated hydrologic model developed by
the authors [11]. It will also estimate, with uncertainty, the peak flow for a range of annual
exceedance probabilities and compare the results of this research to other methods. The
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materials and methods used in this research are described in Section 2, while Section 3
presents and discusses the results. Finally, our conclusions are presented in Section 4.

2. Materials and Methods
2.1. Continuous Simulation Model

A continuous simulation model was used in this research to estimate the peak flow for
different annual exceedance probabilities. The model was developed by the authors [11]
for the Gowrie Creek catchment, a heavily urbanised 50 km2 catchment in the regional
city of Toowoomba, in the state of Queensland, Australia. Toowoomba is considered to be
sub-tropical with an average annual rainfall of 700 mm, the majority of which falls over
the wet season from November to March. The extent of the catchment and its location in
Australia are shown in Figure 1. The following two paragraphs summarise the hydrologic
model and the key calibrated loss parameters.
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Figure 1. Location of the Gowrie Creek catchment and details of the sub-daily rainfall data used in
the rainfall.

An XPRAFTS semi-distributed hydrological model was used to represent the Gowrie
Creek system. The overall catchment was delineated into 23 sub-catchments, with each
sub-catchment having a unique impervious fraction determined via regression analysis.
The previous area loss within this software is represented by the ARBM dynamic loss
approach [27,28]. This loss approach can be visualised as a series of interconnected buckets
of varying sizes. Rainfall that is not intercepted by trees or plants (Interception Storage
Capacity (ISC)) may be captured in minor surface depressions (Depression Storage Capacity
(DSC)). If the rainfall is intense enough, runoff may result from the DSC, otherwise infiltra-
tion to the Upper Soil Capacity (USC) occurs. Water is redistributed between the USC and
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the Lower Storage Capacity (LSC) depending on the capacity available within the bucket.
Water from the LSC can then be drained into the Groundwater Storage Capacity (GSC),
which contributes to baseflow. The ARBM allows for the simulation of soil moisture deple-
tion via evaporation between rainfall events [29] with evapotranspiration depleting the ISC,
DSC, USC, and LSC. Any excess rainfall is routed to the catchment outlet based on the non-
linear runoff-routing method [30]. The model was calibrated using the two-stage calibration
approach [31,32]. The model offered a satisfactory fit (Nash Sutcliffe Efficiency > 0.5) for 9
of the 11 selected storm events, with seven events exceeding a Nash Sutcliffe Efficiency of
0.75. Events used in the calibration/validation included peak flows as low as 9 m3/s and
as high as 600 m3/s. The calibrated ARBM parameters are shown in Table 1.

Table 1. Calibrated ARBM loss model parameters for the Gowrie Creek catchment [11].

Parameter Description Calibrated Parameter Unit

Storage Capacities

CAPIMP Impervious 2 mm
ISC Interception 3 mm
DSC Depression 7 mm
USC Upper Soil 40 mm
LSC Lower Soil 70 mm
GSC Groundwater 0 mm

Infiltration

S0 Dry Sorptivity 10 mm/min0.5

K0 Hydraulic Conductivity 0.3 mm/min
LDF Lower Soil Drainage Factor 0.1 -
KG Constant Groundwater Recession Rate 0.94 -
GN Variable Groundwater Recession Rate 1.0 -
ER Evapotranspiration 7.0 mm/h

A challenge identified in the calibration approach was the lag present when comparing
the model simulations to the available streamflow data. This issue is not uncommon [33]
and was noted to be likely due to the simplified way the hydrologic model responds to
rainfall and can vary with changing rainfall intensity [34–36]. Despite this issue, the strong
calibration achieved suggests the model adequately represents the magnitude of the runoff,
which is the focus of this research.

While models for the catchment were calibrated to the historic rainfall and streamflow
records, this research required additional steps to enable the continuous simulation model
to be developed. Initially, daily rainfall data within the catchment for a 100-year period
were obtained to allow the sub-daily rainfall disaggregation to be undertaken. This 100-year
series of sub-daily rainfall data could then be simulated in a continuous simulation model
to produce a 100-year time series of simulated streamflow. An FFA of this simulated
streamflow was then undertaken to estimate peak flows of varying flood frequencies. This
approach was repeated for 20 sub-daily rainfall disaggregation scenarios to facilitate the
estimation of uncertainty in the results.

2.2. Daily Rainfall Data

Historical daily rainfall at the centroid of the catchment was sourced from SILO, a
Queensland Government database containing continuous daily climate data for Australia
from 1889 to the present day [24]. The 100 years of daily rainfall (year 1920 to 2020) used in
this research are shown in Figure 2.
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Figure 2. Graphical representation of the 100 years of daily rainfall data sourced for this research [24].

2.3. Sub-Daily Rainfall Data

A long, continuous series of historical sub-daily rainfall data with a timestep shorter
than the intended disaggregated timestep is needed to disaggregate the daily rainfall using
the MoF. Historical sub-daily rainfall data are, however, limited in Australia [20]. To extend
the sub-daily rainfall data duration and allow a wider variety of storm temporal patterns
to be used, shorter durations of data from multiple gauging stations surrounding the
catchment were sourced and ‘stacked’ to create a single longer series. This approach was
used by [23] and found to achieve similar results to adopting a single sub-daily rainfall
dataset. For the Gowrie Creek catchment specifically, only 12 years of sub-daily rainfall data
were available; therefore, data from rain gauges located outside the catchment were sourced.
The location of the catchment and proximity and duration of the historical sub-daily rainfall
were sourced from the Bureau of Meteorology and used in the rainfall disaggregation, as
shown previously in Figure 1.

2.4. Daily Rainfall Disaggregation
2.4.1. Method of Fragments

The MoF approach used six major steps to disaggregate historical daily rainfall based
on sub-daily rainfall data from multiple representative rainfall stations [23]. A key differ-
ence in this research was the exclusion of the need to only disaggregate daily rainfall using
sub-daily storms that occur at a similar time of year or have similar rainfall on the day
before or after the target day. The reasons for this are discussed further in Section 2.4.4.

The key steps adopted in this research to disaggregate historic daily rainfall from
sub-daily rainfall were

1. Assign a storm class to both the historic daily and sub-daily rainfall series;
2. Assign a unique storm number to each historic sub-daily storm;
3. For a given day ‘x’ in the daily rainfall series, select a sub-daily storm with the same

Storm Class;
4. Disaggregate the daily rainfall based on the pattern of the sub-daily storm.
5. Repeat Steps 3 and 4, ensuring the sub-daily storms are chosen uniformly to create an

ensemble of disaggregated rainfall;
6. Repeat all steps multiple times to create multiple iterations of disaggregated rainfall

to understand the uncertainty.

2.4.2. Storm Class

An important consideration when using the MoF is the storm class. The storm class
defines how the daily and sub-daily rainfall data sets are related as the daily rainfall data
are only disaggregated to storms within the same storm class. It was initially suggested
that only four storm classes be selected based on the rainfall before and after the day
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of interest [26]. However, this has a number of limitations including the potential for
not considering important storms based on their insignificant pre/post-day rainfall total.
In addition, large daily rainfall totals could be disaggregated into high-intensity, short-
duration, and low-depth storms based on the same pre/post-rainfall conditions, rather
than basing them on the magnitude of rainfall on the day of interest. The latter issue is of
particular interest if the disaggregated rainfall is to be used in a hydrological model.

As a result, dividing the rainfall data into a number of storm classes was subsequently
suggested, with an interval of 5 mm being adopted [23]. This method was initially utilised
in this research; however, there were too few storms available for less frequent/more
extreme daily rainfall totals. It was evident that multiple storm class options had to be
considered and evaluated to determine the best approach.

2.4.3. Determination of the Number of Storm Classes

To ensure that the MoF produced sub-daily rainfall data suitable for the hydrologic
assessment, the results from three storm class options, presented in Table 2, were validated
against the intensity-frequency-duration (IFD) data for the catchment. The IFD data repre-
sent design storm rainfall depths developed by the Australian Bureau of Meteorology and
are commonly used in design event modelling. These storm class options were evaluated
to validate the iterative approach presented in Figure 3, which was used in an attempt to
optimise the number of storm classes within each option.

Table 2. Storm class options assessed.

Class ID
Option 1 Option 2 Option 3

Min Rain
(mm)

Max Rain
(mm)

Min Rain
(mm)

Max Rain
(mm)

Min Rain
(mm)

Max Rain
(mm)

1 0.1 1 0.1 1 0.1 1
2 1.1 5 1.1 5 1.1 6
3 5.1 10 5.1 10 6.1 11
4 10.1 15 10.1 15 11.1 16
5 15.1 20 15.1 20 16.1 19
6 20.1 25 20.1 25 19.1 24
7 25.1 30 25.1 35 24.1 36
8 30.1 35 35.1 45 36.1 68
9 35.1 40 45.1 55 68.1 200

10 40.1 45 55.1 65
11 45.1 50 65.1 75
12 50.1 55 75.1 100
13 55.1 60 100.1 200
14 60.1 65
15 65.1 70
16 70.1 75
17 75.1 80
18 80.1 100
19 100.1 200

To directly evaluate the MoF results from the class options assessed, IFD data were
developed from the generated sub-daily rainfall. The annual maximum series was first mod-
elled to the Generalised Extreme Value (GEV) distribution, as per the Bureau of Meteorology
methodology for generating IFD data from historical sub-daily rainfall data [37]. A direct
comparison of the MoF-generated design rainfall depths to the Bureau of Meteorology-
generated design rainfall depths for the same duration and annual exceedance probability
for different storm class options is shown in Figure 4. From this comparison, it was clear
that class option 2 produced the best fit due to its proximity to the 1 in 1 line and was
subsequently used in this research. The results suggest when moderate (>25 mm/day) to
extreme (>75 mm/day) rainfall depths are reached, the size of the class should be increased
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to allow a greater range of storms to be selected. Providing a larger number of smaller
classes (class option 1) resulted in fewer storms to choose from, thereby decreasing the
representation of moderate to extreme rainfall events, while a smaller number of larger
classes (class option 3) resulted in moderate daily rainfall depths being associated with
more extreme storm patterns.
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As the disaggregated sub-daily rainfall covered the same time period as the recorded
sub-daily rainfall, it was possible to directly compare the maximum rainfall from critical
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storm durations for the size of the catchment, namely those from 30 min to 360 min, for
each year. While the MoF is not intended to replicate recorded sub-daily rainfall nor be
used for hindcasting [38–40] and in turn unlikely to replicate recorded rainfall, comparing
the disaggregated rainfall to the nearby Toowoomba Airport gauge for these critical storm
durations (refer to Figure 5) showed that it was able to maintain key statistics, including
the median and mean. This result provided additional support for the use of the MoF and
the adoption of class option 2.
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2.4.4. Seasonality

To best represent the range of storms possible and to understand the impact various
storm patterns have on the catchment response to rainfall, it is important that a larger
quantity of storms is available for use in the disaggregation. When reviewing the sub-daily
rainfall data used in this research, it was clear that as the rainfall amount increased, the
number of storms decreased significantly, as shown in Figure 6. Previous studies that used
the MoF approach ([8,20,23]) constrained the storm selection by incorporating seasonality,
whereby the range of storms available for disaggregation was limited to those within a
preset window around the day of rainfall being disaggregated. These previous studies did
not, however, use the disaggregated rainfall in a hydrology model nor did they compare
the results to IFD data. If this was undertaken, they would likely have seen that the same
storm patterns would have been chosen multiple times to disaggregate the more extreme
daily rainfall totals, and therefore produced similar peak flows, volumes, and timing for
multiple events, likely skewing any flood frequency analysis undertaken. To overcome
this issue, this research excluded seasonality as a constraint on storm selection and instead
adopted an approach whereby multiple iterations of disaggregated rainfall were simulated
to better understand the uncertainty associated with storm selection.

2.5. Hydrologic Model Simulation

The calibrated continuous simulation hydrologic model developed by the authors [11]
was used in this research. The hydrologic model was simulated for a period of 100 years
(1920 to 2020) of disaggregated historical daily rainfall. Twenty iterations of the disag-
gregated rainfall were simulated to allow the uncertainty in the results to be determined.
While the model run times made running additional iterations prohibitive, increasing the
number of iterations would have minimal impact on the outcomes of the research due to
the small number of unique iterations possible, in particular for larger daily rainfall totals
(as presented in Figure 6). This issue is further explored in Section 3.3.
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Figure 6. Number of unique storms available for selection within each class ID for each class option.
Ignoring seasonality from the disaggregation process allowed for a much larger number of storms
available for selection when using the MoFs. Class option 2 satisfies the iterative approach presented.

2.6. Determination of Threshold Value

To allow the peaks over threshold flood frequency analysis of the long series of flow
rates determined via continuous simulation, a threshold value is required. The data series
used to undertake the flood frequency analysis is the maximum monthly flows above the
threshold value. A higher threshold value will result in fewer values in the data series,
while a lower threshold value will result in the opposite. In this research, we proposed an
alternate method where we graphically interrogated the peak monthly flow from the full
100 years of continuous flow ranked in ascending order to determine clear changes in trend.
Figure 7 shows three clear changes in trend at 45 m3/s, 70 m3/s and 110 m3/s.
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Figure 7. Peak monthly flow from 100 years of continuous flow ranked in ascending order with clear
changes in trend highlighted by the red dots. A threshold value of 70 m3/s was used in this research
based on this method.

Adopting the higher value of 110 m3/s resulted in a 0.5m:1n ratio, which was consid-
ered a data series too small for a flood frequency analysis [14]. Adopting the lower value
of 45 m3/s resulted in a 3.2 m:1 n ratio, significantly higher than those documented in the
literature [14,15]. In addition, the trend change noted at 45 m3/s was not as clear as the
other two changes in slope. Adopting the middle value of 70 m3/s resulted in a 1.2m:1n
ratio, which is in line with those documented in the literature [14,15], and graphically
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represents a clear change in trend, suggesting the flows below 70 m3/s would have a very
frequent recurrence interval.

3. Results
3.1. Flood Frequency Analysis

A flood frequency analysis of all 20 iterations of the continuous simulation model
was undertaken on the peaks over threshold series using a Bayesian fit of the Log Pearson
Type 3 (LPIII) distribution [1]. The same flood frequency analysis was also undertaken
using the available stream gauge data with the combined results shown in Figure 8. As
shown, all 20 simulations are within a relatively tight band. Given that all results are
equally likely, we considered that the median would approximate the peak flow for a given
Annual Exceedance Probability (AEP), with the range of possible results (or uncertainty
bounds) being within the highest and lowest results of the simulation. This suggests that
the 1-in-10-year AEP peak flow would be 166 m3/s ± 20 m3/s, while the 1-in-100-year AEP
peak flow would be 333 m3/s ± 50 m3/s.
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Figure 8. Flood frequency analysis of all 20 simulations (orange), with the median result shown in
black and the same analysis of the stream gauge series shown in green. The simulated results show a
relatively tight range suggesting there is limited uncertainty in the result.

In addition to the main finding above, the performance of the simulated results is also
supported by the proximity of the same flood frequency analysis undertaken on the stream
gauge. While the stream gauge result is at the upper end of the range of simulated results,
it is posited that the shorter length of available stream gauge data (52 years), in comparison
to the model simulations (100 years), potentially skews the stream gauge results. If the
flood frequency analysis of the simulated results was undertaken for the same period and
length of available stream gauge data (refer to Figure 9), the simulated results would better
reflect the stream gauge data. What is also evident, however, is that the range of possible
solutions increases significantly. Using the same approach as above, the 1-in-10-year AEP
peak flow increases to 172 m3/s ± 30 m3/s, while the 1-in-100-year AEP peak flow would
increase to 360 m3/s ± 100 m3/s. In practice, it is recommended that at least 50 years of
data be used in a flood frequency analysis [17]. This research indicates that data of this
length may, however, overestimate the result and increase the uncertainty significantly.

While the length of available data is a well-discussed criterion when undertaking a
flood frequency analysis [17], the period of data adopted is often neglected. This issue is
particularly evident in catchments such as the Gowrie Creek catchment, which may be
considered to have a sufficient length of gauged data but recently experienced a flood
event significantly larger than any others recorded. The impact of adopting the minimum
of 50 years of streamflows over differing time periods (1920–1970, 1930–1980, 1940–1990,
1950–2000, 1960–2010, and 1970–2020) was undertaken using one of the model simulations
and is shown in Figure 10. These results show the impact that large floods (or the lack
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thereof) can have on the flood frequency analysis, with the 1-in-100-year AEP peak flow
ranging from 308 m3/s to 432 m3/s.
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Figure 9. Flood frequency analysis of 52 years of all 20 simulations (orange) with the median result
shown in black, and the same analysis of the stream gauge series shown in green. The simulated
results show a relatively tight range, suggesting that there is limited uncertainty in the result.
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Figure 10. Flood frequency analysis of different 50-year time periods of one model simulation. The
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3.2. Peaks over Threshold vs. Annual Maximum Series

As detailed in Section 1, the peaks over threshold method was used in this re-
search to develop the data series for flood frequency analysis. However, the annual
maximum series is still used by most practitioners, and it was therefore worth highlight-
ing the impact of adopting the alternative option. The results presented in Figure 11
show that the annual maximum series results in significantly higher peak flows for AEPs
less frequent than 1 in 5 years while also resulting in increased uncertainty in the re-
sult. For example, the 1-in-100-year AEP using the peaks over threshold approach was
estimated to be 333 m3/s ± 50 m3/s, while using the maximum series approach, it was
427 m3/s ± 100 m3/s.
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Figure 11. Flood frequency analysis of all 20 simulations using the peaks over threshold series
(orange) and annual maximum series (blue). In general, the annual maximum series results in higher
peak flows for the same AEP while also resulting in a wider range (or increased uncertainty) in
the results.

3.3. Impact of the Number of Disaggregated Rainfall Iterations

While the software used in this research was limited due to the number of disaggre-
gated rainfall iterations that could be simulated in a reasonable timeframe, the results
shown in Figure 12 support the previous hypothesis that increasing the number of simu-
lations beyond 20 would not have a significant impact. When viewing the change in the
median peak flow for the 1-in-100-year AEP with each new iteration, it can be seen that
there is a small variation in the result (between 320 m3/s and 340 m3/s), with an even
tighter range (between 320 m3/s and 330 m3/s) forming beyond 11 iterations. This is likely
due to the range of the results plateauing after the same number of iterations, suggesting
that the upper and lower bounds of the 1-in-100-year AEP peak flow was reached based on
the rainfall data used. Adding new sub-daily storms based on additional data collected
over time would likely change this result. However, it is unlikely to be significant based on
the narrow range of median peak flows.
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Figure 12. Change in median peak flow (red) and range (black) for the 1% AEP with an increase in
the number of disaggregated rainfall iterations. There appears to be a trend change in both results
after 11 iterations.
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3.4. Comparison to Other Methods

Two previous hydrological assessments of the Gowrie Creek catchment were under-
taken in the wake of the significant flooding in 2011. In 2013, the design event method was
used to estimate the peak flow at the stream gauge for a range of AEPs from the 1-in-2-year
to the 1-in-100-year AEPs (AECOM, 2013). An alternative approach to estimating peak
flow was proposed by [41] who applied a Monte Carlo framework to the simplistic rational
method (naming it the Rational Monte Carlo (RMC) method) to estimate peak flows for the
same range. The results of these assessments in addition to the outcomes of this research
are presented in Figure 13.
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Figure 13. Comparison of the results of this research (diamond) against the design event method
(circle), the Rational Monte Carlo framework (cross), and a flood frequency analysis of the stream
gauge. The comparison shows a good agreement between this research and the design event
method [41].

From this comparison, it is evident that the results of this research show a strong
correlation with the design event method for all AEPs, while also showing good agreement
with the RMC method for the 1-in-2 year and 1-in-5-year AEPs. It is noticeable, however,
that there is a significant divergence from the RMC when the AEP becomes less frequent.
This is likely due to the differing treatment of hydrologic losses, with this research adopt-
ing a dynamic loss model discussed in [11], while the RMC method adopts a simplistic
runoff coefficient.

3.5. Review of an Individual Flood Event

While determining the peak flow for a given annual exceedance probability was the
key outcome of this research, it was also interesting to compare the results of all scenarios
simulated against the recorded streamflow for a given historical event. The major flooding
that occurred in the Gowrie Creek catchment in January 2011 was an obvious candidate
for comparison. The results shown in Figure 14 highlight that different rainfall temporal
patterns were chosen to represent the same total daily rainfall. While the inconsistencies of
the stream gauge during this event were documented by the authors [11]. It is still worth
noting that all peak flows were less than the ~600 m3/s recorded by the stream gauge, with
a concentration of scenarios around a peak of 400 m3/s. This suggests that a similar rainfall
temporal pattern was chosen multiple times during the disaggregation process, which
is consistent with the limited availability of large storm patterns as shown previously in
Figure 6, and further supports the insignificant impact additional iterations would have on
the result.
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Figure 14. Hydrographs for all scenarios simulated (red) for the major January 2011 event in compar-
ison to the recorded streamflow (black).

4. Conclusions

This research investigated the use of a calibrated continuous simulation model using
the industry standard hydrology model XPRafts to estimate peak flows for a range of
annual exceedance probabilities with uncertainty.

The need for a continuous series of sub-daily rainfall data for use in a continuous
simulation model highlighted the requirement for a rainfall disaggregation model to
disaggregate a long series of historic daily rainfall to a sub-daily scale. The use of a
modified MoF that excluded seasonality and pre/post rainfall conditions allowed for a
significant increase in the number of storms to be selected within a given class and allowed
for the uncertainty to be better understood. The results of this method showed a strong
correlation to the Bureau of Meteorology IFD design rainfall, justifying the use of this
alternative method over those previously documented in the literature. This is a significant
outcome, as it provides an alternate methodology to produce disaggregated rainfall better
suited for continuous simulation modelling.

To understand the uncertainty in the result, 20 simulations of the calibrated hydrologic
model with different disaggregated rainfall series were undertaken. A flood frequency
analysis using the peaks over threshold method allowed the estimation of peak flows for
different annual exceedance probabilities. The relatively tight range of results suggested
there was limited uncertainty in the result, which is an important understanding when
undertaking hydrologic modelling in an urban catchment.

This research further investigated the use of different flood frequency analysis meth-
ods and the use of different quantities and periods of streamflow data. When the flood
frequency analysis of the model simulations (100 years of streamflow) was compared to
the stream gauge (52 years of streamflow), it was evident that the stream gauge result was
higher than all modelled results. If the flood frequency analysis of the model simulations
was reduced to the same number of years and time period, the stream gauge result was
close to the median of the modelled results. It was also shown that if 50 years of data were
selected from differing time periods, the results of a flood frequency analysis could vary
significantly. This result is of significance to practitioners who rely on flood frequency
analyses of poorly gauged catchments to make informed decisions.

This research compared the peaks over threshold and the annual maximum series
methods and showed that the use of the annual maximum series results in significantly
more uncertainty in comparison to the peaks over threshold approach. Understanding the
uncertainty of each method will assist practitioners who may seek to utilise alternative
methods in evaluating the peak discharge in a catchment.

Finally, we were able to compare our result to other methods previously adopted
for this catchment and found good agreement with the design event method. This result
suggests the new methods being adopted within this research are comparable to other
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methods whilst also providing an improved understanding of the uncertainty. This research
can be extended to extract hydrographs to determine the impact hydrologic uncertainty
has on hydraulic modelling.
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