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Abstract
Small artificial waterbodies are larger emitters of carbon dioxide (CO2) and methane (CH4) than natural
waterbodies. The Intergovernmental Panel on Climate Change (IPCC) recommends these waterbodies are
accounted for in national emission inventories, yet data is extremely limited for irrigated landscapes. To
derive a baseline of their greenhouse gas (GHG) footprint, we investigated 38 irrigation farm dams in
horticulture and broadacre cropping in semi-arid NSW, Australia. Dissolved CO2, CH4, and nitrous oxide
(N2O) were measured in spring and summer, 2021-2022. While all dams were sources of CH4 to the
atmosphere, 52% of irrigation farm dams were sinks for CO2 and 70% were sinks for N2O. Relationships
in the linear mixed effect models indicate that CO2 concentrations were primarily driven by dissolved
oxygen (DO), ammonium, and sediment carbon content, while N2O concentration was best explained by
an interaction between DO and ammonium. Methane concentrations did not display any relationship with
typical biological variables and instead were related to soil salinity, trophic status, and size. Carbon
dioxide-equivalent emissions were highest in small (<0.001 km2) dams (305 g CO2-eq m-2 season-1) and
in those used for recycling irrigation water (249 g CO2-eq m-2 season-1), with CH4 contributing 70% of
average CO2-eq emissions. However, irrigation dams had considerably lower CH4 emissions (mean 40 kg
ha-1 yr-1) than the IPCC emission factor (EF) of 183 kg CH4 ha-1 yr-1 for constructed ponds and lower
N2O EF of 0.06% than the indirect EF for agricultural surface waters (0.26%). This synoptic survey reveals
existing models may be severely overestimating (4-5 times) farm dam CH4 and N2O emissions in semi-
arid irrigation areas. Further research is needed to define these artificial waterbodies in emissions
accounting.

INTRODUCTION
Artificial agricultural ponds are increasingly recognised as sources of greenhouse gas emissions (GHGs),
and are often reported as higher emitters of methane (CH4) than natural freshwaters (Ollivier et al. 2019a;
Peacock et al. 2021). Research efforts have recently focused on the contribution of farm dams, a type of
agricultural pond, to anthropogenic emissions of CH4, carbon dioxide (CO2), and nitrous oxide (N2O)
(Ollivier et al., 2019a; Malerba et al. 2022a). These human-made waterbodies store water on-farm for crop
or livestock production and include newly created “ponds” or small impoundments of a natural waterway,
and will henceforth be referred to as farm dams. Artificial ponds in Queensland, Australia, are estimated
to contribute 10% of the state’s total emissions from land use, land use change and forestry. Additional
studies show that farm dams can contribute three times more CO2-equivalent emissions than
reservoirs (Ollivier et al. 2019a) and that nutrients from manure inputs are a significant driver (Malerba et
al. 2022b). Complementary studies of semi-arid farm dams in the Northern hemisphere have shown
similar patterns between nutrient enrichment and CH4 emissions, but despite high nutrient levels, N2O is
often consumed within these systems (Jensen et al. 2023; Webb et al. 2019a; Webb et al. 2019b). With
growing attention is being paid to accounting that has previously overlooked sources of GHGs (CO2, CH4,
N2O), such as those from aquatic ecosystems (Lindroth and Tranvik, 2021) the contribution of artificial
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ponds to GHG budgets in irrigated agriculture remains a major knowledge gap (hereafter, referred to as
“irrigation farm dams”). 

Irrigated agriculture is a common practice in arid and semi-arid regions where precipitation is not enough
to meet crop water requirements. Globally, irrigated agriculture makes up 3.6 million km2 and has had
direct impacts on landscapes, including intensifying the surface energy balance, increased uptake of
carbon and nitrogen in crops, and enhance to soil nitrogen mobilisation (McDermid et al. 2023). High-
density artificial waterbodies, such as farm dams for water storage and channels for water conveyance
and drainage, have been created for irrigated crop production. Collectively, these artificial waterbodies
represent a sophisticated network of water supply and reticulation that is critical for sustaining
agricultural productivity and social-economic sustainability in dryland environments. On the farm,
irrigation farm dams, commonly known in Australia as “water storages” (Craig et al. 2005) or in other
countries as “irrigation ponds” (Aguilera et al. 2019), can be used for purposes such as permanent or
temporary irrigation water storage, rainwater storage, recycling irrigation water between fields, settling
sediments for drip irrigation, and household irrigation. Depending on their primary function, irrigation type
(e.g. drip, surface furrow) and size, irrigation farm dams can be broadly classified as settling ponds,
storages, recycle dams, and turkey nests (Table S1).

Unlike dams used in other agricultural practices, irrigation farm dams are built to meet the dynamic
requirements of irrigated farming systems. Therefore, the biogeochemical functioning and subsequent
potential for GHG production will likely be intensified in irrigation farm dams compared to dams in non-
irrigated agriculture. Irrigation farm dams often have high nutrients, receive crop residue inputs rather
than animal manure, and exist in climate zones with high sunlight exposure and hot conditions. However,
a lack of empirical data from field studies has hindered accurate representation of irrigation waterbodies
in GHG assessments. For example, irrigation waterbodies have the most limited N2O dataset out of other
agricultural surface waters that make up the default N2O emissions factors for nitrogen leaching and
runoff (EF5, Webb et al. 2021) and represent just 14% of the CH4 emission factor (EF) dataset for “Other
Constructed Waterbodies” (IPCC, 2019). In the only known reported carbon footprint study of the irrigation
sector (Aguilera et al. 2019), irrigation farm dams were assigned the global average CH4 EF for reservoirs
as no data specific to irrigation waterbodies was available.

Comprehensive field studies are required to develop a baseline of GHG emissions from irrigation dams to
provide a basis for methodological refinement of EFs used in national inventory reporting. The United
States and Australia have included farm dam CH4 emissions in their latest National Greenhouse Gas
Inventory reports submitted to the United Nations Framework Convention on Climate Change (UNFCCC,
2021). A meta-analysis of farm dam CH4 emissions revealed that the contribution of small (<8 ha) on-
farm waterbodies is likely underestimated in these reports (Malerba et al. 2022a), however, semi-arid
irrigation farm dams were not represented in the global dataset. As a first step to addressing the data
gap, we aimed to quantify CO2, CH4, and N2O emissions from irrigation farm dams covering a broad
range of semi-arid agricultural systems in eastern Australia. Specific objectives were to: 1) establish
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baseline GHG emissions from farm dams across diverse irrigated summer crops including perennial
horticultural land uses; 2) determine the environmental drivers of CO2, CH4, and N2O; and 3) calculate
regional farm dam emissions to compare with IPCC emission factors for agricultural waterbodies. 

METHODS
Two spatial surveys of irrigation farm dams were carried out to capture variability in water conditions
between spring and summer 2021-2022. Farm dam sites were located in the Murrumbidgee Irrigation
Area (MIA) and the Coleambally Irrigation Area (CIA) which are part of the Murrumbidgee River catchment
within the greater Murray Darling Basin, Australia (Figure S1). Together, these irrigation areas represent
the third largest irrigation area (~7,800 km2) in Australia and support a diverse production of food and
fibre including broadacre cotton, rice, wine grapes, citrus, and almonds. The climate is semi-arid with hot
summers (mean maximum temperature 31.3°C) and cool winters (mean maximum 17.6°C) and a mean
annual rainfall of 404 mm (Australian Bureau of Meteorology, 2023). 

Farm dam surface water area was calculated from the most recent satellite imagery on Google Earth
(Google, California, United States) using the polygon tool. Waterbodies range from 180-145,000 m2 in
surface area. Because some recycle farm dams are drained during field irrigation, it was not possible to
sample five recycle dams in summer. Four classifications of irrigation dam types were identified based on
farmer definitions and visual inspections: settling ponds n = 5; storage dams; n = 8; recycle dams n = 19;
and turkey nests n = 6 (see Table S1 for definitions).

Field measurements

Surface water GHG concentrations, water quality, sediments and surrounding soil were sampled from 38
farm dams between September 2021 and April 2022 (Figure S1). All water samples and measurements
were taken 1-2 m from the dam margin at 0.3 m under the water between 10:00 and 14:00. Water quality
variables were measured on site using a portable multiparameter meter (HI98194, Hanna Instruments)
and included temperature, pH, dissolved oxygen (DO), electrical conductivity (EC), and atmospheric
pressure. Barometric atmosphere pressure was also recorded using the Hanna Instruments
multiparameter meter. Phosphate concentrations were measured on site using a portable Phosphate
colorimeter (HI713, Hanna Instruments). Water samples were collected into two 60 mL polypropylene
bottles and transported on ice back to the laboratory for nitrate (NO3

-) and ammonium (NH4
+) analysis.

Samples were analysed the same day using a Hach HQ440d benchtop meter (Hach Company, Colorado,
United States) equipped with a NO3

- and NH4
+ ion-selective electrode (detection limit 0.1 mg/L NO3-N,

0.018 mg/L NH4-N), or frozen for subsequent analysis the following day. Samples were brought to room
temperature prior to measurement.

Three sediment samples were collected 1-2 m from the dam margin in the water using polycarbonate
coring tubes by pushing the core into the sediment until a hard clay layer was reached. The top 10 cm
from each core was sectioned off in the field and the three replicates bagged into one sample for each
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site. Sediments were stored in plastic Ziplock bags at 4°C until the completion of each survey. Samples
were dried at 60°C until constant mass was reached (~ 4 days) and the dry weight recorded to calculate
the approximate dry bulk density (DBD, g dry mass cm-3) using the total volume of the three cores (435
cm3). Composite sediment samples were ground to pass through a 2-mm sieve prior to laboratory
analysis. Samples were analysed for total %C, %N on a LECO CNS928 Series Macro Determinator (LECO
Corporation, St. Joseph, Michigan, United States) and δ13C, and δ15N on a Sercon 20-22 continuous-flow
isotope ratio mass spectrometer (Sercon Ltd, Cheshire, UK). C to N ratio (C/N) was calculated from the C
and N content. Total C stock to 10 cm of each sampled waterbody was determined by multiplying %C by
DBD and upscaled to each dam area.

Soil surface pH and EC were measured on site in soils bordering (within 10 m from dam wall) the farm
dam to test if soil properties influence water emissions. A portable soil pH meter (HI99121, Hanna
Instruments) and direct soil EC tester (HI98331, Hanna Instruments) were used to take three spot
measurements from around the dam. A 0.3 m hole was dug prior to inserting the probes into the soil to
take readings. If the substrate was dry, deionised water was added until the substrate was saturated to
get a reading. 

Greenhouse gas measurements

Two dissolved GHG samples were taken at each farm dam using the headspace equilibration
method (Hope et al. 2004). While in the field, 25 mL of “Zero air” (Coregas Ltd, Griffith, NSW, Australia)
was withdrawn from a 1-L Tedlar® film bag (DuPont de Nemours, Inc, Delaware, United States) using a
100-mL syringe and shaken together with 75 mL of sample water for 2 minutes. The headspace air was
transferred into two pre-evacuated 12 mL soda glass vials fitted with a double wadded cap. Samples
were stored at room temperature for a maximum of one month before being sent for laboratory analysis.
Headspace concentrations for GHGs were measured using gas chromatography (GC) with an Agilent
7890A GC (Agilent Technologies, Inc., Santa Clara, CA, United States) and calculated using standard
curves. The dry molar fractions of CO2, CH4, and N2O were corrected for dilution and converted to
dissolved concentrations according to solubility coefficients (Weiss 1974; Weiss & Price 1980; Yamamoto
et al. 1976), considering the water temperature, salinity, and barometric pressure at each site. At 10 sites
in spring, headspace CO2 concentrations were not determined as they were below the detection level of
the GC (<50 ppm) due to high pH in these waterbodies (~9.16). For these sites, we gap filled the CO2 data
with the relationship between dissolved CO2 levels and surface water pH values for dams in the spring
survey (Figure S2).

To estimate GHG emissions from irrigation dams, we calculated diffusive fluxes using dissolved gas
concentrations (Cwater) and dam-specific gas transfer velocity (k600) values in the following equation:
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where F is the flux (mmol m-2 d-1) of CO2, CH4, or N2O (µmol m-2 d-1) across the water-air interface, k600

(m d-1) is normalised to a Schmidt number of 600, and Cair is the dissolved gas concentrations at
atmospheric equilibrium where 416, 1.91, and 0.335 ppm were used for CO2, CH4, and N2O, respectively
(Mauna Loa NOAA station, September 2021–March 2022). Farm-dam specific gas transfer velocity
values of 0.78 (CO2), 0.48 (CH4), and 0.76 (N2O) were applied to flux calculations using the mean k600

determined in 50 individual floating-chamber measurements taken on a subset of sites (n = 17) during a
pilot study in April 2021 (Table S3). 

Analysis

All statistical analysis was performed in R for Windows (version 4.2.2; R Core Team, 2022) and plotted
using the “ggplot2” (Wickam, 2016) and “cowplot” packages (Wilke, 2020). Differences in water
chemistry and physical conditions of the dams between seasons was evaluated using p-values from the
Wilcoxon rank sum test applied to continuous variables and Fisher’s exact test applied to categorical
variables (trophic class). 

We used two approaches to explore the drivers of GHGs in irrigation farm dams. First, individual linear
mixed-effect models (LMEM) for CO2, CH4, and N2O concentrations were developed to determine what
environmental variables best explained the spatial variability in dissolved concentrations across dams.
Independent variables tested included biotic (pH, DO, NH4, NO3, total dissolved N), abiotic (surface
temperature, EC, area), management (dam type), and landscape factors (sediment C, N, C/N, soil pH, soil
EC) that are known or presumed to influence aquatic GHG production. All potential model variables were
checked for normality by visually inspecting histograms, transformed using either log, log10, square root,
and checked again by performing a Shapiro-Wilk test (“shapiro.test” function). Before model fitting,
variables were tested for collinearity by pair-wise linear regression to guide variable choice and avoid
multicollinearity. First and second sampling campaign (spring or summer) was set as a fixed factor in the
LMEM (“lmer” function in lme4 package, Bates et al. 2015) to account for repeated measures sampling
design and dam identification set as a random factor. A combination of different variable types classified
as biotic, abiotic, management, and landscape were individually tested in the LMEM until the best fit and
most significant model was chosen. The models were evaluated through assessment of Q-Q plots,
residuals versus predicted values, distribution of residual plots, and the final models were chosen based
on the highest R2 and lowest Akaike’s information criterion. 

To understand which irrigation farm dam types and conditions have the greatest impact on collective
GHG emissions, we used individual LMEMs to determine whether season, size, farm dam type, and
trophic status affected CO2-equivalent (CO2-eq) emissions. Dams were banded into four logarithmic bin

classes (<0.001 km2, 0.001-0.01 km2, 0.01-0.1 km2, and 0.1-1 km2) that are commonly used to classify
pond size classes (Holgerson et al. 2016). Trophic status was defined based on the total N concentration
range for lakes in Smith et al (1999) and that used by the IPCC to adjust CH4 EFs for lakes and reservoirs.
Methane and N2O were converted to CO2-equivalent (CO2-eq) emissions using the 100-year sustained-flux
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global warming potential (SGWP) and the sustained-flux global cooling potential (SGCP), where 1 kg of
CH4 is equivalent to 45 or 203 kg of CO2 and 1 kg of N2O is equivalent to 270 or 349 kg of CO2 for
emissions or uptake, respectively (Neubauer & Megonigal 2015). Total CO2-eq emissions was estimated
by taking the mean of each of the two samplings events and multiplying by the total days in spring and
summer for each site. Data was log-transformed to fit a normal distribution. We added 130 units to total
CO2-eq emissions to avoid negative values during log transformation and set dam identification as a
random factor. Models were evaluated as previously described with the other LMEMs and a 95%
confidence interval was used to indicate significance.

Regional upscaling

To upscale total CO2-eq emissions to the local irrigation region (MIA), we sourced the national farm dam
map dataset (Malerba et al., 2020) and carried out the spatial analysis in R using the package “raster”
(Hijmans, 2023). We adopted a similar approach to Audet et al. (2020) and estimated the density of
irrigation dams by summing the number and total area of farm dams identified within a 10x10 km frame
centred around Bilbul, an intensive irrigated cropping area consisting of winegrapes, rice, and broadacre
crops in the MIA. A total of 124 dams were identified. The dams covered a total surface area of 35.3 ha,
which yields a dam:irrigated landscape area ratio of 0.353%. Assuming the ratio is representative of all
the region, irrigation dams would cover a total area of 13.38 km2 in the MIA (378,911 ha,
https://mirrigation.com.au, accessed 2 May 2023). Mean spring and summer CO2-eq emissions were
aggregated to obtain the total CO2-eq emissions over the 6 month spring-summer irrigation season. 

RESULTS
For most sites, the spring sampling period represented conditions of prolonged water storage prior to
frequent irrigation and a cool-dry season. Both the 2021 and 2022 years experienced wetter than average
conditions, recording annual rainfalls of 507.6 mm and 850.6 mm, respectively (Griffith, bom.gov.au). 

Physical and environmental water conditions were highly variable between seasons. Mean water surface
temperature was 10°C higher in summer (mean 25.6°C) and pH was also significantly higher (mean 8.93)
compared with spring (mean 8.55, Table 1). Supersaturated oxygen conditions occurred in spring, with a
mean DO of 135%, while oxygen conditions were near saturation in summer (mean 103%). Both the DO
results and trophic status showed that most irrigation dams support high biological productivity, with
78% and 58% of dams either eutrophic or hypereutrophic in spring and summer, respectively. A lower
proportion (10%) of settling ponds had eutrophic conditions during the study while 40% of recycle dams
had eutrophic conditions at the time of sampling (Table S2). Phosphate and NO3-N did not change

significantly between the two surveys, although phosphate was below detection (<0.0025 mg L-1) at 18
sites in spring compared to 8 sites in summer (Table 1). 

Table 1: Summary of water quality variables, greenhouse gas concentrations, and trophic status across
38 farm dams during spring and summer. Presented as mean ± standard deviation (SD) for continuous
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variables and count (percentage) for group variables.

Characteristic Units Spring, N = 37 Summer, N = 31 p-value1

Surface temperature °C 15.5 (1.6) 25.6 (3.0) <0.001

Dissolved oxygen  % 135 (30) 103 (41) 0.002

Electrical conductivity µS cm-1 326.4 (225.2) 419.4 (514.5) 0.845

pH   8.55 (0.73) 8.93 (0.75) 0.004

Phosphate mg P L-1 0.05 (0.04) 0.09 (0.11) 0.714

<0.025   18 8  

Ammonium mg N L-1 0.65 (0.50) 0.23 (0.17) <0.001

Nitrate mg N L-1 0.72 (0.64) 1.10 (1.31) 0.662

CO2 µmol L-1  18.70 (24.50) 21.50 (29.57) 0.107

CH4  µmol L-1 2.20 (5.29) 1.35 (1.47) 0.893

N2O  nmol L-1  10.37 (6.57) 9.96 (11.90) 0.011

Trophic class       0.2452

Oligotrophic   2 (5.4%) 6 (19.4%)  

Mesotrophic   6 (16.2%) 7 (22.6%)  

Eutrophic   14 (37.8%) 8 (25.8 %)  

Hypereutrophic   15 (40.5%) 10 (32.2 %)  

1Wilcoxon rank sum test; 2Fisher's exact test  

Dissolved CO2 and CH4 concentrations did not vary between seasons (Table 1, p 0.107 and 0.893). Mean

CO2 was slightly higher than atmospheric equilibrium (11-15 µmol L-1). Mean CH4 was 2.20 µmol L-1 and

1.35 µmol L-1 in spring and summer, respectively, which is approximately 23-31 times greater than
atmospheric equilibrium. Undersaturation between 0.02 µmol L-1 and 0.07 µmol L-1 was observed in
seven sites in spring and two in summer, indicating an unusual occurrence of aquatic CH4 uptake. Mean
N2O was higher in spring (10.37 nM) compared with summer (9.96 nM, p=0.011), following the same

observation for NH4
+ (Table 4, p<0.001). 

Greenhouse gas drivers
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The LMEM indicated that variation in CO2 concentrations was best estimated by DO, NH4
+, and sediment

C content, with a significant difference between seasons and no dam size effect (Figure 1, Table S4 and
S5). Overall, the model explained 54% of variance. Dissolved oxygen and NH4

+ were the strongest
predictors (p <0.001 and 0.004, respectively). Carbon dioxide displayed a positive association with
increasing NH4

+ (p=0.004) and sediment C (p=0.049), and lower concentrations with increasing DO
(p<0.001) saturation. 

Dissolved methane concentration was best explained by an interaction between soil salinity, trophic
class, and size, while no seasonal effect was observed (Figure 2, Table S4 and S6). The LMEM explained
81% of CH4 variance. Overall, CH4 concentrations declined with increasing soil EC (p=0.036). The soil EC
effect on CH4 was strongest in oligotrophic dams which was different to eutrophic conditions where CH4

instead did not decline with increasing soil EC (p=0.0321, Table S6). Small dams <0.001 km2 had higher
mean CH4 concentrations (4.39 µmol L-1) compared with those between 0.001 (p=0.0204, 1.12 µmol L-1)

ankm2.1 km2 (p=0.0287, 1.17 µmol L-1) in surface area.

Nitrous oxide concentration was best explained by an interaction between DO and NH4
+, and an

interaction between size class and season (Figure 3, Table S4 and S6). The degree to which N2O

concentrations increased with NH4
+ was influenced by DO saturation, where higher N2O was observed

when DO was low compared with supersaturated DO conditions (Figure 3A). The lowest N2O

concentrations occurred when both DO and NH4
+ were low. The smallest dams (<0.001 km2) had lower

mean N2O concentrations (8.82 nmol L-1) than those between 0.001 (11.96 nmol L-1, p=0.019) and 0.1

km2 (9.29 nmol L-1, p=0.005) and all dams had lower mean N2O concentrations in summer (9.96 nmol L-

1, p=0.009). The difference between dam size was most pronounced in spring, when dams between
0.01–1 km2 had higher N2O than dams <0.001 km2, whereas in summer no difference was detected
between size classes (Figure 3B, Table S6).

Fluxes and CO2-equivalent emissions

Approximately 48% of dams were emitters of CO2, 87% were emitters of CH4, and only 30% were emitters
of N2O (Figure S3) across both surveys (n=68). Estimated mean fluxes in spring (n=37) were 3.57 mmol

m-2 d-1 (range: -13.28 to 63.7) for CO2, 0.85 mmol m-2 d-1 (range: -0.02 to 12.5) for CH4, and -0.33 µmol m-

2 d-1 (range: -7.35 to 16.4) for N2O. In summer (n=31), fluxes were 8.29 mmol m-2 d-1 (range: -3.99 to 101)

for CO2, 0.51 mmol m-2 d-1 (range: -0.01 to 2.75) for CH4, and 1.26 µmol m-2 d-1 (range: -2.69 to 45.3) for
N2O. 

Spring and summer had similar mean CO2-eq emissions of 68 and 67 g CO2-eq m-2 season-1, respectively,
although the contribution of CH4 to CO2-eq emissions were greater in spring (81%) compared to summer
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(49%, Figure 4A). Smaller dams <0.001 km2 had higher total CO2-eq emissions (mean 305 g CO2-eq m-2

season-1, p<0.05) than larger ones (mean 46 and 111 g CO2-eq m-2 season-1 for 0.001-0.01 and 0.01-0.1

km-2, respectively) except 0.1-1 km2, where limited data was able to be collected. Settling ponds had
lower net CO2-eq emissions of 6.3 g CO2-eq m-2 season-1 over the entire summer irrigation season

compared to recycle dams (249 g CO2-eq m-2 season-1, p=0.040). The GWP was highest in eutrophic

waterbodies (174 g CO2-eq m-2 season-1) and lowest in mesotrophic waterbodies (45 g CO2-eq m-2

season-1) (Figure 4D). Overall, total CO2-eq emissions from irrigation farm dams in the MIA are estimated
to be 1,803 t CO2-eq during the summer irrigation season.

DISCUSSION
Drivers of CO2 and CH4 

Our spatial analysis of 38 irrigation farm dams revealed wide variations among CO2 and CH4

concentration. Approximately half of the irrigation farm dams were atmospheric CO2 sinks at the time of

sampling, with fluxes ranging from -13.3 to -0.20 mmol m-2 d-1 for uptake and 0.15 to 101 mmol m-2 d-1

for CO2 sources. This proportion of farm dams acting as CO2 sinks (52%) is identical to the 52% of farm
dams (n = 100) found as CO2 sinks in Saskatchewan (Jensen et al. 2023; Jensen et al. 2022; Webb et al.

2019b). On average CO2 fluxes (mean 5.72 mmol m-2 d-1) were lower than those reported in some

Australian livestock dams (13.2-24.4 mmol m-2 d-1) (Ollivier et al. 2019a; Ollivier et al. 2019b). Models
showed that dam CO2 concentrations were most strongly driven by internal metabolism (i.e., primary

production and respiration) as DO saturation and NH4
+ concentrations were the strongest predictors of

CO2 variance (Figure 1, Table S5). We interpret these patterns as relatively high inorganic N levels
combined with direct sun exposure fueling autotrophic production and respiration beyond rates typical of
natural ponds until excessive algal growth from N and warm temperatures promotes heterotrophic
respiration at rates above autotrophic production (e.g., higher mean CO2 in summer, Figure 2E and 4A).
Farm dams tend to be highly productive freshwater ecosystems, and trends of O2 production associated
with CO2 consumption are commonly observed (Webb et al., 2019b; Jensen et al. 2022; Malerba et al.
2022b). The particularly high mean DO conditions observed in irrigation dams may represent higher solar
radiation exposure, lower organic carbon content of surrounding irrigated soils in the region (Webb et al.
2022) or limited organic matter inputs due to many dams being barren of vegetation (Table S1). The
negative CO2 association with DO also means that undertaking measurements during the day may
underestimate the CO2 flux estimates from these waterbodies due to the importance of both primary
productivity and respiration in these dams. Limited studies have investigated diel CO2 cycles in farm
dams and have revealed contrasting findings, where waterbodies either remained as a CO2 sink at night
(Jensen et al., 2022) or remained a consistent source over diel cycles (Ollivier et al., 2019b).
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Artificial waterbodies such as farm dams have recently become known as high emitters of CH4, yet
findings from this study revealed that most irrigation dams were relatively minor sources. Overall, 87% of
irrigation dams were sources of CH4 of the order 0.01 to 10.10 mmol m-2 d-1, with some small negative to

zero fluxes ranging from -0.02 to 0 mmol m-2 d-1. The mean CH4 emissions (diffusive flux) for irrigation

dams of 0.69 mmol m-2 d-1 was 7-15 times lower than that of other farm dams in Victoria, NSW
(diffusive), and Queensland (diffusive and ebullition) (Grinham et al. 2018; Ollivier et al. 2019a) and
similar to temperate livestock dams in autumn and winter emissions (diffusive, 0.29-0.94 mmol m-2 d-

1) (Ollivier et al. 2019b; Malerba et al. 2022b). 

Semi-arid irrigation dams in this study may support several environmental factors that minimise CH4

production. First, most sites were oxygenated in the surface layer, with a mean DO of 120% across both
surveys. Higher DO conditions are likely supressing anaerobic conditions and oxidising more CH4 in the
water column before being emitted to the atmosphere. The effect of higher oxygen conditions has been
shown to reduce diffusive CH4 emissions by 74% if increased from undersaturated to saturation oxygen
conditions in livestock farm dams (Malerba et al. 2022b). The consistently high DO levels in the irrigation
dams may also explain why no statistical association was found between CH4 and DO.

Secondly, we found that dams <0.001 km2 were higher in CH4 emissions compared with those between

0.001-0.1 km2 (Figures 2B and 4B). This finding reproduces a trend often observed in freshwater ponds
and lakes, where higher CH4 emissions occur due to small waterbodies supporting a higher sediment to
water volume ratio and frequent water column mixing (Holgerson & Raymond 2016). However, most
irrigation dams in the study area are larger than the average Australian farm dam area of 1000 m2

(Malerba et al. 2021), with different dam types averaging 2,300 to 65,100 m2, (Table S2). Even so, the
smallest irrigation dams <0.001 km2 still have lower average CH4 concentrations (4.39 µmol L-1)

compared to the global pond average in this size group (7.57 µmol L-1, Holgerson et al. 2016).

Characteristics of the surrounding soil and land use in the region may further contribute to lower CH4

emissions compared with other farm dams in the country and global averages. Methane concentrations
decreased in dams surrounded by soil with higher EC, which may mean there are more cations and
anions into the waterbody, including sulphate which is known to suppress methanogenesis. This negative
relationship of CH4 with EC is typically observed for pond water conductivity (Pennock et al. 2010; Webb
et al. 2019b), whereas here we found a direct relationship with surrounding soil properties. Another soil or
land use effect may be that semi-arid soils are typically low in organic carbon and irrigation dams receive
plant-based organic matter inputs rather than animal manure. These landscape controls such as mineral
vs organic wetland, and the type of organic matter input, are well established factors that are included in
the IPCC EF methodology for estimating CH4 emissions from “Wetlands” and agricultural ponds under
“Manure Management” (IPCC 2019).

Drivers of N2O concentrations
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Nitrous oxide exhibited a relatively narrow range of concentrations and was consistently low or
undersaturated (Table 1). Nitrous oxide uptake ranged from -7.35 to -0.09 µmol m-2 d-1 and emissions
from 0.01 to 45.3 µmol m-2 d-1 (Figure S3). Nitrous oxide consumption across the majority of irrigation
dams suggests that complete denitrification dominates over N2O production, and that this was strongest

at low DO and NH4
+ levels (Figure 3A). Although N loading is assumed to drive global riverine and lake

N2O production (Lauerwald et al. 2019; Yao et al. 2020), here we did not find a straightforward

relationship between surface water N availability and N2O. Instead, there was no relationship with NO3
-,

and the N2O with NH4
+ relationship was dependent on DO. Studies on lakes and artificial aquatic

ecosystems have shown an association between N2O consumption and primary production (Borges et al.
2022; Ferrón et al. 2012; Jensen et al. 2023; Webb et al. 2019a). Our study adds further evidence that
variation in N2O is not proportional to changes in surface water inorganic N levels and is controlled partly
by oxygen levels and/or autotrophy. The reasons are not entirely known and may be attributed to primary
producer competition for N substrates (Webb et al. 2019a) in productive waters which leads to a
stoichiometric N deficit (Scott et al. 2019), oxygen stratification controlling the penetration of inorganic N
with depth (Christensen et al. 1990; Rysgaard et al. 1994), supply of organic matter to sediments, or
microalgae assimilation (Ferrón et al. 2012). Further evidence that primary productivity controls N2O is
revealed by the size class relationship found between irrigation dams, where differences between dam
size was only observed during spring and not summer (Figure 3B). Regardless, these factors explain less
than half of N2O variability, indicating that other environmental factors not measured are at play.

Approximately 70% of irrigation farm dams were N2O sinks, representing the first known study in the
Southern Hemisphere to demonstrate such widespread N2O uptake in agricultural waters. A study of
GHGs from 100 semi-arid farm dams in Canada found 67% of these waterbodies behaving as N2O sinks
(Webb et al., 2019a): something that had only previously been observed in natural, low-nitrogen, fresh
waterbodies (Soued et al. 2015). Analysis of the literature has revealed that the current IPCC methodology
often overestimates N2O emissions from artificial agricultural waters, especially ponds (Tian et al. 2019;
Webb et al. 2021). Using the ratio of N2O-N to NO3-N concentrations, the mean EF from this study was
0.06% (range: 0.003-0.41%); substantially lower than the IPCC EF5 of 0.26% (CI: 0.16-0.36) for indirect
surface water emissions. Semi-arid agricultural soils also emit significantly less fertiliser-derived N2O
than the global average, suggesting there may be a climate-zone soil effect (Barton et al. 2008). The
effect of diel cycles on N2O needs to be considered in future refinement of EFs as most N2O
measurements from artificial and natural ponds are taken during sunlight hours when primary production
(and thus surface water O2 concentration) is at its peak. It is unclear whether this sampling bias would
lead to an under or overestimation of pond N2O emissions as we observed N2O sinks at both low and
high dissolved oxygen conditions. Inconsistent relationships between diel fluctuations in surface water
O2 and N2O are also reported across the freshwater literature (Baulch et al. 2011; Jensen et al. 2022;
Wells & Eyre 2021), likely because lower O2 can either enhance N2O production or increase its reduction to
N2. Ultimately, this study challenges traditional understanding that high N loads lead to proportionally
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high N2O emissions in freshwaters and begs for further research on how different types of artificial
waters function in terms of N2O production and consumption.

Management opportunities 

Our study on semi-arid irrigation farm dams reinforces findings that managing nutrient enrichment is key
to curbing total CO2-eq emissions in farm dams (Malerba et al. 2022b; Webb et al. 2019b). Evidence from
the LMEMs show that reducing nutrients, particularly inorganic N, may diminish both CH4 (Figure 2), N2O
(Figure 3), and overall CO2-eq emissions (Figure 4D). While not significant, the trophic status of the dam
had a distinct impact on total CO2-equivalent emissions. If irrigation farm dams were managed to avoid

eutrophication, this could represent a CO2-eq emissions saving of 0.35-1.29 t CO2-eq ha-1 over the

summer irrigation season (180 days). This is consistent with the 0.81 t CO2-eq ha-1 emissions from CH4

estimated to be avoided if livestock farm dams were fenced to reduce nutrients (Malerba et al. 2022b). 

Even greater emission savings of 2.05-2.62 t CO2-eq ha-1 could be achieved if new dams were 0.1-10 ha-1

instead of <0.1 ha in size (Figure 4B). Small waterbodies will concentrate nutrient inputs and have greater
contact with organic matter-rich sediment, which can make them hotspots for carbon
emissions (Holgerson 2015), although not necessarily N2O emissions (Figure 3B, Borges et al. 2022;
Webb et al. 2019a). Creating deeper dams may be an option to simultaneously dilute fertiliser runoff,
reduce eutrophication with cooler waters, and allow for conditions that promote CH4 oxidation in the
epilimnion (Borges et al. 2022; Webb et al. 2019b). 

Sediment settling ponds on horticultural farms may hold clues for GHG management in other types of
irrigation farm dams. Of all dam types in this study, settling ponds had the lowest net CO2-eq emissions
due to CO2 and N2O uptake offsetting most of the diffusive CH4 emissions. Recycle dams, however, were

found to have a higher GWP of 249 g CO2-eq m-2 season-1. This may be due to differences in water
management, including a shorter water residence time, more frequent wet-dry cycles in recycle dams, and
more soil and fertiliser N runoff from surface furrow irrigation for recycle dam types compared to drip
irrigation used specifically in horticultural systems. Settling ponds accumulate sediment and improve
water quality due to the need to reduce emitter clogging in drip irrigation infrastructure (Bonachela et al.
2013). Therefore, the low flows and permanently flooded conditions likely allows for more removal of
reactive N (Tournebize et al. 2015). Here, this can be demonstrated by lower NH4

+ and NO3
- in settling

ponds compared with recycle dams (p=0.006 and 0.04) with an overall greater proportion of recycle dams
in a eutrophic state (Table S2). 

Managing the amount of nutrients in recycle dams is difficult as irrigation water comes into direct contact
with soil and fertiliser. However, in-field practices to retain nutrients or reduce fertiliser application would
translate into less nutrients flowing into the dam, presenting a win-win for managing field and water farm
emissions and crop nutrient use efficiency. Floating wetlands have been shown to reduce methane
production in wetland environments that are known high CH4 producers and may be worth trialling in



Page 14/26

recycle dams as an option (Wang et al. 2024). Alternatively, having strips of vegetation in drainage
channels may be an effective and simple treatment option for removing fertiliser N runoff before entering
the dam (Zhang et al. 2016). 

Implications of emission estimates when compared with the available data 

Our synoptic GHG survey of irrigation farm dams during the summer irrigation season demonstrates that
emissions are substantially lower than other farm dams and artificial ponds (Table 2). This study is the
first to report all three GHGs from irrigation farm dams and found that CO2-eq emissions were 2.8-21
times lower compared with artificial ponds and 2.9-9.1 times lower compared with most farm
dams/reservoirs. Semi-arid irrigation farm dams had mean spring-summer CO2-eq emissions of 0.76 ±

2.20 g CO2-eq m-2 d-1, which were within the range of temperate farm dams in winter (0.83 g CO2-eq m-2 d-

1) and some shrimp and fish aquaculture ponds (0.41 g CO2-eq m-2 d-1). Carbon dioxide emissions in
semi-arid dams were lower than those measured in other regions using one-off spot sampling during
similar times of the day.   Although daily CO2 emissions rates are likely underestimated by our ‘daytime’
sampling approach due to the strong autotrophic control on CO2 accumulation in the studied farm
dams (Figure 1A), this does not explain the regional differences suggested by our study. This indicates
that some spatial nuances are likely occurring. Given well documented variability in the magnitude of
diurnal CO2 fluctuations (i.e., the ratio of productivity to respiration) in ponds (Brothers & Vadeboncoeur
2021), future work integrating GHG emissions over diel cycles is needed to precisely determine the
magnitude of these spatial differences.

This is the second reported study to observe such a high proportion of CO2 (52%) and N2O (70%) sinks in
small artificial waterbodies across an agricultural region (Webb et al., 2019a, b) and the first reported in
the Southern Hemisphere. On average, our study had even lower CO2, CH4, and N2O emissions compared
with the semi-arid farm dams in Canada where widespread CO2 and N2O sinks in farm dams (livestock
and cropping) were originally observed (Table 2). Although both regions are classified as semi-arid in
terms of their annual precipitation, they have largely different seasonality. Only two other studies are
known to have directly measured GHGs from irrigation farm dams (Table 2). Compared with subtropical
irrigation ponds, CH4 emissions were 8-times lower (Grinham et al., 2018) and similar for N2O
(Macdonald et al., 2016). These comparisons beg the question, are climate or regional factors driving
these differences and how this may impact emission estimates at continental to global scales?

Table 2: Comparison of mean CO2, CH4, N2O and total CO2-equivalent emissions from farm dams and
artificial ponds from the literature. All CO2-equivalent fluxes were calculated using the 100-yr sustained
global warming potential (1g CH4 = 45 g CO2, 1 g N2O = 270 g CO2) or sustained global consumption
potential (1 g CH4 = 203 g CO2, 1 g N2O = 349 g CO2) from Neubauer and Megonigal (2015).
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Waterbody CO2

(mmol
m-2 d-

1)

CH4

(mmol
m-2 d-1)

N2O

(µmol
m-2 d-1)

CO2-
eq

(g CO2

m-2 d-

1)

Reference

Temperate farm dams – summer, Australia 24.4 ±
3.56

7.2 ±
1.74

6.26 ±
1.41

Ollivier et
al. (2018)

Temperate farm dams – winter, Australia 13.2 ±
2.96

0.29 ±
0.04

3.05 ±
0.68

0.83 ±
0.17

Ollivier et
al. (2019)

Subtropical stock farm dams, Australia 10.5 Grinham et
al. (2018)

Subtropical irrigation farm dams 5.25 Grinham et
al. (2018)

Agricultural and urban ponds, India 67.1 ±
64

17.9 ±
18.5

15.84
±
16.14

Panneer et
al. (2014)

Subtropical aquaculture ponds, China -33.0–
11.3

2.48–
29.9

5.86–
6.44

0.41–
22.1

Yang et al.,
2015

Urban ponds, Sweden 17.1
(-4.25–
78.4)

1.89
(0.02–
10.8)

2.12 ±
0.43

Peacock et
al. (2019)

Urban ponds, Denmark 52.3 ±
66.3

1.25 ±
5.83

6.79 ±
22.5

3.28 ±
7.38

Audet et al.
(2020)

Semi-arid agricultural reservoirs – summer,
Canada 

41.3 ±
94.9

7.11 ±
12.0

1.46 ±
19.9

6.95 ±
13.1

Webb et al.
(2019a, b)

Semi-arid agricultural reservoirs –
seasonal, Canada

19.7 ±
56.6

2.90 ±
10.9

9.70 ±
52.9

3.02 ±
10.7

Jensen et
al. (2022)

Temperate livestock dams, Australia 33.9
(-38.6–
318)

0.94
(0.01–
10.2)

2.17 Malerba et
al. (2022b)

Global EF for freshwater constructed
waterbodies (CH4) and agricultural surface
waters (N2O)a

3.13
(CI:
2.02–
3.89)

57.5
(CI:
33.0–
82.0)

2.94
(1.85–
3.77)

IPCC
(2019)

Subtropical irrigation storage, Australia 0.24-
1.24

Macdonald
et al.
(2016)b

Semi-arid irrigation farm dams, Australia 5.72
(-13.3–
101)

0.69
(-0.02–
12.5)

0.39
(-7.35–
45.3)

0.76 ±
2.20

This study
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aThe IPCC N2O flux shown here was calculated for our study by applying the 0.26% EF5 for rivers and

lakes to our study mean  NO3
- concentration (0.9 mg N L-1), then using the resulting N2O concentration to

calculate the flux using our farm dam-specific k600 value of 0.76. Confidence interval (CI) was used to
show range in estimate for IPCC emission factors instead of standard deviation which is more commonly
reported in individual studies.

bBased on total seasonal emissions estimated from both floating chamber and dissolved N2O derived
flux

Using the IPCC EF estimates for “freshwater constructed waterbodies” and “agricultural surface waters”
would vastly overestimate emissions from semi-arid irrigation farm dams in this region. Applying the
study average EF of 40 kg CH4 ha-1 yr-1 and N2O flux of 0.39 µmol m-2 d-1 would yield regional scale

emissions of 27 t CH4 season-1 and 0.06 t N2O season-1 from irrigation dams. If we exclude all negative
fluxes measured from the study, as the IPCC EF model assumes that artificial waterbodies only emit CH4

and N2O, regional irrigation dam emissions would be 31 t CH4 season-1 and 0.7 t N2O season-1. This

compares with 122 t CH4 season-1 and 4.5 t N2O season-1 when using the current best EF estimates of

183 kg CH4 ha-1 yr-1 and applying the 0.26% N2O-N:NO3-N ratio available from the IPCC (2019) to our

mean NO3
- concentration (0.90 mg N L-1). This provides a first order estimate on the potential level of

overestimation if semi-arid irrigation dams were assumed to emit the same level of CH4 and N2O
emissions as the global standard for small artificial freshwaters and agricultural surface waters. 

CONCLUSION
In a world first, we assessed CO2, CH4, and N2O emissions from semi-arid irrigation farm dams. This
dataset will help refine global EF estimates and Australia’s farm dam contribution to the national GHG
inventory. We show that these waterbodies are minor sources of GHGs relative to previous studies,
despite them being nutrient enriched farm waterbodies, which brings a new perspective to our
understanding that not all artificial or nitrogen-polluted waterbodies are large CH4 and N2O emitters. The
exact reason for this remains to be investigated but may be due to a combination of a semi-arid climate
providing high sunlight exposure, regional soil and land use factors, and irrigation dam management.
Although CH4 emissions were comparatively low for farm dams, CH4 still contributed the highest CO2-eq
emissions and often offset any CO2 or N2O uptake measured at the time of sampling Therefore,
developing strategies for mitigating CH4 emissions in irrigation dams would deliver the greatest results
on reducing the farm dam carbon footprint. Most importantly, we show that the magnitude of emissions
from artificial waterbodies in the studied irrigated catchment would be vastly overestimated using global
averages. As no diel factors were found to drive dam CH4, we propose that spatial coverage, rather than
diel fluctuations, are the focus of future efforts to constrain CH4 emissions factors from agricultural



Page 17/26

waterbodies. Therefore, to refine GHG emission estimates for agricultural and artificial waterbodies, we
urge further research across two areas: 1) perform measurements in other irrigation areas from other
climatic regions to assess whether the markedly lower CH4 and N2O emissions observed here are a
product of irrigation dams themselves or climate or geographical features, and 2) integrate diel cycles
into GHG measurements to reduce bias in under or overestimating CO2 and N2O.  
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Figure 1

Partial effects plots from the linear mixed effect model illustrating the response of surface water CO2

concentrations with: A) dissolved oxygen saturation (%); B) ammonium (mg N L-1); C) sediment carbon
content (%); D) dam size classificatiokm2km2); and E) season. Shaded area in A, B, and C indicates 95%
credible intervals, while grey circles are the raw observed data. The conditional R2 was 0.54.
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Figure 2

Partial effects plots from the linear mixed effect model illustrating the response of surface water CH4

concentrations with: A) an interaction between soil electrical conductivity (mS cm-1) and trophic class:
and B) dam size classifkm2tion (km2). Shaded area in A indicates 95% credible intervals, while circles are
the raw observed data. Error bars in B represent confidence intervals from the LMEM. Only responses that
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were significantly different from each other are shown with regression line in A. The conditional R2 was
0.81.

Figure 3

Partial effects plots from the linear mixed effect model illustrating the response of surface water N2O

concentrations with: A) an interaction between surface water NH4
+ concentrations and dissolved oxygen
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saturation: and B) an interaction between dam size classification (km2) and season where error bars
represent confidence intervals from the LMEM. White circles are the raw observed data. The conditional
R2 was 0.44.

Figure 4

CO2-equivalent fluxes from on-farm irrigation dams for each season (A) and over the whole irrigation
season (180 days) in the MIA and CIA by waterbody size classification (B), waterbody type (C), and
trophic classification (D). Linear mixed-effect models indicated significant differences in total CO2-
equivalent emissions between dams <0.001 ha and 0.001-0.1 ha in size, and between settling ponds and
recycle dams (p <0.05).
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