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Abstract— Mild Cognitive Impairment (MCI) is often
considered a precursor to Alzheimer’s disease (AD), with
a high likelihood of progression. Accurate and timely diag-
nosis of MCI is essential for halting the progression of
AD and other forms of dementia. Electroencephalography
(EEG) is the prevalent method for identifying MCI biomark-
ers. Frequency band-based EEG biomarkers are crucial
for identifying MCI as they capture neuronal activities
and connectivity patterns linked to cognitive functions.
However, traditional approaches struggle to identify pre-
cise frequency band-based biomarkers for MCI diagnosis.
To address this challenge, a novel framework has been
developed for identifying important frequency sub-bands
within EEG signals for MCI detection. In the proposed
scheme, the signals are first denoised using a station-
ary wavelet transformation and segmented into small time
frames. Then, four frequency sub-bands are extracted from
each segment, and spectrogram images are generated for
each sub-band as well as for the full filtered frequency
band signal segments. This process produces five different
sets of images for five separate frequency bands. After-
wards, a convolutional neural network is used individually
on those image sets to perform the classification task.
Finally, the obtained results for the tested four sub-bands
are compared with the results obtained using the full
bandwidth. Our proposed framework was tested on two
MCI datasets, and the results indicate that the 16-32 Hz
sub-band range has the greatest impact on MCI detection,
followed by 4-8 Hz. Furthermore, our framework, utilizing
the full frequency band, outperformed existing state-of-
the-art methods, indicating its potential for developing
diagnostic tools for MCI detection.
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I. INTRODUCTION

M ILD cognitive impairment (MCI) represents a pre-
clinical stage characterized by detectable cognitive

impairment without reaching the level of overt dementia. MCI
refers to a medical condition where there is a slight yet
noticeable decline in cognitive functions, including memory,
reasoning, and linguistic abilities [1]. MCI is considered an
intermediate phase between the more pronounced cognitive
decline observed in conditions like Alzheimer’s disease (AD)
and other forms of dementia and the normal cognitive changes
associated with aging [2]. Neurocell death and dysfunction
are the primary causes of this condition [3]. People with MCI
have an increased risk of progressing to dementia, especially
AD [4]. Dementia, a leading cause of disability among the
elderly globally [5], is on the rise, particularly in emerging
nations [2], [4], [5]. It is the seventh leading global cause
of death and the second in Australia [6], [7]. Alarmingly,
75% of dementia cases worldwide go undiagnosed, with some
nations reporting even higher rates [1]. The economic burden
of dementia is substantial and projected to double by 2030,
costing the US economy $1 trillion annually [1]. Since there
is no cure for MCI, prevention is crucial for both economic
and healthcare reasons. Early diagnosis and understanding its
progression are essential to improve the quality of life for both
MCI patients and their caregivers.

MCI research aims to discover cost-effective biomarkers
with high sensitivity and specificity, although it is challenging
due to symptom overlap with natural aging [8]. Several types
of tests can be employed to explore MCI, including psycho-
logical assessments like the Mini-Mental State Examination
(MMSE), blood tests, a computed tomography (CT) scan,
spinal fluid analysis, neurological examinations, magnetic res-
onance imaging (MRI), positron emission tomography (PET),
magnetoencephalography (MEG), and electroencephalography
(EEG) [9], [10]. Among those techniques, MMSE is a manual
question-and-answer test, and PET, MRI, and CT scans are
expensive [1], [11]. In this study, we have used EEG data
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for MCI detection as it is non-invasive, cost-effective, widely
available, and portable [12], [13]. Moreover, it captures brain
electrical activity over time, making it valuable for assessing
cognitive concerns [3], [14], [15].

Recently, EEG-based biomarkers have become a useful
tool in the study of MCI. Kashefpoor et al. [16] performed
an EEG analysis employing simple spectral features using
a Takagi-Sugeno neurofuzzy (NF) inference system with
k-nearest neighbor (kNN). Khatun et al. [17] proposed a
MCI detection method using single-channel EEG data. They
extracted 590 features from the event-related potential (ERP)
of the collected EEG signals, which included time and spec-
tral domain characteristics of the response. Using support
vector machine (SVM) method with a radial basis kernel
(RBF), they achieved an accuracy of 87.9%. Yin et al. [18]
extracted a set of features from resting-state EEG through
spectral-temporal analysis and drove an optimal subset using a
three-dimensional (3-D) evaluation algorithm. Using an SVM
classifier, they achieved an accuracy of 96.94%. In [19],
Sharma et al. used eight EEG biomarkers and obtained an
accuracy range between 73.2% and 89.8%. Siuly et al. [1]
utilized the piecewise aggregate approximation method to
compress EEG data, employed permutation entropy and
auto-regressive techniques to extract features, and applied the
extreme learning machine (ELM) algorithm to achieve an
accuracy of 98.78% for the classification of MCI subjects from
healthy controls (HC) subjects. Alvi et al. [3] used a deep
learning (DL)-based Gated Recurrent Unit (GRU) model for
MCI detection from EEG data and obtained a classification
rate of 96.91%. In another study [20], the same authors used
another DL-based long-short-term memory (LSTM) model
and produced 96.41% accuracy. Although several studies have
aimed to classify MCI from HC subjects using EEG data, none
have explored the important frequency sub-band in the EEG
signal crucial for MCI detection, which is the main motivation
of this study.

EEG signal has several rhythm bands like delta (0-4 Hz),
theta (4-8 Hz), alpha (8-16 Hz), beta (16-32 Hz) and gamma
(>32 Hz) [21]. Among those rhythm bands, <0.5 Hz and
>32 Hz bands are considered noise [1], [18] and can be
removed from the classification process. Studies like [1] and
[18] have shown that the frequency band 0.5-32 Hz of EEG
data is enough for classifying MCI from HC. But no prior
research has investigated the most influential sub-band within
those rhythmic bands for MCI detection. This study aims to
fill that gap by identifying the crucial sub-band in EEG data
for detecting MCI.

To address this gap, we have used the spectrogram image
representation of the EEG signal for analysis purposes.
An EEG spectrogram image shows the frequency composition
of an EEG signal across time. In this two-dimensional graphic,
the x-axis stands for time, the y-axis for frequency, and
the color or intensity stands for the size or strength of the
frequency components [9], [11]. Examining the spectrogram
reveals variations in the frequency content of the EEG signal
across time, showing patterns, oscillations, or events that may
be useful for analysis or interpretation. Various studies have
used time-frequency (T-F)-based images for the classification

of neurological disorders such as epilepsy [22], epileptic
seizures [23], clinical brain death diagnosis [24], schizophre-
nia [25], and autism spectrum disorder [9], [11] and obtained
good classification performance. But to the best of our knowl-
edge, no studies have used the spectrogram image-based
EEG signal classification process for MCI detection. In this
study, we have adopted this spectrogram image representation
technique for EEG signals and used it to develop a framework
to find out the important frequency rhythm in MCI detection.

In the proposed method, EEG data is first filtered using
stationary wavelet transformation (SWT) and then segmented
into small time frames. After that, we decomposed the filtered
signal into four frequency sub-bands. Spectrogram images are
generated for both the sub-bands and for the full filtered fre-
quency band using the Short-Time Fourier Transform (STFT).
Next, a DL-based convolutional neural network (CNN) is
trained, and the classification process is carried out indepen-
dently on the images for different sub-bands and on the full
frequency band. Finally, the classification performance of the
CNN model on different sub-band images is compared with
the categorization performance using the full-band images
to find out the important EEG rhythmic sub-band for MCI
detection.

The major contributions of this study are as follows:
1) A noble framework is proposed to identify important

frequency sub-bands of the EEG signal for MCI detec-
tion.

2) For the first time, an STFT-based spectrogram image
with DL-based classification is used to detect MCI.

3) Explore the EEG signals’ frequency bands that exhibit
the highest responsiveness in identifying MCI.

4) Increase classification performance over existing
approaches using the same dataset.

Paper organization: Section II discusses the proposed frame-
work of this study. Results are described in Section III. Finally,
Section IV gives the concluding remarks of this study.

II. METHODS AND MATERIALS

In this research study, we have developed a spectrogram
image-based important frequency band selection method for
MCI detection from EEG signal data. Fig. 1 gives an overview
of the proposed framework. A detailed discussion of the
different steps involved in the proposed system is given in
the subsections below.

A. EEG Data Collection
Here, we have used two publicly available EEG datasets of

MCI. A brief description of those datasets is given below:
• The first dataset is collected from subjects admitted to the

cardiac catheterization units of Sina and Nour Hospitals,
Isfahan, Iran [16]. It contains EEG data from 27 subjects
(11 MCI subjects with an age of 66.4 ± 4.6 and 16 HC
subjects with an age of 65.3 ± 3.9) with elementary or
higher education and a history of coronary angiography
over the past year. Resting-state EEG data is recorded
from 19 channels (Fp1, Fp2, F7, F3, Fz, F4, F8, T3, C3,
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Fig. 1. Schematic illustration of the proposed framework and steps involved in the analysis.

Cz, C4, T4, T5, P3, Pz, P4, T6, O1, O2) according to the
International 10-20 System at a sampling rate of 256 Hz.

• The second dataset consisted of 109 subjects (7 MCI
patients with an age of 67 ± 7.6 and 102 HC sub-
jects with an age of 72.2 ± 5.3) [26]. The signals are
recorded in the resting state from 19 channels of a
standard 10-20 EEG electrode system at sampling rates
of either 128 Hz or 256 Hz. We have resampled all data
to a common 256 Hz sampling frequency, a widely-used
and computationally efficient choice for EEG data [27].

All of these datasets are freely accessible online, and each
participant gave their informed consent to the release of their
data at the time the data was collected. No ethical approval
was needed for our study because we did not post any
information that could be used to identify the respondents or
compromise their confidentiality. Comprehensive explanations
of these datasets have been left out due to space restrictions.
References [16] and [26] contains more information on those
datasets.

B. SWT Based Filtering of the EEG Signals
EEG signals may contain different kinds of noises, such

as eye movements, ECG artifacts, pulse artifacts, respiration
artifacts, skin artifacts, electrode artifacts, baseline drift, and
power line interference. According to prior research [18], the
most significant frequency bands of EEG signals are between
0.5 Hz and 32 Hz. Therefore, we have used SWT to filter
the signals between 0.5 Hz and 32 Hz. SWT decomposes raw
EEG signals into coefficients with various frequency ranges
by using the appropriate decomposition level. In this study,
we have used the decomposition level of 8, as shown in Fig. 2.
After that, we removed the high (>32 Hz) and low (<0.5 Hz)
coefficients as noise [18]. Finally, the denoised EEG signal is
constructed from the remaining coefficients using the inverse
stationery wavelet transformation (ISWT).

C. Segmentation of the EEG Signals
EEG recording is large-scale data, and processing this enor-

mous dataset requires computational support and an expense of
time [9], [11], [25]. Moreover, data scarcity is a major problem

in the field of deep learning-based systems for EEG signal pro-
cessing. Researchers typically utilize the segmentation strategy
to tackle this issue. This technique divides the original EEG
data into short, informative fragments and gives them the same
level as the original signal, increasing the data sample size
while preserving an equal ratio [9], [10], [11], [12], [13], [14],
[25]. In this study, we have segmented the filtered signals into
three-second (3s) time segments similar to the studies [12],
[13], [14], as those studies have obtained better performance
using 3s time segments that are computationally less expensive
and also contain enough information to perform the automatic
classification task [15].

D. Decomposition of the Signal Segments Into Different
Frequency Sub-Bands

After segmentation of the signals, in this step, we have used
SWT to decompose the signal segments into four frequency
sub-bands: delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-16 Hz)
and beta (16-32 Hz) to check the important frequency band
for MCI classification. In this classification process, we have
tested all four of these frequency bands as well as the full
frequency band of 0.5-32 Hz. Next, we will create spectrogram
images using these signals across various frequency bands.

E. Spectrogram Image Generation
In this step, we have used the STFT-based plotting technique

to generate the spectrogram images from the decomposed
signal segments from the previous steps. Spectrogram is a
popular technique for time-frequency domain analysis of EEG
data that converts the time-varying EEG signal to a two-
dimensional (2D) matrix with time and frequency axes [15].
In the spectrogram, time is usually displayed along the hor-
izontal axis, with the duration of the EEG signal divided
into segments or windows. The vertical axis represents the
frequency range, typically from low frequencies (e.g., 0.5 Hz)
at the bottom to higher frequencies (e.g., 32 Hz) at the top.
In the spectrogram, color or intensity signifies the power
or magnitude of the frequency component at each time and
frequency point. Dark or low-intensity areas indicate lower
power or the absence of frequency components, whereas
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Fig. 2. SWT decomposition diagram of EEG signal for level 8.

brighter or higher-intensity areas denote higher power or the
presence of frequency components [11].

Here, we have used the STFT-based plotting technique
because it is widely used for generating spectrogram images
from EEG data and has proven effective in classifying
disorders like autism [9], [11], schizophrenia [25], and
epilepsy [22]. Its simplicity of implementation and ability to
provide a time-frequency representation of the data were key
reasons for its integration into our framework. The calculation
of the STFT involves dividing the signal into overlapping
windowed blocks, and a hamming window is used to maintain
continuity and avoid spectrum leakage [14]. The Fourier
transform is then applied to each segment to derive its local
frequency spectrum. The STFT of a signal at time t and
frequency f , denoted as ST FT (t, f ), can be calculated using
the equation 1.

ST FT (t, f ) =

∫
∞

−∞

x(τ )w(t − τ)e−i2π f τ dτ (1)

Here, x(τ ) is the input signal, w(t − τ) is the window
function at time t and e−i2π f τ is the complex exponential term
that performs the frequency analysis. STFT is frequently visu-
alized by its spectrogram, which is an intensity representation
of STFT magnitude over time. Here, we have generated the
spectrogram plots for each of the signal segments for different
frequency bands and saved those plots as images. These
images are further used for feature extraction and classification
in this study.

F. Proposed Model for Feature Extraction and
Classification

In this study, we have used a DL-based CNN model to
perform classification of the generated spectrogram images.
CNN is a well-known DL-based image classification model
that has demonstrated exceptional efficiency in classification
by discovering appropriate features on its own and classi-
fying data into several categories [28]. CNN model-based
architectures have multiple convolution layers, which enables
them to learn both low-level features like edges and textures
and high-level features and semantic representations [28].
The learning of hierarchical representations helps the CNN
comprehend complex visual patterns [11].

The convolution operation is a fundamental building block
of CNNs and plays a crucial role in extracting and detecting
meaningful features in images, enabling the network to per-
form tasks such as image classification, object detection, and
more [39]. The internal operation of the convolutional layer
with a spatial filter dimension of M × N and C number of

channels can be expressed as follows:

Yi, j,k = f (

M∑
m=1

N∑
n=1

C∑
c=1

Wm,n,c,k · X i+m−1, j+n−1,c + bk) (2)

Here, Yi, j,k is the value at i th row, j th column, and kth

channel of the output feature map; X i+m−1, j+n−1,c is the
value at the (i + m − 1)th row, ( j + n − 1)th column, and
cth channel of the input feature map; Wm,n,c,k is the weight
of the mth row, nth column, cth channel of the filter for the
kth channel of the output feature map; bk is the bias term
for the kth channel of the output feature map; and f (.) is
the activation function applied to the element-wise sum. The
equation computes the dot product between the filter weights
W and the corresponding region of the input feature map X .
The result is summed with the bias term b, and the activation
function f (.) is applied to introduce non-linearity.

To perform classification on the generated spectrogram
images, we have used the third CNN model proposed and used
by the authors of the study [11] for autism classification using
spectrogram images. Although the authors of [11] presented
three different CNN models, the third model performed the
best in ASD classification, which is why we have used that
model in this study. The model consists of four convolution
(Conv) layers, three dropout layers, one fully connected layer,
and a classification layer. Each Conv layer has a filter of
32 with a kernel size of 3 × 3 and is followed by a max pooling
layer. The second and fourth Conv and Max pooling layer pairs
are followed by a 25% dropout layer. The fully connected layer
is followed by a 50% dropout layer. The final classification
layer uses a softmax activation function to activate one of two
outputs: HC or MCI. A categorical cross-entropy loss function
and Adam optimizer are utilized to build the model. Table I
lists the detailed configuration of those layers.

G. Performance Evaluation Techniques and Parameters
To assess our model’s performance, we have employed two

validation techniques: k-fold cross-validation (CV) and leave-
one-out validation (LOOV). In k-fold CV, the data is divided
into k equally-sized chunks. We have trained the model on
k-1 of these chunks and validated it on the remaining one.
This process repeats k times, ensuring that each chunk serves
as a validation set exactly once. We then average the results
across all iterations to evaluate the model’s performance.
We specifically used a 10-fold CV in this study.

In LOOV, we have excluded data from one subject during
training, using the remaining subjects’ data for model training.
The omitted subject’s data is subsequently used for valida-
tion. This process is repeated for each subject, and the final
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TABLE I
ARCHITECTURE OF THE USED CNN MODEL

performance metrics are calculated over the full dataset by
aggregating the results obtained from each iteration of LOOV.

Five well-known evaluation parameters are used to evaluate
the performance of the proposed framework, namely: sensitiv-
ity (Sen), specificity (Spec), precision (Prec), F1 score (F1),
and accuracy (Acc). We have also used the receiver operating
characteristic (ROC) graph, a highly useful tool for visualizing
the classifier’s reliability, created by graphing sensitivity on
the Y-axis and 1-specificity on the X-axis. A typical statistic
for assessing the effectiveness of binary classifiers is the area
under the ROC curve (AUC). The following inequalities are
always maintained by the AUC value [11]:

0 ≤ AUC ≤ 1 (3)

It is clear from equ. (3) that an AUC value of 1 indicates
that the classifier has flawless discrimination abilities, whereas
a value of less than or equal to 0.5 shows that the classifier
has no discernment abilities at all [11]. These criteria allow
us to grasp an idea about the classifier’s behavior on the test
data [1], [10], [12], [13], [14], [29], [30].

We have used the Gradient-weighted Class Activation Map-
ping (GRAD-CAM) visualization technique to interpret the
decisions made by the proposed model [38]. Grad-CAM
images display a color map on an input picture that indicates
the significance of each region in the image in relation to the
projected class. The colors in the picture that are close to red
indicate that the area contains significant spatial characteristics
for the projected class [38]. By visualizing which parts of an
image are most influential in the classification decision, users
can gain insights into model behavior and assess whether the
model is making decisions based on relevant features [38].

III. RESULTS AND DISCUSSION

This section begins with a discussion of the experimental
setup, followed by an in-depth presentation of the results.
It concludes with a detailed analysis of the outcomes achieved.

A. Experimental Setup
As outlined in the methodology section, we have segmented

the signals into 3s time frames, following a similar approach
as in previous studies [9], [10], [11], [12], [13], [14], [25].
Subsequently, we have utilized STFT to generate spectrogram
images from these signal segments. This process resulted in
6600 and 9600 images for MCI and HC subjects, respectively,
in dataset 1. For dataset 2, these numbers were 924 and
2,536, respectively. In the case of dataset 2, we have created
a balanced version by considering data from 33 subjects,
resulting in 924 images for MCI subjects and 958 images for
HC subjects. Each of these generated images is saved as a
224×224 pixel image to be used as input for the CNN model.

After image generation, the resulting datasets are used for
both 10-fold CV and LOOV. The experiments are carried out
on a computer with an AMD Threadripper Pro processor,
256 GB of RAM, and 48GB of graphics memory. We have
used 50 epochs for training the model, as the model starts
overfitting after those epochs. We have used mini-batch mode
for batch size selection to speed up the learning process and
tested three training batch sizes (32, 64, and 128) to train the
model.

B. Results
In this study, we have developed a framework to identify

important EEG signal frequency bands for MCI detection.
We have extracted four frequency sub-bands (delta, theta,
alpha, and beta) from the EEG signal (0.5-32 Hz), segmented
the data into 3s time frames, and generated spectrogram
images. We have compared these sub-band results with the
full-band (0.5-32 Hz) results. We have employed both 10-fold
CV and LOOV, testing three training batch sizes for the
CNN model. Detailed experimental results for the proposed
framework on three tested datasets are presented in Table II,
including 10-fold and LOOV average performance values for
various evaluation parameters across the three batch sizes.

From Table II, we can see that, for 10-fold CV in all the
tested datasets, we have achieved the highest accuracy using
the full (0.5-32 Hz) frequency band of the signal data. The
highest accuracy we have obtained is 99.03% for dataset
1 and 100% for both the unbalanced and balanced versions
of dataset 2. Now, among the tested sub-bands, for dataset 1,
we have achieved the highest accuracy of 97.04% for the
beta band, followed by 92.58% for the theta band. Alpha and
delta have produced the third and fourth highest accuracy of
88.90% and 85.09%, respectively. For unbalanced dataset 2,
we have observed similar results, with beta and theta bands
producing 100% accuracy, followed by alpha and delta bands.
For balanced dataset 2, we have achieved 100% accuracy for
the beta, theta, and delta bands and 99.74% accuracy for the
alpha band.

In terms of sensitivity, we have obtained the highest value
of 99.12% using full band for dataset 1 and 100% for the
other two datasets. Among the four sub-bands, beta has given
96.43%, theta 89.61%, alpha 85.16% and delta 81.77% for
dataset 1. For the other two datasets, beta, theta, and delta
have given 100% sensitivity, while alpha has given 99.82% and
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TABLE II
10-FOLD AND LOOV AVERAGE PERFORMANCE VALUES WITH STANDARD DEVIATION (SD) OF DIFFERENT EVALUATION PARAMETERS FOR THE

PROPOSED FRAMEWORK ON THE TESTED DATASETS WITH DIFFERENT TRAINING BATCH SIZES

99.90% for the unbalanced and balanced versions of dataset 2,
respectively.

Similarly, for specificity, in dataset 1, the full band has
obtained 99.15%, followed by beta (97.68%), theta (94.65%),
alpha (91.96%), and delta (88.27%). For unbalanced dataset 2,
those values are full (100%), beta (100%), theta (100%), alpha
(99.96%) and delta (99.96%). For balanced dataset 2, those are
full (100%), beta (100%), theta (100%), alpha (99.67%) and
delta (100%).

For dataset 1, the full band’s highest precision value is
98.75%, the beta band is 96.60%, the theta band is 92.02%,
the alpha band is 87.76% and the delta band is 82.35%. For
balanced dataset 2, all bands except alpha (99.70%) have

achieved 100% precision values. For unbalanced dataset 2,
full, beta, and theta have achieved 100% precision, while alpha
has 99.91% and delta has 99.87%. The F1 score also shows
the same pattern as the other parameters depicted for all the
datasets.

On the other hand, in the case of LOOV, for dataset 1, the
highest accuracy of 84.28% has been achieved using full band,
followed by beta (84.27%), theta (82.25%), alpha (80.03%),
and delta (75.80%). For unbalanced dataset 2, those values are
100% (full), 99.94% (beta), 99.53% (theta), 98.44% (alpha),
and 95.62% (delta). For balanced dataset 2, those values
are 91.98%, 91.87%, 91.82%, 91.76%, and 91.71% for full,
beta, theta, alpha, and delta bands, respectively. Although the
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Fig. 3. Comparison of different evaluation parameters for the tested datasets for different frequency sub-bands in 10-fold CV. Figs. 3a, 3c, and 3e
show the accuracy, sensitivity, and specificity for dataset 1. Figs. 3b,3d, and 3f show the accuracy, sensitivity, and specificity for the unbalanced
dataset 2.

accuracy for LOOV is good, but a bit less comparatively 10-
fold CV for dataset 1 and balanced version of dataset 2. This is
because three subjects in dataset 1 and one subject in balanced
dataset 2 have accuracy below 40%.

From the obtained result, we can see that for dataset 1,
among the tested four frequency bands, the beta band has
produced the best performance compared to other bands for
both the 10-fold CV and LOOV approaches and is closer to
the performance using the full band. The next best result
is produced by the theta band, followed by the alpha and
delta bands. For the unbalanced dataset 2, sub-band theta also
produced the same result as the beta band in 10-fold CV, but
for LOOV, it also follows the same trend as dataset 1. For the
balanced dataset 2 in 10-fold CV, all sub-bands except alpha
have produced the same classification accuracy, but for LOOV,
beta has given the best performance, followed by theta, and
then alpha and delta.

To further compare the change in values for different
evaluation parameters for different sub-bands, we have plot-
ted those in the graphs as shown in Fig. 3. These graphs
show the changes in the evaluation parameters for different
frequency bands with the change in training batch size. From
Figs. 3a, 3c, and 3e, we can see there are clear differences in
performance among the four tested sub-bands. On the other
hand, for unbalanced dataset 2, performance values have not
changed that much as for dataset 1, but the performance has
dropped a bit for sub-bands delta and alpha, similar to dataset
1. This is maybe due to the smaller size of dataset 2, as the
dataset has a small amount of data in it.

Finally, to further compare the results, we have plotted the
ROC curve for the best results obtained for dataset 1 and
unbalanced dataset 2 in a 10-fold CV and given it in Fig. 4.

From Fig. 4b, we can see that, for unbalanced dataset 2,
like other evaluation parameters, the ROC curve for different
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Fig. 4. Comparison of the ROC curves for the tested datasets for different frequency sub-bands. Fig. a and b show the ROC curve for datasets
1 and 2, respectively.

TABLE III
COMPARISON WITH THE EXISTING STUDIES OF MCI CLASSIFICATION USING DATASET 1

frequency sub-bands overlaps with the curve generated using
the full frequency band of the EEG signal. Also, the AUC
values are 1 for the full, theta, and beta bands and close to 1 for
the other two bands. On the other hand, for dataset 1, as given
in Fig. 4a, the ROC curve of the full frequency band is closer
to the (0, 1) point and the AUC is 0.99, which indicates that the
spectrogram image generated using the 0.5-32 Hz bandwidth
with the used CNN model is a good framework for MCI
detection. Moreover, from the tested frequency sub-bands, the
curve and AUC (0.97) of the beta (16-32 Hz) sub-band are
much closer to the curve and AUC (0.99) of the full band
curve, followed by the curve and AUC (0.92) of theta (4-8 Hz)
sub-band.

C. Discussion
This study introduces an MCI detection algorithm based

on spectrogram images and CNN classification techniques.
We have tried to identify the important frequency sub-bands
in EEG signals that significantly influence our proposed
framework. Our study encompasses a bandwidth of 0.5 Hz
to 32 Hz, which is recognized as containing essential features
for MCI detection [18]. Spectrogram images are generated
from this full signal band, and for sub-band analysis, we divide
it into four segments: delta, theta, alpha, and beta. Delta
waves are associated with deep sleep, unconsciousness, and
some pathological conditions like encephalopathies or brain
injuries [31]. Theta waves appear during relaxation, drowsi-
ness, and sleep phases and play a role in cognitive and memory
processes [21]. Alpha waves are prominent during relaxed
wakefulness with closed eyes but diminish during cognitive
activity, making them relevant in studies of concentration,

relaxation, and meditation [21]. Beta waves are linked to
active consciousness, cognitive processing, and attentiveness
and can be associated with motor abilities and certain clinical
disorders [21].

Certain frequency sub-bands of the EEG signal have been
examined for their possible importance in the context of MCI
detection. While there is still much to learn in this area
of study, some research has emphasized certain frequency
bands that may include vital information for MCI identifi-
cation. Theta (4-8 Hz) is a frequently researched frequency
range that has been linked to cognitive functions including
memory recall and encoding [32], [33]. In contrast to HC,
those with MCI have been found to exhibit changes in theta
power and connection [32], [33]. Memory problems and
cognitive decline have also been related to decreased theta
activity [34].

Patients with MCI show anomalies in alpha power and
coherence, particularly in the back of the brain, possibly affect-
ing attention and functional connections [35], [36]. Moreover,
the role of higher-frequency bands like beta in MCI diagnosis
has been explored. Abnormal beta activity is linked to cogni-
tive impairment and may serve as a biomarker for MCI [32],
[37]. Specifically, there may be a reduction in beta power or
changes in the synchronization of beta oscillations in certain
brain regions [32], [37].

In this study, we have also found similar results about
important frequency bands in MCI detection. Here, we have
found that beta is the most important band in MCI detection,
producing the highest accuracy among the four sub-bands
across all the datasets and in both types of CV. Following
the beta band, the theta band has produced the second highest
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Fig. 5. Simple signal and corresponding spectrogram images generated by the proposed framework for dataset 1. The first row presents the raw
EEG data for the HC subject, and the second and third rows represent their corresponding spectrograms and GRAD-CAM images. The fourth row
presents the EEG data of a MCI subject, and the fifth and sixth rows show their corresponding spectrograms and GRAD-CAM images.

classification performance, followed by the alpha and delta
bands. Based on the results, the identified important frequency
band aligns with prior research findings [32], [35], [36], [37].
Moreover, according to the research, beta and theta sub-bands
exhibit changes in power, and since spectrogram image pixel

intensity reflects signal power, these two sub-bands offer
higher accuracy compared to others.

A sample signal with the full frequency band and the gen-
erated four sub-bands from dataset 1 and their corresponding
spectrogram and Grad-CAM images are given in Fig. 5. From
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Fig. 5, we can see that for full, beta, and theta frequency
bands, there are some specific areas where the discriminating
patterns are different in the HC and MCI groups (the dense
red color position differs in the HC and MCI images). But for
the delta and alpha bands, those GRAD-CAM images don’t
contain any areas with dense red color, which is why the
classification performance of those two sub-bands is lower
compared to the other sub-bands.

Finally, to compare our framework against existing state-of-
the-art (SoA) research that utilized the same datasets, we’ve
presented a comparative table (Table III) that includes results
from both ours and the relevant SoA studies.

From Table III, we can see that our study achieved better
accuracy than all other studies that have used this dataset.
Since dataset 2 is a three-class dataset (HC vs. MCI vs.
AD), all the studies done using this dataset are three-class
classification work. No study has used the MCI and HC
sub-parts to perform a two-class classification, which is why
we cannot compare the result with any other work on that
dataset.

Although our proposed framework has achieved higher
classification accuracy and has detected significant frequency
bands for MCI classification using EEG signals, the main
drawback of this study is the dataset. Though we have used
two EEG datasets, the population size and length of the
recording of those datasets are limited.

IV. CONCLUSION

In this study, a spectrogram image with a CNN model-based
framework is proposed to classify MCI from HC using EEG
data. We have used the framework to find the important
frequency sub-bands in the classification process. We have
filtered the signal between 0.5 Hz and 32 Hz, then segmented
and generated spectrogram images from those signal segments.
We have also divided those signals into four sub-bands and
used the same framework to perform classification using those
sub-bands. The framework is evaluated using both 10-fold
CV and LOOV techniques on two different datasets of MCI.
We have also tested three different training batch sizes to
observe the impact of the batch size on training the model.

Using the full bandwidth, we have achieved better accuracy
than the existing studies. Moreover, among the extracted four
sub-bands, we have found that the sub-band named beta has a
high contribution to the classification of the MCI signal from
HC data. The second-highest contributor is the alpha sub-band.
So, the obtained results indicate that the major classification
features for MCI detection reside in the frequency band
of 0.5-32 Hz, or, to be more specific, in the bandwidth of
16-32 Hz, followed by 4-8 Hz. Finally, the findings show
that this method can be used to categorize other neurological
disorders and can also be used in other signal processing tasks.

REFERENCES

[1] S. Siuly et al., “A new framework for automatic detection of patients with
mild cognitive impairment using resting-state EEG signals,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 28, no. 9, pp. 1966–1976, Sep. 2020.

[2] Mild Cognitive Impairment, Dementia Australia, Sydney, NSW,
Australia, Feb. 2023.

[3] A. M. Alvi, S. Siuly, H. Wang, K. Wang, and F. Whittaker, “A deep
learning based framework for diagnosis of mild cognitive impairment,”
Knowl.-Based Syst., vol. 248, Jul. 2022, Art. no. 108815.

[4] P. M. Rodrigues, B. C. Bispo, C. Garrett, D. Alves, J. P. Teixeira, and
D. Freitas, “Lacsogram: A new EEG tool to diagnose Alzheimer’s dis-
ease,” IEEE J. Biomed. Health Informat., vol. 25, no. 9, pp. 3384–3395,
Sep. 2021.

[5] Z. You et al., “Alzheimer’s disease classification with a cascade neural
network,” Frontiers Public Health, vol. 8, Nov. 2020, Art. no. 584387.

[6] Provisional Mortality Statistics, Australian Bureau of Statistics,
Canberra, ACT, Australia, May 2023.

[7] The top 10 Causes of Death, WHO, Geneva, Switzerland, May 2023.
[8] P. Durongbhan et al., “A dementia classification framework using fre-

quency and time-frequency features based on EEG signals,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 27, no. 5, pp. 826–835, May 2019.

[9] M. N. A. Tawhid, S. Siuly, and H. Wang, “Diagnosis of autism spectrum
disorder from EEG using a time–frequency spectrogram image-based
approach,” Electron. Lett., vol. 56, no. 25, pp. 1372–1375, Dec. 2020.

[10] M. Tawhid, N. Ahad, S. Siuly, K. Wang, and H. Wang, “Data mining
based artificial intelligent technique for identifying abnormalities from
brain signal data,” in Proc. Int. Conf. Web Inf. Syst. Eng. Cham,
Switzerland: Springer, 2021, pp. 198–206.

[11] M. N. A. Tawhid, S. Siuly, H. Wang, F. Whittaker, K. Wang, and
Y. Zhang, “A spectrogram image based intelligent technique for auto-
matic detection of autism spectrum disorder from EEG,” PLoS ONE,
vol. 16, no. 6, Jun. 2021, Art. no. e0253094.

[12] M. Tawhid, N. Ahad, S. Siuly, K. Wang, and H. Wang, “Brain data
mining framework involving entropy topography and deep learning,” in
Proc. Australas. Database Conf. Cham, Switzerland: Springer, 2022,
pp. 161–168.

[13] M. N. A. Tawhid, S. Siuly, and T. Li, “A convolutional long short-term
memory-based neural network for epilepsy detection from EEG,” IEEE
Trans. Instrum. Meas., vol. 71, pp. 1–11, 2022.

[14] M. N. A. Tawhid, S. Siuly, K. Wang, and H. Wang, “Textural fea-
ture based intelligent approach for neurological abnormality detection
from brain signal data,” PLoS ONE, vol. 17, no. 11, Nov. 2022,
Art. no. e0277555.

[15] M. N. A. Tawhid, S. Siuly, K. Wang, and H. Wang, “Automatic and
efficient framework for identifying multiple neurological disorders from
EEG signals,” IEEE Trans. Technol. Soc., vol. 4, no. 1, pp. 76–86,
Mar. 2023.

[16] H. Rabbani, M. Kashefpoor, and M. Barekatain, “Automatic diagnosis
of mild cognitive impairment using electroencephalogram spectral fea-
tures,” J. Med. Signals Sensors, vol. 6, no. 1, p. 25, 2016.

[17] S. Khatun, B. I. Morshed, and G. M. Bidelman, “A single-channel EEG-
based approach to detect mild cognitive impairment via speech-evoked
brain responses,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 27, no. 5,
pp. 1063–1070, May 2019.

[18] J. Yin, J. Cao, S. Siuly, and H. Wang, “An integrated MCI detection
framework based on spectral-temporal analysis,” Int. J. Autom. Comput.,
vol. 16, no. 6, pp. 786–799, Dec. 2019.

[19] N. Sharma, M. H. Kolekar, K. Jha, and Y. Kumar, “EEG and cognitive
biomarkers based mild cognitive impairment diagnosis,” IRBM, vol. 40,
no. 2, pp. 113–121, Mar. 2019.

[20] A. M. Alvi, S. Siuly, and H. Wang, “A long short-term memory based
framework for early detection of mild cognitive impairment from EEG
signals,” IEEE Trans. Emerg. Topics Comput. Intell., vol. 7, no. 2,
pp. 375–388, Apr. 2023.

[21] W. Klimesch, “EEG alpha and theta oscillations reflect cognitive and
memory performance: A review and analysis,” Brain Res. Rev., vol. 29,
nos. 2–3, pp. 169–195, Apr. 1999.

[22] Ö. F. Alçin, S. Siuly, V. Bajaj, Y. Guo, A. Şengür, and Y. Zhang,
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