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Abstract

Dynamic graph neural networks (DGNNs) have been

widely used in modeling and representation learning of

graph structure data. Current dynamic representation

learning focuses on either discrete learning which

results in temporal information loss, or continuous

learning which involves heavy computation. In this

study, we proposed a novel DGNN, sparse dynamic

(Sparse‐Dyn). It adaptively encodes temporal informa-

tion into a sequence of patches with an equal amount

of temporal‐topological structure. Therefore, while

avoiding using snapshots which cause information

loss, it also achieves a finer time granularity, which is

close to what continuous networks could provide. In

addition, we also designed a lightweight module,

Sparse Temporal Transformer, to compute node

representations through structural neighborhoods and

temporal dynamics. Since the fully connected attention

conjunction is simplified, the computation cost is far

lower than the current state‐of‐the‐art. Link prediction

experiments are conducted on both continuous and

discrete graph data sets. By comparing several state‐of‐
the‐art graph embedding baselines, the experimental
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results demonstrate that Sparse‐Dyn has a faster

inference speed while having competitive performance.

KEYWORD S

adaptive data encoding, dynamic graph neural network, link
prediction, sparse temporal transformer

1 | INTRODUCTION

Dynamic graph neural networks (DGNNs) have seen a notable surge of interest with the
encouraging technique for learning complicated systems of relations or interactions over time.
Since DGNNs append an additional temporal dimension to accumulate the variation of
embedding or representations, they are powerful tools to employ in diverse fields, such as social
media,1,2 dynamic social networks,3 bioinformatics,4 knowledge bases,5 brain neuroscience,6

protein–protein interaction networks,7 recommendation system,8,9 image processing,10–12

remote sensing,13–15 information safety,16–18 reinforcement Learning,19,20 and so forth.
To deal with the complicated time‐varied graphs, it is necessary and crucial to preprocess the

raw dynamic graph representations, which record all continuous evolution of the graph over time,
such as node emerging/disappearing and link addition/deletion.21–25 Current researches26–33

refine the raw dynamic representations to two main branches: dynamic continuous and dynamic
discrete graphs. The raw representations are projected to a single two‐dimensional (2D) temporal
graph for the former, storing the most information in graph evolution. However, the
corresponding dynamic continuous networks are considerably complicated, which involves heavy
computation.25 For discrete graphs, the structural representations are sampled to graph snapshots
at regular time intervals, such as 1 day, over time. Although the developing networks are easier
than the continuous ones, the temporal information is lost much more.24 We hope to find an
efficient way to encode the raw dynamic graph representations, which can alleviate the temporal
information loss and simplify the evolved network in future representation learning. Thus, one of
our primary contributions, Adaptive Data Encoding (ADE), is proposed to adequately project the
temporal information into a sequence of event‐based patches with equal amounts of temporal‐
topological structural patterns to avoid information loss.

DGNNs extract and analyze patterns for graph learning along temporal dimension on the
refined dynamic temporal graphs. In this step, it is crucial to have an efficient and powerful
network under specific tasks. Some researches28,32,33 utilize recurrent neural networks (RNNs)
to scrutinize representations on the sequence of dynamic graphs. However, RNN‐based DGNNs
are more time‐consuming and inadequately handle sequential time‐dependent embedding with
increasing moments of time steps. Since the transformer‐based approaches26,27,34 adaptively
designate divergent and interpretable attention to past embedding over time, the performance
is better than RNN‐based DGNNs on the long‐time duration. However, because the standard
transformer (ST)35 contains fully connected attention conjunction, which causes the heavy
computation on a time‐dependent sequence.36 We hope to simplify and effectively convey
temporal information along the time dimension and achieve acceptable performance under
inductive and transductive link prediction tasks. Thus, a lightweight module, Sparse Temporal
Transformer (STT), is proposed to compute the temporal information with far lower costs by
simplified sparse attention conjunction under both graph tasks.
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Figure 1 illustrates the overall architecture of the sparse dynamic (Sparse‐Dyn), which
contains three main components: ADE for adaptive encoding of the raw dynamic continuous
graph‐based data, graph structural attention (GSA) for investigation of local structural patterns
on patches, and STT for graph evolution capture of global temporal patterns over time.

To evaluate our proposed model, we conduct experiments on two continuous data sets under
inductive link prediction tasks. The experiments demonstrate that Sparse‐Dyn outperforms state‐
of‐the‐art networks on the continuous graph data sets. In addition, we also designed an
abbreviated version of Sparse‐Dyn with only GSA and STT. This abbreviated version is then
utilized to learn the representation of the discrete data sets under both inductive and transductive
link prediction tasks. Further experiments show that this version is still faster, more efficient, and
has higher accuracy on four discrete dynamic graph data sets.

The contributions in this paper are summarized as follows:

• The Sparse‐Dyn is proposed to trade off the accuracy and efficiency on both dynamic
continuous and discrete representations under link prediction tasks.

• We recommend a new approach, ADE, to preprocess the raw dynamic graph representations.
The ADE can alleviate the information loss in the process and simplify the evolved network
in future representation learning.

• We propose a lightweight temporal self‐attentional module called STT. The STT‐based
Sparse‐Dyn can substantially reduce the computation by comparing RNN‐based and ST‐
based solutions on both continuous dynamic graph data sets.

• The abbreviated version of Sparse‐Dyn, comprising only GSA and STT, can also be utilized
on the discrete dynamic graph data sets. The experiments consistently demonstrate superior
performance for Sparse‐Dyn over state‐of‐the‐art approaches under inductive and
transductive link prediction tasks.

The structure of this paper is organized as follows: Section 2 presents a review of the latest
work on dynamic graph data sets and networks. Section 3 identifies critical terminology and
fundamental concepts used in this paper. Section 4 describes the detailed mathematical process
of Sparse‐Dyn. The experiment design and results are discussed in Section 5. Finally, Section 6
presents our conclusion.

FIGURE 1 Overall architecture of Sparse‐Dyn includes three main parts: Adaptive Data Encoding (ADE),
Graph Structural Attention (GSA), and Sparse Temporal Transformer (STT) [Color figure can be viewed at
wileyonlinelibrary.com]
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2 | RELATED WORK

2.1 | Graph representations

Graph representations can generally be categorized into two distinct levels: static and dynamic.
The former includes only structural information, while the latter includes another critical
parameter: time. The raw dynamic representation contains node interactions37 and time-
stamped edges,24 where instantaneous events are recorded into the raw graph representations,
such as the creation and removal of nodes and edges.

Current researches mainly focus on two branches to prepossess the raw representations:
dynamic continuous and discrete graphs.21,22,24,25 The dynamic continuous graphs store the
most information by projecting the raw representations to a 2D temporal graph, which is also a
specific static graph appended with temporal information.23 However, the corresponding
networks are complicated because they have to extract temporal information at each moment,
which is the common issue of the dynamic continuous graphs.25

For the dynamic discrete graphs, current research22,23 group graph embedding with a certain
temporal granularity over time. The discrete graphs include equal time intervals, which can be
represented with multiple snapshots along temporal dimension.38 Because the temporal
information is sampled at the discrete moments, such as 1 day/month, to several graph snapshots,
the discrete representation is less complicated than a continuous representation.21 However, this
kind of graph tracking method causes more processing information loss. Also, the distribution of
events or interactions among different temporal windows is not homogeneous, which leads to an
imbalance of temporal information among divergence graph snapshots.

We hope to find an efficient temporal encoding approach to alleviating the temporal
information loss and simplify the evolved network in future representation learning. Thus, an
event‐based ADE module is proposed to adaptively encode the temporal information and
determine the optimum number of temporal patches on the time dimension. Unlike traditional
representations, our temporal patches contain an equal amount of temporal‐topological
structural patterns, which is fair and effective for future representation learning.

2.2 | Dynamic graph neural network

Since dynamic graph representations append a time dimension on the static ones, the RNN‐
based DGNNs31,39 are considered to summarize temporal information over time. However, the
computation of RNN‐based DGNNs is expensive because RNNs need a large amount of graph
data for training. Moreover, it scales poorly on a long‐time temporal dimension.26 To solve this
issue, the transformer‐based DGNNs26,27 are introduced to deal with the temporal information
along the time dimension. Temporal graph attention (TGAT)27 introduces temporal constraints
on neighborhood aggregation methods and utilizes a TGAT layer to aggregate temporal‐
topological features on the continuous graph data sets. Dynamic graphs via self‐attention
(DySAT)26 generates a dynamic representation by joint self‐attention of both structural and
temporal information on discrete graph data sets. However, the common problem is that their
computation is enormous on a long temporal sequence due to the fully connected attention
conjunction of the ST. A proper dynamic graph network should achieve the desired trade‐off
between accuracy and efficiency under graph representation learning tasks. In Sparse‐Dyn, we
designed a lightweight module, STT. The information is only conveyed among 1‐hop neighbors
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and the relay node. Experiments show that such a module significantly reduces the inference
time and still performs better than the state‐of‐the‐art approaches on both continuous and
discrete representations.

3 | PRELIMINARIES

This section illustrates the terminology and preliminary knowledge. Table 1 denotes various
terminologies.

Definition 1 (Dynamic graph neural network). In general, a dynamic graph,
DG A X T= ( , ; ), contains two main aspects: structural patterns A X( , ) and temporal
information T .

Definition 2 (Graph link prediction). Given DG, the task is to estimate the link status
among nodes by analyzing the aggregated information on both nodes at one moment.

Definition 3 (Inductive learning). Given DG, DGNNs can only investigate the graph
information from the beginning to the moment T − 1. The analyzed representations are
utilized to predict the future links at T . This task is prevalent and crucial since it makes
predictions on unseen nodes and links in the future.

Definition 4 (Transductive learning). Given DG, DGNNs can observe all nodes from the
beginning to the end, T . The models learn representation and make the predictions at
each snapshot or moment.

4 | METHODS

The Sparse‐Dyn consists of three components connected serially, ADE, GSA, and STT, as
shown in Figure 1. To make the distribution of the events uniformly along a temporal
dimension and alleviate the disturbance from irrelevant messages to crucial ones in the future

TABLE 1 General notations

Notations Description Notations Description

DG Dynamic graphs S Snapshots

A Adjacency matrix X Node feature vectors

E Edges/connections N Nodes/objects

eum Edge between nodes u and m u Center node

h Structural representation E Embedding/token representation

R Frequency of events W Learnable parameters

PE Position embedding p Position‐aware structural representation

c Context information z Time‐dependent structural representation

r Relay representation L Loss function
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graph learning, ADE adequately encodes the temporal information into a sequence of patches
with an equal amount of temporal‐topological structural patterns by investigating the
frequency of events. The GSA module extracts the local structural representations with a
self‐attention layer on each temporal patch. The learned time‐dependent structural
representations are sent to the lightweight module, STT, to capture the global graph evolution
along the temporal dimension.

4.1 | Adaptive data encoding

Since dynamic continuous graph stores almost events over time, it can be regarded as a
particular static graph with an additional temporal dimension. Current researches28,40 project
the topological graph structures and node features from the raw representation to a 2D
temporal continuous graph for future representation learning. However, the data processing is
low‐efficiency because they pay much attention to the inoperative information for the target
node.23 The continuous representation of these networks is far more complicated.25 In contrast,
the discrete dynamic graph simplifies the data processing by sampling the structural
representations to graph snapshots at regular time intervals. The developing discrete networks
are less complicated than the continuous ones.25 However, the temporal information is lost
much more.

We hope to find an efficient way to encode raw dynamic representations and reduce the
information loss in this processing. Thus, an ADE is proposed to adaptively encode temporal
information into a set of event‐based temporal patches with an equal amount of temporal‐
topological structure. While avoiding the use of snapshots which causes information loss, it also
achieves a finer time granularity close to what a dynamic continuous graph could provide.

Figure 2 compares three encoding approaches: raw graph representation without encoding,
uniform data encoding (UDE), and ADE. On the basis of the raw time‐dependent
representations with superabundant details, the UDE separates the graph patterns into several
patches by the same temporal intervals, such as 1 day, and so forth. In this case, the events have
happened irregularly along the time dimension. It means the distribution of temporal‐
topological patterns is not homogeneous of the encoded patches. The computation on some
patches is expensive because it takes more to deal with the complicated patch structure;
meanwhile, the calculation is light on those with fewer events. Thus, it is inefficient to process
the patches with different amounts of structural patterns in parallel computing.

Instead of separating by a regular interval, the raw data are divided into N event‐based
patches along a temporal dimension by ADE, as shown in Figure 3. In this case, each patch
contains an equal amount of temporal‐topological patterns, which is beneficial to improve
the efficiency of feature extraction on N event‐based patches in parallel. To distribute the
same event to each patch, an effortless way is to assign only one event on each patch, which
means the total number of patches is enormous (N  ). Alternatively, all events are
projected to only one patch (N = 1), just like a static graph. However, the computational
time of both approaches is heavy. In the previous approach, the network consumes too
much on massive patches with low entropy, while it takes a long time to deal with the only
patch with all events in the second approach. Thus, it is crucial to balance the total number
of patches, N , and the quality of structural embedding of each patch along the time
dimension. We utilize a cost function of ADE to adaptively determine N and the embedding
of patches in Equations (1) and (2).
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min L ϕ E E τlog
R

( ) = , +
Δ
,A

n

N

n

=1







 (1)

FIGURE 3 ADE adaptively encodes temporal information into a sequence of patches by events along the
temporal dimension. Each temporal patch contains an equal amount of temporal‐topological patterns with the
others. ADE, Adaptive Data Encoding. [Color figure can be viewed at wileyonlinelibrary.com]

FIGURE 2 Different encoding approaches. Top row, raw graph representation; second row, uniform data
encoding approach encodes the time‐dependent representation by the same time interval uniformly; bottom
row, adaptive data encoding approach adaptively encodes the whole raw representation to a sequence of event‐
based patches. Since each patch contains an equal amount of temporal‐topological patterns, parallel computing
is highly efficient. PG indicates the predicted graph. [Color figure can be viewed at wileyonlinelibrary.com]
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ϕ E E( − ) − ϵ = 0,i j (2)

where E is the embedding of the raw graph representations, and τ is a constant parameter. The
R is the number of total events, and N =

R

Δ
is the number of patches. The ϕ is the Pearson

Correlation Coefficient41 to measure the linear correlation of embedding between every two
patches. The ϵ is a tiny constant parameter to ensure that each patch contains an equal amount
of temporal‐topological patterns.

Equation (2) restricts the difference of the structural embedding on each patch is tiny. In
Equation (1), the first item is to minimize the difference between the quality of the final
projected representations of all patches. The second item is encouraged to increase a
considerable value of N . By minimizing the cost function of LA, an optimum balance between
N and Ei can finally be obtained.

4.2 | Graph structural attention

Once the raw graph representations are encoded to the optimal N time‐dependent patches,
extracting the local structural patterns on each encoded patch is next. The input of GSA is a set
of node representations of the current patch. Inspired by graph attention (GAT),42 a node self‐
attention matrix, α softmax e= ( )um um , is learned to determine the relevance between neighbors
and the center node, u, on the time‐dependent patch.

e σ A r W X W X= ( [ ; ]),um um p u p m (3)

where eum indicates the relevance of neighbor node m to the center node u. The σ is the
exponential linear unit (ELU) activation function.43 The A is the patch's adjacency matrix to
indicate the current patch's linking relation, The γ indicates the self‐attention mechanism, and
Wp is the weight matrix of the patch p. The xu and xm are the node representation of the center
node u and neighbor node m. Then, the activation function ψ is applied to get the nonlinear
node representation of the current patch in Equation (4).

h ψ α W X= ,u

m N

um p m

u









⊑

 (4)

where ψ is the Gaussian Error Linear Unit (GELU)44 for the final output representations,
h Ru

d∈ is the patch embedding, and d is the updated feature dimension.
The final step of GSA is to add the position embedding of time‐dependent patches, which

embed the absolute temporal position of each patch, as shown in Figure 4 Left. Thus, the
output of GSA, pi, contains both local structural patterns and temporal position information of
the current patch.

4.3 | Sparse temporal transformer

The objective of STT is to gather the global evolution of structural patterns on each patch from
GSA along the time dimension. Current transformer‐based DGNNs26,27 utilize the ST to extract
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the temporal patterns and receive good accuracy on both continuous and discrete dynamic
representations. However, due to the fully connected attention conjunction shown in Figure 4
Right, the computation of these transformer‐based DGNNs on a long‐time sequence is
expensive. To reduce the computation, we design a lightweight module, STT, instead of the ST
to deal with the global temporal patterns of time‐dependent patches.

Figure 4 Middle illustrates the architecture of the STT module, which consists of N time‐
dependent patches from GSA and a single relay patch. Each temporal patch is connected with
two adjacent patches and the relay one on the STT. The relay patch's functionality is
congregating and distributing the representation among all time‐dependent patches. Thus, the
STT module can learn global representations with the relay patch. By comparing the fully
connected attention conjunction, the advantage of our connection is that the computation to
extract the temporal information is cut down by reducing the interaction times of patches.

The input of STT is a sequence of representations for a center node u at all temporal
patches. The embedding of the relay patch is initialized as the average of all time‐dependent
patches at the beginning. The context of c t( )i of the patch i is updated by aggregating the
representations from its two neighbor patch i − 1 and i + 1, the relay r t( − 1), the state of itself
at last moment z t( − 1)i , and the embedding pi.

c t z t z t z t p r t( ) = [ ( − 1); ( − 1); ( − 1); ; ( − 1)].i i i i i−1 +1 (5)

The temporal self‐attention function of the current state z t( )i of patch i is defined as in
Equation (6).

z t ϕ β t c t W( ) = ( ( ) ( ) ),i i i i1  (6)

β t softmax
z t W c t W

d
( ) =

( − 1) ( ( ) )
,i

i q i k
T









(7)

FIGURE 4 (Left) GSA: The local structural patterns are extracted and added with the position embedding
on each time‐dependent patch in the GSA module. (Middle) The lightweight STT: The global temporal patterns
are investigated over time. Each patch is only connected to its two adjacent patches and the relay one. The
updated relay patch is utilized to predict the predicted patch's link. (Right) Patch conveys information to each
other due to the fully connected attention conjunction of the standard transformer, which causes the heavy
computation. GSA, graph structural attention; PE, position embedding; STT, Sparse Temporal Transformer.
[Color figure can be viewed at wileyonlinelibrary.com]

where β t( )i is the self‐attention coefficients of temporal patches, W W W, ,q k i are learnable
parameters, and d is the feature dimension of zi. A layer normalization operation45 is added
after the transaction among all patches.

8778 | PANG ET AL.

 1098111x, 2022, 11, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/int.22967 by U

niversity O
f Southern Q

ueensland, W
iley O

nline L
ibrary on [11/09/2023]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

http://wileyonlinelibrary.com


Meanwhile, current state of relay patch r t( ) gather all representations from temporal
patches Z t( ), and the state of itself at last moment r t( − 1) in Equation (8).

r t ϕ( ) = ,λ t r t Z t W2( ( ) [ ( −1); ( )] ′)v (8)

( )
λ t softmax

r t W r t Z t W

d
( ) =

( − 1) ′ [ ( − 1); ( )] ′

′
,

q k

T












(9)

where λ t( ) is the self‐attention coefficients of relay patch, W W W′, ′, ′q k i are learnable
parameters, and d′ is the feature dimension of the relay. Both ϕ1 and ϕ2 are nonlinear
activation function. Similarly, the layer normalization operation is also added after the
transaction on relay patches.

4.4 | Graph link prediction

Graph link prediction is one of the core graph tasks whose purpose is to forecast the connection
among nodes based on node representations. The training processing analyzes the
representations of T − 1 temporal patches in the inductive task. The network makes the link
prediction to the unseen nodes on the final predicted graph (PG). In this procedure, we utilize
the deep walk1 approach to sample some positive (connected links) and negative (unrelated
links) on PG. A binary cross‐entropy loss emboldens positive cases to have similar
representations while suppressing the negative ones in Equation (10).

L log φ e e

ω log φ e e

= − ( (< , >))

− ( (1 − <
′
, >)) ,

u V v N u

v u

n

v P u

v u

( )

′ ( )

walk

walk

 











∈ ∈

∈



(10)

where φ is the nonlinear activation function, < > is the inner‐production, ωn is a constant fine‐
tuned hyperparameter. The N u( )walk is the sampled positive cases in fixed‐length random deep
walks on PG, while the P u( )walk is the sampled negative cases.

Regarding the transductive task, the positive and negative cases are sampled at each
temporal patch. Thus, the final loss function is to calculate the sum of all costs on each patch in
Equation (11).

( )

( )

( )

( )

L log φ e e

ω log φ e e

= − ,

− 1 −
′
, .

t

T

u V v N u
v
t

u
t

n

v P u
v
t

u
t

=1 ( )

′ ( )

N

t

t

walk

walk

  











∈ ∈

∈



(11)
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5 | EXPERIMENTS

5.1 | Data sets

We experimentally validate Sparse‐Dyn on six real‐world dynamic graph data sets: two
dynamic continuous and four dynamic discrete data sets. Table 2 summarizes the statistics of
the details of these six data sets.

Reddit and Wikipedia: These two dynamic continuous graph data sets33 describe the active
users and their editions on Reddit and Wikipedia in 1month. The dynamic labels represent the
state of the user on their editions. Reddit contains 10,984 nodes and 672,447 links, while
Wikipedia contains 9227 nodes and 157,474 links.

Enron and UCI: These two dynamic discrete graph data sets describe the network
communications. Enron includes 143 nodes (employees) and 2347 links (email interac-
tions), while UCI includes 1809 nodes (users) and 16,822 links (messages).46,47

Yelp and ML‐10M: These two dynamic discrete graph data sets describe the bipartite
networks from Yelp and MovieLens.48 Yelp has 6509 nodes (users and businesses) and 95,361
links (relationship), while ML‐10M has 20,537 nodes (users with the tags) and 43,760 links
(interactions).

5.2 | Experimental setup

At the beginning of training, the Glorot and Bengio49 are to initialize the learnable
parametersW of each layer to avoid the gradient from exploding or vanishing suddenly. The
GELU yields the final output nonlinear representations at the end of GSA. The ELU is
utilized as the activation function for both temporal patches and relay in STT. A binary
cross‐entropy loss sends the probability distribution over predicted link prediction in both
inductive and transductive tasks. The numbers of adaptive temporal patches on Reddit and
Wikipedia are 16 and 12. In addition, the dropout approach50 is introduced to avoid
overfitting during the training process, with the dropout rate in a range of 0.3–0.7, which
depends on the data set and tasks.

TABLE 2 Statistics of the dynamic graph data sets

Continuous Nodes Links Time duration (s)

Reddit 10,984 672,447 2,678,390

Wikipedia 9227 157,474 2,678,373

Discrete Nodes Links Time steps

Enron 143 2347 16

UCI 1809 16,822 13

Yelp 6509 95,361 12

ML‐10M 20,537 43,760 13
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5.3 | Multihead attention mechanism

The multihead mechanism is also used to stabilize the learning process under the link
prediction task. At the end of the GSA and STT modules, the multihead attention mechanism is
adopted separately.

The structural multihead attention for GSA: Since the multihead attention mechanism is
adopted at GSA, the final representation hu in Section 4.2 is concatenated with the output from
each single head in Equation (12).

( )h h h h= , , …, ,u u u u
k1 2⋈ (12)

where ⋈ is the concatenate operation, and k is the number of multiple heads. The graph
structural attention heads share parameters across temporal patches.

The temporal multihead attention for STT: Similar with the above setting, the representation
of each patch zi and relay r t( ) in Section 4.3 are concatenated with the output from each single
head in Equations (13) and (14).

( )z t z t z t z t( ) = ( ), ( ), …, ( ) ,i i i i
k1 2⋈ (13)

r t r t r t r t( ) = ( ( ), ( ), …, ( )).k1 2⋈ (14)

To evaluate the contribution of the multihead attention mechanism, we set a series of
experiments for Efficient_Dyn with different head numbers independently in the range 1, 2, 4,
8, and 10 on two continuous and two discrete dynamic graph data sets. As shown in Figure 5, it
can be observed that the accuracy of multihead networks is better than the single‐head
networks on all four data sets. In addition, the accuracy does not keep increasing with a more
significant number of heads. The performance of the multihead network stabilizes with eight
attention heads for both modules.

5.4 | Inductive learning on continuous data sets

These experiments compare different approaches with two continuous data sets under the
inductive link prediction task. In these experiments, we compare Sparse‐Dyn networks with

FIGURE 5 Accuracy of Efficient_Dyn with different multiheads on four data sets in the inductive link
prediction tasks [Color figure can be viewed at wileyonlinelibrary.com]
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another four approaches as the baselines: GAT‐T,42 GraphSAGE‐LSTM,51 Const‐TGAT,27 and
TGAT. GAT‐T concatenates the time encoding to the graph structural features when gathering
the temporal information. GraphSAGE‐LSTM considers Long Short‐Term Memory (LSTM) to
aggregate the temporal information over time. TGAT utilizes a temporal attention coefficient
matrix to aggregate temporal representations. Const‐TGAT pays the same temporal attention to
collecting the temporal patterns.

Table 3 shows the accuracy of these approaches under the link prediction task on two
dynamic continuous data sets. It can be observed that the performances of transformer‐based
networks are better than RNN‐based ones. With the temporal attention, the accuracy of TGAT
can exceed 2.4% and 1.68% than the ones of Const‐TGAT on Reddit and Wikipedia.

TGAT consists of two main components: functional time encoding and an ST. We modify
the architecture of TGAT with STT instead of the ST and name it as Sparse‐Dyn*. To check the
performance of ADE and STT separately on dynamic continuous representations, the
performance of TGAT, Sparse‐Dyn*(functional time encoding + STT), and Sparse‐Dyn
(ADE+ STT) is analyzed in Table 3. Compared with TGAT and Sparse‐Dyn*, the latter's
accuracy achieves 92.83% on Reddit and 87.46% on Wikipedia, which surpasses 2.15% and
2.04% than the former. Meanwhile, the inference time of Sparse‐Dyn* is less than TGAT,
demonstrating that STT is more effective by comparing the fully connected connection of the
ST. Due to ADE, the inference time of Sparse‐Dyn is further reduced by comparing it with the
time of Sparse‐Dyn*. The Sparse‐Dyn's accuracy is less than TGAT by 2.03% and 1.73% on
Reddit and Wikipedia data sets because the functional time encoding component utilizes more
details with temporal constraints of graph representations. However, our inference speed is
only around 0.6 times that of TGAT on both continuous data sets, which is more competitive in
practical usage. These experiments demonstrate the contribution of Sparse‐Dyn consisting of
both EDA and STT on dynamic continuous representations under the link prediction task.

5.5 | Inductive learning on discrete data sets

The previous experiments demonstrate the power of Sparse‐Dyn on dynamic continuous data
sets. The Sparse‐Dyn can also be utilized on discrete graph data sets. Since the discrete
representations have several graph snapshots along temporal dimension, we compare our
Sparse‐Dyn§, which only consists of GSA and STT, with another seven baselines: node2vec,4

GraphSAGE, GAT, Dynamic Triad,29 DynGEM,52 DynAERNN,31 and DySAT. The node2vec
handles the second‐order random walk sampling to grasp node representations. Dynamic Triad
combines triadic closure to preserve both structural information and evolution patterns.

TABLE 3 Link prediction on dynamic continuous data sets

Data sets GAT‐T GraphSAGE‐L
Const‐
TGAT TGAT

Sparse‐
Dyn*

Sparse‐
Dyn TGAT

Sparse‐
Dyn*

Spars-
e‐Dyn

Reddit 90.24 89.43 88.28 90.68 92.83 88.65 30.164s 23.187s 18.956s

Wikipedia 84.76 82.43 83.60 85.28 87.36 83.55 15.377s 11.637s 9.623s

Note: Left, inductive learning task results (accuracy%); Right, inference time (s). The Sparse‐Dyn* combines the functional time
encoding component from TGAT and our STT component.

Abbreviations: Sparse‐Dyn, sparse dynamic; STT, Sparse Temporal Transformer; TGAT, temporal graph attention.
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DynGEM utilizes a deep autoencoder to generate nonlinear embeddings of snapshots.
DynGEM constructs both dense and recurrent layers to investigate the temporal graph
evolution. DySAT extracts node representations via fully connected self‐attention on both graph
structural and temporal patterns.

Table 4 summarizes the results of these eight approaches on four dynamic discrete graph
data sets. We find that the accuracy of DySAT exceeds the other state‐of‐the‐art approaches,
except Sparse‐Dyn§, under the link prediction task, which benefits from the fully connected
attention conjunction architecture of transform by extracting temporal patterns over time. This
phenomenon demonstrates that the transformer‐based DGNN outperforms the traditional
graph learning approaches, including RNN‐based DGNNs. By comparing DySAT and Sparse‐
Dyn§, we found the accuracy of Sparse‐Dyn§ is 81.36%, 85.47%, 72.59%, and 94.28% on Enron,
UCI, Yelp, and ML‐10M data sets, which are better than DySAT. Meanwhile, the inference time
of Sparse‐Dyn§ is much less than the time of DySAT on all four dynamic discrete data sets, as
shown in Table 5, demonstrating that STT is also competitive and effective on dynamic discrete
graph representations.

5.6 | Transductive learning on discrete data sets

Besides previous experiments, we also evaluate our proposed network on dynamic discrete
data sets under the transductive link prediction task. From Table 4 bottom, we observe the
transformer‐based DGNNs (DySAT and Sparse‐Dyn§) have better performances than
RNN‐based ones on all four discrete data sets, which also proves the self‐attention
architecture is powerful for transductive graph learning. As a result, the accuracy of Sparse‐
Dyn§ achieves 87.94%, 87.53%, 72.01%, and 87.52% on Enron, UCI, Yelp, and ML‐10M
separately, which also demonstrates the improvements delivered by our innovative
architecture of Sparse‐Dyn.

6 | CONCLUSION

This paper proposes a Sparse‐Dyn graph neural network, Sparse‐Dyn, that trade‐offs the
accuracy and efficiency under inductive and transductive link prediction tasks. Sparse‐
Dyn consists of three main components: ADE, GSA, and STT. The ADE module adaptively
encodes temporal information into a sequence of patches with an equal amount of
temporal‐topological structure, which reduces the information loss in the projection
processing due to adaptive generation with a more delicate time granularity. Also, it

TABLE 5 Inference time (ms) on discrete graph data sets in the inductive learning task

Data sets DySAT Sparse‐Dyn§

Enron 2.961 0.997

UCI 13.953 4.965

Yelp 1360.31 509.62

ML‐10M 10,678.36 3746.55
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simplifies the evolved network in future representation learning. The GSA module learns
the local structural representations on each encoded patch along the temporal dim
ension. The lightweight STT is utilized to extract global temporal patterns over time.
Benefiting from the information delivery on the simplified architecture, the STT‐based
Sparse‐Dyn can substantially reduce the computation by comparing RNN‐based
and ST‐based solutions on both continuous dynamic graph data sets. The Sparse‐Dyn is
evaluated on two dynamic continuous and four dynamic discrete graph data sets. The
results illustrate that Sparse‐Dyn is competitive and efficient in inference speed and
performance.
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APPENDIX A

A.1 | Event‐based data encoding
This section discusses the event‐based data encoding approaches with raw dynamic
representations. As shown in Figure A1A, the raw dynamic continuous representation is a
sequence of particular static graphs along the time dimension, which stores all events, such
as node emerging, node disappearing, link addition, link removing, and so forth. The
crucial information is the recorded time‐dependent events in the raw representations.
Before the representation learning, the raw representations should be prepossessed. For the
continuous graphs, the general approach is to project the raw representations to a single 2D
temporal graph, as shown in Figure A1B. The primary issue is that some temporal
information is lost on the single graph, including node or edge vanishing and multiedge
situations. Also, the developing networks are complicated and contain heavy computation
because they have to extract the temporal information at each moment on the dynamic
continuous graph.
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To alleviate the above issues, a straight thought is to convert the raw continuous
representations to several small temporal graphs with temporal intervals instead of the large
single one. Unlike dynamic discrete graphs that sample the representations at each discrete
interval, we project all events in each period to temporal patches. Each encoded graph patch
holds the temporal information in the duration with the same time interval, such as 1 day,
1 week, 1 month, and so forth. However, it is impossible to guarantee that events are uniformly
distributed along the time dimension. With the UDE approach, some patches contain
superabundant details due to more events in the corresponding duration and vice versa.

As shown in Figure A2, We design some experiments to verify the above phenomenon.
The top row of Figure A2 is the distribution of events at each temporal patch on Wikipedia
with three uniform time intervals: 1 day, 5 days, and 1 week. It can be observed that the
distribution of events is not homogeneous at all three patches. It is becoming increasingly
apparent with a longer time interval. The standard variance of the patch with a 1‐week
interval is 9957, far outweighing the one with a 1‐day interval. A similar phenomenon
emerges on Reddit, as shown in the bottom row of Figure A2. The calculation is also
inefficient on these inhomogeneous patches in the future representation learning in parallel
computing.

Our proposed ADE approach adaptively encodes temporal information into a sequence of
patches by events. This approach's advantage is avoiding using snapshots to cause information
loss and achieving a finer time granularity, which is close to what continuous networks could
provide. Also, the equal amount of temporal‐topological structure of patches is more efficient in
future representation learning.

FIGURE A1 Visual illustration for projection from the raw dynamic continuous representations. (A) The
generation process of a continuous temporal graph and its snapshots at each moment. The solid red line
represents an addition, and the green dash represents deletion. (B) The temporal information and the final state
of the projected temporal graph. Some temporal information for nodes and multiedges is lost. [Color figure can
be viewed at wileyonlinelibrary.com]
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We also observe that the distribution of events tends to be uniform on the temporal patch
with a smaller time interval, as shown in Figure A2. The majority and minority of event
numbers in the temporal patches with 1‐day intervals are 6087 and 3499 on Wikipedia, while
the numbers are 28,305 and 3651 for the one with 5‐day intervals. Ideally, if we split the raw
representations by each moment, the distribution of events will be almost homogeneous, and
no information loss. However, the computation will be much heavier in future representation
learning due to an enormous number of patches. Thus, it is crucial to balance the number and
amount of temporal‐topological structure of patches, which is discussed in Section 4.1.

FIGURE A2 Events distribution is inhomogeneous with different uniform time intervals on Wikipedia and
Reddit continuous data sets. Top, Wikipedia; bottom, Reddit. [Color figure can be viewed at wileyonlinelibrary.com]
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